Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary
An ACI Standard
Reported by ACI Committee 318

American Concrete Institute®

Deemed to satisfy ISO 19338:2007(E)
Building Code Requirements for Structural Concrete and Commentary

Copyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ACI.

The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities, omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionally find information or requirements that may be subject to more than one interpretation or may be incomplete or incorrect. Users who have suggestions for the improvement of ACI documents are requested to contact ACI.

ACI committee documents are intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. Individuals who use this publication in any way assume all risk and accept total responsibility for the application and use of this information.

All information in this publication is provided “as is” without warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement.

ACI and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of this publication.

It is the responsibility of the user of this document to establish health and safety practices appropriate to the specific circumstances involved with its use. ACI does not make any representations with regard to health and safety issues and the use of this document. The user must determine the applicability of all regulatory limitations before applying the document and must comply with all applicable laws and regulations, including but not limited to, United States Occupational Safety and Health Administration (OSHA) health and safety standards.

Order information: ACI documents are available in print, by download, on CD-ROM, through electronic subscription, or reprint and may be obtained by contacting ACI.

Most ACI standards and committee reports are gathered together in the annually revised ACI Manual of Concrete Practice (MCP).

American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331
U.S.A.
Phone: 248-848-3700
Fax: 248-848-3701

www.concrete.org

ACI 318-08 is deemed to satisfy ISO 19338:2007(E).
BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318-08) AND COMMENTARY

REPORTED BY ACI COMMITTEE 318

PREFACE

The “Building Code Requirements for Structural Concrete” (“Code”) covers the materials, design, and construction of structural concrete used in buildings and where applicable in nonbuilding structures. The Code also covers the strength evaluation of existing concrete structures.

Among the subjects covered are: drawings and specifications; inspection; materials; durability requirements; concrete quality, mixing, and placing; formwork; embedded pipes; construction joints; reinforcement details; analysis and design; strength and serviceability; flexural and axial loads; shear and torsion; development and splices of reinforcement; slab systems; walls; footings; precast concrete; composite flexural members; prestressed concrete; shells and folded plate members; strength evaluation of existing structures; provisions for seismic design; structural plain concrete; strut-and-tie modeling in Appendix A; alternative design provisions in Appendix B; alternative load and strength reduction factors in Appendix C; and anchoring to concrete in Appendix D.

The quality and testing of materials used in construction are covered by reference to the appropriate ASTM standard specifications. Welding of reinforcement is covered by reference to the appropriate AWS standard.

Uses of the Code include adoption by reference in general building codes, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code portion cannot be included. The Commentary is provided for this purpose. Some of the considerations of the committee in developing the Code portion are discussed within the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.

Keywords: admixtures; aggregates; anchorage (structural); beam-column frame; beams (supports); building codes; cements; cold weather construction; columns (supports); combined stress; composite construction (concrete and steel); composite construction (concrete to concrete); compressive strength; concrete construction; concrete slabs; concretes; construction joints; continuity (structural); contraction joints; cover; curing; deep beams; deflections; drawings; earthquake-resistant structures; embedded service ducts; flexural strength; floors; folded plates; footings; formwork (construction); frames; hot weather construction; inspection; isolation joints; joints (junctures); joists; lightweight concretes; load tests (structural); loads (forces); materials; mixing; mixture proportioning; modulus of elasticity; moments; pipe columns; pipes (tubing); placing; plain concrete; precast concrete; prestressed concrete; prestressing steels; quality control; reinforced concrete; reinforcing steels; roofs; serviceability; shear strength; shear walls; shells (structural forms); spans; specifications; splicing; strength; strength analysis; stresses; structural analysis; structural concrete; structural design; structural integrity; T-beams; torsion; walls; water; welded wire reinforcement.

ACI 318-08 was adopted as a standard of the American Concrete Institute November 2007 to supersede ACI 318-05 in accordance with the Institute’s standardization procedure and was published January 2008. A complete metric companion to ACI 318 has been developed, 318M; therefore, no metric equivalents are included in this document.

ACI Committee Reports, Manuals, Guides, Standard Practices, and Commentaries are intended for guidance in planning, designing, executing, and inspecting construction. This Commentary is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. The American Concrete Institute disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom. Reference to this Commentary shall not be made in contract documents. If items found in this Commentary are desired by the licensed design professional to be a part of the contract documents, they shall be restated and incorporated in mandatory language.

Copyright © 2008, American Concrete Institute.

All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by any electronic or mechanical device, printed or written or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.
CHAPTER 12—DEVELOPMENT AND SPLICES OF REINFORCEMENT ... 203

12.1—Development of reinforcement—General... 203
12.2—Development of deformed bars and deformed wire in tension... 204
12.3—Development of deformed bars and deformed wire in compression................................. 206
12.4—Development of bundled bars ... 207
12.5—Development of standard hooks in tension... 207
12.6—Development of headed and mechanically anchored deformed bars in tension............... 210
12.7—Development of welded deformed wire reinforcement in tension .. 212
12.8—Development of welded plain wire reinforcement in tension .. 213
12.9—Development of prestressing strand .. 214
12.10—Development of flexural reinforcement—General... 216
12.11—Development of positive moment reinforcement ... 218
12.12—Development of negative moment reinforcement ... 220
12.13—Development of web reinforcement .. 220
12.14—Splines of reinforcement—General .. 224
12.15—Splines of deformed bars and deformed wire in tension .. 225
12.16—Splines of deformed bars in compression .. 227
12.17—Splice requirements for columns ... 228
12.18—Splines of welded deformed wire reinforcement in tension .. 230
12.19—Splines of welded plain wire reinforcement in tension ... 231

CHAPTER 13—TWO-WAY SLAB SYSTEMS ... 233

13.1—Scope .. 233
13.2—General ... 234
13.3—Slab reinforcement .. 235
13.4—Openings in slab systems .. 238
13.5—Design procedures .. 238
13.6—Direct design method ... 241
13.7—Equivalent frame method .. 248

CHAPTER 14—WALLS ... 253

14.1—Scope .. 253
14.2—General ... 253
14.3—Minimum reinforcement .. 254
14.4—Walls designed as compression members .. 255
14.5—Empirical design method ... 255
14.6—Nonbearing walls .. 256
14.7—Walls as grade beams ... 256
14.8—Alternative design of slender walls .. 257

CHAPTER 15—FOOTINGS .. 261

15.1—Scope .. 261
15.2—Loads and reactions ... 261
15.3—Footings supporting circular or regular polygon-shaped columns or pedestals 262
15.4—Moment in footings ... 262
15.5—Shear in footings .. 263
15.6—Development of reinforcement in footings ... 264
15.7—Minimum footing depth ... 264
15.8—Transfer of force at base of column, wall, or reinforced pedestal 264
15.9—Sloped or stepped footings ... 266
15.10—Combined footings and mats ... 267

CHAPTER 16—PRECAST CONCRETE .. 269

16.1—Scope .. 269
16.2—General ... 269
16.3—Distribution of forces among members ... 270
16.4—Member design ... 270
16.5—Structural integrity .. 271
16.6—Connection and bearing design ... 273
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.7</td>
<td>Items embedded after concrete placement</td>
<td>275</td>
</tr>
<tr>
<td>16.8</td>
<td>Marking and identification</td>
<td>275</td>
</tr>
<tr>
<td>16.9</td>
<td>Handling</td>
<td>275</td>
</tr>
<tr>
<td>16.10</td>
<td>Strength evaluation of precast construction</td>
<td>275</td>
</tr>
<tr>
<td>17.1</td>
<td>Scope</td>
<td>277</td>
</tr>
<tr>
<td>17.2</td>
<td>General</td>
<td>277</td>
</tr>
<tr>
<td>17.3</td>
<td>Shoring</td>
<td>278</td>
</tr>
<tr>
<td>17.4</td>
<td>Vertical shear strength</td>
<td>278</td>
</tr>
<tr>
<td>17.5</td>
<td>Horizontal shear strength</td>
<td>278</td>
</tr>
<tr>
<td>17.6</td>
<td>Ties for horizontal shear</td>
<td>279</td>
</tr>
<tr>
<td>18.1</td>
<td>Scope</td>
<td>281</td>
</tr>
<tr>
<td>18.2</td>
<td>General</td>
<td>282</td>
</tr>
<tr>
<td>18.3</td>
<td>Design assumptions</td>
<td>283</td>
</tr>
<tr>
<td>18.4</td>
<td>Serviceability requirements—Flexural members</td>
<td>284</td>
</tr>
<tr>
<td>18.5</td>
<td>Permissible stresses in prestressing steel</td>
<td>287</td>
</tr>
<tr>
<td>18.6</td>
<td>Loss of prestress</td>
<td>287</td>
</tr>
<tr>
<td>18.7</td>
<td>Flexural strength</td>
<td>289</td>
</tr>
<tr>
<td>18.8</td>
<td>Limits for reinforcement of flexural members</td>
<td>290</td>
</tr>
<tr>
<td>18.9</td>
<td>Minimum bonded reinforcement</td>
<td>291</td>
</tr>
<tr>
<td>18.10</td>
<td>Statically indeterminate structures</td>
<td>293</td>
</tr>
<tr>
<td>18.11</td>
<td>Compression members—Combined flexure and axial loads</td>
<td>294</td>
</tr>
<tr>
<td>18.12</td>
<td>Slab systems</td>
<td>294</td>
</tr>
<tr>
<td>18.13</td>
<td>Post-tensioned tendon anchorages</td>
<td>297</td>
</tr>
<tr>
<td>18.14</td>
<td>Design of anchorage zones for monostrand or single 5/8 in. diameter bar tendons</td>
<td>302</td>
</tr>
<tr>
<td>18.15</td>
<td>Design of anchorage zones for multistrand tendons</td>
<td>303</td>
</tr>
<tr>
<td>18.16</td>
<td>Corrosion protection for unbonded tendons</td>
<td>304</td>
</tr>
<tr>
<td>18.17</td>
<td>Post-tensioning ducts</td>
<td>304</td>
</tr>
<tr>
<td>18.18</td>
<td>Grout for bonded tendons</td>
<td>304</td>
</tr>
<tr>
<td>18.19</td>
<td>Protection for prestressing steel</td>
<td>306</td>
</tr>
<tr>
<td>18.20</td>
<td>Application and measurement of prestressing force</td>
<td>306</td>
</tr>
<tr>
<td>18.21</td>
<td>Post-tensioning anchorages and couplers</td>
<td>307</td>
</tr>
<tr>
<td>18.22</td>
<td>External post-tensioning</td>
<td>308</td>
</tr>
<tr>
<td>19.1</td>
<td>Scope and definitions</td>
<td>309</td>
</tr>
<tr>
<td>19.2</td>
<td>Analysis and design</td>
<td>311</td>
</tr>
<tr>
<td>19.3</td>
<td>Design strength of materials</td>
<td>313</td>
</tr>
<tr>
<td>19.4</td>
<td>Shell reinforcement</td>
<td>313</td>
</tr>
<tr>
<td>19.5</td>
<td>Construction</td>
<td>315</td>
</tr>
<tr>
<td>20.1</td>
<td>Strength evaluation—General</td>
<td>317</td>
</tr>
<tr>
<td>20.2</td>
<td>Determination of required dimensions and material properties</td>
<td>318</td>
</tr>
<tr>
<td>20.3</td>
<td>Load test procedure</td>
<td>319</td>
</tr>
<tr>
<td>20.4</td>
<td>Loading criteria</td>
<td>320</td>
</tr>
<tr>
<td>20.5</td>
<td>Acceptance criteria</td>
<td>320</td>
</tr>
<tr>
<td>20.6</td>
<td>Provision for lower load rating</td>
<td>322</td>
</tr>
<tr>
<td>20.7</td>
<td>Safety</td>
<td>322</td>
</tr>
<tr>
<td>21.1</td>
<td>General requirements</td>
<td>323</td>
</tr>
<tr>
<td>21.2</td>
<td>Ordinary moment frames</td>
<td>328</td>
</tr>
<tr>
<td>21.3</td>
<td>Intermediate moment frames</td>
<td>329</td>
</tr>
<tr>
<td>21.4</td>
<td>Intermediate precast structural walls</td>
<td>333</td>
</tr>
<tr>
<td>21.5</td>
<td>Flexural members of special moment frames</td>
<td>333</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>22.1</td>
<td>Scope</td>
<td>369</td>
</tr>
<tr>
<td>22.2</td>
<td>Limitations</td>
<td>370</td>
</tr>
<tr>
<td>22.3</td>
<td>Joints</td>
<td>370</td>
</tr>
<tr>
<td>22.4</td>
<td>Design method</td>
<td>371</td>
</tr>
<tr>
<td>22.5</td>
<td>Strength design</td>
<td>371</td>
</tr>
<tr>
<td>22.6</td>
<td>Walls</td>
<td>373</td>
</tr>
<tr>
<td>22.7</td>
<td>Footings</td>
<td>374</td>
</tr>
<tr>
<td>22.8</td>
<td>Pedestals</td>
<td>376</td>
</tr>
<tr>
<td>22.9</td>
<td>Precast members</td>
<td>376</td>
</tr>
<tr>
<td>22.10</td>
<td>Plain concrete in earthquake-resisting structures</td>
<td>376</td>
</tr>
<tr>
<td>A.1</td>
<td>Definitions</td>
<td>379</td>
</tr>
<tr>
<td>A.2</td>
<td>Strut-and-tie model design procedure</td>
<td>386</td>
</tr>
<tr>
<td>A.3</td>
<td>Strength of struts</td>
<td>388</td>
</tr>
<tr>
<td>A.4</td>
<td>Strength of ties</td>
<td>391</td>
</tr>
<tr>
<td>A.5</td>
<td>Strength of nodal zones</td>
<td>392</td>
</tr>
<tr>
<td>B.1</td>
<td>Scope</td>
<td>395</td>
</tr>
<tr>
<td>C.9.1</td>
<td>Scope</td>
<td>403</td>
</tr>
<tr>
<td>C.9.2</td>
<td>Required strength</td>
<td>403</td>
</tr>
<tr>
<td>C.9.3</td>
<td>Design strength</td>
<td>405</td>
</tr>
<tr>
<td>D.1</td>
<td>Definitions</td>
<td>409</td>
</tr>
<tr>
<td>D.2</td>
<td>Scope</td>
<td>411</td>
</tr>
<tr>
<td>D.3</td>
<td>General requirements</td>
<td>412</td>
</tr>
<tr>
<td>D.4</td>
<td>General requirements for strength of anchors</td>
<td>414</td>
</tr>
<tr>
<td>D.5</td>
<td>Design requirements for tensile loading</td>
<td>419</td>
</tr>
<tr>
<td>D.6</td>
<td>Design requirements for shear loading</td>
<td>428</td>
</tr>
<tr>
<td>D.7</td>
<td>Interaction of tensile and shear forces</td>
<td>436</td>
</tr>
<tr>
<td>D.8</td>
<td>Required edge distances, spacings, and thicknesses to preclude splitting failure</td>
<td>438</td>
</tr>
<tr>
<td>D.9</td>
<td>Installation of anchors</td>
<td>438</td>
</tr>
<tr>
<td>E</td>
<td>Steel reinforcement information</td>
<td>439</td>
</tr>
<tr>
<td>References</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>459</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

This Commentary discusses some of the considerations of Committee 318 in developing the provisions contained in “Building Code Requirements for Structural Concrete (ACI 318-08),” hereinafter called the Code or the 2008 Code. Emphasis is given to the explanation of new or revised provisions that may be unfamiliar to Code users. In addition, comments are included for some items contained in previous editions of the Code to make the present commentary independent of the previous editions. Comments on specific provisions are made under the corresponding chapter and section numbers of the Code.

The Commentary is not intended to provide a complete historical background concerning the development of the Code, nor is it intended to provide a detailed résumé of the studies and research data reviewed by the committee in formulating the provisions of the Code. However, references to some of the research data are provided for those who wish to study the background material in depth.

As the name implies, “Building Code Requirements for Structural Concrete” is meant to be used as part of a legally adopted building code and as such must differ in form and substance from documents that provide detailed specifications, recommended practice, complete design procedures, or design aids.

The Code is intended to cover all buildings of the usual types, both large and small. Requirements more stringent than the Code provisions may be desirable for unusual construction. The Code and Commentary cannot replace sound engineering knowledge, experience, and judgment.

A building code states only the minimum requirements necessary to provide for public health and safety. The Code is based on this principle. For any structure, the owner or the licensed design professional may require the quality of materials and construction to be higher than the minimum requirements necessary to protect the public as stated in the Code. However, lower standards are not permitted.

The Commentary directs attention to other documents that provide suggestions for carrying out the requirements and intent of the Code. However, those documents and the Commentary are not a part of the Code.

The Code has no legal status unless it is adopted by the government bodies having the police power to regulate building design and construction. Where the Code has not been adopted, it may serve as a reference to good practice even though it has no legal status.

The Code provides a means of establishing minimum standards for acceptance of designs and construction by legally appointed building officials or their designated representatives. The Code and Commentary are not intended for use in settling disputes between the owner, engineer, architect, contractor, or their agents, subcontractors, material suppliers, or testing agencies. Therefore, the Code cannot define the contract responsibility of each of the parties in usual construction. General references requiring compliance with the Code in the project specifications should be avoided since the contractor is rarely in a position to accept responsibility for design details or construction requirements that depend on a detailed knowledge of the design. Design-build construction contractors, however, typically combine the design and construction responsibility. Generally, the drawings, specifications, and contract documents should contain all of the necessary requirements to ensure compliance with the Code. In part, this can be accomplished by reference to specific Code sections in the project specifications. Other ACI publications, such as “Specifications for Structural Concrete (ACI 301)” are written specifically for use as contract documents for construction.

It is recommended to have testing and certification programs for the individual parties involved with the execution of work performed in accordance with this Code. Available for this purpose are the plant certification programs of the Precast/Prestressed Concrete Institute, the Post-Tensioning Institute, and the National Ready Mixed Concrete Association; the personnel certification programs of the American Concrete Institute and the Post-Tensioning Institute; and the Concrete Reinforcing Steel Institute’s Voluntary Certification

Design reference materials illustrating applications of the Code requirements may be found in the following documents. The design aids listed may be obtained from the sponsoring organization.

Design aids:

“ACI Design Handbook,” Publication SP-17(97), American Concrete Institute, Farmington Hills, MI, 1997, 482 pp. (This provides tables and charts for design of eccentrically loaded columns by the Strength Design Method of the 1995 Code. Provides design aids for use in the engineering design and analysis of reinforced concrete slab systems carrying loads by two-way action. Design aids are also provided for the selection of slab thickness and for reinforcement required to control deformation and assure adequate shear and flexural strengths.)

“Guide to Durable Concrete (ACI 201.2R-01),” ACI Committee 201, American Concrete Institute, Farmington Hills, MI, 2001, 41 pp. (This describes specific types of concrete deterioration. It contains a discussion of the mechanisms involved in deterioration and the recommended requirements for individual components of the concrete, quality considerations for concrete mixtures, construction procedures, and influences of the exposure environment.)

“Guide for the Design of Durable Parking Structures (362.1R-97 (Reapproved 2002)),” ACI Committee 362, American Concrete Institute, Farmington Hills, MI, 1997, 33 pp. (This summarizes practical information regarding design of parking structures for durability. It also includes information about design issues related to parking structure construction and maintenance.)

“CRSI Handbook,” Concrete Reinforcing Steel Institute, Schaumburg, IL, 9th Edition, 2002, 648 pp. (This provides tabulated designs for structural elements and slab systems. Design examples are provided to show the basis of and use of the load tables. Tabulated designs are given for beams; square, round, and rectangular columns; one-way slabs; and one-way joist construction. The design tables for two-way slab systems include flat plates, flat slabs, and waffle slabs.

The chapters on foundations provide design tables for square footings, pile caps, drilled piers (caissons), and cantilevered retaining walls. Other design aids are presented for crack control; and development of reinforcement and lap splices.)

“Reinforcement Anchorages and Splices,” Concrete Reinforcing Steel Institute, Schaumburg, IL, 4th Edition, 1997, 100 pp. (This provides accepted practices in splicing reinforcement. The use of lap splices, mechanical splices, and welded splices are described. Design data are presented for development and lap splicing of reinforcement.)

“Structural Welded Wire Reinforcement Detailing Manual,” Wire Reinforcement Institute, Hartford, CT, 1994, 252 pp. (The manual, in addition to including ACI 318 provisions and design aids, also includes: detailing guidance on welded reinforcement in one-way and two-way slabs; precast/prestressed concrete components; columns and beams; cast-in-place walls; and slabs-on-ground. In addition, there are tables to compare areas and spacings of high-strength welded wire with conventional reinforcing.)

“Strength Design of Reinforced Concrete Columns,” Portland Cement Association, Skokie, IL, 1978, 48 pp. (This provides design tables of column strength in terms of load in kips versus moment in ft-kips for concrete strength of 5000 psi and Grade 60 reinforcement. Design examples are included. Note that the PCA design tables do not include the strength reduction factor ϕ in the tabulated values; M_u/ϕ and P_u/ϕ must be used when designing with this aid.)

“PCI Design Handbook—Precast and Prestressed Concrete,” Precast/Prestressed Concrete Institute, Chicago, IL, 6th Edition, 2004, 736 pp. (This provides load tables for common industry products, and procedures for design and analysis of precast and prestressed elements and structures composed of these elements. Provides design aids and examples.)

“Design and Typical Details of Connections for Precast and Prestressed Concrete,” Precast/Prestressed Concrete Institute, Chicago, IL, 2nd Edition, 1988, 270 pp. (This updates available information on design of connections for both structural and architectural products, and presents a full spectrum of typical details. This provides design aids and examples.)

CHAPTER 1 — GENERAL REQUIREMENTS

CODE

1.1 — Scope

1.1.1 — This Code provides minimum requirements for design and construction of structural concrete members of any structure erected under requirements of the legally adopted general building code of which this Code forms a part. In areas without a legally adopted building code, this Code defines minimum acceptable standards for materials, design, and construction practice. This Code also covers the strength evaluation of existing concrete structures.

For structural concrete, \(f'_c \) shall not be less than 2500 psi. No maximum value of \(f'_c \) shall apply unless restricted by a specific Code provision.

COMMENTARY

R1.1 — Scope

The American Concrete Institute “Building Code Requirements for Structural Concrete (ACI 318-08),” referred to as the Code or 2008 Code, provides minimum requirements for structural concrete design or construction.

The 2008 Code revised the previous standard “Building Code Requirements for Structural Concrete (ACI 318-05).” This standard includes in one document the rules for all concrete used for structural purposes including both plain and reinforced concrete. The term “structural concrete” is used to refer to all plain or reinforced concrete used for structural purposes. This covers the spectrum of structural applications of concrete from nonreinforced concrete to concrete containing nonprestressed reinforcement, prestressing steel, or composite steel shapes, pipe, or tubing. Requirements for structural plain concrete are in Chapter 22.

Prestressed concrete is included under the definition of reinforced concrete. Provisions of the Code apply to prestressed concrete except for those that are stated to apply specifically to nonprestressed concrete.

Chapter 21 of the Code contains provisions for design and detailing of earthquake-resistant structures. See 1.1.8.

Appendix A of Codes prior to 2002 contained provisions for an alternate method of design for nonprestressed reinforced concrete members using service loads (without load factors) and permissible service load stresses. The Alternate Design Method was intended to give results that were slightly more conservative than designs by the Strength Design Method of the Code. The Alternate Design Method of the 1999 Code may be used in place of applicable sections of this Code.

Appendix A of the Code contains provisions for the design of regions near geometrical discontinuities, or abrupt changes in loadings.

Appendix B of this Code contains provisions for reinforcement limits based on \(0.75 \rho_b \), determination of the strength reduction factor \(\phi \), and moment redistribution that have been in the Code for many years, including the 1999 Code. The provisions are applicable to reinforced and prestressed concrete members. Designs made using the provisions of Appendix B are equally acceptable as those based on the body of the Code, provided the provisions of Appendix B are used in their entirety.
1.1.2 — This Code supplements the general building code and shall govern in all matters pertaining to design and construction of structural concrete, except wherever this Code is in conflict with requirements in the legally adopted general building code.

1.1.3 — This Code shall govern in all matters pertaining to design, construction, and material properties wherever this Code is in conflict with requirements contained in other standards referenced in this Code.

1.1.4 — For cast-in-place footings, foundation walls, and slabs-on-ground for one- and two-family dwellings and multiple single-family dwellings (townhouses) and their accessory structures, design and construction in accordance with ACI 332-04 shall be permitted.

1.1.5 — For unusual structures, such as arches, bins and silos, blast-resistant structures, and chimneys, provisions of this Code shall govern where applicable. See also 22.1.3.

R1.1.2 — The American Concrete Institute recommends that the Code be adopted in its entirety; however, it is recognized that when the Code is made a part of a legally adopted general building code, the general building code may modify provisions of this Code.

R1.1.4 — “Requirements for Residential Concrete Construction (ACI 332) and Commentary” reported by ACI Committee 332.1.1 (This addresses only the design and construction of cast-in-place footings, foundation walls supported on continuous footings, and slabs-on-ground for one- and two-family dwellings and multiple single-family dwellings [townhouses], and their accessory structures.)

R1.1.5 — Some structures involve unique design and construction problems that are not covered by the Code. However, many Code provisions, such as the concrete quality and design principles, are applicable for these structures. Detailed recommendations for design and construction of some special structures are given in the following ACI publications:

“Design and Construction of Reinforced Concrete Chimneys” reported by ACI Committee 307.1.2 (This gives material, construction, and design requirements for circular cast-in-place reinforced chimneys. It sets forth minimum loadings for the design of reinforced concrete chimneys and contains methods for determining the stresses in the concrete and reinforcement required as a result of these loadings.)

“Standard Practice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials” reported by ACI Committee 313.1.3 (This gives material, design, and construction requirements for reinforced concrete bins, silos, and bunkers and stave silos for storing granular materials. It includes recommended design and construction criteria based on experimental and analytical studies plus worldwide experience in silo design and construction.)

“Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary” reported by ACI Committee 349.1.4 (This provides minimum requirements for design and construction of concrete structures that form part of a nuclear power plant and have nuclear safety-related functions. The code does not cover concrete reactor vessels and concrete containment structures, which are covered by ACI 359.)
1.1.6 — This Code does not govern design and installation of portions of concrete piles, drilled piers, and caissons embedded in ground except for structures assigned to Seismic Design Categories D, E, and F. See 21.12.4 for requirements for concrete piles, drilled piers, and caissons in structures assigned to Seismic Design Categories D, E, and F.

R1.1.6 — The design and installation of piling fully embedded in the ground is regulated by the general building code. For portions of piling in air or water, or in soil not capable of providing adequate lateral restraint throughout the piling length to prevent buckling, the design provisions of this code govern where applicable.

Recommendations for concrete piles are given in detail in “Recommendations for Design, Manufacture, and Installation of Concrete Piles” reported by ACI Committee 543.1.6 (This provides recommendations for the design and use of most types of concrete piles for many kinds of construction.)

Recommendations for drilled piers are given in detail in “Design and Construction of Drilled Piers” reported by ACI Committee 336.1.7 (This provides recommendations for design and construction of foundation piers 2-1/2 ft in diameter or larger made by excavating a hole in the soil and then filling it with concrete.)

Detailed recommendations for precast prestressed concrete piles are given in “Recommended Practice for Design, Manufacture, and Installation of Prestressed Concrete Piling” prepared by the PCI Committee on Prestressed Concrete Piling.1.8

R1.1.7 — Detailed recommendations for design and construction of slabs-on-ground and floors that do not transmit vertical loads or lateral forces from other portions of the structure to the soil, and residential post-tensioned slabs-on-ground, are given in the following publications:

“Design of Slabs-on-Ground” reported by ACI Committee 360.1.9 (This presents information on the design of slabs-on-ground, primarily industrial floors and the slabs adjacent to them. The report addresses the planning, design, and detailing of the slabs. Background information on the design theories is followed by discussion of the soil support system, loadings, and types of slabs. Design methods are given for structural plain concrete, reinforced concrete, shrinkage-compensating concrete, and post-tensioned concrete slabs.)

“Design of Post-Tensioned Slabs-on-Ground,” PTI1.10 (This provides recommendations for post-tensioned slab-on-ground foundations. Presents guidelines for soil investigation, and design and construction of post-tensioned residential and light commercial slabs on expansive or compressible soils.)
CODE

1.1.8 — Concrete on steel deck

1.1.8.1 — Design and construction of structural concrete slabs cast on stay-in-place, noncomposite steel deck are governed by this Code.

1.1.8.2 — This Code does not govern the composite design of structural concrete slabs cast on stay-in-place, composite steel deck. Concrete used in the construction of such slabs shall be governed by Chapters 1 through 6 of this Code, where applicable. Portions of such slabs designed as reinforced concrete are governed by this Code.

COMMENTARY

R1.1.8 — Concrete on steel deck

In steel framed structures, it is common practice to cast concrete floor slabs on stay-in-place steel deck. In all cases, the deck serves as the form and may, in some cases, serve an additional structural function.

R1.1.8.1 — In its most basic application, the noncomposite steel deck serves as a form, and the concrete slab is designed to carry all superimposed loads.

R1.1.8.2 — Another type of steel deck commonly used develops composite action between the concrete and steel deck. In this type of construction, the steel deck serves as the positive moment reinforcement. The design of composite slabs on steel deck is described in “Standard for the Structural Design of Composite Slabs” (ANSI/ASCE 3).1.11 The standard refers to the appropriate portions of ACI 318 for the design and construction of the concrete portion of the composite assembly. Guidelines for the construction of composite steel deck slabs are given in “Standard Practice for the Construction and Inspection of Composite Slabs” (ANSI/ASCE 9).1.12 Reference 1.13 also provides guidance for design of composite slabs on steel deck. The design of negative moment reinforcement to make a slab continuous is a common example where a portion of the slab is designed in conformance with this Code.

R1.1.9 — Provisions for earthquake resistance

1.1.9.1 — The seismic design category of a structure shall be determined in accordance with the legally adopted general building code of which this Code forms a part, or determined by other authority having jurisdiction in areas without a legally adopted building code.

Seismic Design Categories in this Code are adopted directly from the 2005 ASCE/SEI 7 standard.1.14 Similar designations are used by the 2006 edition of the “International Building Code” (IBC)1.15 and the 2006 NFPA 5000 “Building Construction and Safety Code.”1.16 The “BOCA National Building Code” (NBC)1.17 and “Standard Building Code” (SBC)1.18 use Seismic Performance Categories. The 1997 “Uniform Building Code” (UBC)1.19 relates seismic design requirements to seismic zones, whereas previous editions of ACI 318 related seismic design requirements to seismic risk levels. Table R1.1.9.1 correlates Seismic Design Categories to the low, moderate/intermediate, and high seismic risk terminology used in ACI 318 for several editions before the 2008 edition, and to the various methods of assigning design requirements in use in the U.S. under the various model building codes, the ASCE/SEI 7 standard, and the NEHRP Recommended Provisions.1.20
In the absence of a general building code that prescribes earthquake loads and seismic zoning, it is the intent of Committee 318 that application of provisions for seismic design be consistent with national standards or model building codes such as References 1.14, 1.15, and 1.16.

R1.1.9.2 — Structures assigned to Seismic design category (SDC) A have the lowest seismic hazard and performance requirements. Provisions of Chapters 1 through 19 and Chapter 22 are considered sufficient for these structures. For structures assigned to other SDCs, the design requirements of Chapter 21 apply, as delineated in 21.1.

R1.1.10 — This Code does not govern design and construction of tanks and reservoirs.

R1.2 — Drawings and specifications

R1.2.1 — The provisions for preparation of design drawings and specifications are, in general, consistent with those of most general building codes and are intended as supplements. The Code lists some of the more important items of information that should be included in the design drawings, details, or specifications. The Code does not imply an all-inclusive list, and additional items may be required by the building official.
CODE

1.2.2 — Calculations pertinent to design shall be filed with the drawings when required by the building official. Analyses and designs using computer programs shall be permitted provided design assumptions, user input, and computer-generated output are submitted. Model analysis shall be permitted to supplement calculations.

COMMENTARY

R1.2.2 — Documented computer output is acceptable instead of manual calculations. The extent of input and output information required will vary according to the specific requirements of individual building officials. However, when a computer program has been used, only skeleton data should normally be required. This should consist of sufficient input and output data and other information to allow the building official to perform a detailed review and make comparisons using another program or manual calculations. Input data should be identified as to member designation, applied loads, and span lengths. The related output data should include member designation and the shears, moments, and reactions at key points in the span. For column design, it is desirable to include moment magnification factors in the output where applicable.

The Code permits model analysis to be used to supplement structural analysis and design calculations. Documentation of the model analysis should be provided with the related calculations. Model analysis should be performed by an individual having experience in this technique.

R1.3 — Inspection

The quality of concrete structures depends largely on workmanship in construction. The best of materials and design practices will not be effective unless the construction is
1.3.1 — Concrete construction shall be inspected as required by the legally adopted general building code. In the absence of such inspection requirements, concrete construction shall be inspected throughout the various Work stages by or under the supervision of a licensed design professional or by a qualified inspector.

R1.3.1 — Inspection of construction by or under the supervision of the licensed design professional responsible for the design should be considered because the person in charge of the design is usually the best qualified to determine if construction is in conformance with construction documents. When such an arrangement is not feasible, inspection of construction through other licensed design professionals or through separate inspection organizations with demonstrated capability for performing the inspection may be used.

Qualified inspectors should establish their qualification by becoming certified to inspect and record the results of concrete construction, including preplacement, placement, and postplacement operations through the ACI Inspector Certification Program: Concrete Construction Special Inspector.

When inspection is done independently of the licensed design professional responsible for the design, it is recommended that the licensed design professional responsible for the design be employed at least to oversee inspection and observe the Work to see that the design requirements are properly executed.

In some jurisdictions, legislation has established registration or licensing procedures for persons performing certain inspection functions. A check should be made in the general building code or with the building official to ascertain if any such requirements exist within a specific jurisdiction.

Inspection reports should be promptly distributed to the owner, licensed design professional responsible for the design, contractor, appropriate subcontractors, appropriate suppliers, and the building official to allow timely identification of compliance or the need for corrective action.

Inspection responsibility and the degree of inspection required should be set forth in the contracts between the owner, architect, engineer, contractor, and inspector. Adequate fees should be provided consistent with the work and equipment necessary to properly perform the inspection.

R1.3.2 — By inspection, the Code does not mean that the inspector should supervise the construction. Rather, it means that the one employed for inspection should visit the project with the frequency necessary to observe the various stages performed well. Inspection is necessary to confirm that the construction is in accordance with the design drawings and project specifications. Proper performance of the structure depends on construction that accurately represents the design and meets code requirements within the tolerances allowed. Qualification of the inspectors can be obtained from a certification program, such as the ACI Certification Program for Concrete Construction Special Inspector.

1.3.2 — The inspector shall require compliance with design drawings and specifications. Unless specified otherwise in the legally adopted general building code, inspection records shall include:
CODE

(a) Delivery, placement, and testing reports documenting the quantity, location of placement, fresh concrete tests, strength, and other test of all classes of concrete mixtures;

(b) Construction and removal of forms and reshoring;

(c) Placing of reinforcement and anchors;

(d) Mixing, placing, and curing of concrete;

(e) Sequence of erection and connection of precast members;

(f) Tensioning of tendons;

(g) Any significant construction loadings on completed floors, members, or walls;

(h) General progress of Work.

COMMENTARY

of Work and ascertain that it is being done in compliance with contract documents and Code requirements. The frequency should be at least enough to provide general knowledge of each operation, whether this is several times a day or once in several days.

Inspection in no way relieves the contractor from the obligation to follow the plans and specifications and to provide the designated quality and quantity of materials and workmanship for all job stages. Some of the information regarding designated concrete mixtures on a project is often provided in a preconstruction submittal to the licensed design professional. For instance, concrete mixture ingredients and composition are often described in detail in the submittal and are subsequently identified by a mixture designation (reflected on a delivery ticket) that can also identify the placement location in the structure. The inspector should be present as frequently as necessary to judge whether the quality, as measured by quality assurance tests, quantity, and placement of the concrete comply with the contract documents; to counsel on possible ways of obtaining the desired results; to see that the general system proposed for formwork appears proper (though it remains the contractor’s responsibility to design and build adequate forms and to leave them in place until it is safe to remove them); to see that reinforcement is properly installed; to see that concrete is delivered as required and is of the correct quality, properly placed, and cured; and to see that tests for quality assurance are being made as specified.

The Code prescribes minimum requirements for inspection of all structures within its scope. It is not a construction specification and any user of the Code may require higher standards of inspection than cited in the legal code if additional requirements are necessary.

Recommended procedures for organization and conduct of concrete inspection are given in detail in “Guide for Concrete Inspection,” reported by ACI Committee 311.1.22 (This sets forth procedures relating to concrete construction to serve as a guide to owners, architects, and engineers in planning an inspection program.)

Detailed methods of inspecting concrete construction are given in “ACI Manual of Concrete Inspection” (SP-2) reported by ACI Committee 311.1.23 (This describes methods of inspecting concrete construction that are generally accepted as good practice. Intended as a supplement to specifications and as a guide in matters not covered by specifications.)

1.3.3 — When the ambient temperature falls below 40 °F or rises above 95 °F, a record shall be kept of concrete temperatures and of protection given to concrete during placement and curing.

R1.3.3 — The term “ambient temperature” means the temperature of the environment to which the concrete is directly exposed. Concrete temperature as used in this section may be taken as the surface temperature of the
CODE

1.3.4 — Records of inspection required in 1.3.2 and 1.3.3 shall be preserved by the inspecting engineer or architect for 2 years after completion of the project.

1.3.5 — For special moment frames designed in accordance with Chapter 21, continuous inspection of the placement of the reinforcement and concrete shall be made by a qualified inspector. The inspector shall be under the supervision of the licensed design professional responsible for the structural design or under the supervision of a licensed design professional with demonstrated capability for supervising inspection of construction of special moment frames.

1.4 — Approval of special systems of design or construction

Sponsors of any system of design or construction within the scope of this Code, the adequacy of which has been shown by successful use or by analysis or test, but which does not conform to or is not covered by this Code, shall have the right to present the data on which their design is based to the building official or to a board of examiners appointed by the building official. This board shall be composed of competent engineers and shall have authority to investigate the data so submitted, to require tests, and to formulate rules governing design and construction of such systems to meet the intent of this Code. These rules, when approved by the building official and promulgated, shall be of the same force and effect as the provisions of this Code.

COMMENTARY

concrete. Surface temperatures may be determined by placing temperature sensors in contact with concrete surfaces or between concrete surfaces and covers used for curing, such as insulation blankets or plastic sheeting.

R1.3.4 — A record of inspection in the form of a job diary is required in case questions subsequently arise concerning the performance or safety of the structure or members. Photographs documenting job progress may also be desirable.

Records of inspection should be preserved for at least 2 years after the completion of the project. The completion of the project is the date at which the owner accepts the project, or when a certificate of occupancy is issued, whichever date is later. The general building code or other legal requirements may require a longer preservation of such records.

R1.3.5 — The purpose of this section is to ensure that the detailing required in special moment frames is properly executed through inspection by personnel who are qualified to do this Work. Qualifications of inspectors should be acceptable to the jurisdiction enforcing the general building code.

R1.4 — Approval of special systems of design or construction

New methods of design, new materials, and new uses of materials should undergo a period of development before being specifically covered in a code. Hence, good systems or components might be excluded from use by implication if means were not available to obtain acceptance.

For special systems considered under this section, specific tests, load factors, deflection limits, and other pertinent requirements should be set by the board of examiners, and should be consistent with the intent of the Code.

The provisions of this section do not apply to model tests used to supplement calculations under 1.2.2 or to strength evaluation of existing structures under Chapter 20.
Notes
CHAPTER 2 — NOTATION AND DEFINITIONS

2.1 — Code notation

The terms in this list are used in the Code and as needed in the Commentary.

\(a \) = depth of equivalent rectangular stress block as defined in 10.2.7.1, in., Chapter 10

\(a_v \) = shear span, equal to distance from center of concentrated load to either: (a) face of support for continuous or cantilevered members, or (b) center of support for simply supported members, in., Chapter 11, Appendix A

\(A_b \) = area of an individual bar or wire, in.\(^2\), Chapters 10, 12

\(A_{brg} \) = net bearing area of the head of stud, anchor bolt, or headed deformed bar, in.\(^2\), Chapter 12, Appendix D

\(A_c \) = area of concrete section resisting shear transfer, in.\(^2\), Chapters 11, 21

\(A_{cf} \) = larger gross cross-sectional area of the slab-beam strips of the two orthogonal equivalent frames intersecting at a column of a two-way slab, in.\(^2\), Chapter 18

\(A_{ch} \) = cross-sectional area of a structural member measured to the outside edges of transverse reinforcement, in.\(^2\), Chapters 10, 21

\(A_{cp} \) = area enclosed by outside perimeter of concrete cross section, in.\(^2\), see 11.5.1, Chapter 11

\(A_{cs} \) = cross-sectional area at one end of a strut in a strut-and-tie model, taken perpendicular to the axis of the strut, in.\(^2\), Appendix A

\(A_{ct} \) = area of that part of cross section between the flexural tension face and center of gravity of gross section, in.\(^2\), Chapter 18

\(A_{cv} \) = gross area of concrete section bounded by web thickness and length of section in the direction of shear force considered, in.\(^2\), Chapter 21

\(A_{cw} \) = area of concrete section of an individual pier, horizontal wall segment, or coupling beam resisting shear, in.\(^2\), Chapter 21

\(A_r \) = area of reinforcement in bracket or corbel resisting factored moment, in.\(^2\), see 11.8, Chapter 11

\(A_g \) = gross area of concrete section, in.\(^2\). For a hollow section, \(A_g \) is the area of the concrete only and does not include the area of the void(s), see 11.5.1, Chapters 9-11, 14-16, 21, 22, Appendixes B, C

\(A_h \) = total area of shear reinforcement parallel to primary tension reinforcement in a corbel or bracket, in.\(^2\), see 11.9, Chapter 11

\(A_j \) = effective cross-sectional area within a joint in a plane parallel to plane of reinforcement generating shear in the joint, in.\(^2\), see 21.7.4.1, Chapter 21

\(A_l \) = total area of longitudinal reinforcement to resist torsion, in.\(^2\), Chapter 11

\(A_{t, min} \) = minimum area of longitudinal reinforcement to resist torsion, in.\(^2\), see 11.5.5.3, Chapter 11

\(A_n \) = area of reinforcement in bracket or corbel resisting tensile force \(N_{uc} \), in.\(^2\), see 11.8, Chapter 11

\(A_{nz} \) = area of a face of a nodal zone or a section through a nodal zone, in.\(^2\), see 11.5.5.3, Chapter 11

\(A_{Nc} \) = projected concrete failure area of a single anchor or group of anchors, for calculation of strength in tension, in.\(^2\), see D.5.2.1, Appendix D

\(A_{Nco} \) = projected concrete failure area of a single anchor, for calculation of strength in tension if not limited by edge distance or spacing, in.\(^2\), see D.5.2.1, Appendix D

\(A_o \) = gross area enclosed by shear flow path, in.\(^2\), Chapter 11

\(A_{oh} \) = area enclosed by centerline of the outermost closed transverse torsional reinforcement, in.\(^2\), Chapter 11

\(A_{ps} \) = area of prestressing steel in flexural tension zone, in.\(^2\), Chapter 18, Appendix B

\(A_s \) = area of non prestressed longitudinal tension reinforcement, in.\(^2\), Chapters 10-12, 14, 15, 18, Appendix B

\(A_s' \) = area of compression reinforcement, in.\(^2\), Appendix A

\(A_{se} \) = area of primary tension reinforcement in a corbel or bracket, in.\(^2\), see 11.8.3.5, Chapter 11

\(A_{se,N} \) = effective cross-sectional area of anchor in tension, in.\(^2\), Appendix D

\(A_{se,V} \) = effective cross-sectional area of anchor in shear, in.\(^2\), Appendix D

\(A_{sh} \) = total cross-sectional area of transverse reinforcement (including crosses) within spacing \(s \) and perpendicular to dimension \(b_c \), in.\(^2\), Chapter 21

\(A_{si} \) = total area of surface reinforcement at spacing \(s_i \) in the \(i \)-th layer crossing a strut, with reinforcement at an angle \(\alpha_i \) to the axis of the strut, in.\(^2\), Appendix A
\(A_{s,\text{min}} \) = minimum area of flexural reinforcement, in.\(^2\), see 10.5, Chapter 10

\(A_t \) = total area of nonprestressed longitudinal reinforcement (bars or steel shapes), in.\(^2\), Chapters 10, 21

\(A_{sx} \) = area of structural steel shape, pipe, or tubing in a composite section, in.\(^2\), Chapter 10

\(A_{tf} \) = area of one leg of a closed stirrup resisting torsion within spacing \(s \), in.\(^2\), Chapter 11

\(A_{tp} \) = area of prestressing steel in a tie, in.\(^2\), Appendix A

\(A_{tr} \) = total cross-sectional area of all transverse reinforcement within spacing \(s \) that crosses the potential plane of splitting through the reinforcement being developed, in.\(^2\), Chapter 12

\(A_{ts} \) = area of nonprestressed reinforcement in a tie, in.\(^2\), Appendix A

\(A_v \) = area of shear reinforcement spaced \(s \), in.\(^2\), Chapters 11, 17

\(A_{Vc} \) = projected concrete failure area of a single anchor or group of anchors, for calculation of strength in shear, in.\(^2\), see D.6.2.1, Appendix D

\(A_{Vco} \) = projected concrete failure area of a single anchor, for calculation of strength in shear, if not limited by corner influences, spacing, or member thickness, in.\(^2\), see D.6.2.1, Appendix D

\(A_{vd} \) = total area of reinforcement in each group of diagonal bars in a diagonally reinforced coupling beam, in.\(^2\), Chapter 21

\(A_{vf} \) = area of shear-friction reinforcement, in.\(^2\), Chapters 11, 21

\(A_{vh} \) = area of shear reinforcement parallel to flexural tension reinforcement within spacing \(s_2 \), in.\(^2\), Chapter 11

\(A_{v,\text{min}} \) = minimum area of shear reinforcement within spacing \(s \), in.\(^2\), see 11.4.6.3 and 11.4.6.4, Chapter 11

\(A_1 \) = loaded area, in.\(^2\), Chapters 10, 22

\(A_2 \) = area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal, in.\(^2\), Chapters 10, 22

\(b \) = width of compression face of member, in., Chapter 10, Appendix B

\(b_c \) = cross-sectional dimension of member core measured to the outside edges of the transverse reinforcement composing area \(A_{sh} \), in., Chapter 21

\(b_o \) = perimeter of critical section for shear in slabs and footings, in., see 11.11.1.2, Chapters 11, 22

\(b_t \) = width of strut, in., Appendix A

\(b_t \) = width of that part of cross section containing the closed stirrups resisting torsion, in., Chapter 11

\(b_v \) = width of cross section at contact surface being investigated for horizontal shear, in., Chapter 17

\(b_w \) = web width, or diameter of circular section, in., Chapters 10-12, 21, 22, Appendix B

\(b_1 \) = dimension of the critical section \(b_o \) measured in the direction of the span for which moments are determined, in., Chapter 13

\(b_2 \) = dimension of the critical section \(b_o \) measured in the direction perpendicular to \(b_1 \), in., Chapter 13

\(B_n \) = nominal bearing strength, lb, Chapter 22

\(B_u \) = factored bearing load, lb, Chapter 22

\(c \) = distance from external compression fiber to neutral axis, in., Chapters 9, 10, 14, 21

\(c_{ac} \) = critical edge distance required to develop the basic concrete breakout strength of a post-installed anchor in uncracked concrete without supplementary reinforcement to control splitting, in., see D.8.6, Appendix D

\(c_{a,\text{max}} \) = maximum distance from center of an anchor shaft to the edge of concrete, in., Appendix D

\(c_{a,\text{min}} \) = minimum distance from center of an anchor shaft to the edge of concrete, in., Appendix D

\(c_{a1} \) = distance from the center of an anchor shaft to the edge of concrete in one direction, in. If shear is applied to anchor, \(c_{a1} \) is taken in the direction of the applied shear. If tension is applied to the anchor, \(c_{a1} \) is the minimum edge distance, Appendix D

\(c_{a2} \) = distance from center of an anchor shaft to the edge of concrete in the direction perpendicular to \(c_{a1} \), in., Appendix D

\(c_b \) = smaller of: (a) the distance from center of a bar or wire to nearest concrete surface, and (b) one-half the center-to-center spacing of bars or wires being developed, in., Chapter 12

\(c_c \) = clear cover of reinforcement, in., see 10.6.4, Chapter 10

\(c_t \) = distance from the interior face of the column to the slab edge measured parallel to \(c_1 \), but not exceeding \(c_1 \), in., Chapter 21

\(c_1 \) = dimension of rectangular or equivalent rectangular column, capital, or bracket measured in the direction of the span for which moments are being determined, in., Chapters 11, 13, 21

\(c_2 \) = dimension of rectangular or equivalent rectangular column, capital, or bracket measured in the direction perpendicular to \(c_1 \), in., Chapter 13

\(C \) = cross-sectional constant to define torsional properties of slab and beam, see 13.6.4.2, Chapter 13

\(C_m \) = factor relating actual moment diagram to an
equivalent uniform moment diagram, Chapter 10
\(d = \) distance from extreme compression fiber to centroid of longitudinal tension reinforcement, in., Chapters 7, 9-12, 14, 17, 18, 21, Appendixes B, C
\(d' = \) distance from extreme compression fiber to centroid of longitudinal compression reinforcement, in., Chapters 9, 18, Appendix C
\(d_a = \) outside diameter of anchor or shaft diameter of headed stud, headed bolt, or hooked bolt, in., see D.8.4, Appendix D
\(d'_a = \) value substituted for \(d_a \) when an oversized anchor is used, in., see D.8.4, Appendix D
\(d_b = \) nominal diameter of bar, wire, or prestressing strand, in., Chapters 7, 12, 21
\(d_p = \) distance from extreme compression fiber to centroid of prestressing steel, in., Chapters 11, 18, Appendix B
\(d_{pile} = \) diameter of pile at footing base, in., Chapter 15
\(d_t = \) distance from extreme compression fiber to centroid of extreme layer of longitudinal tension steel, in., Chapters 9, 10, Appendix C
\(D = \) dead loads, or related internal moments and forces, Chapters 8, 9, 20, 21, Appendix C
\(e = \) base of Napierian logarithms, Chapter 18
\(e_h = \) distance from the inner surface of the shaft of a J- or L-bolt to the outer tip of the J- or L-bolt, in., Appendix D
\(e'_N = \) distance between resultant tension load on a group of anchors loaded in tension and the centroid of the group of anchors loaded in tension, in.; \(e'_N \) is always positive, Appendix D
\(e'_V = \) distance between resultant shear load on a group of anchors loaded in shear in the same direction, and the centroid of the group of anchors loaded in shear in the same direction, in.; \(e'_V \) is always positive, Appendix D
\(E = \) load effects of earthquake, or related internal moments and forces, Chapters 9, 21, Appendix C
\(E_c = \) modulus of elasticity of concrete, psi, see 8.5.1, Chapters 8-10, 14, 19
\(E_{cb} = \) modulus of elasticity of beam concrete, psi, Chapter 13
\(E_{cs} = \) modulus of elasticity of slab concrete, psi, Chapter 13
\(E_I = \) flexural stiffness of compression member, in.\(^2\)-lb, see 10.10.6, Chapter 10
\(E_p = \) modulus of elasticity of prestressing steel, psi, see 8.5.3, Chapter 8
\(E_s = \) modulus of elasticity of reinforcement and structural steel, psi, see 8.5.2, Chapters 8, 10, 14
\(f'_c = \) specified compressive strength of concrete, psi, Chapters 4, 5, 8-12, 14, 18, 19, 21, 22, Appendixes A-D
\(f'_{ci} = \) specified compressive strength of concrete at time of initial prestress, psi, Chapter 18
\(f'_{cl} = \) required average compressive strength of concrete used as the basis for selection of concrete proportions, psi, Chapter 5
\(f_{ct} = \) average splitting tensile strength of lightweight concrete, psi, Chapters 5, 9, 11, 12, 22
\(f_d = \) stress due to factored dead load, at extreme fiber of section where tensile stress is caused by externally applied loads, psi, Chapter 11
\(f_{dc} = \) decompression stress; stress in the prestressing steel when stress is zero in the concrete at the same level as the centroid of the prestressing steel, psi, Chapter 18
\(f_{pc} = \) compressive stress in concrete (after allowance for all prestress losses) at centroid of cross section resisting externally applied loads or at junction of web and flange when the centroid lies within the flange, psi. (In a composite member, \(f_{pc} \) is the resultant compressive stress at centroid of composite section, or at junction of web and flange when the centroid lies within the flange, due to both prestress and moments resisted by precast member acting alone), Chapter 11
\(f_{pe} = \) compressive stress in concrete due to effective prestress forces only (after allowance for all prestress losses) at extreme fiber of section where tensile stress is caused by externally applied loads, psi, Chapter 11
\(f_{ps} = \) stress in prestressing steel at nominal flexural strength, psi, Chapters 12, 18
\(f_{pu} = \) specified tensile strength of prestressing steel, psi, Chapters 11, 18
\(f_{py} = \) specified yield strength of prestressing steel, psi, Chapter 18
\(f_r = \) modulus of rupture of concrete, psi, see 9.5.2.3, Chapters 9, 14, 18, Appendix B
\(f_s = \) calculated tensile stress in reinforcement at service loads, psi, Chapters 10, 18
\(f_s' = \) stress in compression reinforcement under factored loads, psi, Appendix A
\(f_{se} = \) effective stress in prestressing steel (after allowance for all prestress losses), psi, Chapters 12, 18, Appendix A
\(f_t = \) extreme fiber stress in tension in the precompressed tensile zone calculated at service
loads using gross section properties, psi, see 18.3.3, Chapter 18

\[f_{uta} \] = specified tensile strength of anchor steel, psi, Appendix D

\[f_y \] = specified yield strength of reinforcement, psi, Chapters 3, 7, 9-12, 14, 17-19, 21, Appendices A-C

\[f_ya \] = specified yield strength of anchor steel, psi, Appendix D

\[f_{yt} \] = specified yield strength \(f_y \) of transverse reinforcement, psi, Chapters 10-12, 21

\(F \) = loads due to weight and pressures of fluids with well-defined densities and controllable maximum heights, or related internal moments and forces, Chapter 9, Appendix C

\(F_n \) = nominal strength of a strut, tie, or nodal zone, lb, Appendix A

\(F_{nn} \) = nominal strength at face of a nodal zone, lb, Appendix A

\(F_{ns} \) = nominal strength of a strut, lb, Appendix A

\(F_{nt} \) = factored force acting in a strut, tie, bearing area, or nodal zone in a strut-and-tie model, lb, Appendix A

\(h \) = overall thickness or height of member, in., Chapters 9-12, 14, 17, 18, 20-22, Appendices A, C

\(h_a \) = thickness of member in which an anchor is located, measured parallel to anchor axis, in., Appendix D

\(h_{ef} \) = effective embedment depth of anchor, in., see D.8.5, Appendix D

\(h_v \) = depth of shearhead cross section, in., Chapter 11

\(h_w \) = height of entire wall from base to top or height of the segment of wall considered, in., Chapters 11, 21

\(h_x \) = maximum center-to-center horizontal spacing of crossties or hoop legs on all faces of the column, in., Chapter 21

\(H \) = loads due to weight and pressure of soil, water in soil, or other materials, or related internal moments and forces, Chapter 9, Appendix C

\(I \) = moment of inertia of section about centroidal axis, in.\(^4\), Chapters 10, 11

\(I_b \) = moment of inertia of gross section of beam about centroidal axis, in.\(^4\), see 13.6.1.6, Chapter 13

\(I_{cr} \) = moment of inertia of cracked section transformed to concrete, in.\(^4\), Chapter 9

\(I_e \) = effective moment of inertia for computation of deflection, in.\(^4\), see 9.5.2.3, Chapter 9

\(I_g \) = moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement, in.\(^4\), Chapters 9, 10, 14

\(I_s \) = moment of inertia of gross section of slab about centroidal axis defined for calculating \(\alpha_f \) and \(\beta_t \), in.\(^4\), Chapter 13

\(l_{se} \) = moment of inertia of reinforcement about centroidal axis of member cross section, in.\(^4\), Chapter 10

\(l_{sx} \) = moment of inertia of structural steel shape, pipe, or tubing about centroidal axis of composite member cross section, in.\(^4\), Chapter 10

\(k \) = effective length factor for compression members, Chapters 10, 14

\(k_c \) = coefficient for basic concrete breakout strength in tension, Appendix D

\(k_{cp} \) = coefficient for pryout strength, Appendix D

\(K' \) = wobble friction coefficient per foot of tendon, Chapter 18

\(K_{tr} \) = transverse reinforcement index, see 12.2.3, Chapter 12

\(\ell \) = span length of beam or one-way slab; clear projection of cantilever, in., see 8.9, Chapter 9

\(\ell_a \) = additional embedment length beyond centerline of support or point of inflection, in., Chapter 12

\(\ell_c \) = length of compression member in a frame, measured center-to-center of the joints in the frame, in., Chapters 10, 14, 22

\(\ell_{dc} \) = development length in compression of deformed bars and deformed wire, in., Chapter 12

\(\ell_{dh} \) = development length in tension of deformed bar or deformed wire with a standard hook, measured from critical section to outside end of hook (straight embedment length between critical section and start of hook [point of tangency] plus inside radius of bend and one bar diameter), in., see 12.5 and 21.7.5, Chapters 12, 21

\(\ell_{dt} \) = development length in tension of headed deformed bar, measured from the critical section to the bearing face of the head, in., see 12.6, Chapter 12

\(\ell_e \) = load bearing length of anchor for shear, in., see D.6.2.2, Appendix D

\(\ell_n \) = length of clear span measured face-to-face of supports, in., Chapters 8-11, 13, 16, 18, 21

\(\ell_o \) = length, measured from joint face along axis of structural member, over which special transverse reinforcement must be provided, in., Chapter 21

\(\ell_{px} \) = distance from jacking end of prestressing steel element to point under consideration, ft, see 18.6.2, Chapter 18

\(\ell_t \) = span of member under load test, taken as
the shorter span for two-way slab systems, in. Span is the smaller of: (a) distance between centers of supports, and (b) clear distance between supports plus thickness \(h \) of member. Span for a cantilever shall be taken as twice the distance from face of support to cantilever end, Chapter 20

\[\ell_u = \text{unsupported length of compression member, in., see 10.10.1.1, Chapter 10} \]

\[\ell_v = \text{length of shearhead arm from centroid of concentrated load or reaction, in., Chapter 11} \]

\[\ell_w = \text{length of entire wall or length of segment of wall considered in direction of shear force, in., Chapters 11, 14, 21} \]

\[\ell_1 = \text{length of span in direction that moments are being determined, measured center-to-center of supports, in., Chapter 13} \]

\[\ell_2 = \text{length of span in direction perpendicular to } \ell_1, \text{measured center-to-center of supports, in., see 13.6.2.3 and 13.6.2.4, Chapter 13} \]

\[L = \text{live loads, or related internal moments and forces, Chapters 8, 9, 20, 21, Appendix C} \]

\[L_r = \text{roof live load, or related internal moments and forces, Chapter 9} \]

\[M_a = \text{maximum moment in member due to service loads at stage deflection is computed, in.-lb, Chapters 9, 14} \]

\[M_c = \text{factored moment amplified for the effects of member curvature used for design of compression member, in.-lb, see 10.10.6, Chapter 10} \]

\[M_{cr} = \text{cracking moment, in.-lb, see 9.5.2.3, Chapters 9, 14} \]

\[M_{cre} = \text{moment causing flexural cracking at section due to externally applied loads, in.-lb, Chapter 11} \]

\[M_m = \text{factored moment modified to account for effect of axial compression, in.-lb, see 11.2.2.2, Chapter 11} \]

\[M_{max} = \text{maximum factored moment at section due to externally applied loads, in.-lb, Chapter 11} \]

\[M_n = \text{nominal flexural strength at section, in.-lb, Chapters 11, 12, 14, 18, 21, 22} \]

\[M_{nb} = \text{nominal flexural strength of beam including slab where in tension, framing into joint, in.-lb, see 21.6.2.2, Chapter 21} \]

\[M_{nc} = \text{nominal flexural strength of column framing into joint, calculated for factored axial force, consistent with the direction of lateral forces considered, resulting in lowest flexural strength, in.-lb, see 21.6.2.2, Chapter 21} \]

\[M_o = \text{total factored static moment, in.-lb, Chapter 13} \]

\[M_p = \text{required plastic moment strength of shearhead cross section, in.-lb, Chapter 11} \]

\[M_{pr} = \text{probable flexural strength of members, with or without axial load, determined using the properties of the member at the joint faces assuming a tensile stress in the longitudinal bars of at least } 1.25f_y \text{ and a strength reduction factor, } \phi, \text{ of 1.0, in.-lb, Chapter 21} \]

\[M_s = \text{factored moment due to loads causing appreciable sway, in.-lb, Chapter 21} \]

\[M_{slab} = \text{portion of slab factored moment balanced by support moment, in.-lb, Chapter 21} \]

\[M_u = \text{factored moment at section, in.-lb, Chapters 10, 11, 13, 14, 21, 22} \]

\[M_{ua} = \text{moment at midheight of wall due to factored lateral and eccentric vertical loads, not including } P_1 \text{ effects, in.-lb, Chapter 14} \]

\[M_v = \text{moment resistance contributed by shearhead reinforcement, in.-lb, Chapter 11} \]

\[M_1 = \text{smaller factored end moment on a compression member, to be taken as positive if member is bent in single curvature, and negative if bent in double curvature, in.-lb, Chapter 10} \]

\[M_{1ns} = \text{factored end moment on a compression member at the end at which } M_1 \text{ acts, due to loads that cause appreciable sideways, calculated using a first-order elastic frame analysis, in.-lb, Chapter 10} \]

\[M_{1s} = \text{factored end moment on compression member at the end at which } M_1 \text{ acts, due to loads that cause appreciable sideways, calculated using a first-order elastic frame analysis, in.-lb, Chapter 10} \]

\[M_2 = \text{larger factored end moment on compression member. If transverse loading occurs between supports, } M_2 \text{ is taken as the largest moment occurring in member. Value of } M_2 \text{ is always positive, in.-lb, Chapter 10} \]

\[M_{2min} = \text{minimum value of } M_2, \text{ in.-lb, Chapter 10} \]

\[M_{2ns} = \text{factored end moment on compression member at the end at which } M_2 \text{ acts, due to loads that cause appreciable sideways, calculated using a first-order elastic frame analysis, in.-lb, Chapter 10} \]

\[M_{2s} = \text{factored end moment on compression member at the end at which } M_2 \text{ acts, due to loads that cause appreciable sideways, calculated using a first-order elastic frame analysis, in.-lb, Chapter 10} \]

\[n = \text{number of items, such as strength tests, bars, wires, monostrand anchorage devices, anchors, or shearhead arms, Chapters 5, 11, 12, 18, Appendix D} \]

\[N_b = \text{basic concrete breakout strength in tension of a single anchor in cracked concrete, lb, see D.5.2.2, Appendix D} \]

\[N_c = \text{tension force in concrete due to unfactored dead load plus live load, lb, Chapter 18} \]

\[N_{cb} = \text{nominal concrete breakout strength in tension of a single anchor, lb, see D.5.2.1, Appendix D} \]
N_{cbg} = nominal concrete breakout strength in tension of a group of anchors, lb, see D.5.2.1, Appendix D

N_n = nominal strength in tension, lb, Appendix D

N_p = pullout strength in tension of a single anchor in cracked concrete, lb, see D.5.3.4 and D.5.3.5, Appendix D

N_{pn} = nominal pullout strength in tension of a single anchor, lb, see D.5.3.1, Appendix D

N_{sa} = nominal strength of a single anchor or group of anchors in tension as governed by the steel strength, lb, see D.5.1.1 and D.5.1.2, Appendix D

N_{sb} = side-face blowout strength of a single anchor, lb, Appendix D

N_{sbg} = side-face blowout strength of a group of anchors, lb, Appendix D

N_u = factored axial force normal to cross section occurring simultaneously with V_u or T_u; to be taken as positive for compression and negative for tension, lb, Chapter 11

N_{ua} = factored tensile force applied to anchor or group of anchors, lb, Appendix D

N_{uc} = factored horizontal tensile force applied at top of bracket or corbel acting simultaneously with V_u, to be taken as positive for tension, lb, Chapter 11

P_{cp} = outside perimeter of concrete cross section, in., see 11.5.1, Chapter 11

P_h = perimeter of centerline of outermost closed transverse torsional reinforcement, in., Chapter 11

P_b = nominal axial strength at balanced strain conditions, lb, see 10.3.2, Chapters 9, 10, Appendixes B, C

P_c = critical buckling load, lb, see 10.10.6, Chapter 10

P_n = nominal axial strength of cross section, lb, Chapters 9, 10, 14, 22, Appendixes B, C

$P_{n,max}$ = maximum allowable value of P_n, lb, see 10.3.6, Chapter 10

P_o = nominal axial strength at zero eccentricity, lb, Chapter 10

P_{pj} = prestressing force at jacking end, lb, Chapter 18

P_{pu} = factored prestressing force at anchorage device, lb, Chapter 18

P_{px} = prestressing force evaluated at distance ℓ_{px} from the jacking end, lb, Chapter 18

P_s = unfactored axial load at the design (midheight) section including effects of self-weight, lb, Chapter 14

P_u = factored axial force; to be taken as positive for compression and negative for tension, lb, Chapters 10, 14, 21, 22

q_{Du} = factored dead load per unit area, Chapter 13

q_{Lu} = factored live load per unit area, Chapter 13

q_u = factored load per unit area, Chapter 13

Q = stability index for a story, see 10.10.5.2, Chapter 10

r = radius of gyration of cross section of a compression member, in., Chapter 10

R = rain load, or related internal moments and forces, Chapter 9

s = center-to-center spacing of items, such as longitudinal reinforcement, transverse reinforcement, prestressing tendons, wires, or anchors, in., Chapters 10-12, 17-21, Appendix D

s_i = center-to-center spacing of reinforcement in the i-th layer adjacent to the surface of the member, in., Appendix A

s_0 = center-to-center spacing of transverse reinforcement within the length ℓ_o, in., Chapter 21

s_s = sample standard deviation, psi, Chapter 5, Appendix D

s_2 = center-to-center spacing of longitudinal shear or torsion reinforcement, in., Chapter 11

S = snow load, or related internal moments and forces, Chapters 9, 21

S_e = moment, shear, or axial force at connection corresponding to development of probable strength at intended yield locations, based on the governing mechanism of inelastic lateral deformation, considering both gravity and earthquake load effects, Chapter 21

S_m = elastic section modulus, in.3, Chapter 22

S_n = nominal flexural, shear, or axial strength of connection, Chapter 21

S_y = yield strength of connection, based on f_y, for moment, shear, or axial force, Chapter 21

t = wall thickness of hollow section, in., Chapter 11

T = cumulative effect of temperature, creep, shrinkage, differential settlement, and shrinkage-compensating concrete, Chapter 9, Appendix C

T_n = nominal torsional moment strength, in.-lb, Chapter 11

T_u = factored torsional moment at section, in.-lb, Chapter 11

U = required strength to resist factored loads or related internal moments and forces, Chapter 9, Appendix C

V_n = nominal shear stress, psi, see 11.11.6.2, Chapters 11, 21

V_b = basic concrete breakout strength in shear of a single anchor in cracked concrete, lb, see D.6.2.2 and D.6.2.3, Appendix D

V_{cb} = nominal concrete breakout strength in shear of a single anchor, lb, see D.6.2.1, Appendix D

V_{cbg} = nominal concrete breakout strength in shear of a group of anchors, lb, see D.6.2.1, Appendix D
\(V_{cl} \) = nominal shear strength provided by concrete when diagonal cracking results from combined shear and moment, lb, Chapter 11

\(V_{cp} \) = nominal concrete pryout strength of a single anchor, lb, see D.6.3.1, Appendix D

\(V_{cpg} \) = nominal concrete pryout strength of a group of anchors, lb, see D.6.3.1, Appendix D

\(V_{cw} \) = nominal shear strength provided by concrete when diagonal cracking results from high principal tensile stress in web, lb, Chapter 11

\(V_d \) = shear force at section due to unfactored dead load, lb, Chapter 11

\(V_e \) = design shear force corresponding to the development of the probable moment strength of the member, lb, see 21.5.4.1 and 21.6.5.1, Chapter 21

\(V_f \) = factored shear force at section due to externally applied loads occurring simultaneously with \(M_{max} \), lb, Chapter 11

\(V_n \) = nominal shear strength, lb, Chapters 8, 10, 11, 21, 22, Appendix D

\(V_{nh} \) = nominal horizontal shear strength, lb, Chapter 17

\(V_p \) = vertical component of effective prestress force at section, lb, Chapter 11

\(V_s \) = nominal shear strength provided by shear reinforcement, lb, Chapter 11

\(V_{sa} \) = nominal strength in shear of a single anchor or group of anchors as governed by the steel strength, lb, see D.6.1.1 and D.6.1.2, Appendix D

\(V_u \) = factored shear force at section, lb, Chapters 11-13, 17, 21, 22

\(V_{ua} \) = factored shear force applied to a single anchor or group of anchors, lb, Appendix D

\(V_{ug} \) = factored shear force on the slab critical section for two-way action due to gravity loads, lb, see 21.13.6

\(V_{us} \) = factored horizontal shear in a story, lb, Chapter 10

\(w_c \) = density (unit weight) of normal weight concrete or equilibrium density of lightweight concrete, lb/ft^3, Chapters 8, 9

\(w_u \) = factored load per unit length of beam or one-way slab, Chapter 8

\(W \) = wind load, or related internal moments and forces, Chapter 9, Appendix C

\(x \) = shorter overall dimension of rectangular part of cross section, in., Chapter 13

\(y \) = longer overall dimension of rectangular part of cross section, in., Chapter 13

\(y_l \) = distance from centroidal axis of gross section, neglecting reinforcement, to tension face, in., Chapters 9, 11

\(\alpha \) = angle defining the orientation of reinforcement, Chapters 11, 21, Appendix A

\(\alpha_c \) = coefficient defining the relative contribution of concrete strength to nominal wall shear strength, see 21.9.4.1, Chapter 21

\(\alpha_f \) = ratio of flexural stiffness of beam section to flexural stiffness of a width of slab bounded laterally by centerlines of adjacent panels (if any) on each side of the beam, see 13.6.1.6, Chapters 9, 13

\(\alpha_{fm} \) = average value of \(\alpha_f \) for all beams on edges of a panel, Chapter 9

\(\alpha_{f1} \) = \(\alpha_f \) in direction of \(t_1 \), Chapter 13

\(\alpha_{f2} \) = \(\alpha_f \) in direction of \(t_2 \), Chapter 13

\(\alpha_i \) = angle between the axis of a strut and the bars in the \(i \)-th layer of reinforcement crossing that strut, Appendix A

\(\alpha_{px} \) = total angular change of tendon profile from tendon jacking end to point under consideration, radians, Chapter 18

\(\alpha_v \) = ratio of flexural stiffness of shearhead arm to that of the surrounding composite slab section, see 11.11.4.5, Chapter 11

\(\beta \) = ratio of long to short dimensions: clear spans for two-way slabs, see 9.5.3.3 and 22.5.4; sides of column, concentrated load or reaction area, see 11.11.2.1; or sides of a footing, see 15.4.4.2, Chapters 9, 11, 15, 22

\(\beta_b \) = ratio of area of reinforcement cut off to total area of tension reinforcement at section, Chapter 12

\(\beta_{dns} \) = ratio used to account for reduction of stiffness of columns due to sustained axial loads, see 10.10.6.2, Chapter 10

\(\beta_{ds} \) = ratio used to account for reduction of stiffness of columns due to sustained lateral loads, see 10.10.4.2, Chapter 10

\(\beta_n \) = factor to account for the effect of the anchorage of ties on the effective compressive strength of a nodal zone, Appendix A

\(\beta_p \) = factor used to compute \(V_c \) in prestressed slabs, Chapter 11

\(\beta_s \) = factor to account for the effect of cracking and confining reinforcement on the effective compressive strength of the concrete in a strut, Appendix A

\(\beta_t \) = ratio of torsional stiffness of edge beam section to flexural stiffness of a width of slab equal to span length of beam, center-to-center of supports, see 13.6.4.2, Chapter 13

\(\beta_t \) = factor relating depth of equivalent rectangular compressive stress block to neutral axis depth, see 10.2.7.3, Chapters 10, 18, Appendix B

\(\gamma_f \) = factor used to determine the unbalanced moment transferred by flexure at slab-column connections, see 13.5.3.2, Chapters 11, 13, 21
\(\gamma_p \) = factor for type of prestressing steel, see 18.7.2, Chapter 18

\(\gamma_s \) = factor used to determine the portion of reinforcement located in center band of footing, see 15.4.4.2, Chapter 15

\(\gamma_v \) = factor used to determine the unbalanced moment transferred by eccentricity of shear at slab-column connections, see 11.11.7.1, Chapter 11

\(\delta \) = moment magnification factor to reflect effects of member curvature between ends of compression member, Chapter 10

\(\delta_s \) = moment magnification factor for frames not braced against sidesway, to reflect lateral drift resulting from lateral and gravity loads, Chapter 10

\(\delta_u \) = design displacement, in., Chapter 21

\(\Delta_{cr} \) = computed, out-of-plane deflection at midheight of wall corresponding to cracking moment, \(M_{cr} \), in., Chapter 14

\(\Delta_{fp} \) = increase in stress in prestressing steel due to factored loads, psi, Appendix A

\(\Delta_{ps} \) = stress in prestressing steel at service loads less decompression stress, psi, Chapter 18

\(\Delta_n \) = computed, out-of-plane deflection at midheight of wall corresponding to nominal flexural strength, \(M_n \), in., Chapter 14

\(\Delta_\alpha \) = relative lateral deflection between the top and bottom of a story due to lateral forces computed using a first-order elastic frame analysis and stiffness values satisfying 10.10.5.2, in., Chapter 10

\(\Delta_r \) = difference between initial and final (after load removal) deflections for load test or repeat load test, in., Chapter 20

\(\Delta_s \) = computed, out-of-plane deflection at midheight of wall due to service loads, in., Chapter 14

\(\Delta_u \) = computed deflection at midheight of wall due to factored loads, in., Chapter 14

\(\Delta_1 \) = measured maximum deflection during first load test, in., see 20.5.2, Chapter 20

\(\Delta_2 \) = maximum deflection measured during second load test relative to the position of the structure at the beginning of second load test, in., see 20.5.2, Chapter 20

\(\varepsilon_t \) = net tensile strain in extreme layer of longitudinal tension steel at nominal strength, excluding strains due to effective prestress, creep, shrinkage, and temperature, Chapters 8-10, Appendix C

\(\theta \) = angle between axis of strut, compression diagonal, or compression field and the tension chord of the member, Chapter 11, Appendix A

\(\lambda \) = modification factor reflecting the reduced mechanical properties of lightweight concrete, all relative to normalweight concrete of the same compressive strength, see 8.6.1, 11.6.4.3, 12.2.4(d), 12.5.2, Chapters 9, 11, 12, 19, 21, 22, and Appendixes A, D

\(\lambda_A \) = multiplier for additional deflection due to long-term effects, see 9.5.2.5, Chapter 9

\(\mu \) = coefficient of friction, see 11.6.4.3, Chapters 11, 21

\(\mu_p \) = post-tensioning curvature friction coefficient, Chapter 18

\(\xi \) = time-dependent factor for sustained load, see 9.5.2.5, Chapter 9

\(\rho \) = ratio of \(A_s \) to \(bd \). Chapters 10, 11, 13, 21, Appendix B

\(\rho ' \) = ratio of \(A_s \) to \(bd \). Chapter 9, Appendix B

\(\rho_b \) = ratio of \(A_s \) to \(bd \) producing balanced strain conditions, see 10.3.2, Chapters 10, 13, 14, Appendix B

\(\rho_t \) = ratio of area of distributed longitudinal reinforcement to gross concrete area perpendicular to that reinforcement, Chapters 11, 14, 21

\(\rho_p \) = ratio of \(A_p \) to \(bd_p \), Chapter 18

\(\rho_s \) = ratio of volume of spiral reinforcement to total volume of core confined by the spiral (measured out-to-out of spirals), Chapters 10, 21

\(\rho_t \) = ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to that reinforcement, Chapters 11, 14, 21

\(\rho_v \) = ratio of tie reinforcement area to area of contact surface, see 17.5.3.3, Chapter 17

\(\rho_w \) = ratio of \(A_s \) to \(b_w d \), Chapter 11

\(\phi \) = strength reduction factor, see 9.3, Chapters 8-11, 13, 14, 17-22, Appendixes A-D

\(\psi_{c,N} \) = factor used to modify tensile strength of anchors based on presence or absence of cracks in concrete, see D.5.2.6, Appendix D

\(\psi_{c,P} \) = factor used to modify pullout strength of anchors based on presence or absence of cracks in concrete, see D.5.3.6, Appendix D

\(\psi_{c,V} \) = factor used to modify shear strength of anchors based on presence or absence of cracks in concrete and presence or absence of supplementary reinforcement, see D.6.2.7 for anchors in shear, Appendix D

\(\psi_{cp,N} \) = factor used to modify tensile strength of post-installed anchors intended for use in uncracked concrete without supplementary reinforcement, see D.5.2.7, Appendix D

\(\psi_o \) = factor used to modify development length based on reinforcement coating, see 12.2.4, Chapter 12

\(\psi_{ec,N} \) = factor used to modify tensile strength of anchors based on eccentricity of applied loads, see D.5.2.4, Appendix D

\(\psi_{ec,V} \) = factor used to modify shear strength of...
anchors based on eccentricity of applied loads, see D.6.2.5, Appendix D

$\psi_{ed,N} =$ factor used to modify tensile strength of anchors based on proximity to edges of concrete member, see D.5.2.5, Appendix D

$\psi_{ed,V} =$ factor used to modify shear strength of anchors based on proximity to edges of concrete member, see D.6.2.6, Appendix D

$\psi_{h,V} =$ factor used to modify shear strength of anchors located in concrete members with $h_a < 1.5c_{a1}$, see D.6.2.8, Appendix D

$\psi_a =$ factor used to modify development length based on reinforcement size, see 12.2.4, Chapter 12

$\psi_t =$ factor used to modify development length based on reinforcement location, see 12.2.4, Chapter 12

$\psi_w =$ factor used to modify development length for welded deformed wire reinforcement in tension, see 12.7, Chapter 12

$\omega =$ tension reinforcement index, see 18.7.2, Chapter 18

$\omega' =$ compression reinforcement index, see 18.7.2, Chapter 18

$\omega_p =$ prestressing steel index, see B.18.8.1, Appendix B

$\omega_{pw} =$ prestressing steel index for flanged sections, see B.18.8.1, Appendix B

$\omega_w =$ tension reinforcement index for flanged sections, see B.18.8.1, Appendix B

$\omega_{w'} =$ compression reinforcement index for flanged sections, see B.18.8.1, Appendix B

R2.1 — Commentary notation

The terms used in this list are used in the Commentary, but not in the Code.

Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as feet or kips.

$c_{a1} =$ limiting value of c_{a1} when anchors are located less than $1.5h_{ef}$ from three or more edges (see Fig. RD.6.2.4), Appendix D

$C =$ compression force acting on a nodal zone, lb, Appendix A

$f_{si} =$ stress in the i-th layer of surface reinforcement, psi, Appendix A

$h_{anc} =$ dimension of anchorage device or single group of closely spaced devices in the direction of bursting being considered, in., Chapter 18

$h_{ef}' =$ limiting value of h_{ef} when anchors are located less than $1.5h_{ef}$ from three or more edges (see Fig. RD.5.2.3), Appendix D

$K_t =$ torsional stiffness of torsional member; moment per unit rotation, see R13.7.5, Chapter 13

$K_{05} =$ coefficient associated with the 5 percent fractile, Appendix D

$l_{anc} =$ length along which anchorage of a tie must occur, in., Appendix A

$l_b =$ width of bearing, in., Appendix A

$M =$ moment acting on anchor or anchor group, Appendix D

$N =$ tension force acting on anchor or anchor group, Appendix D

$R =$ reaction, lb, Appendix A

$T =$ tension force acting on a nodal zone, lb, Appendix A

$V =$ shear force acting on anchor or anchor group, Appendix D

$w_s =$ width of a strut perpendicular to the axis of the strut, in., Appendix A

$w_i =$ effective height of concrete concentric with a tie, used to dimension nodal zone, in., Appendix A

$w_{i,max} =$ maximum effective height of concrete concentric with a tie, in., Appendix A

$\Delta f_{pt} =$ f_{ps} at the section of maximum moment minus the stress in the prestressing steel due to prestressing and factored bending moments at the section under consideration, psi, see R11.5.3.10, Chapter 11

$\varepsilon_{cu} =$ maximum usable strain at extreme concrete compression fiber, Fig. R10.3.3

$\phi_K =$ stiffness reduction factor, see R10.10, Chapter 10

$\Omega_o =$ amplification factor to account for overstress of the seismic-force-resisting system, specified in documents such as NEHRP, ASCE/SEI, IBC, and UBC, Chapter 21
2.2 — Definitions

The following terms are defined for general use in this Code. Specialized definitions appear in individual chapters.

Admixture — Material other than water, aggregate, or hydraulic cement, used as an ingredient of concrete and added to concrete before or during its mixing to modify its properties.

Aggregate — Granular material, such as sand, gravel, crushed stone, and iron blast-furnace slag, used with a cementing medium to form a hydraulic cement concrete or mortar.

Aggregate, lightweight — Aggregate meeting the requirements of ASTM C330 and having a loose bulk density of 70 lb/ft³ or less, determined in accordance with ASTM C29.

Anchorage device — In post-tensioning, the hardware used for transferring a post-tensioning force from the prestressing steel to the concrete.

Anchorage zone — In post-tensioned members, the portion of the member through which the concentrated prestressing force is transferred to the concrete and distributed more uniformly across the section. Its extent is equal to the largest dimension of the cross section. For anchorage devices located away from the end of a member, the anchorage zone includes the disturbed regions ahead of and behind the anchorage devices.

Base of structure — Level at which the horizontal earthquake ground motions are assumed to be imparted to a building. This level does not necessarily coincide with the ground level. See Chapter 21.

Basic monostrand anchorage device — Anchorage device used with any single strand or a single 5/8 in. or smaller diameter bar that satisfies 18.21.1 and the anchorage device requirements of ACI 423.7.

Anchorage device — Most anchorage devices for post-tensioning are standard manufactured devices available from commercial sources. In some cases, “special” details or assemblages are developed that combine various wedges and wedge plates for anchoring prestressing steel. These informal designations as standard anchorage devices or special anchorage devices have no direct relation to the Code and AASHTO “Standard Specifications for Highway Bridges” classification of anchorage devices as Basic Anchorage Devices or Special Anchorage Devices.

Anchorage zone — The terminology “ahead of” and “behind” the anchorage device is illustrated in Fig. R18.13.1(b).
CODE

Basic multistrand anchorage device — Anchorage device used with multiple strands, bars, or wires, or with single bars larger than 5/8 in. diameter, that satisfies 18.21.1 and the bearing stress and minimum plate stiffness requirements of AASHTO Bridge Specifications, Division I, Articles 9.21.7.2.2 through 9.21.7.2.4.

Bonded tendon — Tendon in which prestressing steel is bonded to concrete either directly or through grouting.

Boundary element — Portion along structural wall and structural diaphragm edge strengthened by longitudinal and transverse reinforcement. Boundary elements do not necessarily require an increase in the thickness of the wall or diaphragm. Edges of openings within walls and diaphragms shall be provided with boundary elements as required by 21.9.6 or 21.11.7.5. See Chapter 21.

Building official — The officer or other designated authority charged with the administration and enforcement of this Code, or a duly authorized representative.

Cementitious materials — Materials as specified in Chapter 3, which have cementing value when used in concrete either by themselves, such as portland cement, blended hydraulic cements, and expansive cement, or such materials in combination with fly ash, other raw or calcined natural pozzolans, silica fume, and/or ground granulated blast-furnace slag.

Collector element — Element that acts in axial tension or compression to transmit earthquake-induced forces between a structural diaphragm and a vertical element of the seismic-force-resisting system. See Chapter 21.

Column — Member with a ratio of height-to-least lateral dimension exceeding 3 used primarily to support axial compressive load. For a tapered member, the least lateral dimension is the average of the top and bottom dimensions of the smaller side.

COMMENTARY

Building official — The term used by many general building codes to identify the person charged with administration and enforcement of provisions of the building code. Such terms as building commissioner or building inspector are variations of the title and the term “building official” as used in this Code, is intended to include those variations, as well as others that are used in the same sense.

Column — The term “compression member” is used in the Code to define any member in which the primary stress is longitudinal compression. Such a member need not be vertical but may have any orientation in space. Bearing walls, columns, and pedestals qualify as compression members under this definition.

The differentiation between columns and walls in the Code is based on the principal use rather than on arbitrary relationships of height and cross-sectional dimensions. The Code, however, permits walls to be designed using the principles stated for column design (see 14.4), as well as by the empirical method (see 14.5).
Composite concrete flexural members — Concrete flexural members of precast or cast-in-place concrete elements, or both, constructed in separate placements but so interconnected that all elements respond to loads as a unit.

Compression-controlled section — A cross section in which the net tensile strain in the extreme tension steel at nominal strength is less than or equal to the compression-controlled strain limit.

Compression-controlled strain limit — The net tensile strain at balanced strain conditions. See 10.3.3.

Concrete — Mixture of portland cement or any other hydraulic cement, fine aggregate, coarse aggregate, and water, with or without admixtures.

Concrete, all-lightweight — Lightweight concrete containing only lightweight coarse and fine aggregates that conform to ASTM C330.

Concrete, lightweight — Concrete containing lightweight aggregate and an equilibrium density, as determined by ASTM C567, between 90 and 115 lb/ft³.

Concrete, lightweight — In 2000, ASTM C567 adopted “equilibrium density” as the measure for determining compliance with specified in-service density requirements. According to ASTM C567, equilibrium density may be determined by measurement or approximated by calculation using either the measured oven-dry density or the oven-dry density calculated from the mixture proportions. Unless specified otherwise, ASTM C567 requires that equilibrium density be approximated by calculation.

By Code definition, sand-lightweight concrete is structural lightweight concrete with all of the fine aggregate replaced by sand. This definition may not be in agreement with usage by some material suppliers or contractors where the majority, but not all, of the lightweight fines are replaced by sand. For proper application of the Code provisions, the replacement limits should be stated, with interpolation when partial sand replacement is used.
CODE

Concrete, normalweight — Concrete containing only aggregate that conforms to ASTM C33.

Concrete, sand-lightweight — Lightweight concrete containing only normalweight fine aggregate that conforms to ASTM C33 and only lightweight aggregate that conforms to ASTM C330.

Concrete, specified compressive strength of, \(f'_c \) — Compressive strength of concrete used in design and evaluated in accordance with provisions of Chapter 5, expressed in pounds per square inch (psi). Whenever the quantity \(f'_c \) is under a radical sign, square root of numerical value only is intended, and result has units of pounds per square inch (psi).

Connection — A region that joins two or more members. In Chapter 21, a connection also refers to a region that joins members of which one or more is precast, for which the following more specific definitions apply:

- **Ductile connection** — Connection that experiences yielding as a result of the earthquake design displacements.
- **Strong connection** — Connection that remains elastic while adjoining members experience yielding as a result of the earthquake design displacements.

Contract documents — Documents, including the project drawings and project specifications, covering the required Work.

Contraction joint — Formed, sawed, or tooled groove in a concrete structure to create a weakened plane and regulate the location of cracking resulting from the dimensional change of different parts of the structure.

Cover, specified concrete — The distance between the outermost surface of embedded reinforcement and the closest outer surface of the concrete indicated on design drawings or in project specifications.

Crosstie — A continuous reinforcing bar having a seismic hook at one end and a hook not less than 90 degrees with at least a six-diameter extension at the other end. The hooks shall engage peripheral longitudinal bars. The 90-degree hooks of two successive crossties engaging the same longitudinal bars shall be alternated end for end. See Chapters 7, 21.

Curvature friction — Friction resulting from bends or curves in the specified prestressing tendon profile.

COMMENTARY

Concrete, normalweight — Normalweight concrete typically has a density (unit weight) between 135 and 160 lb/ft³, and is normally taken as 145 to 150 lb/ft³.

Concrete, normalweight — Concrete containing only aggregate that conforms to ASTM C33.
CODE

Deformed reinforcement — Deformed reinforcing bars, bar mats, deformed wire, and welded wire reinforcement conforming to 3.5.3.

Design displacement — Total lateral displacement expected for the design-basis earthquake, as required by the governing code for earthquake-resistant design. See Chapter 21.

Design load combination — Combination of factored loads and forces in 9.2

Design story drift ratio — Relative difference of design displacement between the top and bottom of a story, divided by the story height. See Chapter 21.

Development length — Length of embedded reinforcement, including pretensioned strand, required to develop the design strength of reinforcement at a critical section. See 9.3.3.

Drop panel — A projection below the slab used to reduce the amount of negative reinforcement over a column or the minimum required slab thickness, and to increase the slab shear strength. See 13.2.5 and 13.3.7.

Duct — A conduit (plain or corrugated) to accommodate prestressing steel for post-tensioned installation. Requirements for post-tensioning ducts are given in 18.17.

Effective depth of section (d) — Distance measured from extreme compression fiber to centroid of longitudinal tension reinforcement.

Effective prestress — Stress remaining in prestressing steel after all losses have occurred.

Embedment length — Length of embedded reinforcement provided beyond a critical section.

COMMENTARY

Deformed reinforcement — Deformed reinforcement is defined as that meeting the deformed reinforcement specifications of 3.5.3.1, or the specifications of 3.5.3.3, 3.5.3.4, 3.5.3.5, 3.5.3.6, or 3.5.3.7. No other reinforcement qualifies. This definition permits accurate statement of anchorage lengths. Bars or wire not meeting the deformation requirements or welded wire reinforcement not meeting the spacing requirements are “plain reinforcement,” for code purposes, and may be used only for spirals.

Design displacement — The design displacement is an index of the maximum lateral displacement expected in design for the design-basis earthquake. In documents such as ASCE/SEI 7-05 and the 2006 International Building Code, the design displacement is calculated using static or dynamic linear elastic analysis under code-specified actions considering effects of cracked sections, effects of torsion, effects of vertical forces acting through lateral displacements, and modification factors to account for expected inelastic response. The design displacement generally is larger than the displacement calculated from design-level forces applied to a linear-elastic model of the building.
CODE

Equilibrium density — Density of lightweight concrete after exposure to a relative humidity of 50 ± 5 percent and a temperature of 73.5 ± 3.5 °F for a period of time sufficient to reach constant density (see ASTM C567).

Extreme tension steel — The reinforcement (prestressed or nonprestressed) that is the farthest from the extreme compression fiber.

Headed deformed bars — Deformed reinforcing bars with heads attached at one or both ends. Heads are attached to the bar end by means such as welding or forging onto the bar, internal threads on the head mating to threads on the bar end, or a separate threaded nut to secure the head of the bar. The net bearing area of headed deformed bar equals the gross area of the head minus the larger of the area of the bar and the area of any obstruction.

Headed shear stud reinforcement — Reinforcement consisting of individual headed studs, or groups of studs, with anchorage provided by a head at each end or by a common base rail consisting of a steel plate or shape.

Hoop — A closed tie or continuously wound tie. A closed tie can be made up of several reinforcement elements each having seismic hooks at both ends. A continuously wound tie shall have a seismic hook at both ends. See Chapter 21.

Isolation joint — A separation between adjoining parts of a concrete structure, usually a vertical plane, at a designed location such as to interfere least with performance of the structure, yet such as to allow relative movement in three directions and avoid formation of cracks elsewhere in the concrete and through which all or part of the bonded reinforcement is interrupted.

Jacking force — In prestressed concrete, temporary force exerted by device that introduces tension into prestressing steel.

Joint — Portion of structure common to intersecting members. The effective cross-sectional area of a joint of a special moment frame, A_j, for shear strength computations is defined in 21.7.4.1. See Chapter 21.

Licensed design professional — An individual who is licensed to practice structural design as defined by the statutory requirements of the professional

COMMENTARY

Headed deformed bars — The bearing area of a headed deformed bar is, for the most part, perpendicular to the bar axis, as shown in Fig. R3.5.9. In contrast, the bearing area of the head of headed stud reinforcement is a nonplanar spatial surface of revolution, as shown in Fig. R3.5.5. The two types of reinforcement differ in other ways. The shanks of headed studs are smooth, not deformed as with headed deformed bars. The minimum net bearing area of the head of a headed deformed bar is permitted to be as small as four times the bar area. In contrast, the minimum stud head area is not specified in terms of the bearing area, but by the total head area which must be at least 10 times the area of the shank.
CODE

licensing laws of the state or jurisdiction in which the project is to be constructed and who is in responsible charge of the structural design; in other documents, also referred to as registered design professional.

Load, dead — Dead weight supported by a member, as defined by general building code of which this Code forms a part (without load factors).

Load, factored — Load, multiplied by appropriate load factors, used to proportion members by the strength design method of this Code. See 8.1.1 and 9.2.

Load, live — Live load specified by general building code of which this Code forms a part (without load factors).

Load, service — Load specified by general building code of which this Code forms a part (without load factors).

Modulus of elasticity — Ratio of normal stress to corresponding strain for tensile or compressive stresses below proportional limit of material. See 8.5.

Moment frame — Frame in which members and joints resist forces through flexure, shear, and axial force. Moment frames designated as part of the seismic-force-resisting system shall be categorized as follows:

Ordinary moment frame — A cast-in-place or precast concrete frame complying with the requirements of Chapters 1 through 18, and, in the case of ordinary moment frames assigned to Seismic Design Category B, also complying with 21.2.

Intermediate moment frame — A cast-in-place frame complying with the requirements of 21.3 in addition to the requirements for ordinary moment frames.

Special moment frame — A cast-in-place frame complying with the requirements of 21.1.3 through 21.1.7, 21.5 through 21.7, or a precast frame complying with the requirements of 21.1.3 through 21.1.7 and 21.5 through 21.8. In addition, the requirements for ordinary moment frames shall be satisfied.

Net tensile strain — The tensile strain at nominal strength exclusive of strains due to effective prestress, creep, shrinkage, and temperature.

COMMENTARY

Loads — A number of definitions for loads are given as the Code contains requirements that are to be met at various load levels. The terms “dead load” and “live load” refer to the unfactored loads (service loads) specified or defined by the general building code. Service loads (loads without load factors) are to be used where specified in the Code to proportion or investigate members for adequate serviceability, as in 9.5, Control of Deflections. Loads used to proportion a member for adequate strength are defined as factored loads. Factored loads are service loads multiplied by the appropriate load factors specified in 9.2 for required strength. The term “design loads,” as used in the 1971 Code edition to refer to loads multiplied by the appropriate load factors, was discontinued in the 1977 Code to avoid confusion with the design load terminology used in general building codes to denote service loads, or posted loads in buildings. The factored load terminology, first adopted in the 1977 Code, clarifies when the load factors are applied to a particular load, moment, or shear value as used in the Code provisions.
Pedestal — Member with a ratio of height-to-least lateral dimension less than or equal to 3 used primarily to support axial compressive load. For a tapered member, the least lateral dimension is the average of the top and bottom dimensions of the smaller side.

Plain concrete — Structural concrete with no reinforcement or with less reinforcement than the minimum amount specified for reinforced concrete.

Plain reinforcement — Reinforcement that does not conform to definition of deformed reinforcement. See 3.5.4.

Plastic hinge region — Length of frame element over which flexural yielding is intended to occur due to earthquake design displacements, extending not less than a distance h from the critical section where flexural yielding initiates. See Chapter 21.

Post-tensioning — Method of prestressing in which prestressing steel is tensioned after concrete has hardened.

Precast concrete — Structural concrete element cast elsewhere than its final position in the structure.

Precompressed tensile zone — Portion of a prestressed member where flexural tension, calculated using gross section properties, would occur under unfactored dead and live loads if the prestress force was not present.

Prestressed concrete — Structural concrete in which internal stresses have been introduced to reduce potential tensile stresses in concrete resulting from loads.

Prestressing steel — High-strength steel element such as wire, bar, or strand, or a bundle of such elements, used to impart prestress forces to concrete.

Pretensioning — Method of prestressing in which prestressing steel is tensioned before concrete is placed.

Reinforced concrete — Structural concrete reinforced with no less than the minimum amounts of prestressing steel or nonprestressed reinforcement specified in Chapters 1 through 21 and Appendixes A through C.

Pedestal — In the 2008 Code, the definitions for column and pedestal were revised to provide consistency between the definitions.

Plain concrete — The presence of reinforcement (nonprestressed or prestressed) does not prohibit the member from being classified as plain concrete, provided all requirements of Chapter 22 are satisfied.

Prestressed concrete — Reinforced concrete is defined to include prestressed concrete. Although the behavior of a prestressed member with unbonded tendons may vary from that of members with continuously bonded tendons, bonded and unbonded prestressed concrete are combined with conventionally reinforced concrete under the generic term “reinforced concrete.” Provisions common to both prestressed and conventionally reinforced concrete are integrated to avoid overlapping and conflicting provisions.
CODE

Reinforcement — Material that conforms to 3.5, excluding prestressing steel unless specifically included.

Reshores — Shores placed snugly under a concrete slab or other structural member after the original forms and shores have been removed from a larger area, thus requiring the new slab or structural member to deflect and support its own weight and existing construction loads applied prior to the installation of the reshores.

Seismic design category — A classification assigned to a structure based on its occupancy category and the severity of the design earthquake ground motion at the site, as defined by the legally adopted general building code.

Seismic-force-resisting system — Portion of the structure designed to resist earthquake design forces required by the legally adopted general building code using the applicable provisions and load combinations.

Seismic hook — A hook on a stirrup, or crosstie having a bend not less than 135 degrees, except that circular hoops shall have a bend not less than 90 degrees. Hooks shall have a $6d_b$ (but not less than 3 in.) extension that engages the longitudinal reinforcement and projects into the interior of the stirrup or hoop. See 7.1.4 and Chapter 21.

Shear cap — A projection below the slab used to increase the slab shear strength. See 13.2.6.

Sheathing — A material encasing prestressing steel to prevent bonding of the prestressing steel with the surrounding concrete, to provide corrosion protection, and to contain the corrosion inhibiting coating.

Shores — Vertical or inclined support members designed to carry the weight of the formwork, concrete, and construction loads above.

Span length — See 8.9.

Special anchorage device — Anchorage device that satisfies 18.15.1 and the standardized acceptance tests of AASHTO "Standard Specifications for Highway Bridges," Division II, Article 10.3.2.3.

COMMENTARY

Sheathing — Typically, sheathing is a continuous, seamless, high-density polyethylene material extruded directly on the coated prestressing steel.

Special anchorage devices — Special anchorage devices are any devices (monostrand or multistrand) that do not meet the relevant PTI or AASHTO bearing stress and, where applicable, stiffness requirements. Most commercially marketed multibearing surface anchorage devices are special anchorage devices. As provided in 18.15.1, such devices can be used only when they have been shown experimentally to be in compliance with the AASHTO requirements. This demonstration of compliance will ordinarily be furnished by the device manufacturer.
Special boundary element — Boundary element required by 21.9.6.2 or 21.9.6.3.

Spiral reinforcement — Continuously wound reinforcement in the form of a cylindrical helix.

Splitting tensile strength (f_{ct}) — Tensile strength of concrete determined in accordance with ASTM C496 as described in ASTM C330. See 5.1.4.

Steel fiber-reinforced concrete — Concrete containing dispersed randomly oriented steel fibers.

Stirrup — Reinforcement used to resist shear and torsion stresses in a structural member; typically bars, wires, or welded wire reinforcement either single leg or bent into L, U, or rectangular shapes and located perpendicular to or at an angle to longitudinal reinforcement. (The term “stirrups” is usually applied to lateral reinforcement in flexural members and the term “ties” to those in compression members.) See also **Tie**.

Strength, design — Nominal strength multiplied by a strength reduction factor ϕ. See 9.3.

Strength, nominal — Strength of a member or cross section calculated in accordance with provisions and assumptions of the strength design method of this Code before application of any strength reduction factors. See 9.3.1.

Special moment frame — The provisions of 21.8 are intended to result in a special moment frame constructed using precast concrete having minimum strength and toughness equivalent to that for a special moment frame of cast-in-place concrete.

Steel fiber-reinforced concrete — In the Code, discontinuous steel fiber reinforcement conforming to 3.5.8 is permitted only in normalweight concrete proportioned, mixed, sampled, and evaluated in accordance with Chapter 5.

Strength, nominal — Strength of a member or cross section calculated using standard assumptions and strength equations, and nominal (specified) values of material strengths and dimensions is referred to as “nominal strength.” The subscript n is used to denote the nominal strengths; nominal axial load strength P_n, nominal moment strength M_n, and nominal shear strength V_n. “Design strength” or usable strength of a member or cross section is the nominal strength reduced by the strength reduction factor ϕ.

The required axial load, moment, and shear strengths used to proportion members are referred to either as factored axial loads, factored moments, and factored shears, or required axial loads, moments, and shears. The factored load effects are calculated from the applied factored loads and forces in such load combinations as are stipulated in the code (see 9.2).

The subscript u is used only to denote the required strengths; required axial load strength P_u, required moment strength M_u, and required shear strength V_u, calculated from the applied factored loads and forces.
Strength, required — Strength of a member or cross section required to resist factored loads or related internal moments and forces in such combinations as are stipulated in this Code. See 9.1.1.

Stress — Intensity of force per unit area.

Structural concrete — All concrete used for structural purposes including plain and reinforced concrete.

Structural diaphragm — Structural member, such as a floor or roof slab, that transmits forces acting in the plane of the member to the vertical elements of the seismic-force-resisting system. See Chapter 21 for requirements in the earthquake-resisting structures.

Structural truss — Assemblage of reinforced concrete members subjected primarily to axial forces.

Structural wall — Wall proportioned to resist combinations of shears, moments, and axial forces. A shear wall is a structural wall. A structural wall designated as part of the seismic-force-resisting system shall be categorized as follows:

Ordinary structural plain concrete wall — A wall complying with the requirements of Chapter 22.

Ordinary reinforced concrete structural wall — A wall complying with the requirements of Chapters 1 through 18.

Intermediate precast structural wall — A wall complying with all applicable requirements of Chapters 1 through 18 in addition to 21.4.

Intermediate precast structural wall — The provisions of 21.4 are intended to result in an intermediate precast structural wall having minimum strength and toughness equivalent to that for an ordinary reinforced concrete structural wall of cast-in-place concrete. A precast concrete wall satisfying only the requirements of Chapters 1 through 18 and not additional requirements of 21.4 or 21.10 is considered to have ductility and structural integrity less than that for an intermediate precast structural wall.

CODE

COMMENTARY

The basic requirement for strength design may be expressed as follows:

\[
\phi P_n \geq P_u \\
\phi M_n \geq M_u \\
\phi V_n \geq V_u
\]

For additional discussion on the concepts and nomenclature for strength design, see Commentary Chapter 9.
CODE

Special structural wall — A cast-in-place or precast wall complying with the requirements of 21.1.3 through 21.1.7, 21.9, and 21.10, as applicable, in addition to the requirements for ordinary reinforced concrete structural walls.

Tendon — In pretensioned applications, the tendon is the prestressing steel. In post-tensioned applications, the tendon is a complete assembly consisting of anchorages, prestressing steel, and sheathing with coating for unbonded applications or ducts with grout for bonded applications.

Tension-controlled section — A cross section in which the net tensile strain in the extreme tension steel at nominal strength is greater than or equal to 0.005.

Tie — Loop of reinforcing bar or wire enclosing longitudinal reinforcement. A continuously wound bar or wire in the form of a circle, rectangle, or other polygon shape without re-entrant corners is acceptable. See also *Stirrup*.

Transfer — Act of transferring stress in prestressing steel from jacks or pretensioning bed to concrete member.

Transfer length — Length of embedded pretensioned strand required to transfer the effective prestress to the concrete.

Unbonded tendon — Tendon in which the prestressing steel is prevented from bonding to the concrete and is free to move relative to the concrete. The prestressing force is permanently transferred to the concrete at the tendon ends by the anchorages only.

Wall — Member, usually vertical, used to enclose or separate spaces.

Welded wire reinforcement — Reinforcing elements consisting of carbon-steel plain or deformed wires, conforming to ASTM A82 or A496, respectively, fabricated into sheets or rolls in accordance with ASTM A185 or A497, respectively; or reinforcing elements consisting of stainless-steel plain or deformed wires fabricated into sheets or rolls conforming to ASTM A1022.

Wobble friction — In prestressed concrete, friction caused by unintended deviation of prestressing sheath or duct from its specified profile.

Work — The entire construction or separately identifiable parts thereof that are required to be furnished under the contract documents.

COMMENTARY

Special precast structural wall — The provisions of 21.10 are intended to result in a special precast structural wall having minimum strength and toughness equivalent to that for a special reinforced concrete structural wall of cast-in-place concrete.
Yield strength — Specified minimum yield strength or yield point of reinforcement. Yield strength or yield point shall be determined in tension according to applicable ASTM standards as modified by 3.5 of this Code.
CHAPTER 3 — MATERIALS

CODE

3.1 — Tests of materials

3.1.1 — The building official shall have the right to order testing of any materials used in concrete construction to determine if materials are of quality specified.

3.1.2 — Tests of materials and of concrete shall be made in accordance with standards listed in 3.8.

3.1.3 — A complete record of tests of materials and of concrete shall be retained by the inspector for 2 years after completion of the project, and made available for inspection during the progress of the Work.

3.2 — Cementitious materials

3.2.1 — Cementitious materials shall conform to the relevant specifications as follows:

(a) Portland cement: ASTM C150;

(b) Blended hydraulic cements: ASTM C595 excluding Type IS (>=70), which is not intended as principal cementing constituents of structural concrete;

(c) Expansive hydraulic cement: ASTM C845;

(d) Hydraulic cement: ASTM C1157;

(e) Fly ash and natural pozzolan: ASTM C618;

(f) Ground-granulated blast-furnace slag: ASTM C989;

(g) Silica fume: ASTM C1240.

3.2.2 — Cementitious materials used in the Work shall correspond to those used as the basis for selecting concrete mixture proportions. See 5.2.

COMMENTARY

R3.1 — Tests of materials

R3.1.3 — The record of tests of materials and of concrete should be retained for at least 2 years after completion of the project. Completion of the project is the date at which the owner accepts the project or when the certificate of occupancy is issued, whichever date is later. Local legal requirements may require longer retention of such records.

R3.2 — Cementitious materials

R3.2.1 — Type IS (>=70) is a blended cement under ASTM C595 that contains ground-granulated blast-furnace slag as an interground component in a quantity equal to or exceeding 70 percent by weight. This was called Type S or Type SA cement in versions of ASTM C595 before 2006.

R3.2.2 — Depending on the circumstances, the provision of 3.2.2 may require the same type of cementitious materials or may require cementitious materials from the same respective sources. The latter would be the case if the sample standard deviation of strength tests used in establishing the required strength margin was based on cementitious materials from a particular source. If the sample standard deviation was based on tests involving cementitious materials obtained from several sources, the former interpretation would apply.

CODE

3.3 — Aggregates

3.3.1 — Concrete aggregates shall conform to one of the following specifications:

(a) Normalweight: ASTM C33;
(b) Lightweight: ASTM C330.

Exception: Aggregates that have been shown by test or actual service to produce concrete of adequate strength and durability and approved by the building official.

3.3.2 — Nominal maximum size of coarse aggregate shall be not larger than:

(a) 1/5 the narrowest dimension between sides of forms, nor
(b) 1/3 the depth of slabs, nor
(c) 3/4 the minimum clear spacing between individual reinforcing bars or wires, bundles of bars, individual tendons, bundled tendons, or ducts.

These limitations shall not apply if, in the judgment of the licensed design professional, workability and methods of consolidation are such that concrete can be placed without honeycombs or voids.

3.4 — Water

3.4.1 — Water used in mixing concrete shall conform to ASTM C1602.

COMMENTARY

R3.3 — Aggregates

R3.3.1 — Aggregates conforming to ASTM specifications are not always economically available and, in some instances, noncomplying materials have a long history of satisfactory performance. Such nonconforming materials are permitted when acceptable evidence of satisfactory performance is provided. Satisfactory performance in the past, however, does not guarantee good performance under other conditions and in other localities. Whenever possible, aggregates conforming to the designated specifications should be used.

R3.3.2 — The size limitations on aggregates are provided to ensure proper encasement of reinforcement and to minimize honeycombing. Note that the limitations on maximum size of the aggregate may be waived if, in the judgment of the licensed design professional, the workability and methods of consolidation of the concrete are such that the concrete can be placed without honeycombs or voids.

R3.4 — Water

R3.4.1 — Almost any natural water that is drinkable (potable) and has no pronounced taste or odor is satisfactory as mixing water for making concrete. Excessive impurities in mixing water may affect not only setting time, concrete strength, and volume stability (length change), but may also cause efflorescence or corrosion of reinforcement. Where possible, water with high concentrations of dissolved solids should be avoided.

Salts or other deleterious substances contributed from the aggregate or admixtures are additive to those that might be contained in the mixing water. These additional amounts are to be considered in evaluating the acceptability of the total impurities that may be deleterious to concrete or steel.

ASTM C1602 allows the use of potable water without testing and includes methods for qualifying nonpotable sources of water with consideration of effects on setting time and strength. Testing frequencies are established to ensure continued monitoring of water quality.

ASTM C1602 includes optional limits for chlorides, sulfates, alkalis, and solids in mixing water that can be invoked when appropriate.
CODE

3.4.2 — Mixing water for prestressed concrete or for concrete that will contain aluminum embedments, including that portion of mixing water contributed in the form of free moisture on aggregates, shall not contain deleterious amounts of chloride ion. See 4.3.1.

3.5 — Steel reinforcement

3.5.1 — Reinforcement shall be deformed reinforcement, except that plain reinforcement shall be permitted for spirals or prestressing steel; and reinforcement consisting of headed shear studs, structural steel, steel pipe, or steel tubing shall be permitted as specified in this Code. Discontinuous deformed steel fibers shall be permitted only for resisting shear under conditions specified in 11.4.6.1(f).

3.5.2 — Welding of reinforcing bars shall conform to AWS D1.4. Type and location of welded splices and other required welding of reinforcing bars shall be indicated on the design drawings or in the project specifications. ASTM specifications for bar reinforcement, except for ASTM A706, shall be supplemented to require a report of material properties necessary to conform to the requirements in AWS D1.4.

COMMENTARY

R3.5 — Steel reinforcement

R3.5.1 — Discontinuous deformed steel fibers are permitted only for resisting shear in flexural members (see 11.4.6.1(f)). Fiber-reinforced polymer (FRP) reinforcement is not addressed in this Code. ACI Committee 440 has developed guidelines for the use of FRP reinforcement.3.2, 3.3

Materials permitted for use as reinforcement are specified. Other metal elements, such as inserts, anchor bolts, or plain bars for dowels at isolation or contraction joints, are not normally considered to be reinforcement under the provisions of this Code.

R3.5.2 — When welding of reinforcing bars is required, the weldability of the steel and compatible welding procedures need to be considered. The provisions in AWS D1.4 Welding Code cover aspects of welding reinforcing bars, including criteria to qualify welding procedures.

Weldability of the steel is based on its chemical composition or carbon equivalent (CE). The Welding Code establishes preheat and interpass temperatures for a range of carbon equivalents and reinforcing bar sizes. Carbon equivalent is calculated from the chemical composition of the reinforcing bars. The Welding Code has two expressions for calculating carbon equivalent. A relatively short expression, considering only the elements carbon and manganese, is to be used for bars other than ASTM A706 material. A more comprehensive expression is given for ASTM A706 bars. The CE formula in the Welding Code for ASTM A706 bars is identical to the CE formula in ASTM A706.

The chemical analysis, for bars other than ASTM A706, required to calculate the carbon equivalent is not routinely provided by the producer of the reinforcing bars. For welding reinforcing bars other than ASTM A706 bars, the design drawings or project specifications should specifically require results of the chemical analysis to be furnished.

ASTM A706 covers low-alloy steel reinforcing bars intended for applications requiring controlled tensile properties or welding. Weldability is accomplished in ASTM A706 by limits or controls on chemical composition and on carbon equivalent.3.4 The producer is required by ASTM A706 to report the chemical composition and carbon equivalent.

The AWS D1.4 Welding Code requires the contractor to prepare written welding procedure specifications conforming
3.5.3 — Deformed reinforcement

3.5.3.1 — Deformed reinforcing bars shall conform to the requirements for deformed bars in one of the following specifications, except as permitted by 3.5.3.3:

(a) Carbon steel: ASTM A615;

(b) Low-alloy steel: ASTM A706;

(c) Stainless steel: ASTM A955;

(d) Rail steel and axle steel: ASTM A996. Bars from rail steel shall be Type R.

R3.5.3 — Deformed reinforcement

R3.5.3.1 — ASTM A615 covers deformed carbon-steel reinforcing bars that are currently the most widely used type of steel bar in reinforced concrete construction in the United States. The specification requires that the bars be marked with the letter S for type of steel.

ASTM A706 covers low-alloy steel deformed bars intended for applications where controlled tensile properties, restrictions on chemical composition to enhance weldability, or both, are required. The specification requires that the bars be marked with the letter W for type of steel.

Deformed bars produced to meet both ASTM A615 and A706 are required to be marked with the letters S and W for type of steel.
3.5.3.2 — Deformed reinforcing bars shall conform to one of the ASTM specifications listed in 3.5.3.1, except that for bars with f_y exceeding 60,000 psi, the yield strength shall be taken as the stress corresponding to a strain of 0.35 percent. See 9.4.

R3.5.3.2 — ASTM A615 includes provisions for Grade 75 bars in sizes No. 6 through 18.

The 0.35 percent strain limit is necessary to ensure that the assumption of an elasto-plastic stress-strain curve in 10.2.4 will not lead to unconservative values of the member strength.

3.5.3.3 — Deformed reinforcing bars conforming to ASTM A1035 shall be permitted to be used as transverse reinforcement in 21.6.4 or spiral reinforcement in 10.9.3.

3.5.3.4 — Bar mats for concrete reinforcement shall conform to ASTM A184. Reinforcing bars used in bar mats shall conform to ASTM A615 or ASTM A706.

3.5.3.5 — Deformed wire for concrete reinforcement shall conform to ASTM A496, except that wire shall not be smaller than size D-4 or larger than size D-31 unless as permitted in 3.5.3.7. For wire with f_y exceeding 60,000 psi, the yield strength shall be taken as the stress corresponding to a strain of 0.35 percent.

R3.5.3.5 — An upper limit is placed on the size of deformed wire because tests show that D-45 wire will achieve only approximately 60 percent of the bond strength in tension given by Eq. (12-1).
CODE

3.5.3.6 — Welded plain wire reinforcement shall conform to ASTM A185, except that for wire with f_y exceeding 60,000 psi, the yield strength shall be taken as the stress corresponding to a strain of 0.35 percent. Spacing of welded intersections shall not exceed 12 in. in direction of calculated stress, except for welded wire reinforcement used as stirrups in accordance with 12.13.2.

3.5.3.7 — Welded deformed wire reinforcement shall conform to ASTM A497, except that for wire with f_y exceeding 60,000 psi, the yield strength shall be taken as the stress corresponding to a strain of 0.35 percent. Spacing of welded intersections shall not exceed 16 in. in direction of calculated stress, except for welded deformed wire reinforcement used as stirrups in accordance with 12.13.2. Deformed wire larger than D-31 is permitted when used in welded wire reinforcement conforming to ASTM A497, but shall be treated as plain wire for development and splice design.

3.5.3.8 — Galvanized reinforcing bars shall conform to ASTM A767. Epoxy-coated reinforcing bars shall comply with ASTM A775 or with ASTM A934. Bars to be galvanized or epoxy-coated shall conform to one of the specifications listed in 3.5.3.1.

3.5.3.9 — Epoxy-coated wires and welded wire reinforcement shall conform to ASTM A884. Wires to be epoxy-coated shall conform to 3.5.3.4 and welded wire reinforcement to be epoxy-coated shall conform to 3.5.3.5 or 3.5.3.6.

3.5.3.10 — Deformed stainless-steel wire and deformed and plain stainless-steel welded wire for concrete reinforcement shall conform to ASTM A1022, except deformed wire shall not be smaller than size D-4 or larger than size D-31, and the yield strength for wire with f_y exceeding 60,000 psi shall be taken as the stress corresponding to a strain of 0.35 percent. Deformed wire larger than D-31 is permitted where used in welded wire reinforcement conforming to ASTM A1022, but shall be treated as plain wire for development and splice design. Spacing of welded intersections shall not exceed 12 in. for plain welded wire and 16 in. for deformed welded wire in direction of calculated stress, except for welded wire reinforcement used as stirrups in accordance with 12.13.2.

3.5.4 — Plain reinforcement

3.5.4.1 — Plain bars for spiral reinforcement shall conform to the specification listed in 3.5.3.1(a) or (b).

COMMENTARY

R3.5.3.6 — Welded plain wire reinforcement is made of wire conforming to ASTM A82, which specifies a minimum yield strength of 70,000 psi. The Code has assigned a yield strength value of 60,000 psi, but makes provision for the use of higher yield strengths provided the stress corresponds to a strain of 0.35 percent.

R3.5.3.7 — Welded deformed wire reinforcement should be made of wire conforming to ASTM A497, which specifies a minimum yield strength of 70,000 psi. The Code has assigned a yield strength value of 60,000 psi, but makes provision for the use of higher yield strengths provided the stress corresponds to a strain of 0.35 percent.

R3.5.3.8 — Galvanized reinforcing bars (ASTM A767) and epoxy-coated reinforcing bars (ASTM A775) were added to the 1983 Code, and epoxy-coated prefabricated reinforcing bars (ASTM A934) were added to the 1995 Code recognizing their usage, especially for conditions where corrosion resistance of reinforcement is of particular concern. They have typically been used in parking decks, bridge structures, and other highly corrosive environments.

R3.5.3.10 — Stainless steel wire and welded wire are used in applications where high corrosion resistance or controlled magnetic permeability are required. The physical and mechanical property requirements for deformed stainless steel wire and deformed and plain welded wire under ASTM A1022 are the same as those for deformed wire, deformed welded wire, and plain welded wire under ASTM A496, A497, and A185, respectively.

R3.5.4 — Plain reinforcement

Plain bars and plain wire are permitted only for spiral reinforcement (either as lateral reinforcement for compression
3.5.4.2 — Plain wire for spiral reinforcement shall conform to ASTM A82, except that for wire with f_y exceeding 60,000 psi, the yield strength shall be taken as the stress corresponding to a strain of 0.35 percent.

3.5.5 — Headed shear stud reinforcement

3.5.5.1 — Headed studs and headed stud assemblies shall conform to ASTM A1044.

R3.5.5 — The configuration of the studs for headed shear stud reinforcement differs from the configuration of the headed-type shear studs prescribed in Section 7 of AWS D1.1 and referenced for use in Appendix D of this Code (Fig. R3.5.5). Ratios of the head to shank cross-sectional areas of the AWS D1.1 studs range from about 2.5 to 4. In contrast, ASTM A1044 requires the area of the head of headed shear reinforcement studs to be at least 10 times the area of the shank. Thus, according to 3.5.5.1, the AWS D1.1 headed studs are not suitable for use as headed shear stud reinforcement. The base rail, where provided, anchors one end of the studs; ASTM A1044 specifies material width and thickness of the base rail that are sufficient to provide the required anchorage without yielding for stud shank diameters of 0.375, 0.500, 0.625, and 0.750 in. In ASTM A1044, the minimum specified yield strength of headed shear studs is 51,000 psi.

R3.5.6 — Prestressing steel

R3.5.6.1 — Because low-relaxation prestressing steel is addressed in a supplement to ASTM A421, which applies only when low-relaxation material is specified, the appropriate ASTM reference is listed as a separate entity.

3.5.6 — Prestressing steel

3.5.6.1 — Steel for prestressing shall conform to one of the following specifications:

(a) Wire: ASTM A421;

(b) Low-relaxation wire: ASTM A421, including Supplement “Low Relaxation Wire”;

(c) Strand: ASTM A416;

(d) High-strength bar: ASTM A722.

3.5.6.2 — Wire, strands, and bars not specifically listed in ASTM A421, A416, or A722 are allowed provided they conform to minimum requirements of these specifications and do not have properties that make them less satisfactory than those listed in ASTM A421, A416, or A722.

3.5.7 — Structural steel, steel pipe, or tubing

3.5.7.1 — Structural steel used with reinforcing bars in composite compression members meeting requirements of 10.13.7 or 10.13.8 shall conform to one of the following specifications:

(a) Carbon steel: ASTM A36;

(b) High-strength low-alloy steel: ASTM A242;

Fig. R3.5.5—Configurations of stud heads.
(c) High-strength, low-alloy, Colobium-Vanadium steel: ASTM A572;

(d) High-strength, low-alloy, 50 ksi steel: ASTM A588;

(e) Structural shapes: ASTM A992.

3.5.7.2 — Steel pipe or tubing for composite compression members composed of a steel encased concrete core meeting requirements of 10.13.6 shall conform to one of the following specifications:

(a) Black steel, hot-dipped, zinc-coated: Grade B of ASTM A53;

(b) Cold-formed, welded, seamless: ASTM A500;

(c) Hot-formed, welded, seamless: ASTM A501.

3.5.8 — Steel discontinuous fiber reinforcement for concrete shall be deformed and conform to ASTM A820. Steel fibers have a length-to-diameter ratio not smaller than 50 and not greater than 100.

R3.5.8 — Deformations in steel fibers enhance mechanical anchorage with the concrete. The lower and upper limits for the fiber length-to-diameter ratio are based on available test data. Because data are not available on the potential for corrosion problems due to galvanic action, the use of deformed steel fibers in members reinforced with stainless-steel bars or galvanized steel bars is not recommended.

R3.5.9 — The 2d_b limitation is due to a lack of test data for headed deformed bars that do not meet this requirement. Figure R3.5.9 shows a headed bar that has an obstruction of the deformations that extends less than a distance 2d_b from the bearing face of the head and, thus, meets the limitation expressed in 3.5.9. The figure also illustrates that, because the diameter of the obstruction is larger than the diameter of the bar, the net bearing area of the head may be less than the gross area of the head minus the area of the bar.

3.5.9 — Headed deformed bars shall conform to ASTM A970 and obstructions or interruptions of the bar deformations, if any, shall not extend more than 2d_b from the bearing face of the head.

Fig. R3.5.9—Headed deformed reinforcing bar with an obstruction that extends less than 2d_b from the bearing face of the head.
3.6 — Admixtures

3.6.1 — Admixtures for water reduction and setting time modification shall conform to ASTM C494. Admixtures for use in producing flowing concrete shall conform to ASTM C1017.

3.6.2 — Air-entraining admixtures shall conform to ASTM C260.

3.6.3 — Admixtures to be used in concrete that do not conform to 3.6.1 and 3.6.2 shall be subject to prior approval by the licensed design professional.

3.6.4 — Calcium chloride or admixtures containing chloride from sources other than impurities in admixture ingredients shall not be used in prestressed concrete, in concrete containing embedded aluminum, or in concrete cast against stay-in-place galvanized steel forms. See 4.3.1 and 6.3.2.

3.6.5 — Admixtures used in concrete containing expansive cements conforming to ASTM C845 shall be compatible with the cement and produce no deleterious effects.

3.7 — Storage of materials

3.7.1 — Cementitious materials and aggregates shall be stored in such manner as to prevent deterioration or intrusion of foreign matter.

3.7.2 — Any material that has deteriorated or has been contaminated shall not be used for concrete.

3.8 — Referenced standards

3.8.1 — Standards of ASTM International referred to in this Code are listed below with their serial designations, including year of adoption or revision, and are declared to be part of this Code as if fully set forth herein:

A36/A36M-05 Standard Specification for Carbon Structural Steel
A53/A53M-07 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless

R3.6 — Admixtures

R3.6.4 — Admixtures containing any chloride, other than impurities from admixture ingredients, should not be used in prestressed concrete or in concrete with aluminum embedments. Concentrations of chloride ion may produce corrosion of embedded aluminum (e.g., conduit), especially if the aluminum is in contact with embedded steel and the concrete is in a humid environment. Corrosion of galvanized steel sheet and galvanized steel stay-in-place forms occurs, especially in humid environments or where drying is inhibited by the thickness of the concrete or coatings or impermeable coverings. See 4.4.1 for specific limits on chloride ion concentration in concrete. See 6.3.2 for requirements of embedded aluminum.

R3.6.5 — The use of admixtures in concrete containing ASTM C845 expansive cements has resulted in reduced levels of expansion or increased shrinkage values. See ACI 223.3.7

R3.8 — Referenced standards

ASTM standards are available from ASTM International.

The ASTM standards listed are the latest editions at the time these code provisions were adopted. Because these standards are revised frequently, generally in minor details only, the user of the Code should check directly with ASTM International (www.astm.org) if it is desired to reference the latest edition. However, such a procedure obligates the user of the standard to evaluate if any changes in the later edition are significant in the use of the standard.
Many of the ASTM standards are combined standards as denoted by the dual designation, such as ASTM A36/A36M. For simplicity, these combined standards are referenced without the metric (M) designation within the text of the Code and Commentary. In 3.8, however, the complete designation is given because that is the official designation for the standard.

Standard specifications or other material to be legally adopted by reference into a building code should refer to a specific document. This can be done by simply using the complete serial designation since the first part indicates the subject and the second part the year of adoption. All standard documents referenced in this Code are listed in 3.8, with the title and complete serial designation. In other sections of the code, the designations do not include the date so that all may be kept up-to-date by simply revising 3.8.

Type R rail-steel bars are considered a mandatory requirement whenever ASTM A996 is referenced in the Code.
<table>
<thead>
<tr>
<th>Code</th>
<th>Standard Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A615/A615M-07</td>
<td>Deformed and Plain Carbon Steel Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A706/A706M-06a</td>
<td>Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A722/A722M-07</td>
<td>Uncoated High-Strength Steel Bars for Prestressing Concrete</td>
</tr>
<tr>
<td>A767/A767M-05</td>
<td>Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A775/A775M-07a</td>
<td>Epoxy-Coated Steel Reinforcing Bars</td>
</tr>
<tr>
<td>A820/A820M-06</td>
<td>Steel Fibers for Fiber-Reinforced Concrete</td>
</tr>
<tr>
<td>A884/A884M-06</td>
<td>Epoxy-Coated Steel Wire and Welded Wire Reinforcement</td>
</tr>
<tr>
<td>A934/A934M-07</td>
<td>Epoxy-Coated Prefabricated Steel Reinforcing Bars</td>
</tr>
<tr>
<td>A955/A955M-07a</td>
<td>Deformed and Plain Stainless-Steel Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A970/A970M-06</td>
<td>Headed Steel Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A992/A992M-06a</td>
<td>Structural Steel Shapes</td>
</tr>
<tr>
<td>A996/A996M-06a</td>
<td>Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>A1022/A1022M-07</td>
<td>Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement</td>
</tr>
<tr>
<td>A1035/A1035M-07</td>
<td>Deformed and Plain, Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement</td>
</tr>
<tr>
<td>CODE</td>
<td>COMMENTARY</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>A1044/A1044M-05</td>
<td>Standard Specification for Steel Stud Assemblies for Shear Reinforcement of Concrete</td>
</tr>
<tr>
<td>C31/C31M-06</td>
<td>Standard Practice for Making and Curing Concrete Test Specimens in the Field</td>
</tr>
<tr>
<td>C33-03</td>
<td>Standard Specification for Concrete Aggregates</td>
</tr>
<tr>
<td>C39/C39M-05</td>
<td>Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens</td>
</tr>
<tr>
<td>C42/C42M-04</td>
<td>Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete</td>
</tr>
<tr>
<td>C94/C94M-06</td>
<td>Standard Specification for Ready-Mixed Concrete</td>
</tr>
<tr>
<td>C144-04</td>
<td>Standard Specification for Aggregate for Masonry Mortar</td>
</tr>
<tr>
<td>C150-05</td>
<td>Standard Specification for Portland Cement</td>
</tr>
<tr>
<td>C172-04</td>
<td>Standard Practice for Sampling Freshly Mixed Concrete</td>
</tr>
<tr>
<td>C192/C192M-06</td>
<td>Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory</td>
</tr>
<tr>
<td>C231-04</td>
<td>Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method</td>
</tr>
<tr>
<td>C260-06</td>
<td>Standard Specification for Air-Entraining Admixtures for Concrete</td>
</tr>
<tr>
<td>C330-05</td>
<td>Standard Specification for Lightweight Aggregates for Structural Concrete</td>
</tr>
<tr>
<td>CODE</td>
<td>COMMENTARY</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>C494/C494M-05a</td>
<td>Standard Specification for Chemical Admixtures for Concrete</td>
</tr>
<tr>
<td>C496/C496M-04</td>
<td>Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens</td>
</tr>
<tr>
<td>C567-05a</td>
<td>Standard Test Method for Determining Density of Structural Lightweight Concrete</td>
</tr>
<tr>
<td>C595-07</td>
<td>Standard Specification for Blended Hydraulic Cements</td>
</tr>
<tr>
<td>C618-05</td>
<td>Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete</td>
</tr>
<tr>
<td>C685/C685M-01</td>
<td>Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing</td>
</tr>
<tr>
<td>C845-04</td>
<td>Standard Specification for Expansive Hydraulic Cement</td>
</tr>
<tr>
<td>C989-06</td>
<td>Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars</td>
</tr>
<tr>
<td>C1012-04</td>
<td>Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution</td>
</tr>
<tr>
<td>C1017/C1017M-03</td>
<td>Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete</td>
</tr>
<tr>
<td>C1116/C1116M-06</td>
<td>Standard Specification for Fiber-Reinforced Concrete</td>
</tr>
<tr>
<td>C1157-03</td>
<td>Standard Performance Specification for Hydraulic Cement</td>
</tr>
<tr>
<td>C1218/1218M-99</td>
<td>Standard Test Method for Water-Soluble Chloride in Mortar and Concrete</td>
</tr>
<tr>
<td>C1240-05</td>
<td>Standard Specification for Silica Fume Used in Cementitious Mixtures</td>
</tr>
<tr>
<td>C1602/C1602M-06</td>
<td>Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete</td>
</tr>
</tbody>
</table>
CODE

C1609/C1609M-06 Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)

3.8.2 — “Structural Welding Code—Reinforcing Steel (AWS D1.4/D1.4M:2005)” of the American Welding Society is declared to be part of this Code as if fully set forth herein.

3.8.3 — Section 2.3.3, Load Combinations Including Flood Loads, and 2.3.4, Load Combinations Including Atmospheric Ice Loads, of “Minimum Design Loads for Buildings and Other Structures” (ASCE/SEI 7-05) is declared to be part of this code as if fully set forth herein, for the purpose cited in 9.2.4.

3.8.4 — “Specification for Unbonded Single-Strand Tendon Materials (ACI 423.7-07)” is declared to be part of this Code as if fully set forth herein.

3.8.5 — Articles 9.21.7.2 and 9.21.7.3 of Division I and Article 10.3.2.3 of Division II of AASHTO “Standard Specification for Highway Bridges” (AASHTO 17th Edition, 2002) are declared to be a part of this Code as if fully set forth herein, for the purpose cited in 18.15.1.

3.8.6 — “Qualification of Post-Installed Mechanical Anchors in Concrete (ACI 355.2-07)” is declared to be part of this Code as if fully set forth herein, for the purpose cited in Appendix D.

3.8.7 — “Structural Welding Code—Steel (AWS D1.1/D1.1M:2006)” of the American Welding Society is declared to be part of this Code as if fully set forth herein.

3.8.8 — “Acceptance Criteria for Moment Frames Based on Structural Testing (ACI 374.1-05)” is declared to be part of this Code as if fully set forth herein.

3.8.9 — “Acceptance Criteria for Special Unbonded Post-Tensioned Precast Structural Walls Based on Validation Testing (ACI ITG-5.1-07)” is declared to be part of this Code as if fully set forth herein.

COMMENTARY

R3.8.3 — ASCE/SEI 7-05 is available from ASCE.

R3.8.6 — Parallel to development of the 2005 Code provisions for anchoring to concrete, ACI 355 developed a test method to define the level of performance required for post-installed anchors. This test method, ACI 355.2, contains requirements for the testing and evaluation of post-installed anchors for both cracked and uncracked concrete applications.

CHAPTER 4 — DURABILITY REQUIREMENTS

In 2008, the provisions of Chapter 4 were revised and renumbered to present durability requirements in terms of exposure categories; therefore, change bars are not shown.

CODE

4.1 — General

R4.1 — General

Chapters 4 and 5 of earlier editions of the Code were reformatted in 1989 to emphasize the importance of considering durability requirements before selecting $f_{c'}$ and concrete cover over the reinforcing steel. In 2008, the format of Chapter 4 was revised extensively by introducing exposure categories and classes with applicable durability requirements for concrete in a unified format.

R4.1.1 — Maximum water-cementitious material ratios (w/cm) of 0.40 to 0.50 that may be required for concretes exposed to freezing and thawing, sulfate soils or waters, or for corrosion protection of reinforcement will typically be equivalent to requiring an $f_{c'}$ of 5000 to 4000 psi, respectively. Generally, the required average compressive strengths, f_{cr}', will be 500 to 700 psi higher than the specified compressive strength, f_{c}'. Because it is difficult to accurately determine the w/cm of concrete, the f_{c}' specified should be reasonably consistent with the w/cm required for durability. Selection of an f_{c}' that is consistent with the maximum permitted w/cm for durability will help ensure that the maximum w/cm is not exceeded in the field. For example, a maximum w/cm of 0.45 and f_{c}' of 3000 psi should not be specified for the same concrete mixture. Because the usual emphasis during inspection is on concrete compressive strength, test results substantially higher than the specified compressive strength may lead to a lack of concern for quality and could result in production and delivery of concrete that exceeds the maximum w/cm.

R4.1.2 — The maximum w/cm limits in Chapter 4 do not apply to lightweight concrete.

R4.2 — Exposure categories and classes

Exposure categories defined in Table 4.2.1 are sub-divided into exposure classes depending on the severity of the exposure. Associated requirements for concrete relative to the exposure classes are provided in 4.3.

The Code does not include provisions for especially severe exposures, such as acids or high temperatures, and is not concerned with aesthetic considerations such as surface...
 finishes. These items are beyond the scope of the Code and should be covered specifically in the project specifications. Concrete ingredients and proportions are to be selected to meet the minimum requirements stated in the Code and the additional requirements of contract documents.

4.2.1 — The Code addresses four exposure categories that affect the requirements for concrete to ensure adequate durability:

Exposure Category F applies to exterior concrete that is exposed to moisture and cycles of freezing and thawing, with or without deicing chemicals.

Exposure Category S applies to concrete in contact with soil or water containing deleterious amounts of water-soluble sulfate ions as defined in 4.2.1.

Exposure Category P applies to concrete in contact with water requiring low permeability.

Exposure Category C applies to reinforced and prestressed concrete exposed to conditions that require additional protection against corrosion of reinforcement.

Severity of exposure within each category is defined by classes with increasing numerical values representing increasingly severe exposure conditions. A classification of “0” is assigned when the exposure severity has negligible effect or does not apply to the structural member.

Exposure Category F is subdivided into four exposure classes: **Exposure Class F0** is assigned to concrete that will not be exposed to cycles of freezing and thawing. **Exposure Class F1** is assigned to concrete exposed to cycles of freezing and thawing and that will be occasionally exposed to moisture before freezing. Examples of Class F1 are exterior walls, beams, girders, and slabs not in direct contact with soil. **Exposure Class F2** is assigned to concrete exposed to cycles of freezing and thawing that is in continuous contact with moisture before freezing. An example is an exterior water tank or vertical members in contact with soil. **Exposure Class F3** is assigned to concrete exposed to cycles of freezing and thawing and in continuous contact with moisture and exposed to deicing chemicals.

Exposure Category S is subdivided into four exposure classes: **Exposure Class S0** is assigned for conditions where the water-soluble sulfate concentration in contact with concrete is low and injurious sulfate attack is not a concern. **Exposure Class S1**, **S2**, and **S3** are assigned for structural concrete members in direct contact with soil or water containing deleterious amounts of water-soluble sulfate ions. **Exposure Class S3** is assigned where exposure to deicing salts is anticipated. Examples are horizontal members in parking structures.

Exposure Category P is subdivided into two exposure classes: **Exposure Class P0** is assigned to concrete in contact with water where low permeability is not required. **Exposure Class P1** is assigned where exposure to moisture before freezing is anticipated.

Exposure Category C is subdivided into three exposure classes: **Exposure Class C0** is assigned to concrete dry or protected from moisture. **Exposure Class C1** is assigned to concrete exposed to moisture but not to external sources of chlorides. **Exposure Class C2** is assigned to concrete exposed to moisture and an external source of chlorides from deicing chemicals, salt, brackish water, seawater, or spray from these sources.
CODE

4.3 — Requirements for concrete mixtures

4.3.1 — Based on the exposure classes assigned from Table 4.2.1, concrete mixtures shall comply with the most restrictive requirements according to Table 4.3.1.

COMMENTARY

from Exposure Class S1 to S3 based on the more critical value of measured water-soluble sulfate concentration in soil or the concentration of dissolved sulfate in water. Sea water exposure is classified as Exposure Class S1.

Exposure Category P is subdivided into two exposure classes: Structural members should be assigned to Exposure Class P0 when there are no specific permeability requirements. Exposure Class P1 is assigned on the basis of the need for concrete to have a low permeability to water when the permeation of water into concrete might reduce durability or affect the intended function of the structural member. Exposure Class P1 should typically be assigned when other exposure classes do not apply. An example is an interior water tank.

Exposure Category C is subdivided into three exposure classes: Exposure Class C0 is assigned when exposure conditions do not require additional protection against the initiation of corrosion of reinforcement. Exposure Classes C1 and C2 are assigned to reinforced and prestressed concrete members depending on the degree of exposure to external sources of moisture and chlorides in service. Examples of external sources of chlorides include concrete in direct contact with deicing chemicals, salt, salt water, brackish water, seawater, or spray from these sources.

Exposure Classes F1, F2, and F3: In addition to complying with a maximum \(w/cm \) limit and a minimum strength requirement, concrete for structural members subject to freezing-and-thawing exposures should be air entrained in accordance with 4.4.1. Structural members assigned to Exposure Class F3 are additionally required to comply with the limitations on the quantity of pozzolans and slag in the composition of the cementitious materials as given in 4.4.2.

Exposure Classes S1, S2, and S3: Concrete exposed to injurious concentrations of sulfates from soil and water should be made with sulfate-resisting cement. Table 4.3.1 lists the appropriate types of cement and the maximum \(w/cm \) and minimum specified compressive strengths for various exposure conditions. In selecting cement for sulfate resistance,
TABLE 4.3.1 — REQUIREMENTS FOR CONCRETE BY EXPOSURE CLASS

<table>
<thead>
<tr>
<th>Exposure Class</th>
<th>Max. w/cm^*</th>
<th>Min. f'_c, psi</th>
<th>Air content</th>
<th>Cementitious materials†—types</th>
<th>Calcium chloride admixture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM C150</td>
<td>ASTM C595</td>
</tr>
<tr>
<td>F0</td>
<td>N/A</td>
<td>2500</td>
<td>N/A</td>
<td>No Type restriction</td>
<td>No Type restriction</td>
</tr>
<tr>
<td>F1</td>
<td>0.45</td>
<td>4500</td>
<td>Table 4.4.1</td>
<td>IP(MS), IS (<70) (MS)</td>
<td>MS</td>
</tr>
<tr>
<td>F2</td>
<td>0.45</td>
<td>4500</td>
<td>Table 4.4.1</td>
<td>IP (HS), IS (<70) (HS)</td>
<td>HS</td>
</tr>
<tr>
<td>F3</td>
<td>0.45</td>
<td>4500</td>
<td>Table 4.4.1</td>
<td>IP (HS) + pozzolan or slag†</td>
<td>HS + pozzolan or slag†</td>
</tr>
</tbody>
</table>

				Cementitious materials†—types	Calcium chloride admixture
P0	N/A	2500	None	None	None
P1	0.50	4000	None	None	None

Code Commentary

The principal consideration is its tricalcium aluminate (C3A) content. For Exposure Class S1 (moderate exposure), Type II cement is limited to a maximum C3A content of 8.0 percent under ASTM C150. The blended cements under ASTM C595 with the MS designation are appropriate for use in Exposure Class S1. The appropriate types under ASTM C595 are IP(MS) and IS(<70)(MS) and under C1157 is Type MS. For Exposure Class S2 (severe exposure), Type V cement with a maximum C3A content of 5 percent is specified. Blended cements Types IP (HS) and IS (<70) (HS) under ASTM C595 and Type HS under ASTM C1157 can also be used. In certain areas, the C3A content of other available types such as Type III or Type I may be less than 8 or 5 percent and are usable in moderate or severe sulfate exposures. Note that sulfate-resisting cement will not increase resistance to some chemically aggressive solutions, for example, sulfuric acid. The project specifications should cover all special cases.

The use of fly ash (ASTM C618, Class F), natural pozzolans (ASTM C618, Class N), silica fume (ASTM C1240), or ground-granulated blast-furnace slag (ASTM C989) also has been shown to improve the sulfate resistance of concrete.4.1-4.3 ASTM C1012 can be used to evaluate the sulfate resistance of mixtures using combinations of cementitious materials as determined in 4.5.1. For Exposure Class S3, the alternative in ACI 318-05 allowing use of Type V plus pozzolan, based on records of successful service, instead of meeting the testing requirements of 4.5.1, still exists and has been expanded to consider the use of slag and the blended cements.

Table 4.2.1 lists seawater under Exposure Class S1 (moderate exposure), even though it generally contains more than 1500 ppm SO4. Portland cement with higher C3A content improves binding of chlorides present in seawater and the Code permits other types of portland cement with C3A up to 10 percent if the maximum w/cm is reduced to 0.40.

In addition to the proper selection of cementitious materials, other requirements for durable concrete exposed to water-soluble sulfate are essential, such as low w/cm, strength, adequate air entrainment, adequate consolidation, uniformity, adequate cover of reinforcement, and sufficient moist curing to develop the potential properties of the concrete.

Exposure Class P1

The Code includes an Exposure Class P1 for concrete that needs to have a low permeability when in direct contact with water and where the other exposure conditions defined in Table 4.2.1 do not apply. The primary means to obtain low permeability is to use a low w/cm. Low permeability can be also achieved by optimizing the cementitious materials used in the concrete mixture. One standard method that provides a performance-based indicator of low permeability of concrete is ASTM C1202, which is more reliable in laboratory evaluations than for field-based acceptance.

Table 4.2.1

<table>
<thead>
<tr>
<th>Reinforced concrete</th>
<th>Prestressed concrete</th>
<th>Related provisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>2500</td>
<td>None</td>
</tr>
<tr>
<td>C1</td>
<td>2500</td>
<td>0.30</td>
</tr>
<tr>
<td>C2</td>
<td>5000</td>
<td>0.30</td>
</tr>
</tbody>
</table>

*For lightweight concrete, see 4.1.2.
†Alternative combinations of cementitious materials of those listed in Table 4.3.1 shall be permitted when tested for sulfate resistance and meeting the criteria in 4.5.1.
‡For seawater exposure, other types of portland cements with tricalcium aluminate (C3A) contents up to 10 percent are permitted is the w/cm does not exceed 0.40.
§Other available types of cement such as Type III or Type I are permitted in Exposure Classes S1 or S2 if the C3A contents are less than 8 or 5 percent, respectively.
‖The amount of the specific source of the pozzolan or slag to be used shall not be less than the amount that has been determined by service record to improve sulfate resistance when used in concrete containing Type V cement. Alternatively, the amount of the specific source of the pozzolan or slag to be used shall not be less than the amount tested in accordance with ASTM C1012 and meeting the criteria in 4.5.1.
$Water-soluble chloride ion content that is contributed from the ingredients including water, aggregates, cementitious materials, and admixtures shall be determined on the concrete mixture by ASTM C1218 at age between 28 and 42 days.
**Requirements of 7.7.6 shall be satisfied. See 18.16 for unbonded tendons.
Exposure Class C2: For reinforced and prestressed concrete in Exposure Class C2, the maximum water/cm, minimum specified compressive strength, and minimum cover are the basic requirements to be considered. Conditions in structures where chlorides may be applied should be evaluated, such as in parking structures where chlorides may be tracked in by vehicles, or in structures near seawater. Epoxy- or zinc-coated bars or cover greater than the minimum required in 7.7 may be desirable. Use of slag meeting ASTM C989 or fly ash meeting ASTM C618 and increased levels of specified compressive strength provide increased protection. Use of silica fume meeting ASTM C1240 with an appropriate high-range water reducer, ASTM C494, Types F and G, or ASTM C1017 can also provide additional protection. The use of ASTM C1202 to test concrete mixtures proposed for use will provide additional information on the performance of the mixtures.

Exposure Classes C0, C1, and C2: For Exposure Classes C0, C1, and C2, the chloride ion limits apply. For reinforced concrete, the permitted maximum amount of water-soluble chloride ions incorporated into the concrete, measured by ASTM C1218 at ages between 28 and 42 days, depend on the degree of exposure to an anticipated external source of moisture and chlorides. For prestressed concrete, the same limit of 0.06 percent chloride ion by weight of cement applies regardless of exposure.

Additional information on the effects of chlorides on the corrosion of reinforcing steel is given in ACI 201.2R, which provides guidance on concrete durability, and ACI 222R, which provides guidance on factors that impact corrosion of metals in concrete. An initial evaluation of the chloride ion content of the proposed concrete mixture may be obtained by testing individual concrete ingredients for total chloride ion content. If total chloride ion content, calculated on the basis of concrete proportions, exceeds those permitted in Table 4.3.1, it may be necessary to test samples of the hardened concrete for water-soluble chloride ion content. Some of the chloride ions present in the ingredients will either be insoluble in water or will react with the cement during hydration and become insoluble under the test procedures described in ASTM C1218.

When concretes are tested for water-soluble chloride ion content, the tests should be made at an age of 28 to 42 days. The limits in Table 4.3.1 are to be applied to chlorides contributed from the concrete ingredients, not those from the environment surrounding the concrete. For reinforced concrete that will be dry in service (Exposure Class C0), a limit of 1 percent has been included to control the water-soluble chlorides introduced by concrete-making materials. Table 4.3.1 includes limits of 0.30 and 0.15 percent for reinforced concrete subject to Exposure Classes C1 and C2, respectively.
Code

4.4 — Additional requirements for freezing-and-thawing exposure

4.4.1 — Normalweight and lightweight concrete subject to Exposure Classes F1, F2, or F3 shall be air-entrained with air content indicated in Table 4.4.1. Tolerance on air content as delivered shall be ±1.5 percent. For \(f_c' \) greater than 5000 psi, reduction of air content indicated in Table 4.4.1 by 1.0 percent shall be permitted.

<table>
<thead>
<tr>
<th>Nominal maximum aggregate size, in.*</th>
<th>Air content, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposure Class F1</td>
</tr>
<tr>
<td>3/8</td>
<td>6</td>
</tr>
<tr>
<td>1/2</td>
<td>5.5</td>
</tr>
<tr>
<td>3/4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4.5</td>
</tr>
<tr>
<td>1-1/2</td>
<td>4.5</td>
</tr>
<tr>
<td>2†</td>
<td>4</td>
</tr>
<tr>
<td>3†</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*See ASTM C33 for tolerance on oversize for various nominal maximum size designations.
†Air contents apply to total mixture. When testing concretes, however, aggregate particles larger than 1-1/2 in. are removed by sieving and air content is measured on the sieved fraction (tolerance on air content as delivered applies to this value). Air content of total mixture is computed from value measured on the sieved fraction passing the 1-1/2 in. sieve in accordance with ASTM C231.

Commentary

Table R4.3.1 — Chloride limits for new construction (adapted from Table 3.1 of ACI 222R4.7)

<table>
<thead>
<tr>
<th>Construction type and condition</th>
<th>Chloride limit, percent by mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acid soluble</td>
</tr>
<tr>
<td>Prestressed concrete</td>
<td>0.08</td>
</tr>
<tr>
<td>Reinforced concrete wet in service</td>
<td>0.10</td>
</tr>
<tr>
<td>Reinforced concrete dry in service</td>
<td>0.20</td>
</tr>
</tbody>
</table>

*The Soxhlet test method is described in ACI 222.1.4.8

ACI 222R4.7 has adopted slightly different categories and limits as shown in Table R4.3.1. ACI 201.2R4.6 has adopted these same limits by referring to ACI 222R.

In Table 4.2.1, Exposure Classes C1 and C0 are similar to the categories for reinforced concrete under wet and dry conditions in service as described in ACI 222R. The recommended limit for prestressed concrete in this Code is same as in ACI 222R.

When epoxy- or zinc-coated bars are used, the limits in Table 4.3.1 may be more restrictive than necessary.

R4.4 — Additional requirements for freezing-and-thawing exposure

4.4.1 — A table of required air contents for concrete to resist damage from cycles of freezing and thawing is included in the Code, based on guidance provided for proportioning concrete mixtures in ACI 211.1.4.9 Target values are provided for Exposure Class F1 (moderate) and both Exposure Classes F2 and F3 (severe) exposures depending on the exposure to moisture or deicing salts. Entrained air will not protect concrete containing coarse aggregates that undergo disruptive volume changes when frozen in a saturated condition.

Section 4.4.1 permits 1 percent lower air content for concrete with \(f_c' \) greater than 5000 psi. Such high-strength concretes will have a lower \(w/cm \) and porosity and, therefore, improved resistance to cycles of freezing and thawing.
CODE

4.4.2 — The quantity of pozzolans, including fly ash and silica fume, and slag in concrete subject to Exposure Class F3, shall not exceed the limits in Table 4.4.2.

TABLE 4.4.2 — REQUIREMENTS FOR CONCRETE SUBJECT TO EXPOSURE CLASS F3

<table>
<thead>
<tr>
<th>Cementitious materials</th>
<th>Maximum percent of total cementitious materials by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fly ash or other pozzolans conforming to ASTM C618</td>
<td>25</td>
</tr>
<tr>
<td>Slag conforming to ASTM C989</td>
<td>50</td>
</tr>
<tr>
<td>Silica fume conforming to ASTM C1240</td>
<td>10</td>
</tr>
<tr>
<td>Total of fly ash or other pozzolans, slag, and silica fume</td>
<td>50†</td>
</tr>
<tr>
<td>Total of fly ash or other pozzolans and silica fume</td>
<td>35†</td>
</tr>
</tbody>
</table>

The total cementitious material also includes ASTM C150, C595, C845, and C1157 cement. The maximum percentages above shall include:
(a) Fly ash or other pozzolans in Type IP, blended cement, ASTM C595, or ASTM C1157;
(b) Slag used in the manufacture of an IS blended cement, ASTM C595, or ASTM C1157;
(c) Silica fume, ASTM C1240, present in a blended cement.
Fly ash or other pozzolans and silica fume shall constitute no more than 25 and 10 percent, respectively, of the total weight of the cementitious materials.

COMMENTARY

R4.4.2 — Table 4.4.2 establishes limitations on the amount of fly ash, other pozzolans, silica fume, and slag that can be included in concrete exposed to deicing chemicals (Exposure Class F3) based on research studies.

4.5 — Alternative cementitious materials for sulfate exposure

4.5.1 — Alternative combinations of cementitious materials to those listed in Table 4.3.1 shall be permitted when tested for sulfate resistance and meeting the criteria in Table 4.5.1.

TABLE 4.5.1 — REQUIREMENTS FOR ESTABLISHING SUITABILITY OF CEMENTITIOUS MATERIALS COMBINATIONS EXPOSED TO WATER-SOLUBLE SULFATE

<table>
<thead>
<tr>
<th>Exposure Class</th>
<th>Maximum expansion when tested using ASTM C1012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At 6 months</td>
</tr>
<tr>
<td>S1</td>
<td>0.10 percent</td>
</tr>
<tr>
<td>S2</td>
<td>0.05 percent</td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
</tbody>
</table>

The 12-month expansion limit applies only when the measured expansion exceeds the 6-month maximum expansion limit.

R4.5 — Alternative cementitious materials for sulfate exposure

R4.5.1 — In the 2008 version of the Code, ASTM C1012 is permitted to be used to evaluate the sulfate resistance of concrete mixtures using alternative combinations of cementitious materials to those listed in Table 4.3.1 for all classes of sulfate exposure. More detailed guidance on qualification of such mixtures using ASTM C1012 is given in ACI 201.2R. The expansion criteria in Table 4.5.1, for testing according to ASTM C1012, are the same as those in ASTM C595 for moderate sulfate resistance (Optional Designation MS) in Exposure Class S1 and for high sulfate resistance (Optional Designation HS) in Exposure Class S2, and the same as in ASTM C1157 for Type MS in Exposure Class S1 and Type HS in Exposure Class S2.
Notes
CHAPTER 5 — CONCRETE QUALITY, MIXING, AND PLACING

CODE

5.1 — General

5.1.1 — Concrete shall be proportioned to provide an average compressive strength, f'_{cr}, as prescribed in 5.3.2 and shall satisfy the durability criteria of Chapter 4. Concrete shall be produced to minimize the frequency of strength tests below f'_{c}, as prescribed in 5.6.3.3. For concrete designed and constructed in accordance with the Code, f'_{c} shall not be less than 2500 psi.

5.1.2 — Requirements for f'_{c} shall be based on tests of cylinders made and tested as prescribed in 5.6.3.

5.1.3 — Unless otherwise specified, f'_{c} shall be based on 28-day tests. If other than 28 days, test age for f'_{c} shall be as indicated in design drawings or specifications.

5.1.4 — Where design criteria in 8.6.1, 12.2.4(d), and 22.5.6.1 provide for use of a splitting tensile strength value of concrete, laboratory tests shall be made in accordance with ASTM C330 to establish a value of f'_{ct} corresponding to f'_{c}.

5.1.5 — Splitting tensile strength tests shall not be used as a basis for field acceptance of concrete.

COMMENTARY

R5.1 — General

The requirements for proportioning concrete mixtures are based on the philosophy that concrete should provide both adequate durability (Chapter 4) and strength. The criteria for acceptance of concrete are based on the philosophy that the Code is intended primarily to protect the safety of the public. Chapter 5 describes procedures by which concrete of adequate strength can be obtained, and provides procedures for checking the quality of the concrete during and after its placement in the Work.

Chapter 5 also prescribes minimum criteria for mixing and placing concrete.

The provisions of 5.2, 5.3, and 5.4, together with Chapter 4, establish required mixture proportions. The basis for determining the adequacy of concrete strength is in 5.6.

R5.1.1 — The basic premises governing the designation and evaluation of concrete strength are presented. It is emphasized that the average compressive strength of concrete produced should always exceed the specified value of f'_{c} used in the structural design calculations. This is based on probabilistic concepts, and is intended to ensure that adequate concrete strength will be developed in the structure. The durability requirements prescribed in Chapter 4 are to be satisfied in addition to attaining the average concrete strength in accordance with 5.3.2.

R5.1.4 — Equations throughout the code that contain the f'_{ct} term have been modified, as necessary, for use with lightweight concrete. Two alternative modification procedures are provided. One alternative is based on laboratory tests to determine the relationship between average splitting tensile strength f'_{ct} and specified compressive strength f'_{c} for the lightweight concrete. For a lightweight aggregate from a given source, it is intended that appropriate values of f'_{ct} be obtained in advance of design.

R5.1.5 — Tests for splitting tensile strength of concrete (as required by 5.1.4) are not intended for control of, or acceptance of, the strength of concrete in the field. Indirect control will be maintained through the normal compressive strength test requirements provided by 5.6.
5.1.6 — Steel fiber-reinforced concrete shall conform to ASTM C1116. The minimum f'_c for steel fiber-reinforced concrete shall conform to 5.1.1.

5.2 — Selection of concrete proportions

5.2.1 — Proportions of materials for concrete shall be established to:

(a) Provide workability and consistency to permit concrete to be worked readily into forms and around reinforcement under conditions of placement to be employed, without segregation or excessive bleeding;

(b) Meet requirements for applicable exposure categories of Chapter 4;

(c) Conform to strength test requirements of 5.6.

5.2.2 — Where different materials are to be used for different portions of proposed Work, each combination shall be evaluated.

5.2.3 — Concrete proportions shall be established in accordance with 5.3 or, alternatively, 5.4, and shall meet applicable requirements of Chapter 4.

5.3 — Proportioning on the basis of field experience or trial mixtures, or both

R5.2 — Selection of concrete proportions

Recommendations for selecting proportions for concrete are given in detail in ACI 211.1.5.1 (This provides two methods for selecting and adjusting proportions for normal weight concrete: the estimated weight and absolute volume methods. Example calculations are shown for both methods. Proportioning of heavyweight concrete by the absolute volume method is presented in an appendix.)

Recommendations for lightweight concrete are given in ACI 211.2.5.2 (This provides a method of proportioning and adjusting structural grade concrete containing lightweight aggregates.)

R5.2.1 — The selected water-cementitious material ratio should be low enough, or in the case of lightweight concrete the compressive strength, high enough to satisfy both the strength criteria (see 5.3 or 5.4) and the requirements for applicable exposure categories of Chapter 4. The code does not include provisions for especially severe exposure conditions, such as acids or high temperatures, and is not concerned with aesthetic considerations such as surface finishes. These items are beyond the scope of the Code and should be covered specifically in the project specifications. Concrete ingredients and proportions are to be selected to meet the minimum requirements stated in the Code and the additional requirements of the contract documents.

R5.2.3 — The Code emphasizes the use of field experience or laboratory trial mixtures (see 5.3) as the preferred method for selecting concrete mixture proportions.

R5.3 — Proportioning on the basis of field experience or trial mixtures, or both

In selecting a suitable concrete mixture there are three basic steps. The first is the determination of the sample standard deviation. The second is the determination of the required average compressive strength. The third is the selection of mixture proportions required to produce that average strength, either by conventional trial mixture procedures or by a suitable experience record. Figure R5.3 is a flow chart outlining the mixture selection and documentation procedure. The mixture selected should yield an average strength appreciably higher than the specified strength f'_c. The degree of mixture over design depends on the variability of the test results.
Concrete production facility has field strength test records for the specified class or within 1000 psi of the specified class of concrete.

- Yes
 - ≥ 30 consecutive tests
 - Calculate s_s
 - Required average strength using Table 5.3.2.1
 - Field record of at least ten consecutive test results using similar materials and under similar conditions is available
 - Results represent one mixture
 - Average ≥ required average
 - Submit for approval
 - No
 - 15 to 29 consecutive tests
 - No (No data for s_s)
 - Calculate s_s and increase using Table 5.3.1.2
 - Required average strength from Table 5.3.2.2
 - Make trial mixtures using at least three different water-cementitious materials ratios or cementitious materials contents according to 5.3.3.2
 - Plot average strength versus proportions and interpolate for required average strength
 - Determine mixture proportions according to 5.4 (requires special permission)
 - Submit for approval

Fig. R5.3—Flow chart for selection and documentation of concrete proportions.
R5.3.1 — Sample standard deviation

When a concrete production facility has a suitable record of 30 consecutive tests of similar materials and conditions expected, the sample standard deviation, s_s, is calculated from those results in accordance with the following formula:

$$s_s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{(n - 1)}}$$

where
- s_s = sample standard deviation, psi
- x_i = individual strength tests as defined in 5.6.2.4
- \bar{x} = average of n strength test results
- n = number of consecutive strength tests

The sample standard deviation is used to determine the average strength required in 5.3.2.1.

If two test records are used to obtain at least 30 tests, the sample standard deviation used shall be the statistical average of the values calculated from each test record in accordance with the following formula:

$$\bar{s}_s = \frac{\left[(n_1 - 1)(s_{s1})^2 + (n_2 - 1)(s_{s2})^2\right]^{1/2}}{(n_1 + n_2 - 2)}$$

where
- \bar{s}_s = statistical average standard deviation where two test records are used to estimate the sample standard deviation
- s_{s1}, s_{s2} = sample standard deviations calculated from two test records, 1 and 2, respectively
- n_1, n_2 = number of tests in each test record, respectively

If less than 30 tests, but at least 15 tests are available, the calculated sample standard deviation is increased by the factor given in Table 5.3.1.2. This procedure results in a more conservative (increased) required average strength. The factors in Table 5.3.1.2 are based on the sampling distribution of the sample standard deviation and provide protection (equivalent to that from a record of 30 tests) against the possibility that the smaller sample underestimates the true or universe population standard deviation.

The sample standard deviation used in the calculation of required average strength should be developed under conditions “similar to those expected” [see 5.3.1.1(a)]. This requirement is important to ensure acceptable concrete.

Concrete for background tests to determine sample standard deviation is considered to be “similar” to that required if
5.3.2 — Required average strength

5.3.2.1 — Required average compressive strength \(f_{cr} \) used as the basis for selection of concrete proportions shall be determined from Table 5.3.2.1 using the sample standard deviation, \(s_{g} \), calculated in accordance with 5.3.1.1 or 5.3.1.2.

<table>
<thead>
<tr>
<th>Specified compressive strength, psi</th>
<th>Required average compressive strength, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{c}' \leq 5000)</td>
<td>Use the larger value computed from Eq. (5-1) and (5-2)</td>
</tr>
<tr>
<td></td>
<td>(f_{cr} = f_{c}' + 1.34s_{g})</td>
</tr>
<tr>
<td></td>
<td>(f_{cr} = f_{c}' + 2.33s_{g} - 500)</td>
</tr>
<tr>
<td>(f_{c}' > 5000)</td>
<td>Use the larger value computed from Eq. (5-1) and (5-3)</td>
</tr>
<tr>
<td></td>
<td>(f_{cr} = f_{c}' + 1.34s_{g})</td>
</tr>
<tr>
<td></td>
<td>(f_{cr} = 0.90f_{c}' + 2.33s_{g})</td>
</tr>
</tbody>
</table>

Note that the Code uses the sample standard deviation in pounds per square inch instead of the coefficient of variation in percent. The latter is equal to the former expressed as a percent of the average strength.

Even when the average strength and sample standard deviation are of the levels assumed, there will be occasional tests that fail to meet the acceptance criteria prescribed in 5.6.3.3 (perhaps one test in 100).

The requirement that strength test results be no older than 12 months was introduced in 2008 and reflects the concern that constituent materials properties at a concrete production facility may change with time.

R5.3.2 — Required average strength

R5.3.2.1 — Once the sample standard deviation has been determined, the required average compressive strength, \(f_{cr}' \), is obtained from the larger value computed from Eq. (5-1) and (5-2) for \(f_{c}' \) of 5000 psi or less, or the larger value computed from Eq. (5-1) and (5-3) for \(f_{c}' \) over 5000 psi. Equation (5-1) is based on a probability of 1-in-100 that the average of three consecutive tests may be below the specified compressive strength \(f_{c}' \). Equation (5-2) is based on a similar probability that an individual test may be more than 500 psi below the specified compressive strength \(f_{c}' \). Equation (5-3) is based on the same 1-in-100 probability that an individual test may be less than \(0.90f_{c}' \). These equations assume that the sample standard deviation used is equal to the population value appropriate for an infinite or very large number of tests. For this reason, use of sample standard deviations estimated from records of 100 or more tests is desirable. When 30 tests are available, the probability of failure will likely be somewhat greater than 1-in-100. The additional refinements required to achieve the 1-in-100 probability are not considered necessary because of the
5.3.2.2 — When a concrete production facility does not have field strength test records for calculation of s_p meeting requirements of 5.3.1.1 or 5.3.1.2, $f^{'}_{cr}$ shall be determined from Table 5.3.2.2 and documentation of average strength shall be in accordance with requirements of 5.3.3.

<table>
<thead>
<tr>
<th>Specified compressive strength, psi</th>
<th>Required average compressive strength, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^{'}_c < 3000$</td>
<td>$f^{'}_{cr} = f^{'}_c + 1000$</td>
</tr>
<tr>
<td>$3000 \leq f^{'}_c \leq 5000$</td>
<td>$f^{'}_{cr} = f^{'}_c + 1200$</td>
</tr>
<tr>
<td>$f^{'}_c > 5000$</td>
<td>$f^{'}_{cr} = 1.10f^{'}_c + 700$</td>
</tr>
</tbody>
</table>

5.3.3 — Documentation of average compressive strength

Documentation that proposed concrete proportions will produce an average compressive strength equal to or greater than required average compressive strength $f^{'}_{cr}$ (see 5.3.2) shall consist of a field strength test record, several strength test records, or trial mixtures.

5.3.3.1 — When test records in accordance with 5.3.1.1 or 5.3.1.2 are used to demonstrate that proposed concrete proportions will produce $f^{'}_{cr}$ (see 5.3.2), such records shall represent materials and conditions similar to those expected. Changes in materials, conditions, and proportions within the test records shall not have been more restricted than those for proposed Work. For the purpose of documenting average strength potential, test records consisting of less than 30 but not less than 10 consecutive tests are acceptable provided test records encompass a period of time not less than 45 days. Required concrete proportions shall be permitted to be established by interpolation between the strengths and proportions of two or more test records, each of which meets other requirements of this section.

5.3.3.2 — When an acceptable record of field test results is not available, concrete proportions established from trial mixtures meeting the following requirements shall be permitted:

R5.3.3 — Documentation of average compressive strength

Once the required average compressive strength $f^{'}_{cr}$ is known, the next step is to select mixture proportions that will produce an average strength at least as great as the required average strength, and also meet requirements for applicable exposure categories of Chapter 4. The documentation may consist of a strength test record, several strength test records, or suitable laboratory or field trial mixtures. Generally, if a test record is used, it will be the same one that was used for computation of the standard deviation. However, if this test record shows either lower or higher average compressive strength than the required average compressive strength, different proportions may be necessary or desirable. In such instances, the average from a record of as few as 10 tests may be used, or the proportions may be established by interpolation between the strengths and proportions of two such records of consecutive tests. All test records for establishing proportions necessary to produce the average compressive strength are to meet the requirements of 5.3.3.1 for “similar materials and conditions.”

For strengths over 5000 psi where the average compressive strength documentation is based on laboratory trial mixtures, it may be appropriate to increase $f^{'}_{cr}$ calculated in Table 5.3.2.2 to allow for a reduction in strength from laboratory trials to actual concrete production.

R5.3.3.2 — This section of the Code was modified in ACI 318-08 to clarify the requirements for making trial batches.

(b) For concrete made with more than one type of cementitious material, the concrete supplier must establish not
(a) Materials shall be those for proposed Work;

(b) Trial mixtures with a range of proportions that will produce a range of compressive strengths encompassing \(f_{c'} \) and meet the durability requirements of Chapter 4;

(c) Trial mixtures shall have slumps within the range specified for the proposed Work; for air-entrained concrete, air content shall be within the tolerance specified for the proposed Work;

(d) For each trial mixture, at least two 6 by 12 in. or three 4 by 8 in. cylinders shall be made and cured in accordance with ASTM C192. Cylinders shall be tested at 28 days or at test age designated for \(f'_{c} \);

(e) The compressive strength results, at designated test age, from the trial mixtures shall be used to establish the composition of the concrete mixture proposed for the Work. The proposed concrete mixture shall achieve an average compressive strength as required in 5.3.2 and satisfy the applicable durability criteria of Chapter 4.

5.4 — Proportioning without field experience or trial mixtures

5.4.1 — If data required by 5.3 are not available, concrete proportions shall be based upon other experience or information, if approved by the licensed design professional. The required average compressive strength \(f'_{cr} \) of concrete produced with materials similar to those proposed for use shall be at least 1200 psi greater than \(f'_{c} \). This alternative shall not be used if \(f'_{c} \) is greater than 5000 psi.

5.4.2 — Concrete proportioned by this section shall conform to the durability requirements of Chapter 4 and to compressive strength test criteria of 5.6.

5.5 — Average compressive strength reduction

As data become available during construction, it shall be permitted to reduce the amount by which the required average concrete strength, \(f'_{cr} \), must exceed \(f'_{c} \), provided:

(a) Thirty or more test results are available and average of test results exceeds that required by 5.3.2.1, using a sample standard deviation calculated in accordance with 5.3.1.1; or

5.6.2.4 permits two cylinder sizes for preparing test specimens for field acceptance testing.

(e) The compressive strength test results may be analyzed graphically or using regression models to determine the water-cementitious material ratio and the relative proportions of cementitious materials, if other materials in addition to portland cement are used, that will produce concrete satisfying the required average compressive strength \(f'_{c} \).

R5.4 — Proportioning without field experience or trial mixtures

R5.4.1 — When no prior experience (5.3.3.1) or trial mixture data (5.3.3.2) meeting the requirements of these sections is available, other experience may be used only when permission is given. Because combinations of different ingredients may vary considerably in strength level, this procedure is not permitted for \(f'_{c} \) greater than 5000 psi and the required average compressive strength should exceed \(f'_{c} \) by 1200 psi. The purpose of this provision is to allow work to continue when there is an unexpected interruption in concrete supply and there is not sufficient time for tests and evaluation or in small structures where the cost of trial mixture data is not justified.
CODE

(b) Fifteen to 29 test results are available and average of test results exceeds that required by 5.3.2.1 using a sample standard deviation calculated in accordance with 5.3.1.2; and

(c) Requirements for exposure categories of Chapter 4 are met.

5.6 — Evaluation and acceptance of concrete

5.6.2 — Frequency of testing

5.6.2.1 — Samples for strength tests of each class of concrete placed each day shall be taken not less than once a day, nor less than once for each 150 yd3 of concrete, nor less than once for each 5000 ft2 of surface area for slabs or walls.

COMMENTARY

R5.6 — Evaluation and acceptance of concrete

Once the mixture proportions have been selected and the job started, the criteria for evaluation and acceptance of the concrete can be obtained from 5.6.

An effort has been made in the Code to provide a clear-cut basis for judging the acceptability of the concrete, as well as to indicate a course of action to be followed when the results of strength tests are not satisfactory.

R5.6.1 — Laboratory and field technicians can establish qualifications by becoming certified through certification programs. Field technicians in charge of sampling concrete; testing for slump, unit weight, yield, air content, and temperature; and making and curing test specimens should be certified in accordance with the requirements of ACI Concrete Field Testing Technician—Grade 1 Certification Program, or the requirements of ASTM C1077,5,3 or an equivalent program. Concrete testing laboratory personnel should be certified in accordance with the requirements of ACI Concrete Laboratory Testing Technician, Concrete Strength Testing Technician, or the requirements of ASTM C1077.

Testing reports should be promptly distributed to the owner, licensed design professional responsible for the design, contractor, appropriate subcontractors, appropriate suppliers, and building official to allow timely identification of either compliance or the need for corrective action.

R5.6.2 — Frequency of testing

R5.6.2.1 — The following three criteria establish the required minimum sampling frequency for each class of concrete:

(a) Once each day a given class is placed, nor less than

(b) Once for each 150 yd3 of each class placed each day, nor less than

(c) Once for each 5000 ft2 of slab or wall surface area placed each day.

In calculating surface area, only one side of the slab or wall should be considered. Criteria (c) will require more frequent sampling than once for each 150 yd3 placed if the average wall or slab thickness is less than 9-3/4 in.
5.6.2.2 — On a given project, if total volume of concrete is such that frequency of testing required by 5.6.2.1 would provide less than five strength tests for a given class of concrete, tests shall be made from at least five randomly selected batches or from each batch if fewer than five batches are used.

5.6.2.3 — When total quantity of a given class of concrete is less than 50 yd³, strength tests are not required when evidence of satisfactory strength is submitted to and approved by the building official.

5.6.2.4 — A strength test shall be the average of the strengths of at least two 6 by 12 in. cylinders or at least three 4 by 8 in. cylinders made from the same sample of concrete and tested at 28 days or at test age designated for determination of f'_c.

R5.6.2.2 — Samples for strength tests are to be taken on a strictly random basis if they are to measure properly the acceptability of the concrete. To be representative, the choice of times of sampling, or the batches of concrete to be sampled, are to be made on the basis of chance alone, within the period of placement. Batches should not be sampled on the basis of appearance, convenience, or other possibly biased criteria, because the statistical analyses will lose their validity. Not more than one test (as defined in 5.6.2.4) should be taken from a single batch, and water may not be added to the concrete after the sample is taken.

ASTM D3665 describes procedures for random selection of the batches to be tested.

5.6.3 — Standard-cured specimens

5.6.3.1 — Samples for strength tests shall be taken in accordance with ASTM C172.

5.6.3.2 — Cylinders for strength tests shall be molded and standard-cured in accordance with ASTM C31 and tested in accordance with ASTM C39. Cylinders shall be 4 by 8 in. or 6 by 12 in.

5.6.3.3 — Strength level of an individual class of concrete shall be considered satisfactory if both of the following requirements are met:

(a) Every arithmetic average of any three consecutive strength tests (see 5.6.2.4) equals or exceeds f'_c.

R5.6.2.4 — More than the minimum number of specimens may be desirable to allow for discarding an outlying individual cylinder strength in accordance with ACI 214R. When individual cylinder strengths are discarded in accordance with ACI 214R, a strength test is valid provided at least two individual 6 by 12 in. cylinder strengths or at least three 4 by 8 in. cylinders are averaged. All individual cylinder strengths that are not discarded in accordance with ACI 214R are to be used to calculate the average strength. The size and number of specimens representing a strength test should remain constant for each class of concrete.

Testing three 4 by 8 in. cylinders preserves the confidence level of the average strength because 4 by 8 in. cylinders tend to have approximately 20 percent higher within-test variability than 6 by 12 in. cylinders.

R5.6.3 — Standard-cured specimens

R5.6.3.2 — The cylinder size should be agreed upon by the owner, licensed design professional, and testing agency before construction.

R5.6.3.3 — A single set of criteria is given for acceptability of strength and is applicable to all concrete used in structures designed in accordance with the Code, regardless of design method used. The concrete strength is considered to be satisfactory as long as averages of any three consecutive strength tests remain above the specified f'_c and no individual
(b) No strength test (see 5.6.2.4) falls below f'_c by more than 500 psi when f'_c is 5000 psi or less; or by more than $0.10f'_c$ when f'_c is more than 5000 psi.

5.6.3.4 — If either of the requirements of 5.6.3.3 is not met, steps shall be taken to increase the average of subsequent strength test results. Requirements of 5.6.5 shall be observed if requirement of 5.6.3.3(b) is not met.

R5.6.3.4 — When concrete fails to meet either of the strength requirements of 5.6.3.3, steps should be taken to increase the average of the concrete test results. If sufficient concrete has been produced to accumulate at least 15 tests, these should be used to establish a new target average strength as described in 5.3.

If fewer than 15 tests have been made on the class of concrete in question, the new target strength level should be at least as great as the average level used in the initial selection of proportions. If the average of the available tests made on the project equals or exceeds the level used in the initial selection of proportions, a further increase in average level is required.

The steps taken to increase the average level of test results will depend on the particular circumstances, but could include one or more of the following:

(a) An increase in cementitious materials content;
(b) Changes in mixture proportions;
(c) Reductions in or better control of levels of slump supplied;
(d) A reduction in delivery time;
(e) Closer control of air content;
(f) An improvement in the quality of the testing, including strict compliance with standard test procedures.

Such changes in operating and testing procedures, or changes in cementitious materials content, or slump should not require a formal resubmission under the procedures of 5.3; however, important changes in sources of cement, aggregates, or admixtures should be accompanied by evidence that the average strength level will be improved.

Laboratories testing cylinders or cores to determine compliance with these requirements should be accredited or inspected for conformance to the requirement of ASTM C1077-53 by a recognized agency such as the American Association for Laboratory Accreditation (A2LA), AASHTO Materials Reference Laboratory (AMRL), National Voluntary Laboratory Accreditation Program.
5.6.4 — Field-cured specimens

5.6.4.1 — If required by the building official, results of strength tests of cylinders cured under field conditions shall be provided.

5.6.4.2 — Field-cured cylinders shall be cured under field conditions in accordance with ASTM C31.

5.6.4.3 — Field-cured test cylinders shall be molded at the same time and from the same samples as laboratory-cured test cylinders.

5.6.4.4 — Procedures for protecting and curing concrete shall be improved when strength of field-cured cylinders at test age designated for determination of f'_c is less than 85 percent of that of companion laboratory-cured cylinders. The 85 percent limitation shall not apply if field-cured strength exceeds f'_c by more than 500 psi.

5.6.5 — Investigation of low-strength test results

5.6.5.1 — If any strength test (see 5.6.2.4) of laboratory-cured cylinders falls below f'_c by more than the values given in 5.6.3.3(b) or if tests of field-cured cylinders indicate deficiencies in protection and curing (see 5.6.4.4), steps shall be taken to ensure that load-carrying capacity of the structure is not jeopardized.

5.6.5.2 — If the likelihood of low-strength concrete is confirmed and calculations indicate that load-carrying capacity is significantly reduced, tests of cores drilled from the area in question in accordance with ASTM C42 shall be permitted. In such cases, three cores shall be taken for each strength test that falls below the values given in 5.6.3.3(b).

5.6.5.3 — Cores shall be obtained, moisture conditioned by storage in watertight bags or containers, transported to the laboratory, and tested in accordance with ASTM C42. Cores shall be tested no earlier than 48 hours and not later than 7 days after coring unless approved by the licensed design professional. The specifier of tests referenced in ASTM C42 shall be the licensed design professional.
5.6.5.4 — Concrete in an area represented by core tests shall be considered structurally adequate if the average of three cores is equal to at least 85 percent of \(f'_c \) and if no single core is less than 75 percent of \(f'_c \). Additional testing of cores extracted from locations represented by erratic core strength results shall be permitted.

5.6.5.5 — If criteria of 5.6.5.4 are not met and if the structural adequacy remains in doubt, the responsible authority shall be permitted to order a strength evaluation in accordance with Chapter 20 for the questionable portion of the structure, or take other appropriate action.

The use of a water-cooled bit results in a core with a moisture gradient between the exterior surface and the interior. This gradient lowers the apparent compressive strength of the core. The restriction on the commencement of core testing provides a minimum time for the moisture gradient to dissipate. The maximum time between coring and testing is intended to ensure timely testing of cores when strength of concrete is in question. Research has also shown that procedures for soaking or drying cores that were required before ACI 318-02 affect measured compressive strength and result in conditions that are not representative of structures that are dry or wet in service. Thus, to provide reproducible moisture conditions that are representative of in-place conditions, a common moisture conditioning procedure that permits dissipation of moisture gradients is prescribed for cores. ASTM C42 permits the specifier of tests to modify the default duration of moisture conditioning before testing.

Core tests having an average of 85 percent of the specified strength are realistic. To expect core tests to be equal to \(f'_c \) is not realistic, since differences in the size of specimens, conditions of obtaining samples, and procedures for curing, do not permit equal values to be obtained.

The code, as stated, concerns itself with assuring structural safety, and the instructions in 5.6 are aimed at that objective. It is not the function of the Code to assign responsibility for strength deficiencies, whether or not they are such as to require corrective measures.

Under the requirements of this section, cores taken to confirm structural adequacy will usually be taken at ages later than those specified for determination of \(f'_c \).

5.6 — Steel fiber-reinforced concrete

5.6.6.1 — Acceptance of steel fiber-reinforced concrete used in beams in accordance with 11.4.6.1(f) shall be determined by testing in accordance with ASTM C1609. In addition, strength testing shall be in accordance with 5.6.1.

R5.6.6 — Steel fiber-reinforced concrete

The performance criteria are based on results from flexural tests conducted on steel fiber-reinforced concrete with fiber types and contents similar to those used in the tests of beams that served as the basis for 11.4.6.1(f).

CODE

5.6.6.2 — Steel fiber-reinforced concrete shall be considered acceptable for shear resistance if conditions (a), (b), and (c) are satisfied:

(a) The weight of deformed steel fibers per cubic yard of concrete is greater than or equal to 100 lb.

(b) The residual strength obtained from flexural testing in accordance with ASTM C1609 at a midspan deflection of 1/300 of the span length is greater than or equal to 90 percent of the measured first-peak strength obtained from a flexural test or 90 percent of the strength corresponding to \(f_r \) from Eq. (9-10), whichever is larger; and

(c) The residual strength obtained from flexural testing in accordance with ASTM C1609 at a midspan deflection of 1/150 of the span length is greater than or equal to 75 percent of the measured first-peak strength obtained from a flexural test or 75 percent of the strength corresponding to \(f_r \) from Eq. (9-10), whichever is larger.

5.7 — Preparation of equipment and place of deposit

5.7.1 — Preparation before concrete placement shall include the following:

(a) All equipment for mixing and transporting concrete shall be clean;

(b) All debris and ice shall be removed from spaces to be occupied by concrete;

(c) Forms shall be properly coated;

(d) Masonry filler units that will be in contact with concrete shall be well drenched;

(e) Reinforcement shall be thoroughly clean of ice or other deleterious coatings;

(f) Water shall be removed from place of deposit before concrete is placed unless a tremie is to be used or unless otherwise permitted by the building official;

(g) All laitance and other unsound material shall be removed before additional concrete is placed against hardened concrete.

COMMENTARY

R5.6.6.2(b),(c) — The term “residual strength” is defined in ASTM C1609.

R5.7 — Preparation of equipment and place of deposit

Recommendations for mixing, handling and transporting, and placing concrete are given in detail in ACI 304R.5.13 (This presents methods and procedures for control, handling and storage of materials, measurement, batching tolerances, mixing, methods of placing, transporting, and forms.)

Attention is directed to the need for using clean equipment and for cleaning forms and reinforcement thoroughly before beginning to deposit concrete. In particular, sawdust, nails, wood pieces, and other debris that may collect inside the forms should be removed. Reinforcement should be thoroughly cleaned of ice, dirt, loose rust, mill scale, or other coatings. Water should be removed from the forms.
CODE

5.8 — Mixing

5.8.1 — All concrete shall be mixed until there is a uniform distribution of materials and shall be discharged completely before mixer is recharged.

5.8.2 — Ready-mixed concrete shall be mixed and delivered in accordance with requirements of ASTM C94 or C685.

5.8.3 — Job-mixed concrete shall be mixed in accordance with (a) through (e):

(a) Mixing shall be done in a batch mixer of approved type;

(b) Mixer shall be rotated at a speed recommended by the manufacturer;

(c) Mixing shall be continued for at least 1-1/2 minutes after all materials are in the drum, unless a shorter time is shown to be satisfactory by the mixing uniformity tests of ASTM C94;

(d) Materials handling, batching, and mixing shall conform to applicable provisions of ASTM C94;

(e) A detailed record shall be kept to identify:

 (1) number of batches produced;

 (2) proportions of materials used;

 (3) approximate location of final deposit in structure;

 (4) time and date of mixing and placing.

5.9 — Conveying

5.9.1 — Concrete shall be conveyed from mixer to place of final deposit by methods that will prevent separation or loss of materials.

5.9.2 — Conveying equipment shall be capable of providing a supply of concrete at site of placement without separation of ingredients and without interruptions sufficient to permit loss of plasticity between successive increments.

COMMENTARY

R5.8 — Mixing

Concrete of uniform and satisfactory quality requires the materials to be thoroughly mixed until uniform in appearance and all ingredients are distributed. Samples taken from different portions of a batch should have essentially the same unit weight, air content, slump, and coarse aggregate content. Test methods for uniformity of mixing are given in ASTM C94. The necessary time of mixing will depend on many factors including batch size, stiffness of the batch, size and grading of the aggregate, and the efficiency of the mixer. Excessively long mixing times should be avoided to guard against grinding of the aggregates.

R5.9 — Conveying

Each step in the handling and transporting of concrete needs to be controlled to maintain uniformity within a batch and from batch to batch. It is essential to avoid segregation of the coarse aggregate from the mortar or of water from the other ingredients.

The Code requires the equipment for handling and transporting concrete to be capable of supplying concrete to the place of deposit continuously and reliably under all conditions and for all methods of placement. The provisions of 5.9 apply to all placement methods, including pumps, belt conveyors, pneumatic systems, wheelbarrows, buggies, crane buckets, and tremies.

Serious loss in strength can result when concrete is pumped through pipe made of aluminum or aluminum alloy. Hydrogen gas generated by the reaction between the cement alkalies and the aluminum eroded from the interior of the pipe surface has been shown to cause strength reduction as
5.10 — Depositing

5.10.1 Concrete shall be deposited as nearly as practical in its final position to avoid segregation due to rehandling or flowing.

5.10.2 Concreting shall be carried on at such a rate that concrete is at all times plastic and flows readily into spaces between reinforcement.

5.10.3 Concrete that has partially hardened or been contaminated by foreign materials shall not be deposited in the structure.

5.10.4 Retempered concrete or concrete that has been remixed after initial set shall not be used unless approved by the licensed design professional.

5.10.5 After concreting is started, it shall be carried on as a continuous operation until placing of a panel or section, as defined by its boundaries or predetermined joints, is completed except as permitted or prohibited by 6.4.

5.10.6 Top surfaces of vertically formed lifts shall be generally level.

5.10.7 When construction joints are required, joints shall be made in accordance with 6.4.

5.10.8 All concrete shall be thoroughly consolidated by suitable means during placement and shall be thoroughly worked around reinforcement and embedded fixtures and into corners of forms.

5.11 — Curing

5.11.1 Concrete (other than high-early-strength) shall be maintained above 50 °F and in a moist condition for at least the first 7 days after placement, except when cured in accordance with 5.11.3.

5.11.2 High-early-strength concrete shall be maintained above 50 °F and in a moist condition for at least the first 3 days, except when cured in accordance with 5.11.3.

R5.10 — Depositing

Rehandling concrete can cause segregation of the materials. Hence, the Code cautions against this practice. Retempering of partially set concrete with the addition of water should not be permitted unless authorized. This does not preclude the practice (recognized in ASTM C94) of adding water to mixed concrete to bring it up to the specified slump range so long as prescribed limits on the maximum mixing time and w/cm are not violated.

Section 5.10.4 of the 1971 Code contained a requirement that “where conditions make consolidation difficult or where reinforcement is congested, batches of mortar containing the same proportions of cement, sand, and water as used in the concrete, shall first be deposited in the forms to a depth of at least 1 in.” That requirement was deleted from the 1977 Code since the conditions for which it was applicable could not be defined precisely enough to justify its inclusion as a code requirement. The practice, however, has merit and should be incorporated in job specifications where appropriate, with the specific enforcement the responsibility of the job inspector. The use of mortar batches aids in preventing honeycomb and poor bonding of the concrete with the reinforcement. The mortar should be placed immediately before depositing the concrete and should be plastic (neither stiff nor fluid) when the concrete is placed.

Recommendations for consolidation of concrete are given in detail in ACI 309R.5.15 (This presents current information on the mechanism of consolidation and gives recommendations on equipment characteristics and procedures for various classes of concrete.)

R5.11 — Curing

Recommendations for curing concrete are given in detail in ACI 308R.5.16 (This presents basic principles of proper curing and describes the various methods, procedures, and materials for curing of concrete.)
5.11.3 — Accelerated curing

5.11.3.1 — Curing by high-pressure steam, steam at atmospheric pressure, heat and moisture, or other accepted processes, shall be permitted to accelerate strength gain and reduce time of curing.

5.11.3.2 — Accelerated curing shall provide a compressive strength of the concrete at the load stage considered at least equal to required design strength at that load stage.

5.11.3.3 — Curing process shall be such as to produce concrete with a durability at least equivalent to the curing method of 5.11.1 or 5.11.2.

5.11.4 — When required by the licensed design professional, supplementary strength tests in accordance with 5.6.4 shall be performed to assure that curing is satisfactory.

5.12 — Cold weather requirements

5.12.1 — Adequate equipment shall be provided for heating concrete materials and protecting concrete during freezing or near-freezing weather.

5.12.2 — All concrete materials and all reinforcement, forms, fillers, and ground with which concrete is to come in contact shall be free from frost.

5.12.3 — Frozen materials or materials containing ice shall not be used.

R5.11.3 — Accelerated curing

The provisions of this section apply whenever an accelerated curing method is used, whether for precast or cast-in-place elements. The compressive strength of steam-cured concrete is not as high as that of similar concrete continuously cured under moist conditions at moderate temperatures. Also, the modulus of elasticity E_c of steam-cured specimens may vary from that of specimens moist-cured at normal temperatures. When steam curing is used, it is advisable to base the concrete mixture proportions on steam-cured test cylinders.

Accelerated curing procedures require careful attention to obtain uniform and satisfactory results. Preventing moisture loss during the curing is essential.

R5.11.4 — In addition to requiring a minimum curing temperature and time for normal- and high-early-strength concrete, the Code provides a specific criterion in 5.6.4 for judging the adequacy of field curing. At the test age for which the compressive strength is specified (usually 28 days), field-cured cylinders should produce strength not less than 85 percent of that of the standard, laboratory-cured cylinders. For a reasonably valid comparison to be made, field-cured cylinders and companion laboratory-cured cylinders should come from the same sample. Field-cured cylinders should be cured under conditions identical to those of the structure. If the structure is protected from the elements, the cylinder should be protected.

Cylinders related to members not directly exposed to weather should be cured adjacent to those members and provided with the same degree of protection and method of curing. The field cylinders should not be treated more favorably than the elements they represent. (See 5.6.4 for additional information.) If the field-cured cylinders do not provide satisfactory strength by this comparison, measures should be taken to improve the curing. If the tests indicate a possible serious deficiency in strength of concrete in the structure, core tests may be required, with or without supplemental wet curing, to check the structural adequacy, as provided in 5.6.5.

R5.12 — Cold weather requirements

Recommendations for cold weather concreting are given in detail in ACI 306R. 5.17 (This presents requirements and methods for producing satisfactory concrete during cold weather.)
CODE

5.13 — Hot weather requirements

During hot weather, proper attention shall be given to ingredients, production methods, handling, placing, protection, and curing to prevent excessive concrete temperatures or water evaporation that could impair required strength or serviceability of the member or structure.

COMMENTARY

R5.13 — Hot weather requirements

Recommendations for hot weather concreting are given in detail in ACI 305R.5.18 (This defines the hot weather factors that affect concrete properties and construction practices and recommends measures to eliminate or minimize the undesirable effects.)
CHAPTER 6 — FORMWORK, EMBEDMENTS, AND CONSTRUCTION JOINTS

CODE

6.1 — Design of formwork

6.1.1 — Forms shall result in a final structure that conforms to shapes, lines, and dimensions of the members as required by the design drawings and specifications.

6.1.2 — Forms shall be substantial and sufficiently tight to prevent leakage of mortar.

6.1.3 — Forms shall be properly braced or tied together to maintain position and shape.

6.1.4 — Forms and their supports shall be designed so as not to damage previously placed structure.

6.1.5 — Design of formwork shall include consideration of the following factors:

(a) Rate and method of placing concrete;

(b) Construction loads, including vertical, horizontal, and impact loads;

(c) Special form requirements for construction of shells, folded plates, domes, architectural concrete, or similar types of elements.

6.1.6 — Forms for prestressed concrete members shall be designed and constructed to permit movement of the member without damage during application of prestressing force.

6.2 — Removal of forms, shores, and reshoring

6.2.1 — Removal of forms

Forms shall be removed in such a manner as not to impair safety and serviceability of the structure. Concrete exposed by form removal shall have sufficient strength not to be damaged by removal operation.

6.2.2 — Removal of shores and reshoring

The provisions of 6.2.2.1 through 6.2.2.3 shall apply to slabs and beams except where cast on the ground.

6.2.2.1 — Before starting construction, the contractor shall develop a procedure and schedule for removal of shores and installation of reshores and for calculating the loads transferred to the structure during the process.

COMMENTARY

R6.1 — Design of formwork

Only minimum performance requirements for formwork, necessary to provide for public health and safety, are prescribed in Chapter 6. Formwork for concrete, including proper design, construction, and removal, demands sound judgment and planning to achieve adequate forms that are both economical and safe. Detailed information on formwork for concrete is given in: “Guide to Formwork for Concrete,” reported by Committee 347.6.1 (This provides recommendations for design, construction, and materials for formwork, forms for special structures, and formwork for special methods of construction. Directed primarily to contractors, the suggested criteria will aid in preparing project specifications for the contractors.)

Formwork for Concrete.6.2 reported by ACI Committee 347. (This is a how-to-do-it handbook for contractors, engineers, and architects following the guidelines established in ACI 347. Planning, building, and using formwork are discussed, including tables, diagrams, and formulas for form design loads.)

R6.2 — Removal of forms, shores, and reshoring

In determining the time for removal of forms, consideration should be given to the construction loads and to the possibilities of deflections.6.3 The construction loads are frequently at least as great as the specified live loads. At early ages, a structure may be adequate to support the applied loads but may deflect sufficiently to cause permanent damage.

Evaluation of concrete strength during construction may be demonstrated by field-cured test cylinders or other procedures approved by the building official such as:

(a) Tests of cast-in-place cylinders in accordance with ASTM C873.6.4 (This method is limited to use in slabs where the depth of concrete is from 5 to 12 in.);

(b) Penetration resistance in accordance with ASTM C803.6.5;
CODE

(a) The structural analysis and concrete strength data used in planning and implementing form removal and shoring shall be furnished by the contractor to the building official when so requested;

(b) No construction loads shall be supported on, nor any shoring removed from, any part of the structure under construction except when that portion of the structure in combination with remaining forming and shoring system has sufficient strength to support safely its weight and loads placed thereon;

(c) Sufficient strength shall be demonstrated by structural analysis considering proposed loads, strength of forming and shoring system, and concrete strength data. Concrete strength data shall be based on tests of field-cured cylinders or, when approved by the building official, on other procedures to evaluate concrete strength.

6.2.2.2 — No construction loads exceeding the combination of superimposed dead load plus specified live load shall be supported on any unshored portion of the structure under construction, unless analysis indicates adequate strength to support such additional loads.

6.2.2.3 — Form supports for prestressed concrete members shall not be removed until sufficient prestressing has been applied to enable prestressed members to carry their dead load and anticipated construction loads.

COMMENTARY

(c) Pullout strength in accordance with ASTM C900.6.6;

(d) Maturity index measurements and correlation in accordance with ASTM C1074.6.7

Procedures (b), (c), and (d) require sufficient data, using job materials, to demonstrate correlation of measurements on the structure with compressive strength of molded cylinders or drilled cores.

Where the structure is adequately supported on shores, the side forms of beams, girders, columns, walls, and similar vertical forms may generally be removed after 12 hours of cumulative curing time, provided the side forms support no loads other than the lateral pressure of the plastic concrete. Cumulative curing time represents the sum of time intervals, not necessarily consecutive, during which the temperature of the air surrounding the concrete is above 50 °F. The 12-hour cumulative curing time is based on regular cements and ordinary conditions; the use of special cements or unusual conditions may require adjustment of the given limits. For example, concrete made with Type II or V (ASTM C150) or ASTM C595 cements, concrete containing retarding admixtures, and concrete to which ice was added during mixing (to lower the temperature of fresh concrete) may not have sufficient strength in 12 hours and should be investigated before removal of formwork.

The removal of formwork for multistory construction should be a part of a planned procedure considering the temporary support of the entire structure as well as that of each individual member. Such a procedure should be worked out prior to construction and should be based on a structural analysis taking into account the following items, as a minimum:

(a) The structural system that exists at the various stages of construction and the construction loads corresponding to those stages;

(b) The strength of the concrete at the various ages during construction;

(c) The influence of deformations of the structure and shoring system on the distribution of dead loads and construction loads during the various stages of construction;

(d) The strength and spacing of shores or shoring systems used, as well as the method of shoring, bracing, shore removal, and reshoring including the minimum time intervals between the various operations;

(e) Any other loading or condition that affects the safety or serviceability of the structure during construction.

For multistory construction, the strength of the concrete during the various stages of construction should be substantiated by field-cured test specimens or other approved methods.
6.3 — Embedments in concrete

6.3.1 — Embedments of any material not harmful to concrete and within limitations of 6.3 shall be permitted in concrete with approval of the licensed design professional, provided they are not considered to replace structurally the displaced concrete, except as provided in 6.3.6.

6.3.2 — Any aluminum embedments in structural concrete shall be coated or covered to prevent aluminum-concrete reaction or electrolytic action between aluminum and steel.

6.3.3 — Conduits, pipes, and sleeves passing through a slab, wall, or beam shall not impair significantly the strength of the construction.

6.3.4 — Conduits and pipes, with their fittings, embedded within a column shall not displace more than 4 percent of the area of cross section on which strength is calculated or which is required for fire protection.

6.3.5 — Except when drawings for conduits and pipes are approved by the licensed design professional, conduits and pipes embedded within a slab, wall, or beam (other than those merely passing through) shall satisfy 6.3.5.1 through 6.3.5.3.

6.3.5.1 — They shall not be larger in outside dimension than 1/3 the overall thickness of slab, wall, or beam in which they are embedded.

6.3.5.2 — They shall not be spaced closer than three diameters or widths on center.
CODE

6.3.5.3 — They shall not impair significantly the strength of the construction.

6.3.6 — Conduits, pipes, and sleeves shall be permitted to be considered as replacing structurally in compression the displaced concrete provided in 6.3.6.1 through 6.3.6.3.

6.3.6.1 — They are not exposed to rusting or other deterioration.

6.3.6.2 — They are of uncoated or galvanized iron or steel not thinner than standard Schedule 40 steel pipe.

6.3.6.3 — They have a nominal inside diameter not over 2 in. and are spaced not less than three diameters on centers.

6.3.7 — Pipes and fittings shall be designed to resist effects of the material, pressure, and temperature to which they will be subjected.

6.3.8 — No liquid, gas, or vapor, except water not exceeding 90 °F nor 50 psi pressure, shall be placed in the pipes until the concrete has attained its design strength.

6.3.9 — In solid slabs, piping, unless it is for radiant heating or snow melting, shall be placed between top and bottom reinforcement.

6.3.10 — Specified concrete cover for pipes, conduits, and fittings shall not be less than 1-1/2 in. for concrete exposed to earth or weather, nor less than 3/4 in. for concrete not exposed to weather or in contact with ground.

6.3.11 — Reinforcement with an area not less than 0.002 times area of concrete section shall be provided normal to piping.

6.3.12 — Piping and conduit shall be so fabricated and installed that cutting, bending, or displacement of reinforcement from its proper location will not be required.

6.4 — Construction joints

6.4.1 — Surface of concrete construction joints shall be cleaned and laitance removed.

COMMENTARY

R6.3.7 — The 1983 Code limited the maximum pressure in embedded pipe to 200 psi, which was considered too restrictive. Nevertheless, the effects of such pressures and the expansion of embedded pipe should be considered in the design of the concrete member.

R6.4 — Construction joints

For the integrity of the structure, it is important that all construction joints be defined in construction documents and constructed as required. Any deviations should be approved by the licensed design professional.
CODE

6.4.2 — Immediately before new concrete is placed, all construction joints shall be wetted and standing water removed.

6.4.3 — Construction joints shall be so made and located as not to impair the strength of the structure. Provision shall be made for transfer of shear and other forces through construction joints. See 11.6.9.

6.4.4 — Construction joints in floors shall be located within the middle third of spans of slabs, beams, and girders.

6.4.5 — Construction joints in girders shall be offset a minimum distance of two times the width of intersecting beams.

6.4.6 — Beams, girders, or slabs supported by columns or walls shall not be cast or erected until concrete in the vertical support members is no longer plastic.

6.4.7 — Beams, girders, haunches, drop panels, shear caps, and capitals shall be placed monolithically as part of a slab system, unless otherwise shown in design drawings or specifications.

COMMENTARY

R6.4.2 — The requirements of the 1977 Code for the use of neat cement on vertical joints have been removed, since it is rarely practical and can be detrimental where deep forms and steel congestion prevent proper access. Often wet blasting and other procedures are more appropriate. Because the Code sets only minimum standards, the licensed design professional may have to specify additional procedures if conditions warrant. The degree to which mortar batches are needed at the start of concrete placement depend on concrete proportions, congestion of steel, vibrator access, and other factors.

R6.4.3 — Construction joints should be located where they will cause the least weakness in the structure. When shear due to gravity load is not significant, as is usually the case in the middle of the span of flexural members, a simple vertical joint may be adequate. Lateral force design may require special design treatment of construction joints. Shear keys, intermittent shear keys, diagonal dowels, or the shear transfer method of 11.7 may be used whenever a force transfer is required.

R6.4.6 — Delay in placing concrete in members supported by columns and walls is necessary to prevent cracking at the interface of the slab and supporting member caused by bleeding and settlement of plastic concrete in the supporting member.

R6.4.7 — Separate placement of slabs and beams, haunches, and similar elements is permitted when shown on the drawings and where provision has been made to transfer forces as required in 6.4.3.
Notes
CHAPTER 7 — DETAILS OF REINFORCEMENT

CODE

7.1 — Standard hooks

The term “standard hook” as used in this Code shall mean one of the following:

7.1.1 — 180-degree bend plus $4d_b$ extension, but not less than 2-1/2 in. at free end of bar.

7.1.2 — 90-degree bend plus $12d_b$ extension at free end of bar.

7.1.3 — For stirrup and tie hooks

(a) No. 5 bar and smaller, 90-degree bend plus $6d_b$ extension at free end of bar; or

(b) No. 6, No. 7, and No. 8 bar, 90-degree bend plus $12d_b$ extension at free end of bar; or

(c) No. 8 bar and smaller, 135-degree bend plus $6d_b$ extension at free end of bar.

7.1.4 — Seismic hooks as defined in 2.2.

7.2 — Minimum bend diameters

7.2.1 — Diameter of bend measured on the inside of the bar, other than for stirrups and ties in sizes No. 3 through No. 5, shall not be less than the values in Table 7.2.

7.2.2 — Inside diameter of bend for stirrups and ties shall not be less than $4d_b$ for No. 5 bar and smaller. For bars larger than No. 5, diameter of bend shall be in accordance with Table 7.2.

7.2.3 — Inside diameter of bend in welded wire reinforcement for stirrups and ties shall not be less than $4d_b$ for deformed wire larger than D6 and $2d_b$ for all other wires. Bends with inside diameter of less than $8d_b$ shall not be less than $4d_b$ from nearest welded intersection.

COMMENTARY

R7.1 — Standard hooks

Recommended methods and standards for preparing design drawings, typical details, and drawings for the fabrication and placing of reinforcing steel in reinforced concrete structures are given in the ACI Detailing Manual, reported by ACI Committee 315.7.1

All provisions in the Code relating to bar, wire, or strand diameter (and area) are based on the nominal dimensions of the reinforcement as given in the appropriate ASTM specification. Nominal dimensions are equivalent to those of a circular area having the same weight per foot as the ASTM designated bar, wire, or strand sizes. Cross-sectional area of reinforcement is based on nominal dimensions.

R7.1.3 — Standard stirrup and tie hooks are limited to No. 8 bars and smaller, and the 90-degree hook with $6d_b$ extension is further limited to No. 5 bars and smaller, in both cases as the result of research showing that larger bar sizes with 90-degree hooks and $6d_b$ extensions tend to pop out under high load.

R7.2 — Minimum bend diameters

Standard bends in reinforcing bars are described in terms of the inside diameter of bend because this is easier to measure than the radius of bend. The primary factors affecting the minimum bend diameter are feasibility of bending without breakage and avoidance of crushing the concrete inside the bend.

R7.2.2 — The minimum $4d_b$ bend for the bar sizes commonly used for stirrups and ties is based on accepted industry practice in the United States. Use of a stirrup bar size not greater than No. 5 for either the 90-degree or 135-degree standard stirrup hook will permit multiple bending on standard stirrup bending equipment.

R7.2.3 — Welded wire reinforcement can be used for stirrups and ties. The wire at welded intersections does not have the same uniform ductility and bendability as in areas that were not heated. These effects of the welding temperature are usually dissipated in a distance of approximately four wire diameters. Minimum bend diameters permitted are in most cases the same as those required in the ASTM bend tests for wire material (ASTM A82 and A496).
7.3 — Bending

7.3.1 — All reinforcement shall be bent cold, unless otherwise permitted by the licensed design professional.

7.3.2 — Reinforcement partially embedded in concrete shall not be field bent, except as shown on the design drawings or permitted by the licensed design professional.

R7.3 — Bending

R7.3.1 — For unusual bends with inside diameters less than ASTM bend test requirements, special fabrication may be required.

R7.3.2 — Construction conditions may make it necessary to bend bars that have been embedded in concrete. Such field bending should not be done without authorization of the licensed design professional. Contract documents should specify whether the bars will be permitted to be bent cold or if heating should be used. Bends should be gradual and should be straightened as required.

Tests\(^7,2,7,3\) have shown that A615 Grade 40 and Grade 60 reinforcing bars can be cold bent and straightened up to 90 degrees at or near the minimum diameter specified in 7.2. If cracking or breakage is encountered, heating to a maximum temperature of 1500 °F may avoid this condition for the remainder of the bars. Bars that fracture during bending or straightening can be spliced outside the bend region.

Heating should be performed in a manner that will avoid damage to the concrete. If the bend area is within approximately 6 in. of the concrete, some protective insulation may need to be applied. Heating of the bar should be controlled by temperature-indicating crayons or other suitable means. The heated bars should not be artificially cooled (with water or forced air) until after cooling to at least 600 °F.

7.4 — Surface conditions of reinforcement

7.4.1 — At the time concrete is placed, reinforcement shall be free from mud, oil, or other nonmetallic coatings that decrease bond. Epoxy-coating of steel reinforcement in accordance with standards referenced in 3.5.3.8 and 3.5.3.9 shall be permitted.

7.4.2 — Except for prestressing steel, steel reinforcement with rust, mill scale, or a combination of both shall be considered satisfactory, provided the minimum dimensions (including height of deformations) and weight of a hand-wire-brushed test specimen comply with applicable ASTM specifications referenced in 3.5.

R7.4 — Surface conditions of reinforcement

Specific limits on rust are based on tests\(^7,4\) plus a review of earlier tests and recommendations. \textbf{Reference 7.4} provides guidance with regard to the effects of rust and mill scale on bond characteristics of deformed reinforcing bars. Research has shown that a normal amount of rust increases bond. Normal rough handling generally removes rust that is loose enough to injure the bond between the concrete and reinforcement.
CODE

7.4.3 — Prestressing steel shall be clean and free of oil, dirt, scale, pitting and excessive rust. A light coating of rust shall be permitted.

7.5 — Placing reinforcement

7.5.1 — Reinforcement, including tendons, and post-tensioning ducts shall be accurately placed and adequately supported before concrete is placed, and shall be secured against displacement within tolerances permitted in 7.5.2.

7.5.2 — Unless otherwise specified by the licensed design professional, reinforcement, including tendons, and post-tensioning ducts shall be placed within the tolerances in 7.5.2.1 and 7.5.2.2.

COMMENTARY

R7.4.3 — Guidance for evaluating the degree of rusting on strand is given in Reference 7.5.

R7.5 — Placing reinforcement

R7.5.1 — Reinforcement, including tendons, and post-tensioning ducts should be adequately supported in the forms to prevent displacement by concrete placement or workers. Beam stirrups should be supported on the bottom form of the beam by positive supports such as continuous longitudinal beam bolsters. If only the longitudinal beam bottom reinforcement is supported, construction traffic can dislodge the stirrups as well as any prestressing tendons tied to the stirrups.

R7.5.2 — Generally accepted practice, as reflected in ACI 117.7.6 has established tolerances on total depth (formwork or finish) and fabrication of truss bent reinforcing bars and closed ties, stirrups, and spirals. The licensed design professional should specify more restrictive tolerances than those permitted by the Code when necessary to minimize the accumulation of tolerances resulting in excessive reduction in effective depth or cover.

More restrictive tolerances have been placed on minimum clear distance to formed soffits because of its importance for durability and fire protection, and because bars are usually supported in such a manner that the specified tolerance is practical.

More restrictive tolerances than those required by the Code may be desirable for prestressed concrete to achieve camber control within limits acceptable to the licensed design professional or owner. In such cases, the contract documents should specify the necessary tolerances. Recommendations are given in Reference 7.7.

R7.5.2.1 — The Code permits a reinforcement placement tolerance on effective depth \(d \), which is directly related to the flexural and shear strength of the member. Because reinforcing steel is placed with respect to edges of members and formwork surfaces, \(d \) is not always conveniently measured in the field. Placement tolerances for cover are also provided. For guidance on including field tolerances in project specifications, see ACI 117.7.6

<table>
<thead>
<tr>
<th>Tolerance on (d)</th>
<th>Tolerance on specified concrete cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d \leq 8 \text{ in.})</td>
<td>±3/8 in.</td>
</tr>
<tr>
<td>(d > 8 \text{ in.})</td>
<td>±1/2 in.</td>
</tr>
</tbody>
</table>

except that tolerance for the clear distance to formed soffits shall be minus 1/4 in. In addition, tolerance for cover shall also not exceed minus 1/3 the concrete cover specified in the design drawings and project specifications.

R7.5.2.2 — Tolerance for longitudinal location of bends and ends of reinforcement shall be ±2 in., except the tolerance shall be ±1/2 in. at the discontinuous ends of brackets and corbels, and ±1 in. at the
discontinuous ends of other members. The tolerance for concrete cover of 7.5.2.1 shall also apply at discontinuous ends of members.

7.5.3 — Welded wire reinforcement (with wire size not greater than W5 or D5) used in slabs not exceeding 10 ft in span shall be permitted to be curved from a point near the top of slab over the support to a point near the bottom of slab at midspan, provided such reinforcement is either continuous over, or securely anchored at support.

7.5.4 — Welding of crossing bars shall not be permitted for assembly of reinforcement unless authorized by the licensed design professional.

R7.5.4 — “Tack” welding (welding crossing bars) can seriously weaken a bar at the point welded by creating a metallurgical notch effect. This operation can be performed safely only when the material welded and welding operations are under continuous competent control, as in the manufacture of welded wire reinforcement.

R7.6 — Spacing limits for reinforcement

Although the minimum bar spacings are unchanged in this Code, the development lengths given in Chapter 12 became a function of the bar spacings since the 1989 Code. As a result, it may be desirable to use larger than minimum bar spacings in some cases. The minimum limits were originally established to permit concrete to flow readily into spaces between bars and between bars and forms without honeycomb, and to ensure against concentration of bars on a line that may cause shear or shrinkage cracking. Use of nominal bar diameter to define minimum spacing permits a uniform criterion for all bar sizes.

R7.6.6 — Bundled bars

Bond research showed that bar cutoffs within bundles should be staggered. Bundled bars should be tied, wired, or otherwise fastened together to ensure remaining in position whether vertical or horizontal.

A limitation that bars larger than No. 11 not be bundled in beams or girders is a practical limit for application to building size members. (The “Standard Specifications for Highway Bridges” permits two-bar bundles for No. 14 and No. 18 bars in bridge girders.) Conformance to the crack control requirements of 10.6 will effectively preclude bundling of
CODE

7.6.6.4 — Individual bars within a bundle terminated within the span of flexural members shall terminate at different points with at least $40d_b$ stagger.

7.6.6.5 — Where spacing limitations or concrete cover requirements are based on bar diameter, d_b, a unit of bundled bars shall be treated as a single bar of a diameter derived from the equivalent total area.

7.6.7 — Tendons and ducts

7.6.7.1 — Center-to-center spacing of pretensioning tendons at each end of a member shall be not less than $4d_b$ for strands, or $5d_b$ for wire, except that if specified compressive strength of concrete at time of initial prestress, f'_c, is 4000 psi or more, minimum center-to-center spacing of strands shall be 1-3/4 in. for strands of 1/2 in. nominal diameter or smaller and 2 in. for strands of 0.6 in. nominal diameter. See also 3.3.2. Closer vertical spacing and bundling of tendons shall be permitted in the middle portion of a span.

7.6.7.2 — Bundling of post-tensioning ducts shall be permitted if shown that concrete can be satisfactorily placed and if provision is made to prevent the prestressing steel, when tensioned, from breaking through the duct.

7.7 — Concrete protection for reinforcement

7.7.1 — Cast-in-place concrete (nonprestressed)

Unless a greater concrete cover is required by 7.7.6 or 7.7.8, specified cover for reinforcement shall not be less than the following:

<table>
<thead>
<tr>
<th>Concrete cover, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Concrete cast against and permanently exposed to earth.................................3</td>
</tr>
<tr>
<td>(b) Concrete exposed to earth or weather:</td>
</tr>
<tr>
<td>No. 6 through No. 18 bars...2</td>
</tr>
<tr>
<td>No. 5 bar, W31 or D31 wire, and smaller 1-1/2</td>
</tr>
<tr>
<td>(c) Concrete not exposed to weather or in contact with ground:</td>
</tr>
<tr>
<td>Slabs, walls, joists:</td>
</tr>
<tr>
<td>No. 14 and No. 18 bars .. 1-1/2</td>
</tr>
<tr>
<td>No. 11 bar and smaller ... 3/4</td>
</tr>
</tbody>
</table>

COMMENTARY

bars larger than No. 11 as tensile reinforcement. The Code phrasing “bundled in contact to act as a unit,” is intended to preclude bundling more than two bars in the same plane. Typical bundle shapes are triangular, square, or L-shaped patterns for three- or four-bar bundles. As a practical caution, bundles more than one bar deep in the plane of bending should not be hooked or bent as a unit. Where end hooks are required, it is preferable to stagger the individual bar hooks within a bundle.

R7.6.7 — Tendons and ducts

R7.6.7.1 — The allowed decreased spacing in this section for transfer strengths of 4000 psi or greater is based on References 7.10 and 7.11.

R7.6.7.2 — When ducts for prestressing steel in a beam are arranged closely together vertically, provision should be made to prevent the prestressing steel from breaking through the duct when tensioned. Horizontal disposition of ducts should allow proper placement of concrete. A clear spacing of one and one-third times the size of the coarse aggregate, but not less than 1 in., has proven satisfactory. Where concentration of tendons or ducts tends to create a weakened plane in the concrete cover, reinforcement should be provided to control cracking.

R7.7 — Concrete protection for reinforcement

Concrete cover as protection of reinforcement against weather and other effects is measured from the concrete surface to the outermost surface of the steel to which the cover requirement applies. Where concrete cover is prescribed for a class of structural members, it is measured to the outer edge of stirrups, ties, or spirals if transverse reinforcement encloses main bars; to the outermost layer of bars if more than one layer is used without stirrups or ties; or to the metal end fitting or duct on post-tensioned prestressing steel; or to the outermost part of the head on headed bars.

The condition “concrete surfaces exposed to earth or weather” refers to direct exposure to moisture changes and not just to temperature changes. Slab or thin shell soffits are not usually considered directly exposed unless subject to alternate wetting and drying, including that due to condensation conditions or direct leakage from exposed top surface, run off, or similar effects.
Alternative methods of protecting the reinforcement from weather may be provided if they are equivalent to the additional concrete cover required by the Code. When approved by the building official under the provisions of 1.4, reinforcement with alternative protection from the weather may have concrete cover not less than the cover required for reinforcement not exposed to weather.

The development length given in Chapter 12 is now a function of the bar cover. As a result, it may be desirable to use larger than minimum cover in some cases.

Beams, columns:
Primary reinforcement, ties, stirrups, spirals ... 1-1/2

Shells, folded plate members:
No. 6 bar and larger .. 3/4
No. 5 bar, W31 or D31 wire, and smaller 1/2

7.7.2 — Cast-in-place concrete (prestressed)

Unless a greater concrete cover is required by 7.7.6 or 7.7.8, specified cover for prestressed and nonprestressed reinforcement, ducts, and end fittings shall not be less than the following:

<table>
<thead>
<tr>
<th>Concrete cover, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Concrete cast against and permanently exposed to earth.................. 3</td>
</tr>
<tr>
<td>(b) Concrete exposed to earth or weather:</td>
</tr>
<tr>
<td>Wall panels, slabs, joists .. 1</td>
</tr>
<tr>
<td>Other members.............................. 1-1/2</td>
</tr>
<tr>
<td>(c) Concrete not exposed to weather or in contact with ground:</td>
</tr>
<tr>
<td>Slabs, walls, joists .. 3/4</td>
</tr>
<tr>
<td>Beams, columns:</td>
</tr>
<tr>
<td>Primary reinforcement .. 1-1/2</td>
</tr>
<tr>
<td>Ties, stirrups, spirals .. 1</td>
</tr>
<tr>
<td>Shells, folded plate members:</td>
</tr>
<tr>
<td>No. 5 bar, W31 or D31 wire, and smaller 3/8</td>
</tr>
<tr>
<td>Other reinforcement (d_b) but not less than 3/4</td>
</tr>
</tbody>
</table>

7.7.3 — Precast concrete (manufactured under plant control conditions)

Unless a greater cover is required by 7.7.6 or 7.7.8, specified cover for prestressed and nonprestressed reinforcement, ducts, and end fittings shall not be less than the following:

<table>
<thead>
<tr>
<th>Concrete cover, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Concrete exposed to earth or weather:</td>
</tr>
<tr>
<td>Wall panels:</td>
</tr>
<tr>
<td>No. 14 and No. 18 bars, prestressing tendons larger than 1-1/2 in. diameter 1-1/2</td>
</tr>
<tr>
<td>No. 11 bar and smaller, prestressing tendons 1-1/2 in. diameter and smaller, W31 and D31 wire and smaller 3/4</td>
</tr>
<tr>
<td>Other members:</td>
</tr>
<tr>
<td>No. 14 and No. 18 bars, prestressing tendons larger than 1-1/2 in. diameter 2</td>
</tr>
<tr>
<td>No. 6 through No. 11 bars, prestressing tendons larger than 5/8 in. diameter through 1-1/2 in. diameter ... 1-1/2</td>
</tr>
</tbody>
</table>

R7.7.3 — Precast concrete (manufactured under plant control conditions)

The lesser cover thicknesses for precast construction reflect the greater convenience of control for proportioning, placing, and curing inherent in precasting. The term “manufactured under plant control conditions” does not specifically imply that precast members should be manufactured in a plant. Structural elements precast at the job site will also qualify under this section if the control of form dimensions, placing of reinforcement, quality control of concrete, and curing procedure are equal to that normally expected in a plant.

Concrete cover to pretensioned strand as described in this section is intended to provide minimum protection against weather and other effects. Such cover may not be sufficient to transfer or develop the stress in the strand, and it may be necessary to increase the cover accordingly.
CODE

No. 5 bar and smaller, prestressing tendons 5/8 in. diameter and smaller, W31 and D31 wire, and smaller 1-1/4

(b) Concrete not exposed to weather or in contact with ground:

Slabs, walls, joists:

No. 14 and No. 18 bars, prestressing tendons larger than 1-1/2 in. diameter 1-1/4
Prestressing tendons 1-1/2 in. diameter and smaller .. 3/4
No. 11 bar and smaller, W31 or D31 wire, and smaller ... 5/8

Beams, columns:

Primary reinforcement \(d_b \) but not less than 5/8 and need not exceed 1-1/2

Ties, stirrups, spirals ... 3/8

Shells, folded plate members:

Prestressing tendons ... 3/4
No. 6 bar and larger .. 5/8
No. 5 bar and smaller, W31 or D31 wire, and smaller .. 3/8

7.7.4 — Bundled bars

For bundled bars, minimum specified concrete cover shall not be less than the equivalent diameter of the bundle, but need not be greater than 2 in.; except for concrete cast against and permanently exposed to earth, where specified concrete cover shall not be less than 3 in.

7.7.5 — Headed shear stud reinforcement

For headed shear stud reinforcement, specified concrete cover for the heads or base rails shall not be less than that required for the reinforcement in the type of member in which the headed shear stud reinforcement is placed.

COMMENTARY

Maximum cover to head (11.11.5)

\[\text{Maximum cover} = \frac{d_b}{2} + \text{specified cover} \]

\(d_b \)

Tension flexural reinforcement

Specified cover to base rail

(a) Slab with top and bottom bars

Maximum cover to head (11.11.5)

\[\text{Maximum cover} = \frac{d_b}{2} + \text{specified cover} \]

\(d_b \)

Tension flexural reinforcement

Specified cover to base rail

(b) Footing with only bottom bars

Fig. R7.7.5—Concrete cover requirements for headed shear stud reinforcement.

R.7.7.5 — Headed shear stud reinforcement

The shanks, the heads, and the base rails need to be protected by the specified concrete cover. For efficiency in controlling inclined shear cracks, the overall height of the headed stud assembly should be as large as permissible (R11.11.5). The maximum overall height of the headed study assembly is equal to the thickness of the member less the sum of the specified concrete covers required for the heads and base rails as shown in Fig. R7.7.5.
CODE

7.7.6 — Corrosive environments

In corrosive environments or other severe exposure conditions, amount of concrete protection shall be suitably increased, and the pertinent requirements for concrete based on applicable exposure categories in Chapter 4 shall be met, or other protection shall be provided.

7.7.6.1 — For prestressed concrete members exposed to corrosive environments or other severe exposure categories such as those defined in Chapter 4, and which are classified as Class T or C in 18.3.3, specified concrete cover shall not be less than 1.5 times the cover for prestressed reinforcement required by 7.7.2 and 7.7.3. This requirement shall be permitted to be waived if the precompressed tensile zone is not in tension under sustained loads.

7.7.7 — Future extensions

Exposed reinforcement, inserts, and plates intended for bonding with future extensions shall be protected from corrosion.

7.7.8 — Fire protection

If the general building code (of which this Code forms a part) requires a thickness of cover for fire protection greater than the concrete cover in 7.7.1 through 7.7.7, such greater thicknesses shall be specified.

7.8 — Reinforcement details for columns

7.8.1 — Offset bars

Offset bent longitudinal bars shall conform to the following:

7.8.1.1 — Slope of inclined portion of an offset bar with axis of column shall not exceed 1 in 6.

7.8.1.2 — Portions of bar above and below an offset shall be parallel to axis of column.

7.8.1.3 — Horizontal support at offset bends shall be provided by lateral ties, spirals, or parts of the floor construction. Horizontal support provided shall be

COMMENTARY

R7.7.6 — Corrosive environments

Where concrete will be exposed to external sources of chlorides in service, such as deicing salts, brackish water, seawater, or spray from these sources, concrete should be proportioned to satisfy the requirements for the applicable exposure class in Chapter 4. These include minimum air content, maximum w/cm, minimum strength for normal-weight and lightweight concrete, maximum chloride ion in concrete, and cement type. Additionally, for corrosion protection, a specified concrete cover for reinforcement not less than 2 in. for walls and slabs and not less than 2-1/2 in. for other members is recommended. For precast concrete members manufactured under plant control conditions, a specified concrete cover not less than 1-1/2 in. for walls and slabs and not less than 2 in. for other members is recommended.

R7.7.6.1 — Corrosive environments are defined in Sections 4.2, R4.2.1, and R4.3.1. Additional information on corrosion in parking structures is given in ACI 362.1R.

R7.7.8 — Reinforcement details for columns

R7.8 — Reinforcement details for columns
CODE

designed to resist 1-1/2 times the horizontal component of the computed force in the inclined portion of an offset bar. Lateral ties or spirals, if used, shall be placed not more than 6 in. from points of bend.

7.8.1.4 — Offset bars shall be bent before placement in the forms. See 7.3.

7.8.1.5 — Where a column face is offset 3 in. or greater, longitudinal bars shall not be offset bent. Separate dowels, lap spliced with the longitudinal bars adjacent to the offset column faces, shall be provided. Lap splices shall conform to 12.17.

7.8.2 — Steel cores

Load transfer in structural steel cores of composite compression members shall be provided by the following:

7.8.2.1 — Ends of structural steel cores shall be accurately finished to bear at end bearing splices, with positive provision for alignment of one core above the other in concentric contact.

7.8.2.2 — At end bearing splices, bearing shall be considered effective to transfer not more than 50 percent of the total compressive stress in the steel core.

7.8.2.3 — Transfer of stress between column base and footing shall be designed in accordance with 15.8.

7.8.2.4 — Base of structural steel section shall be designed to transfer the total load from the entire composite member to the footing; or, the base shall be designed to transfer the load from the steel core only, provided ample concrete section is available for transfer of the portion of the total load carried by the reinforced concrete section to the footing by compression in the concrete and by reinforcement.

7.9 — Connections

7.9.1 — At connections of principal framing elements (such as beams and columns), enclosure shall be provided for splices of continuing reinforcement and for anchorage of reinforcement terminating in such connections.

7.9.2 — Enclosure at connections shall consist of external concrete or internal closed ties, spirals, or stirrups.

COMMENTARY

R7.8.2 — Steel cores

The 50 percent limit on transfer of compressive load by end bearing on ends of structural steel cores is intended to provide some tensile strength at such splices (up to 50 percent), since the remainder of the total compressive stress in the steel core are to be transmitted by dowels, splice plates, welds, etc. This provision should ensure that splices in composite compression members meet essentially the same tensile strength as required for conventionally reinforced concrete compression members.

R7.9 — Connections

Confinement is essential at connections to ensure that the flexural strength of the members can be developed without deterioration of the joint under repeated loadings.
CODE

7.10 — Lateral reinforcement for compression members

7.10.1 — Lateral reinforcement for compression members shall conform to the provisions of 7.10.4 and 7.10.5 and, where shear or torsion reinforcement is required, shall also conform to provisions of Chapter 11.

7.10.2 — Lateral reinforcement requirements for composite compression members shall conform to 10.13. Lateral reinforcement requirements for tendons shall conform to 18.11.

7.10.3 — It shall be permitted to waive the lateral reinforcement requirements of 7.10, 10.13, and 18.11 where tests and structural analysis show adequate strength and feasibility of construction.

7.10.4 — Spirals

Spiral reinforcement for compression members shall conform to 10.9.3 and to the following:

7.10.4.1 — Spirals shall consist of evenly spaced continuous bar or wire of such size and so assembled to permit handling and placing without distortion from designed dimensions.

7.10.4.2 — For cast-in-place construction, size of spirals shall not be less than 3/8 in. diameter.

7.10.4.3 — Clear spacing between spirals shall not exceed 3 in., nor be less than 1 in. See also 3.3.2.

7.10.4.4 — Anchorage of spiral reinforcement shall be provided by 1-1/2 extra turns of spiral bar or wire at each end of a spiral unit.

7.10.4.5 — Spiral reinforcement shall be spliced, if needed, by any one of the following methods:

(a) Lap splices not less than the larger of 12 in. and the length indicated in one of (1) through (5) below:
 (1) deformed uncoated bar or wire \(48d_b\)
 (2) plain uncoated bar or wire \(72d_b\)
 (3) epoxy-coated deformed bar or wire........ \(72d_b\)
 (4) plain uncoated bar or wire with a standard stirrup or tie hook in accordance with 7.1.3 at ends of lapped spiral reinforcement.

COMMENTARY

R7.10 — Lateral reinforcement for compression members

R7.10.3 — Precast columns with cover less than 1-1/2 in., prestressed columns without longitudinal bars, columns smaller than minimum dimensions prescribed in earlier Code editions, columns of concrete with small size coarse aggregate, wall-like columns, and other unusual cases may require special designs for lateral reinforcement. Wire, W4, D4, or larger, may be used for ties or spirals. If such unusual columns are considered as spiral columns for load strength in design, the volumetric reinforcement ratio for the spiral, \(\rho_s\), is to conform to 10.9.3.

R7.10.4 — Spirals

For practical considerations in cast-in-place construction, the minimum diameter of spiral reinforcement is 3/8 in. (3/8 in. round, No. 3 bar, or equivalent deformed or plain wire). This is the smallest size that can be used in a column with 1-1/2 in. or more cover and having concrete compressive strengths of 3000 psi or more if the minimum clear spacing for placing concrete is to be maintained.

Standard spiral sizes are 3/8, 1/2, and 5/8 in. diameter for hot rolled or cold drawn material, plain or deformed.

The Code allows spirals to be terminated at the level of lowest horizontal reinforcement framing into the column. However, if one or more sides of the column are not enclosed by beams or brackets, ties are required from the termination of the spiral to the bottom of the slab, drop panel, or shear cap. If beams or brackets enclose all sides of the column but are of different depths, the ties should extend from the spiral to the level of the horizontal reinforcement of the shallowest beam or bracket framing into the column. These additional ties are to enclose the longitudinal column reinforcement and the portion of bars from beams bent into the column for anchorage. See also 7.9.

Spirals should be held firmly in place, at proper pitch and alignment, to prevent displacement during concrete placement. The Code has traditionally required spacers to hold the fabricated spiral cage in place but was changed in 1989 to allow alternate methods of installation. When spacers are used, the following may be used for guidance: for spiral bar...
CODE

The hooks shall be embedded within the core confined by the spiral reinforcement................. 48\(d_b\)

(5) epoxy-coated deformed bar or wire with a standard stirrup or tie hook in accordance with 7.1.3 at ends of lapped spiral reinforcement. The hooks shall be embedded within the core confined by the spiral reinforcement................. 48\(d_b\)

(b) Full mechanical or welded splices in accordance with 12.14.3.

7.10.4.6 — Spirals shall extend from top of footing or slab in any story to level of lowest horizontal reinforcement in members supported above.

7.10.4.7 — Where beams or brackets do not frame into all sides of a column, ties shall extend above termination of spiral to bottom of slab, drop panel, or shear cap.

7.10.4.8 — In columns with capitals, spirals shall extend to a level at which the diameter or width of capital is two times that of the column.

7.10.4.9 — Spirals shall be held firmly in place and true to line.

7.10.5 — Ties

Tie reinforcement for compression members shall conform to the following:

7.10.5.1 — All nonprestressed bars shall be enclosed by lateral ties, at least No. 3 in size for longitudinal bars No. 10 or smaller, and at least No. 4 in size for No. 11, No. 14, No. 18, and bundled longitudinal bars. Deformed wire or welded wire reinforcement of equivalent area shall be permitted.

7.10.5.2 — Vertical spacing of ties shall not exceed 16 longitudinal bar diameters, 48 tie bar or wire diameters, or least dimension of the compression member.

7.10.5.3 — Ties shall be arranged such that every corner and alternate longitudinal bar shall have lateral support provided by the corner of a tie with an included angle of not more than 135 degrees and no bar shall be farther than 6 in. clear on each side along the tie from adequately tied bars (see also 7.10.4.3). The 1956 Code required “lateral support equivalent to that provided by a 90-degree corner of a tie,” for every vertical bar. Tie requirements were liberalized in 1963 by increasing the permissible included angle from 90 to 135 degrees and exempting bars that are located within 6 in. clear on each side along the tie from adequately tied bars (see 7.10.5).

7.10.5.4 — Ties shall be located vertically not more than one-half the top of footing or slab in any story, and shall be spaced as provided or wire smaller than 5/8 in. diameter, a minimum of two spacers should be used for spirals less than 20 in. in diameter, three spacers for spirals 20 to 30 in. in diameter, and four spacers for spirals greater than 30 in. in diameter. For spiral bar or wire 5/8 in. diameter or larger, a minimum of three spacers should be used for spirals 24 in. or less in diameter, and four spacers for spirals greater than 24 in. in diameter. The project specifications or subcontract agreements should be clearly written to cover the supply of spacers or field tying of the spiral reinforcement. In the 1999 Code, splice requirements were modified for epoxy-coated and plain spirals and to allow mechanical splices.

R7.10.5 — Ties

All longitudinal bars in compression should be enclosed within lateral ties. Where longitudinal bars are arranged in a circular pattern, only one circular tie per specified spacing is required. This requirement can be satisfied by a continuous circular tie (helix) at larger pitch than required for spirals under 10.9.3, the maximum pitch being equal to the required tie spacing (see also 7.10.4.3).

The 1956 Code required “lateral support equivalent to that provided by a 90-degree corner of a tie,” for every vertical bar. Tie requirements were liberalized in 1963 by increasing the permissible included angle from 90 to 135 degrees and exempting bars that are located within 6 in. clear on each side along the tie from adequately tied bars (see 7.10.5).

Limited tests on full-size, axially-loaded, tied columns containing full-length bars (without splices) showed no appreciable difference between ultimate strengths of columns with full tie requirements and no ties at all.

Since spliced bars and bundled bars were not included in the tests of Reference 7.15, it is prudent to provide a set of ties at each end of lap spliced bars, above and below end-bearing splices, and at minimum spacings immediately below sloping regions of offset bent bars.
Standard tie hooks are intended for use with deformed bars only, and should be staggered where possible. See also 7.9.

Continuously wound bars or wires can be used as ties provided their pitch and area are at least equivalent to the area and spacing of separate ties. Anchorage at the end of a continuously wound bar or wire should be by a standard hook as for separate bars or by one additional turn of the tie pattern. A circular continuously wound bar or wire is considered a spiral if it conforms to 7.10.4, otherwise it is considered a tie.

With the 1983 Code, the wording of this section was modified to clarify that ties may be terminated only when elements frame into all four sides of square and rectangular columns; for round or polygonal columns, such elements frame into the column from four directions.

Provisions for confinement of anchor bolts that are placed in the top of columns or pedestals were added in the 2002 Code. Confinement improves load transfer from the anchor bolts to the column or pier for situations where the concrete cracks in the vicinity of the bolts. Such cracking can occur due to unanticipated forces caused by temperature, restrained shrinkage, and similar effects.

Compression reinforcement in beams and girders should be enclosed to prevent buckling; similar requirements for such enclosure have remained essentially unchanged through several editions of the Code, except for minor clarification.

Reinforcement for shrinkage and temperature stresses normal to flexural reinforcement shall be provided in structural slabs where the flexural reinforcement extends in one direction only.

Reinforcement for shrinkage and temperature reinforcement is required at right angles to the principal reinforcement to minimize cracking and to tie the structure together to ensure it is acting as assumed in the design. The provisions of this section are intended for structural slabs only; they are not intended for slabs-on-ground.
7.12.1.1 — Shrinkage and temperature reinforcement shall be provided in accordance with either 7.12.2 or 7.12.3.

7.12.1.2 — Where shrinkage and temperature movements are significantly restrained, the requirements of 8.2.4 and 9.2.3 shall be considered.

R7.12.1.2 — The area of shrinkage and temperature reinforcement required by 7.12.2.1 has been satisfactory where shrinkage and temperature movements are permitted to occur. Where structural walls or columns provide significant restraint to shrinkage and temperature movements, the restrain of volume changes causes tension in slabs, as well as displacements, shear forces, and flexural moments in columns or walls. In these cases, it may be necessary to increase the amount of slab reinforcement required by 7.12.2.1 due to the shrinkage and thermal effects in both principal directions (see References 7.7 and 7.16). Topping slabs also experience tension due to restraint of differential shrinkage between the topping and the precast elements or metal deck (which has zero shrinkage) that should be considered in reinforcing the slab. Consideration should be given to strain demands on reinforcement crossing joints of precast elements where most of the restraint is likely to be relieved. Top and bottom reinforcement are both effective in controlling cracks. Control strips during the construction period, which permit initial shrinkage to occur without causing an increase in stresses, are also effective in reducing cracks caused by restraint.

7.12.2 — Deformed reinforcement conforming to 3.5.3 used for shrinkage and temperature reinforcement shall be provided in accordance with the following:

7.12.2.1 — Area of shrinkage and temperature reinforcement shall provide at least the following ratios of reinforcement area to gross concrete area, but not less than 0.0014:

(a) Slabs where Grade 40 or 50 deformed bars are used0.0020

(b) Slabs where Grade 60 deformed bars or welded wire reinforcement are used..............................0.0018

(c) Slabs where reinforcement with yield stress exceeding 60,000 psi measured at a yield strain of 0.35 percent is used$0.0018 \times \frac{60,000}{f_y}$

7.12.2.2 — Shrinkage and temperature reinforcement shall be spaced not farther apart than five times the slab thickness, nor farther apart than 18 in.

7.12.2.3 — At all sections where required, reinforcement to resist shrinkage and temperature stresses shall develop f_y in tension in accordance with Chapter 12.
7.13.2.3 — Spacing of tendons shall not exceed 6 ft.

7.12.3.3 — When spacing of tendons exceeds 54 in., additional bonded shrinkage and temperature reinforcement conforming to 7.12.2 shall be provided between the tendons at slab edges extending from the slab edge for a distance equal to the tendon spacing.

R7.12.3 — Prestressed reinforcement requirements have been selected to provide an effective force on the slab approximately equal to the yield strength force for non prestressed shrinkage and temperature reinforcement. This amount of prestressing, 100 psi on the gross concrete area, has been successfully used on a large number of projects. When the spacing of tendons used for shrinkage and temperature reinforcement exceeds 54 in., additional bonded reinforcement is required at slab edges where the prestressing forces are applied in order to adequately reinforce the area between the slab edge and the point where compressive stresses behind individual anchorages have spread sufficiently such that the slab is uniformly in compression. Application of the provisions of 7.12.3 to monolithic cast-in-place post-tensioned beam and slab construction is illustrated in Fig. R7.12.3.

Tendons used for shrinkage and temperature reinforcement should be positioned vertically in the slab as close as practicable to the center of the slab. In cases where the shrinkage and temperature tendons are used for supporting the principal tendons, variations from the slab centroid are permissible; however, the resultant of the shrinkage and temperature tendons should not fall outside the kern area of the slab.

The effects of slab shortening should be evaluated to ensure proper action. In most cases, the low level of prestressing recommended should not cause difficulties in a properly detailed structure. Additional attention may be required where thermal effects become significant.

R7.13 — Requirements for structural integrity

Experience has shown that the overall integrity of a structure can be substantially enhanced by minor changes in detailing of reinforcement. It is the intent of this section of the Code
7.13.2 — For cast-in-place construction, the following shall constitute minimum requirements:

7.13.2.1 — In joist construction, as defined in 8.13.1 through 8.13.3, at least one bottom bar shall be continuous or shall be spliced with a Class B tension splice or a mechanical or welded splice satisfying 12.14.3 and at noncontinuous supports shall be anchored to develop f_y at the face of the support using a standard hook satisfying 12.5 or headed deformed bar satisfying 12.6.

7.13.2.2 — Beams along the perimeter of the structure shall have continuous reinforcement over the span length passing through the region bounded by the longitudinal reinforcement of the column consisting of (a) and (b):

(a) at least one-sixth of the tension reinforcement required for negative moment at the support, but not less than two bars;

(b) at least one-quarter of the tension reinforcement required for positive moment at midspan, but not less than two bars.

At noncontinuous supports, the reinforcement shall be anchored to develop f_y at the face of the support using a standard hook satisfying 12.5 or headed deformed bar satisfying 12.6.

7.13.2.3 — The continuous reinforcement required in 7.13.2.2 shall be enclosed by transverse reinforcement of the type specified in 11.5.4.1. The transverse reinforcement shall be anchored as specified in 11.5.4.2. The transverse reinforcement need not be extended through the column.

7.13.2.4 — Where splices are required to satisfy 7.13.2.2, the top reinforcement shall be spliced at or near midspan and bottom reinforcement shall be spliced at or near the support. Splices shall be Class B tension splices, or mechanical or welded splices satisfying 12.14.3.

7.13.2.5 — In other than perimeter beams, where transverse reinforcement as defined in 7.13.2.3 is provided, there are no additional requirements for longitudinal integrity reinforcement. Where such transverse reinforcement is not provided, at least one-

R7.13.2 — With damage to a support, top reinforcement that is continuous over the support, but not confined by stirrups, will tend to tear out of the concrete and will not provide the catenary action needed to bridge the damaged support. By making a portion of the bottom reinforcement continuous, catenary action can be provided.

Requiring continuous top and bottom reinforcement in perimeter or spandrel beams provides a continuous tie around the structure. It is not the intent to require a tensile tie of continuous reinforcement of constant size around the entire perimeter of a structure, but simply to require that one half of the top flexural reinforcement required to extend past the point of inflection by 12.12.3 be further extended and spliced at or near midspan. Similarly, the bottom reinforcement required to extend into the support by 12.11.1 should be made continuous or spliced with bottom reinforcement from the adjacent span. If the depth of a continuous beam changes at a support, the bottom reinforcement in the deeper member should be terminated with a standard hook and bottom reinforcement in the shallower member should be extended into and fully developed in the deeper member.

In the 2002 Code, provisions were added to permit the use of mechanical or welded splices for splicing reinforcement, and the detailing requirements for the longitudinal reinforcement and stirrups in beams were revised. Section 7.13.2 was revised in 2002 to require U-stirrups with not less than 135-degree hooks around the continuous bars, or one-piece closed stirrups to prevent the top continuous bars from tearing out of the top of the beam. Section 7.13.2 was revised in 2008 to require that the transverse reinforcement used to enclose the continuous reinforcement be of the type specified in 11.5.4.1 and anchored according to 11.5.4.2. Figure R7.13.2 shows an example of a two-piece stirrup that satisfies these requirements. Pairs of U-stirrups lapping one another as defined in 12.13.5 are not permitted in perimeter or spandrel beams. In the event of damage to the side concrete cover, the stirrups and top longitudinal reinforcement may tend to tear out of the concrete. Thus, the top longitudinal reinforcement will not provide the catenary action needed to bridge over a damaged region. Further, lapped U-stirrups will not be effective at high torque (see R11.5.4.1).

Lap splices were changed from Class A to Class B in ACI 318-08 to provide similar strength to that provided by mechanical and welded splices satisfying 12.14.3. Class B lap splices provide a higher level of reliability for abnormal loading events.
quarter of the positive moment reinforcement required at midspan, but not less than two bars, shall pass through the region bounded by the longitudinal reinforcement of the column and shall be continuous or shall be spliced over or near the support with a Class B tension splice, or a mechanical or welded splice satisfying 12.14.3. At noncontinuous supports, the reinforcement shall be anchored to develop f_y at the face of the support using a standard hook satisfying 12.5 or headed deformed bar satisfying 12.6.

7.13.2.6 — For nonprestressed two-way slab construction, see 13.3.8.5.

7.13.2.7 — For prestressed two-way slab construction, see 18.12.6 and 18.12.7.

7.13.3 — For precast concrete construction, tension ties shall be provided in the transverse, longitudinal, and vertical directions and around the perimeter of the structure to effectively tie elements together. The provisions of 16.5 shall apply.

7.13.4 — For lift-slab construction, see 13.3.8.6 and 18.12.8.

R7.13.3 — The Code requires tension ties for precast concrete buildings of all heights. Details should provide connections to resist applied loads. Connection details that rely solely on friction caused by gravity forces are not permitted.

Connection details should be arranged so as to minimize the potential for cracking due to restrained creep, shrinkage, and temperature movements. For information on connections and detailing requirements, see Reference 7.17.

Reference 7.18 recommends minimum tie requirements for precast concrete bearing wall buildings.
CHAPTER 8 — ANALYSIS AND DESIGN — GENERAL CONSIDERATIONS

CODE

8.1 — Design methods

8.1.1 — In design of structural concrete, members shall be proportioned for adequate strength in accordance with provisions of this Code, using load factors and strength reduction factors ϕ specified in Chapter 9.

8.1.2 — Design of reinforced concrete using the provisions of Appendix B shall be permitted.

8.1.3 — Anchors within the scope of Appendix D installed in concrete to transfer loads between connected elements shall be designed using Appendix D.

8.2 — Loading

8.2.1 — Design provisions of this Code are based on the assumption that structures shall be designed to resist all applicable loads.

8.2.2 — Service loads shall be in accordance with the general building code of which this Code forms a part, with such live load reductions as are permitted in the general building code.

8.2.3 — In design for wind and earthquake loads, integral structural parts shall be designed to resist the total lateral loads.

COMMENTARY

R8.1 — Design methods

R8.1.1 — The strength design method requires service loads or related internal moments and forces to be increased by specified load factors (required strength) and computed nominal strengths to be reduced by specified strength reduction factors ϕ (design strength).

R8.1.2 — Designs in accordance with Appendix B are equally acceptable, provided the provisions of Appendix B are used in their entirety.

R8.1.3 — The Code included specific provisions for anchoring to concrete for the first time in the 2002 edition. As has been done in the past with a number of new sections and chapters, new material has been presented as an appendix. An appendix may be judged not to be an official part of a legal document unless specifically adopted. Therefore, specific reference is made to Appendix B in the main body of the Code to make it a legal part of the Code.

R8.2 — Loading

The provisions in the Code are for live, wind, and earthquake loads such as those recommended in “Minimum Design Loads for Buildings and Other Structures” (ASCE/SEI 7), formerly known as ANSI A58.1. If the service loads specified by the general building code (of which this Code forms a part) differ from those of ASCE/SEI 7, the general building code governs. However, if the nature of the loads contained in a general building code differs considerably from ASCE/SEI 7 loads, some provisions of this Code may need modification to reflect the difference.

Roofs should be designed with sufficient slope or camber to ensure adequate drainage accounting for any long-term deflection of the roof due to the dead loads, or the loads should be increased to account for all likely accumulations of water. If deflection of roof members may result in ponding of water accompanied by increased deflection and additional ponding, the design should ensure that this process is self-limiting.

R8.2.3 — Any reinforced concrete wall that is monolithic with other structural elements is considered to be an “integral part.” Partition walls may or may not be integral structural
8.2.4 — Consideration shall be given to effects of forces due to prestressing, crane loads, vibration, impact, shrinkage, temperature changes, creep, expansion of shrinkage-compensating concrete, and unequal settlement of supports.

R8.2.4 — Information is reported on the magnitudes of these various effects, especially the effects of column creep and shrinkage in tall structures, and on procedures for including the forces resulting from these effects in design.

As described in R7.12.1.2, restraint of shrinkage and temperature movements can cause significant tension in slabs, as well as displacements, shear forces, and flexural moments in columns or walls. In cases of restraint, shrinkage and temperature reinforcement requirements may exceed flexural reinforcement requirements.

8.3 — Methods of analysis

8.3.1 — All members of frames or continuous construction shall be designed for the maximum effects of factored loads as determined by the theory of elastic analysis, except as modified according to 8.4. It shall be permitted to simplify design by using the assumptions specified in 8.7 through 8.11.

8.3.2 — Except for prestressed concrete, approximate methods of frame analysis shall be permitted for buildings of usual types of construction, spans, and story heights.

8.3.3 — As an alternate to frame analysis, the following approximate moments and shears shall be permitted for design of continuous beams and one-way slabs (slabs reinforced to resist flexural stresses in only one direction), provided (a) through (e) are satisfied:

(a) There are two or more spans;
(b) Spans are approximately equal, with the larger of two adjacent spans not greater than the shorter by more than 20 percent;
(c) Loads are uniformly distributed;
(d) Unfactored live load, \(L \), does not exceed three times unfactored dead load, \(D \); and
(e) Members are prismatic.

For calculating negative moments, \(l_n \) is taken as the average of the adjacent clear span lengths.

R8.3 — Methods of analysis

R8.3.1 — Factored loads are service loads multiplied by appropriate load factors. For the strength design method, elastic analysis is used to obtain moments, shears, and reactions.

R8.3.3 — The approximate moments and shears give reasonably conservative values for the stated conditions if the flexural members are part of a frame or continuous construction. Because the load patterns that produce critical values for moments in columns of frames differ from those for maximum negative moments in beams, column moments should be evaluated separately.
CODE

Positive moment
End spans
Discontinuous end unrestrained \(w_u \ell_n^2/11 \)
Discontinuous end integral with support..... \(w_u \ell_n^2/14 \)
Interior spans.. \(w_u \ell_n^2/16 \)

Negative moments at exterior face of first interior support
Two spans .. \(w_u \ell_n^2/9 \)
More than two spans............................... \(w_u \ell_n^2/10 \)

Negative moment at other faces of interior supports.. \(w_u \ell_n^2/11 \)

Negative moment at face of all supports for
Slabs with spans not exceeding 10 ft; and beams where ratio of sum of column stiffnesses to beam stiffness exceeds 8
at each end of the span......................... \(w_u \ell_n^2/12 \)

Negative moment at interior face of exterior support for members built integrally with supports
Where support is spandrel beam \(w_u \ell_n^2/24 \)
Where support is a column...................... \(w_u \ell_n^2/16 \)

Shear in end members at face of first interior support.. 1.15\(w_u \ell_n/2 \)
Shear at face of all other supports........... \(w_u \ell_n/2 \)

COMMENTARY

8.3.4 — Strut-and-tie models shall be permitted to be used in the design of structural concrete. See Appendix A.

8.4 — Redistribution of moments in continuous flexural members

8.4.1 — Except where approximate values for moments are used, it shall be permitted to decrease factored moments calculated by elastic theory at sections of maximum negative or maximum positive moment in any span of continuous flexural members for any assumed loading arrangement by not more than 1000\(\varepsilon_t \) percent, with a maximum of 20 percent.

8.4.2 — Redistribution of moments shall be made only when \(\varepsilon_t \) is equal to or greater than 0.0075 at the section at which moment is reduced.

R8.4.1 — Redistribution of moments in continuous flexural members

Moment redistribution is dependent on adequate ductility in plastic hinge regions. These plastic hinge regions develop at sections of maximum positive or negative moment and cause a shift in the elastic moment diagram. The usual result is a reduction in the values of maximum negative moments in the support regions and an increase in the values of positive moments between supports from those computed by elastic analysis. However, because negative moments are determined for one loading arrangement and positive moments for another (see 13.7.6 for an exception), economies in reinforcement can sometimes be realized by reducing maximum elastic positive moments and increasing negative moments, thus narrowing the envelope of maximum negative and positive moments at any section in the span. \(^{8.3}\) The plastic hinges permit the utilization of the
8.4.3 — The reduced moment shall be used for calculating redistributed moments at all other sections within the spans. Static equilibrium shall be maintained after redistribution of moments for each loading arrangement.

Before 2008, the Code addressed moment redistribution by permitting an increase or decrease of factored negative moments above or below elastically calculated values, within specified limits. A decrease in negative moment strength implies inelastic behavior in the negative moment region at the support. By increasing the negative moment strength, the positive moments can be reduced but the result is that inelastic behavior will occur in the positive moment region of the member and the percentage change in the positive moment section could be much larger than the 20 percent permitted for negative moment sections. The 2008 change places the same percentage limitations on both positive and negative moments.

Using conservative values of limiting concrete strains and lengths of plastic hinges derived from extensive tests, flexural members with small rotation capacity were analyzed for moment redistribution up to 20 percent, depending on the reinforcement ratio. The results were found to be conservative (see Fig. R8.4). Studies by Cohn and Mattock support this conclusion and indicate that cracking and deflection of beams designed for moment redistribution are not significantly greater at service loads than for beams designed by the elastic theory distribution of moments. Also, these studies indicated that adequate rotation capacity for the moment redistribution allowed by the Code is available if the members satisfy the Code requirements.

Fig. R8.4—Permissible moment redistribution for minimum rotation capacity.
8.5 — Modulus of elasticity

8.5.1 — Modulus of elasticity, E_c, for concrete shall be permitted to be taken as $\omega_c^{1.533} f_c'\sqrt{f_c'}$ (in psi) for values of ω_c between 90 and 160 lb/ft3. For normalweight concrete, E_c shall be permitted to be taken as 57,000 $\sqrt{f_c'}$.

8.5.2 — Modulus of elasticity, E_s, for nonprestressed reinforcement shall be permitted to be taken as 29,000,000 psi.

8.5.3 — Modulus of elasticity, E_p, for prestressing steel shall be determined by tests or reported by the manufacturer.

8.6 — Lightweight concrete

8.6.1 — To account for the use of lightweight concrete, unless specifically noted otherwise, a modification factor λ appears as a multiplier of $\sqrt{f_c'}$ in all applicable equations and sections of this Code, where $\lambda = 0.85$ for sand-lightweight concrete and 0.75 for all-lightweight concrete. Linear interpolation between 0.75 and 0.85 shall be permitted, on the basis of volumetric fractions, when a portion of the lightweight fine aggregate is replaced with normalweight fine aggregate. Linear interpolation between 0.85 and 1.0 shall be permitted, on the basis of volumetric fractions, for concrete containing normalweight fine aggregate and a blend of lightweight and normalweight coarse aggregates. For normalweight concrete, $\lambda = 1.0$. If average splitting tensile strength of lightweight concrete, f_{ct}, is specified, $\lambda = f_{ct}/(6.7 \sqrt{f_c'}) \leq 1.0$.

R8.5 — Modulus of elasticity

R8.5.1 — Studies leading to the expression for modulus of elasticity of concrete in 8.5.1 are summarized in Reference 8.7 where E_c was defined as the slope of the line drawn from a stress of zero to a compressive stress of $0.45f_c'$. The modulus of elasticity for concrete is sensitive to the modulus of elasticity of the aggregate and may differ from the specified value. Measured values range typically from 120 to 80 percent of the specified value. Methods for determining the modulus of elasticity for concrete are described in Reference 8.8.

R8.6 — Lightweight concrete

R8.6.1 — Factor λ reflects the lower tensile strength of lightweight concrete, which can reduce shear strength, friction properties, splitting resistance, bond between concrete and reinforcement, and increase development length, compared with normalweight concrete of the same compressive strength. Two alternative procedures are provided to determine λ. The first alternative is based on the assumption that the tensile strength of lightweight concrete is a fixed fraction of the tensile strength of normalweight concrete. The multipliers are based on data from tests on many types of structural lightweight aggregate.

The second alternative is based on laboratory tests to determine the relationship between average splitting tensile strength f_{ct} and the specified compressive strength f_c' for the lightweight concrete being used. For normalweight concrete, the average splitting tensile strength f_{ct} is approximately equal to $6.7 \sqrt{f_c'}$. Before 2002, Section 8.4 specified the permissible redistribution percentage in terms of reinforcement indices. The 2002 Code specified the permissible redistribution percentage in terms of the net tensile strain in extreme tension steel at nominal strength, ε. See Reference 8.6 for a comparison of these moment redistribution provisions.
8.7 — Stiffness

8.7.1 — Use of any set of reasonable assumptions shall be permitted for computing relative flexural and torsional stiffnesses of columns, walls, floors, and roof systems. The assumptions adopted shall be consistent throughout analysis.

R8.7 — Stiffness

R8.7.1 — Ideally, the member stiffnesses E_cI and GJ should reflect the degree of cracking and inelastic action that has occurred along each member before yielding. However, the complexities involved in selecting different stiffnesses for all members of a frame would make frame analyses inefficient in design offices. Simpler assumptions are required to define flexural and torsional stiffnesses.

For braced frames, relative values of stiffness are important. Two usual assumptions are to use gross E_cI values for all members or, to use half the gross E_cI of the beam stem for beams and the gross E_cI for the columns.

For frames that are free to sway, a realistic estimate of E_cI is desirable and should be used if second-order analyses are carried out. Guidance for the choice of E_cI for this case is given in R10.10.4.

Two conditions determine whether it is necessary to consider torsional stiffness in the analysis of a given structure: (1) the relative magnitude of the torsional and flexural stiffnesses, and (2) whether torsion is required for equilibrium of the structure (equilibrium torsion) or is due to members twisting to maintain deformation compatibility (compatibility torsion). In the case of compatibility torsion, the torsional stiffness may be neglected. For cases involving equilibrium torsion, torsional stiffness should be considered.

R8.7.2 — Stiffness and fixed-end moment coefficients for haunched members may be obtained from Reference 8.11.

8.8 — Effective stiffness to determine lateral deflections

8.8.1 — Lateral deflections of reinforced concrete building systems resulting from service lateral loads shall be computed by either a linear analysis with member stiffness determined using 1.4 times the flexural stiffness defined in 8.8.2 and 8.8.3 or by a more detailed analysis. Member properties shall not be taken greater than the gross section properties.

R8.8 — Effective stiffness to determine lateral deflections

R8.8.1 — The selection of appropriate effective stiffness values depends on the intended performance of the structure. For wind loading, it is desirable to maintain elastic behavior in members at service load conditions. When analyzing a structure subjected to earthquake events at short recurrence intervals, some yielding without significant damage to the members may be a tolerable performance objective. As with lateral stability analysis of concrete structures (R10.10.4), a factor of 1.4 times the stiffness used for analysis under factored lateral loads is adequate to model effective section properties for lateral deflection analysis under service loads. Alternatively, a more accurate level of stiffness based on the expected element performance can be determined.

R8.8.2 — Lateral deflections of reinforced concrete building systems resulting from factored lateral loads shall be computed either by linear analysis with member stiffness defined by (a) or (b), or by a more detailed analysis. Member properties shall not be taken greater than the gross section properties.
detailed analysis considering the reduced stiffness of all members under the loading conditions:

(a) By section properties defined in 10.10.4.1(a) through (c); or

(b) 50 percent of stiffness values based on gross section properties.

8.8.3 — Where two-way slabs without beams are designated as part of the seismic-force-resisting system, lateral deflections resulting from factored lateral loads shall be permitted to be computed by using linear analysis. The stiffness of slab members shall be defined by a model that is in substantial agreement with results of comprehensive tests and analysis and the stiffness of other frame members shall be as defined in 8.8.2.

8.9 — Span length

8.9.1 — Span length of members not built integrally with supports shall be considered as the clear span stiffness. The selection of appropriate effective stiffness for reinforced concrete frame members has dual purposes: to provide realistic estimates of lateral deflection and to determine deflection-imposed actions on the gravity system of the structure. A detailed nonlinear analysis of the structure would adequately capture these two effects. A simple way to estimate an equivalent nonlinear lateral deflection (δ_{em} at the top story in IBC 2006) using linear analysis is to reduce the modeled stiffness of the concrete members in the structure. The type of lateral load analysis affects the selection of appropriate effective stiffness values. For analyses with wind loading, where it is desirable to prevent nonlinear action in the structure, effective stiffness representative of pre-yield behavior may be appropriate. For earthquake loading, a level of nonlinear behavior is tolerable depending on the intended structural performance and earthquake recurrence interval.

Varying degrees of confidence can be obtained from a simple linear analysis based on the computational rigor used to define the effective stiffness of each member. One option that considers the reduced stiffness of the elements is to calculate the secant stiffness value to the point of yielding of reinforcement for the member, or the secant value to a point before yielding of the reinforcement if analysis demonstrates yielding is not expected for the given loading condition. The alternative options presented in 8.8.2 use values that approximate stiffness for reinforced concrete building systems loaded to near or beyond the yield level and have been shown to produce reasonable correlation with both experimental and detailed analytical results. The effective stiffnesses in Option (a) were developed to represent lower-bound values for stability analysis of concrete building systems subjected to gravity and wind loads. Option (a) is provided so that the model used to calculate slenderness effects may be used to calculate lateral deflections due to factored wind and earthquake loading. In general, for effective section properties, E_c may be defined as in 8.5.1, A as in 10.10.4.1(c), and the shear modulus may be taken as $0.4E_c$.

R8.8.3 — Analysis of buildings with two-way slab systems without beams requires that the model represent the transfer of lateral loads between vertical members. The model should result in prediction of stiffness in substantial agreement with results of comprehensive tests and analysis. Several acceptable models have been proposed to accomplish this action.

R8.9 — Span length

Beam moments calculated at support centers may be reduced to the moments at support faces for design of
CODE

plus the depth of the member, but need not exceed distance between centers of supports.

8.9.2 — In analysis of frames or continuous construction for determination of moments, span length shall be taken as the distance center-to-center of supports.

8.9.3 — For beams built integrally with supports, design on the basis of moments at faces of support shall be permitted.

8.9.4 — It shall be permitted to analyze solid or ribbed slabs built integrally with supports, with clear spans not more than 10 ft, as continuous slabs on knife edge supports with spans equal to the clear spans of the slab and width of beams otherwise neglected.

8.10 — Columns

8.10.1 — Columns shall be designed to resist the axial forces from factored loads on all floors or roof and the maximum moment from factored loads on a single adjacent span of the floor or roof under consideration. Loading condition giving the maximum ratio of moment to axial load shall also be considered.

8.10.2 — In frames or continuous construction, consideration shall be given to the effect of unbalanced floor or roof loads on both exterior and interior columns and of eccentric loading due to other causes.

8.10.3 — In computing gravity load moments in columns, it shall be permitted to assume far ends of columns built integrally with the structure to be fixed.

8.10.4 — Resistance to moments at any floor or roof level shall be provided by distributing the moment between columns immediately above and below the given floor in proportion to the relative column stiffnesses and conditions of restraint.

8.11 — Arrangement of live load

8.11.1 — It shall be permitted to assume that:

(a) The live load is applied only to the floor or roof under consideration; and

(b) The far ends of columns built integrally with the structure are considered to be fixed.

8.11.2 — It shall be permitted to assume that the arrangement of live load is limited to combinations of:

(a) Factored dead load on all spans with full factored live load on two adjacent spans; and

COMMENTARY

beams. Reference 8.17 provides an acceptable method of reducing moments at support centers to those at support faces.

R8.10 — Columns

Section 8.10 has been developed with the intent of making certain that the most demanding combinations of axial load and moments be identified for design.

Section 8.10.4 has been included to make certain that moments in columns are recognized in the design if the girders have been proportioned using 8.3.3. The moment in 8.10.4 refers to the difference between the moments in a given vertical plane, exerted at column centerline by members framing into that column.

R8.11 — Arrangement of live load

For determining column, wall, and beam moments and shears caused by gravity loads, the Code permits the use of a model limited to the beams in the level considered and the columns above and below that level. Far ends of columns are to be considered as fixed for the purpose of analysis under gravity loads. This assumption does not apply to lateral load analysis. However, in analysis for lateral loads, simplified methods (such as the portal method) may be used to obtain the moments, shears, and reactions for structures that are symmetrical and satisfy the assumptions used for such simplified methods. For unsymmetrical and high-rise structures, rigorous methods recognizing all structural displacements should be used.
(b) Factored dead load on all spans with full factored live load on alternate spans.

8.12 — T-beam construction

8.12.1 — In T-beam construction, the flange and web shall be built integrally or otherwise effectively bonded together.

8.12.2 — Width of slab effective as a T-beam flange shall not exceed one-quarter of the span length of the beam, and the effective overhanging flange width on each side of the web shall not exceed:

(a) Eight times the slab thickness; and
(b) One-half the clear distance to the next web.

8.12.3 — For beams with a slab on one side only, the effective overhanging flange width shall not exceed:

(a) One-twelfth the span length of the beam;
(b) Six times the slab thickness; and
(c) One-half the clear distance to the next web.

8.12.4 — Isolated beams, in which the T-shape is used to provide a flange for additional compression area, shall have a flange thickness not less than one-half the width of web and an effective flange width not more than four times the width of web.

8.12.5 — Where primary flexural reinforcement in a slab that is considered as a T-beam flange (excluding joist construction) is parallel to the beam, reinforcement perpendicular to the beam shall be provided in the top of the slab in accordance with the following:

8.12.5.1 — Transverse reinforcement shall be designed to carry the factored load on the overhanging slab width assumed to act as a cantilever. For isolated beams, the full width of overhanging flange shall be considered. For other T-beams, only the effective overhanging slab width need be considered.

8.12.5.2 — Transverse reinforcement shall be spaced not farther apart than five times the slab thickness, nor farther apart than 18 in.

COMMENTARY

The most demanding sets of design forces should be established by investigating the effects of live load placed in various critical patterns.

Most approximate methods of analysis neglect effects of deflections on geometry and axial flexibility. Therefore, beam and column moments may have to be amplified for column slenderness in accordance with 10.10.

R8.12 — T-beam construction

This section contains provisions identical to those of previous Codes for limiting dimensions related to stiffness and flexural calculations. Provisions related to T-beams and other flanged members are stated in 11.5.1 with regard to torsion.
8.13 — Joist construction

8.13.1 — Joist construction consists of a monolithic combination of regularly spaced ribs and a top slab arranged to span in one direction or two orthogonal directions.

8.13.2 — Ribs shall be not less than 4 in. in width, and shall have a depth of not more than 3-1/2 times the minimum width of rib.

8.13.3 — Clear spacing between ribs shall not exceed 30 in.

8.13.4 — Joist construction not meeting the limitations of 8.13.1 through 8.13.3 shall be designed as slabs and beams.

8.13.5 — When permanent burned clay or concrete tile fillers of material having a unit compressive strength at least equal to f'_c in the joists are used:

8.13.5.1 — For shear and negative moment strength computations, it shall be permitted to include the vertical shells of fillers in contact with the ribs. Other portions of fillers shall not be included in strength computations.

8.13.5.2 — Slab thickness over permanent fillers shall be not less than one-twelfth the clear distance between ribs, nor less than 1-1/2 in.

8.13.5.3 — In one-way joists, reinforcement normal to the ribs shall be provided in the slab as required by 7.12.

8.13.6 — When removable forms or fillers not complying with 8.13.5 are used:

8.13.6.1 — Slab thickness shall be not less than one-twelfth the clear distance between ribs, nor less than 2 in.

8.13.6.2 — Reinforcement normal to the ribs shall be provided in the slab as required for flexure, considering load concentrations, if any, but not less than required by 7.12.

8.13.7 — Where conduits or pipes as permitted by 6.3 are embedded within the slab, slab thickness shall be at least 1 in. greater than the total overall depth of the conduits or pipes at any point. Conduits or pipes shall not impair significantly the strength of the construction.

R8.13 — Joist construction

The size and spacing limitations for concrete joist construction meeting the limitations of 8.13.1 through 8.13.3 are based on successful performance in the past.

R8.13.3 — A limit on the maximum spacing of ribs is required because of the provisions permitting higher shear strengths and less concrete protection for the reinforcement for these relatively small, repetitive members.
CODE

8.13.8 — For joist construction, V_c shall be permitted to be 10 percent more than that specified in Chapter 11.

COMMENTARY

R8.13.8 — The increase in shear strength permitted by 8.13.8 is justified on the basis of: (1) satisfactory performance of joist construction with higher shear strengths, designed under previous Codes, which allowed comparable shear stresses, and (2) redistribution of local overloads to adjacent joists.

8.14 — Separate floor finish

8.14.1 — A floor finish shall not be included as part of a structural member unless placed monolithically with the floor slab or designed in accordance with requirements of Chapter 17.

8.14.2 — It shall be permitted to consider all concrete floor finishes as part of required cover or total thickness for nonstructural considerations.

R8.14 — Separate floor finish

The Code does not specify an additional thickness for wearing surfaces subjected to unusual conditions of wear. The need for added thickness for unusual wear is left to the discretion of the licensed design professional.

As in previous editions of the Code, a floor finish may be considered for strength purposes only if it is cast monolithically with the slab. Permission is given to include a separate finish in the structural thickness if composite action is provided for in accordance with Chapter 17.

All floor finishes may be considered for nonstructural purposes such as cover for reinforcement, fire protection, etc. Provisions should be made, however, to ensure that the finish will not spall off, thus causing decreased cover. Furthermore, development of reinforcement considerations requires minimum monolithic concrete cover according to 7.7.
Notes
CHAPTER 9 — STRENGTH AND SERVICEABILITY REQUIREMENTS

CODE

9.1 — General

9.1.1 — Structures and structural members shall be designed to have design strengths at all sections at least equal to the required strengths calculated for the factored loads and forces in such combinations as are stipulated in this Code.

9.1.2 — Members also shall meet all other requirements of this Code to ensure adequate performance at service load levels.

9.1.3 — Design of structures and structural members using the load factor combinations and strength reduction factors of Appendix C shall be permitted. Use of load factor combinations from this chapter in conjunction with strength reduction factors of Appendix C shall not be permitted.

CHAPTER 9 — STRENGTH AND SERVICEABILITY REQUIREMENTS

COMMENTARY

R9.1 — General

In the 2002 Code, the load factor combinations and strength reduction factors of the 1999 Code were revised and moved to Appendix C. The 1999 combinations were replaced with those of SEI/ASCE 7-02.9.1 The strength reduction factors were replaced with those of the 1999 Appendix C, except that the factor for flexure was increased.

The changes were made to further unify the design profession on one set of load factors and combinations, and to facilitate the proportioning of concrete building structures that include members of materials other than concrete. When used with the strength reduction factors in 9.3, the designs for gravity loads will be comparable to those obtained using the strength reduction and load factors of the 1999 and earlier Codes. For combinations with lateral loads, some designs will be different, but the results of either set of load factors are considered acceptable.

Chapter 9 defines the basic strength and serviceability conditions for proportioning structural concrete members.

The basic requirement for strength design may be expressed as follows:

Design Strength \(\geq \) Required Strength

\[\phi (\text{Nominal Strength}) \geq U \]

In the strength design procedure, the margin of safety is provided by multiplying the service load by a load factor and the nominal strength by a strength reduction factor.

R9.2 — Required strength

The required strength \(U \) is expressed in terms of factored loads, or related internal moments and forces. Factored loads are the loads specified in the general building code multiplied by appropriate load factors.

The factor assigned to each load is influenced by the degree of accuracy to which the load effect usually can be calculated and the variation that might be expected in the load during the lifetime of the structure. Dead loads, because they are more accurately determined and less variable, are assigned a lower load factor than live loads. Load factors also account for variability in the structural analysis used to compute moments and shears.

The Code gives load factors for specific combinations of loads. In assigning factors to combinations of loading, some
CODE

\[U = 1.2D + 1.0E + 1.0L + 0.2S \] \hspace{1cm} (9-5)
\[U = 0.9D + 1.6W + 1.6H \] \hspace{1cm} (9-6)
\[U = 0.9D + 1.6E + 1.6H \] \hspace{1cm} (9-7)

except as follows:

(a) The load factor on the live load \(L \) in Eq. (9-3) to (9-5) shall be permitted to be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where \(L \) is greater than 100 lb/ft².

(b) Where wind load \(W \) has not been reduced by a directionality factor, it shall be permitted to use \(1.3W \) in place of \(1.6W \) in Eq. (9-4) and (9-6).

(c) Where \(E \), the load effects of earthquake, is based on service-level seismic forces, \(1.4E \) shall be used in place of \(1.0E \) in Eq. (9-5) and (9-7).

(d) The load factor on \(H \), loads due to weight and pressure of soil, water in soil, or other materials, shall be set equal to zero in Eq. (9-6) and (9-7) if the structural action due to \(H \) counteracts that due to \(W \) or \(E \). Where lateral earth pressure provides resistance to structural actions from other forces, it shall not be included in \(H \) but shall be included in the design resistance.

COMMENTARY

consideration is given to the probability of simultaneous occurrence. While most of the usual combinations of loadings are included, it should not be assumed that all cases are covered.

Due regard is to be given to sign in determining \(U \) for combinations of loadings, as one type of loading may produce effects of opposite sense to that produced by another type. The load combinations with \(0.9D \) are specifically included for the case where a higher dead load reduces the effects of other loads. The loading case may also be critical for tension-controlled column sections. In such a case, a reduction in axial load and an increase in moment may result in a critical load combination.

Consideration should be given to various combinations of loading to determine the most critical design condition. This is particularly true when strength is dependent on more than one load effect, such as strength for combined flexure and axial load or shear strength in members with axial load.

If unusual circumstances require greater reliance on the strength of particular members than encountered in usual practice, some reduction in the stipulated strength reduction factors \(\phi \) or increase in the stipulated load factors may be appropriate for such members.

R9.2.1(a) — The load modification factor of 9.2.1(a) is different than the live load reductions based on the loaded area that may be allowed in the legally adopted general building code. The live load reduction, based on loaded area, adjusts the nominal live load (\(L_0 \) in ASCE/SEI 7) to \(L \). The live load reduction as specified in the legally adopted general building code can be used in combination with the 0.5 load factor specified in 9.2.1(a).

R9.2.1(b) — The wind load equation in SEI/ASCE 7-02\(^9.1\) and IBC 2003\(^9.2\) includes a factor for wind directionality that is equal to 0.85 for buildings. The corresponding load factor for wind in the load combination equations was increased accordingly \((1.3/0.85 = 1.53 \text{ rounded up to 1.6})\). The Code allows use of the previous wind load factor of 1.3 when the design wind load is obtained from other sources that do not include the wind directionality factor.

R9.2.1(c) — Model building codes and design load references have converted earthquake forces to strength level, and reduced the earthquake load factor to 1.0 (ASCE 7-93\(^9.3\), BOCA/NBC 93\(^9.4\), SBC 94\(^9.5\), UBC 97\(^9.6\), and IBC 2000). The Code requires use of the previous load factor for earthquake loads, approximately 1.4, when service-level earthquake forces from earlier editions of these references are used.

R9.2.2 — If the live load is applied rapidly, as may be the case for parking structures, loading docks, warehouse floors,
9.2.3 — Estimations of differential settlement, creep, shrinkage, expansion of shrinkage-compensating concrete, or temperature change shall be based on a realistic assessment of such effects occurring in service.

9.2.4 — If a structure is in a flood zone, or is subjected to forces from atmospheric ice loads, the flood or ice loads and the appropriate load combinations of ASCE/SEI 7 shall be used.

9.2.5 — For post-tensioned anchorage zone design, a load factor of 1.2 shall be applied to the maximum prestressing steel jacking force.

9.3 — Design strength

9.3.1 — Design strength provided by a member, its connections to other members, and its cross sections, in terms of flexure, axial load, shear, and torsion, shall be taken as the nominal strength calculated in accordance with requirements and assumptions of this Code, multiplied by the strength reduction factors δ in 9.3.2, 9.3.4, and 9.3.5.

COMMENTARY

elevator shafts, etc., impact effects should be considered. In all equations, substitute $(L + \text{impact})$ for L when impact should be considered.

R9.2.3 — The effects of differential settlement, creep, shrinkage, temperature, and shrinkage-compensating concrete should be considered. The term “realistic assessment” is used to indicate that the most probable values rather than the upper bound values of the variables should be used.

R9.2.4 — Areas subject to flooding are defined by flood hazard maps, usually maintained by local governmental jurisdictions.

R9.2.5 — The load factor of 1.2 applied to the maximum tendon jacking force results in a design load of about 113 percent of the specified prestressing steel yield strength but not more than 96 percent of the nominal ultimate strength of the prestressing steel. This compares well with the maximum attainable jacking force, which is limited by the anchor efficiency factor.

R9.3 — Design strength

R9.3.1 — The design strength of a member refers to the nominal strength calculated in accordance with the requirements stipulated in this Code multiplied by a strength reduction factor δ, which is always less than 1.

The purposes of the strength reduction factor δ are: (1) to allow for the probability of under-strength members due to variations in material strengths and dimensions, (2) to allow for inaccuracies in the design equations, (3) to reflect the degree of ductility and required reliability of the member under the load effects being considered, and (4) to reflect the importance of the member in the structure.

In the 2002 Code, the strength reduction factors were adjusted to be compatible with the SEI/ASCE 7.1 load combinations, which were the basis for the required factored load combinations in model building codes at that time. These factors are essentially the same as those published in Appendix C of the 1995 edition, except the factor for flexure/tension controlled limits is increased from 0.80 to 0.90. This change was based on reliability analyses, statistical study of material properties, as well as the opinion of the committee that the historical performance of concrete structures supports $\delta = 0.90$. In 2008, δ for spirally reinforced compression-controlled sections was revised based on the reliability analyses reported in Reference 9.10 and the superior performance of such members when subjected to excessive demand as documented in Reference 9.11.
9.3.2 — Strength reduction factor ϕ shall be as given in 9.3.2.1 through 9.3.2.7:

9.3.2.1 — Tension-controlled sections as defined in 10.3.4.................................0.90
(See also 9.3.2.7)

9.3.2.2 — Compression-controlled sections, as defined in 10.3.3:

(a) Members with spiral reinforcement
conforming to 10.9.3 ...0.75
(b) Other reinforced members.............................0.65

For sections in which the net tensile strain in the extreme tension steel at nominal strength, ε_t, is between the limits for compression-controlled and tension-controlled sections, ϕ shall be permitted to be linearly increased from that for compression-controlled sections to 0.90 as ε_t increases from the compression-controlled strain limit to 0.005.

Alternatively, when Appendix B is used, for members in which f_y does not exceed 60,000 psi, with symmetric reinforcement, and with $(d - d')/h$ not less than 0.70, ϕ shall be permitted to be increased linearly to 0.90 as ϕP_n decreases from $0.10 f'_{c} A_g$ to zero. For other reinforced members, ϕ shall be permitted to be increased linearly to 0.90 as ϕP_n decreases from $0.10 f'_{c} A_g$ or ϕP_b, whichever is smaller, to zero.

R9.3.2.1 — In applying 9.3.2.1 and 9.3.2.2, the axial tensions and compressions to be considered are those caused by external forces. Effects of prestressing forces are not included.

R9.3.2.2 — Before the 2002 edition, the Code specified the magnitude of the ϕ-factor for cases of axial load or flexure, or both, in terms of the type of loading. For these cases, the ϕ-factor is now determined by the strain conditions at a cross section, at nominal strength.

A lower ϕ-factor is used for compression-controlled sections than is used for tension-controlled sections because compression-controlled sections have less ductility, are more sensitive to variations in concrete strength, and generally occur in members that support larger loaded areas than members with tension-controlled sections. Members with spiral reinforcement are assigned a higher ϕ than tied columns because they have greater ductility or toughness.

For sections subjected to axial load with flexure, design strengths are determined by multiplying both P_n and M_n by the appropriate single value of ϕ. Compression-controlled and tension-controlled sections are defined in 10.3.3 and 10.3.4 as those that have net tensile strain in the extreme tension steel at nominal strength less than or equal to the compression-controlled strain limit, and equal to or greater than 0.005, respectively. For sections with net tensile strain ε_t in the extreme tension steel at nominal strength between the above limits, the value of ϕ may be determined by linear interpolation, as shown in Fig. R9.3.2. The concept of net tensile strain ε_t is discussed in R10.3.3.

Fig. R9.3.2—Variation of ϕ with net tensile strain in extreme tension steel, ε_t, and c/d_t for Grade 60 reinforcement and for prestressing steel.
Since the compressive strain in the concrete at nominal strength is assumed in 10.2.3 to be 0.003, the net tensile strain limits for compression-controlled members may also be stated in terms of the ratio \(c/d_t \), where \(c \) is the depth of the neutral axis at nominal strength, and \(d_t \) is the distance from the extreme compression fiber to the extreme tension steel. The \(c/d_t \) limits for compression-controlled and tension-controlled sections are 0.6 and 0.375, respectively. The 0.6 limit applies to sections reinforced with Grade 60 steel and to prestressed sections. Figure R9.3.2 also gives equations for \(\phi \) as a function of \(c/d_t \).

The net tensile strain limit for tension-controlled sections may also be stated in terms of the \(\rho/\rho_b \) as defined in the 1999 and earlier editions of the Code. The net tensile strain limit of 0.005 corresponds to a \(\rho/\rho_b \) ratio of 0.63 for rectangular sections with Grade 60 reinforcement. For a comparison of these provisions with the 1999 Code Section 9.3, see Reference 9.12.

R9.3.2.5 — The \(\phi \)-factor of 0.85 reflects the wide scatter of results of experimental anchorage zone studies. Since 18.13.4.2 limits the nominal compressive strength of unconfined concrete in the general zone to \(0.7 \lambda f_{ci}' \), the effective design strength for unconfined concrete is \(0.85 \times 0.7 \lambda f_{ci}' \approx 0.6 \lambda f_{ci}' \).

R9.3.2.6 — The \(\phi \)-factor used in strut-and-tie models is taken equal to the \(\phi \)-factor for shear. The value of \(\phi \) for strut-and-tie models is applied to struts, ties, and bearing areas in such models.

R9.3.2.7 — If a critical section occurs in a region where strand is not fully developed, failure may be by bond slip. Such a failure resembles a brittle shear failure; hence, the requirements for a reduced \(\phi \). For sections between the end of the transfer length and the end of the development length, the value of \(\phi \) may be determined by linear interpolation, as shown in Fig. R9.3.2.7(a) and (b).

Where bonding of one or more strands does not extend to the end of the member, instead of a more rigorous analysis, \(\phi \) may be conservatively taken as 0.75 from the end of the member to the end of the development length of the strand with the longest debonded length. Beyond this point, \(\phi \) may vary linearly to 0.9 at the location where all strands are developed, as shown in Fig. R9.3.2.7(b). Alternatively, the contribution of the debonded strands may be ignored until they are fully developed. Embedment of debonded strand is considered to begin at the termination of the debonding sleeves. Beyond this point, the provisions of 12.9.3 are applicable.
9.3.3 — Development lengths specified in Chapter 12 do not require a ϕ-factor.

9.3.4 — For structures that rely on intermediate precast structural walls in Seismic Design Category D, E, or F, special moment frames, or special structural walls to resist earthquake effects, E, ϕ shall be modified as given in (a) through (c):

(a) For any structural member that is designed to resist E, ϕ for shear shall be 0.60 if the nominal shear strength of the member is less than the shear corresponding to the development of the nominal flexural strength of the member. The nominal flexural strength shall be determined considering the most critical factored axial loads and including E;

(b) For diaphragms, ϕ for shear shall not exceed the minimum ϕ for shear used for the vertical components of the primary seismic-force-resisting system;

(c) For joints and diagonally reinforced coupling beams, ϕ for shear shall be 0.85.

R9.3.4 — Section 9.3.4(a) refers to brittle members such as low-rise walls, portions of walls between openings, or diaphragms that are impractical to reinforce to raise their nominal shear strength above nominal flexural strength for the pertinent loading conditions.

Short structural walls were the primary vertical elements of the lateral-force-resisting system in many of the parking structures that sustained damage during the 1994 Northridge earthquake. Section 9.3.4(b) requires the shear strength reduction factor for diaphragms to be 0.60 if the shear strength reduction factor for the walls is 0.60.
CODE

9.3.5 — In Chapter 22, \(\phi \) shall be 0.60 for flexure, compression, shear, and bearing of structural plain concrete.

COMMENTARY

R9.3.5 — The strength reduction factor \(\phi \) for structural plain concrete design is the same for all strength conditions. Since both flexural tension strength and shear strength for plain concrete depend on the tensile strength characteristics of the concrete, with no reserve strength or ductility possible due to the absence of reinforcement, equal strength reduction factors for both bending and shear are considered appropriate. In the 2008 Code, the factor was increased to 0.60 based on reliability analyses and statistical study of concrete properties, as well as calibration to past practice.

9.4 — Design strength for reinforcement

The values of \(f_y \) and \(f_{yt} \) used in design calculations shall not exceed 80,000 psi, except for prestressing steel and for transverse reinforcement in 10.9.3 and 21.1.5.4.

R9.4 — Design strength for reinforcement

In addition to the upper limit of 80,000 psi for yield strength of nonprestressed reinforcement, there are limitations on yield strength in other sections of the Code.

In 11.4.2, 11.5.3.4, 11.6.6, and 18.9.3.2, the maximum value of \(f_y \) or \(f_{yt} \) that may be used in design is 60,000 psi, except that \(f_y \) or \(f_{yt} \) up to 80,000 psi may be used for shear reinforcement meeting the requirements of ASTM A497.

In 19.3.2 and 21.1.5.2, the maximum specified yield strength \(f_y \) is 60,000 psi in shells, folded plates, special moment frames, and special structural walls.

The deflection provisions of 9.5 and the limitations on distribution of flexural reinforcement of 10.6 become increasingly critical as \(f_y \) increases.

9.5 — Control of deflections

9.5.1 — Reinforced concrete members subjected to flexure shall be designed to have adequate stiffness to limit deflections or any deformations that adversely affect strength or serviceability of a structure.

R9.5 — Control of deflections

R9.5.1 — The provisions of 9.5 are concerned only with deflections or deformations that may occur at service load levels. When long-term deflections are computed, only the dead load and that portion of the live load that is sustained need be considered.

Two methods are given for controlling deflections. For nonprestressed beams and one-way slabs, and for composite members, provision of a minimum overall thickness as required by Table 9.5(a) will satisfy the requirements of the Code for members not supporting or attached to partitions or other construction likely to be damaged by large deflections. For nonprestressed two-way construction, minimum thickness as required by 9.5.3.1, 9.5.3.2, and 9.5.3.3 will satisfy the requirements of the Code.

For nonprestressed members that do not meet these minimum thickness requirements, or that support or are attached to partitions or other construction likely to be damaged by large deflections, and for all prestressed concrete flexural members, deflections should be calculated by the procedures described or referred to in the appropriate sections of the Code, and are limited to the values in Table 9.5(b).
R9.5.2 — One-way construction (nonprestressed)

R9.5.2.1 — The minimum thicknesses of Table 9.5(a) apply for nonprestressed beams and one-way slabs (see 9.5.2), and for composite members (see 9.5.5). These minimum thicknesses apply only to members not supporting or attached to partitions and other construction likely to be damaged by deflection.

Values of minimum thickness should be modified if other than normalweight concrete and Grade 60 reinforcement are used. The notes beneath the table are essential to its use for reinforced concrete members constructed with structural lightweight concrete or with reinforcement having a specified yield strength, \(f_y \), other than 60,000 psi. If both of these conditions exist, the corrections in Footnotes (a) and (b) should both be applied.

The modification for lightweight concrete in Footnote (a) is based on studies of the results and discussions in Reference 9.14. No correction is given for concretes with \(w_c \) greater than 115 lb/ft\(^3\) because the correction term would be close to unity in this range.

The modification for \(f_y \) in Footnote (b) is approximate but should yield conservative results for the type of members considered in the table, for typical reinforcement ratios, and for values of \(f_y \) between 40,000 and 80,000 psi.

R9.5.2.2 — For calculation of immediate deflections of uncracked prismatic members, the usual methods or formulas for elastic deflections may be used with a constant value of \(E \) along the length of the member. However, if the member is cracked at one or more sections, or if its depth varies along the span, a more exact calculation becomes necessary.

TABLE 9.5(a) — MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE CALCULATED

<table>
<thead>
<tr>
<th>Member</th>
<th>Simply supported</th>
<th>One end continuous</th>
<th>Both ends continuous</th>
<th>Cantilever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid one-way slabs</td>
<td>(l/20)</td>
<td>(l/24)</td>
<td>(l/28)</td>
<td>(l/10)</td>
</tr>
<tr>
<td>Beams or ribbed one-way slabs</td>
<td>(l/16)</td>
<td>(l/18.5)</td>
<td>(l/21)</td>
<td>(l/8)</td>
</tr>
</tbody>
</table>

Notes:
Values given shall be used directly for members with normalweight concrete and Grade 60 reinforcement. For other conditions, the values shall be modified as follows:

a) For lightweight concrete having equilibrium density, \(w_c \), in the range of 90 to 115 lb/ft\(^3\), the values shall be multiplied by \((1.65 - 0.005w_c) \) but not less than 1.09.

b) For \(f_y \) other than 60,000 psi, the values shall be multiplied by \((0.4 + f_y/100,000) \).
CODE

9.5.2.3 — Unless stiffness values are obtained by a more comprehensive analysis, immediate deflection shall be computed with the modulus of elasticity for concrete, E_c, as specified in 8.5.1 (normalweight or lightweight concrete) and with the effective moment of inertia, I_e, as follows, but not greater than I_g

$$I_e = \left(\frac{M_c}{M_a} \right)^3 I_g + \left[1 - \left(\frac{M_c}{M_a} \right)^3 \right] I_{cr} \tag{9-8}$$

where

$$M_c = \frac{f_r I_g}{y_t} \tag{9-9}$$

and

$$f_r = 7.5 \lambda_y \sqrt{f_c'} \tag{9-10}$$

9.5.2.4 — For continuous members, I_e shall be permitted to be taken as the average of values obtained from Eq. (9-8) for the critical positive and negative moment sections. For prismatic members, I_e shall be permitted to be taken as the value obtained from Eq. (9-8) at midspan for simple and continuous spans, and at support for cantilevers.

9.5.2.5 — Unless values are obtained by a more comprehensive analysis, additional long-term deflection resulting from creep and shrinkage of flexural members (normalweight or lightweight concrete) shall be determined by multiplying the immediate deflection caused by the sustained load considered, by the factor λ_{Δ}

$$\lambda_{\Delta} = \frac{\xi}{1 + 50 \rho'} \tag{9-11}$$

where ρ' shall be the value at midspan for simple and continuous spans, and at support for cantilevers. It shall be permitted to assume ξ, the time-dependent factor for sustained loads, to be equal to:

<table>
<thead>
<tr>
<th>Duration</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 years or more</td>
<td>2.0</td>
</tr>
<tr>
<td>12 months</td>
<td>1.4</td>
</tr>
<tr>
<td>6 months</td>
<td>1.2</td>
</tr>
<tr>
<td>3 months</td>
<td>1.0</td>
</tr>
</tbody>
</table>

COMMENTARY

R9.5.2.3 — The effective moment of inertia procedure described in the Code and developed in Reference 9.15 was selected as being sufficiently accurate for use to control deflections. The effective moment of inertia I_e was developed to provide a transition between the upper and lower bounds of I_g and I_{cr} as a function of the ratio M_c/M_a. For most cases, I_e will be less than I_g.

R9.5.2.4 — For continuous members, the Code procedure suggests a simple averaging of I_e values for the positive and negative moment sections. The use of the midspan section properties for continuous prismatic members is considered satisfactory in approximate calculations primarily because the midspan rigidity (including the effect of cracking) has the dominant effect on deflections, as shown by ACI Committee 435 and SP-43.

R9.5.2.5 — Shrinkage and creep due to sustained loads cause additional long-term deflections over and above those that occur when loads are first placed on the structure. Such deflections are influenced by temperature, humidity, curing conditions, age at time of loading, quantity of compression reinforcement, and magnitude of the sustained load. The expression given in this section is considered satisfactory for use with the Code procedures for the calculation of immediate deflections, and with the limits given in Table 9.5(b). The deflection computed in accordance with this section is the additional long-term deflection due to the dead load and that portion of the live load that will be sustained for a sufficient period to cause significant time-dependent deflections.

Equation (9-11) was developed in Reference 9.21. In Eq. (9-11) the multiplier on ξ accounts for the effect of compression reinforcement in reducing long-term deflections. $\xi = 2.0$ represents a nominal time-dependent factor for a 5-year duration of loading. The curve in Fig. R9.5.2.5 may be used to estimate values of ξ for loading periods less than 5 years.

If it is desired to consider creep and shrinkage separately, approximate equations provided in References 9.15, 9.16, 9.21, and 9.22 may be used.
CODE

9.5.2.6 — Deflection computed in accordance with 9.5.2.2 through 9.5.2.5 shall not exceed limits stipulated in Table 9.5(b).

R9.5.2.6 — It should be noted that the limitations given in this table relate only to supported or attached nonstructural elements. For those structures in which structural members are likely to be affected by deflection or deformation of members to which they are attached in such a manner as to affect adversely the strength of the structure, these deflections and the resulting forces should be considered explicitly in the analysis and design of the structures as required by 9.5.1. (See Reference 9.18.)

Where long-term deflections are computed, the portion of the deflection before attachment of the nonstructural elements may be deducted. In making this correction, use may be made of the curve in Fig. R9.5.2.5 for members of usual sizes and shapes.

9.5.3 — Two-way construction (nonprestressed)

9.5.3.1 — Section 9.5.3 shall govern the minimum thickness of slabs or other two-way construction designed in accordance with the provisions of Chapter 13 and conforming with the requirements of 13.6.1.2. The thickness of slabs without interior beams spanning between the supports on all sides shall satisfy the requirements of 9.5.3.2 or 9.5.3.4. The thickness of slabs with beams spanning between the supports on all sides shall satisfy requirements of 9.5.3.3 or 9.5.3.4.

R9.5.3 — Two-way construction (nonprestressed)

\[
\text{Fig. R9.5.2.5—Multipliers for long-term deflections.}
\]

<table>
<thead>
<tr>
<th>TABLE 9.5(b) — MAXIMUM PERMISSIBLE COMPUTED DEFLECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of member</td>
</tr>
<tr>
<td>Flat roofs not supporting or attached to nonstructural elements likely to be damaged by large deflections</td>
</tr>
<tr>
<td>Floors not supporting or attached to nonstructural elements likely to be damaged by large deflections</td>
</tr>
<tr>
<td>Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections</td>
</tr>
<tr>
<td>Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections</td>
</tr>
</tbody>
</table>

†Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection, including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber, construction tolerances, and reliability of provisions for drainage.

‡Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.3, but may be reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.

§Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.

§Limit shall not be greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that total deflection minus camber does not exceed limit.
CODE

9.5.3.2 — For slabs without interior beams spanning between the supports and having a ratio of long to short span not greater than 2, the minimum thickness shall be in accordance with the provisions of Table 9.5(c) and shall not be less than the following values:

(a) Slabs without drop panels as defined in 13.2.5.................................5 in.;
(b) Slabs with drop panels as defined in 13.2.5.................................4 in.

9.5.3.3 — For slabs with beams spanning between the supports on all sides, the minimum thickness, \(h \), shall be as follows:

(a) For \(\alpha_{fm} \) equal to or less than 0.2, the provisions of 9.5.3.2 shall apply;

(b) For \(\alpha_{fm} \) greater than 0.2 but not greater than 2.0, \(h \) shall not be less than

\[
h = \frac{\ell_n (0.8 + \frac{f_y}{200,000})}{36 + 5\beta (\alpha_{fm} - 0.2)}
\]

(9-12)

and not less than 5 in.;

(c) For \(\alpha_{fm} \) greater than 2.0, \(h \) shall not be less than

\[
h = \frac{\ell_n (0.8 + \frac{f_y}{200,000})}{36 + 9\beta}
\]

(9-13)

and not less than 3.5 in.;

(d) At discontinuous edges, an edge beam shall be provided with a stiffness ratio \(\alpha_f \) not less than 0.80 or the minimum thickness required by Eq. (9-12) or (9-13)

R9.5.3.2 — The minimum thicknesses in Table 9.5(c) are those that have been developed through the years. Slabs conforming to those limits have not resulted in systematic problems related to stiffness for short- and long-term loads. These limits apply to only the domain of previous experience in loads, environment, materials, boundary conditions, and spans.

R9.5.3.3 — For panels having a ratio of long to short span greater than 2, the use of Eq. (9-12) and (9-13), which express the minimum thickness as a fraction of the long span, may give unreasonable results. For such panels, the rules applying to one-way construction in 9.5.2 should be used.

The requirement in 9.5.3.3(a) for \(\alpha_{fm} \) equal to 0.2 made it possible to eliminate Eq. (9-13) of the 1989 Code. That equation gave values essentially the same as those in Table 9.5(c), as does Eq. (9-12) at a value of \(\alpha_{fm} \) equal to 0.2.

TABLE 9.5(c)—MINIMUM THICKNESS OF SLABS WITHOUT INTERIOR BEAMS*

<table>
<thead>
<tr>
<th>(f_y), psi†</th>
<th>Without drop panels‡</th>
<th>With drop panels‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exterior panels</td>
<td>Interior panels</td>
</tr>
<tr>
<td>Without edge beams</td>
<td>With edge beams§</td>
<td>Without edge beams</td>
</tr>
<tr>
<td>40,000</td>
<td>(\ell_n/33)</td>
<td>(\ell_n/33)</td>
</tr>
<tr>
<td></td>
<td>(\ell_n/36)</td>
<td>(\ell_n/40)</td>
</tr>
<tr>
<td>60,000</td>
<td>(\ell_n/30)</td>
<td>(\ell_n/33)</td>
</tr>
<tr>
<td></td>
<td>(\ell_n/33)</td>
<td>(\ell_n/34)</td>
</tr>
<tr>
<td>75,000</td>
<td>(\ell_n/28)</td>
<td>(\ell_n/31)</td>
</tr>
</tbody>
</table>

For two-way construction, \(\ell_n \) is the length of clear span in the long direction, measured face-to-face of supports in slabs without beams and face-to-face of beams or other supports in other cases.

†For \(f_y \) between the values given in the table, minimum thickness shall be determined by linear interpolation.

‡Drop panels as defined in 13.2.5.

§Slabs with beams between columns along exterior edges. The value of \(\alpha_f \) for the edge beam shall not be less than 0.8.
shall be increased by at least 10 percent in the panel with a discontinuous edge.

Term ℓ_n in (b) and (c) is length of clear span in long direction measured face-to-face of beams. Term β in (b) and (c) is ratio of clear spans in long to short direction of slab.

9.5.3.4 — Slab thickness less than the minimum required by 9.5.3.1, 9.5.3.2, and 9.5.3.3 shall be permitted where computed deflections do not exceed the limits of Table 9.5(b). Deflections shall be computed taking into account size and shape of the panel, conditions of support, and nature of restraints at the panel edges. The modulus of elasticity of concrete, E_c, shall be as specified in 8.5.1. The effective moment of inertia, I_e, shall be that given by Eq. (9-8); other values shall be permitted to be used if they result in computed deflections in reasonable agreement with results of comprehensive tests. Additional long-term deflection shall be computed in accordance with 9.5.2.5.

9.5.4 — Prestressed concrete construction

9.5.4.1 — For flexural members designed in accordance with provisions of Chapter 18, immediate deflection shall be computed by usual methods or formulas for elastic deflections, and the moment of inertia of the gross concrete section, I_g, shall be permitted to be used for Class U flexural members, as defined in 18.3.3.

9.5.4.2 — For Class C and Class T flexural members, as defined in 18.3.3, deflection calculations shall be based on a cracked transformed section analysis. It shall be permitted to base computations on a bilinear moment-deflection relationship, or an effective moment of inertia, I_e, as defined by Eq. (9-8).

9.5.4.3 — Additional long-term deflection of prestressed concrete members shall be computed taking into account stresses in concrete and steel under sustained load and including effects of creep and shrinkage of concrete and relaxation of steel.

R9.5.3.4 — The calculation of deflections for slabs is complicated even if linear elastic behavior can be assumed. For immediate deflections, the values of E_c and I_e specified in 9.5.2.3 may be used. However, other procedures and other values of the stiffness E_cI_e may be used if they result in predictions of deflection in reasonable agreement with the results of comprehensive tests.

Since available data on long-term deflections of slabs are too limited to justify more elaborate procedures, the additional long-term deflection for two-way construction is required to be computed using the multipliers given in 9.5.2.5.

R9.5.4 — Prestressed concrete construction

The Code requires deflections for all prestressed concrete flexural members to be computed and compared with the allowable values in Table 9.5(b).

R9.5.4.1 — Immediate deflections of Class U prestressed concrete members may be calculated by the usual methods or formulas for elastic deflections using the moment of inertia of the gross (uncracked) concrete section and the modulus of elasticity for concrete specified in 8.5.1.

R9.5.4.2 — Class C and Class T prestressed flexural members are defined in 18.3.3. Reference 9.23 gives information on deflection calculations using a bilinear moment-deflection relationship and using an effective moment of inertia. Reference 9.24 gives additional information on deflection of cracked prestressed concrete members.

Reference 9.25 shows that the I_e method can be used to compute deflections of Class T prestressed members loaded above the cracking load. For this case, the cracking moment should take into account the effect of prestress. A method for predicting the effect of nonprestressed tension steel in reducing creep camber is also given in Reference 9.25, with approximate forms given in References 9.18 and 9.26.

R9.5.4.3 — Calculation of long-term deflections of prestressed concrete flexural members is complicated. The calculations should consider not only the increased deflections due to flexural stresses, but also the additional long-term deflections resulting from time-dependent shortening of the flexural member.
CODE

9.5.4.4 — Deflection computed in accordance with 9.5.4.1 or 9.5.4.2, and 9.5.4.3 shall not exceed limits stipulated in Table 9.5(b).

9.5.5 — Composite construction

9.5.5.1 — Shored construction

If composite flexural members are supported during construction so that, after removal of temporary supports, dead load is resisted by the full composite section, it shall be permitted to consider the composite member equivalent to a monolithically cast member for computation of deflection. For nonprestressed members, the portion of the member in compression shall determine whether values in Table 9.5(a) for normalweight or lightweight concrete shall apply. If deflection is computed, account shall be taken of curvatures resulting from differential shrinkage of precast and cast-in-place components, and of axial creep effects in a prestressed concrete member.

9.5.5.2 — Unshored construction

If the thickness of a nonprestressed precast flexural member meets the requirements of Table 9.5(a),

COMMENTARY

Prestressed concrete members shorten more with time than similar nonprestressed members due to the precompression in the slab or beam, which causes axial creep. This creep together with concrete shrinkage results in significant shortening of the flexural members that continues for several years after construction and should be considered in design. The shortening tends to reduce the tension in the prestressing steel, reducing the precompression in the member and thereby causing increased long-term deflections.

Another factor that can influence long-term deflections of prestressed flexural members is adjacent concrete or masonry that is nonprestressed in the direction of the prestressed member. This can be a slab nonprestressed in the beam direction adjacent to a prestressed beam or a nonprestressed slab system. As the prestressed member tends to shrink and creep more than the adjacent nonprestressed concrete, the structure will tend to reach a compatibility of the shortening effects. This results in a reduction of the precompression in the prestressed member as the adjacent concrete absorbs the compression. This reduction in precompression of the prestressed member can occur over a period of years and will result in additional long-term deflections and in increase tensile stresses in the prestressed member.

Any suitable method for calculating long-term deflections of prestressed members may be used, provided all effects are considered. Guidance may be found in References 9.18, 9.27, 9.28, and 9.29.

R9.5.5 — Composite construction

Since few tests have been made to study the immediate and long-term deflections of composite members, the rules given in 9.5.5.1 and 9.5.5.2 are based on the judgment of ACI Committee 318 and on experience.

If any portion of a composite member is prestressed or if the member is prestressed after the components have been cast, the provisions of 9.5.4 apply and deflections are to be calculated. For nonprestressed composite members, deflections need to be calculated and compared with the limiting values in Table 9.5(b) only when the thickness of the member or the precast part of the member is less than the minimum thickness given in Table 9.5(a). In unshored construction, the thickness of concern depends on whether the deflection before or after the attainment of effective composite action is being considered. (In Chapter 17, it is stated that distinction need not be made between shored and unshored members. This refers to strength calculations, not to deflections.)
deflection need not be computed. If the thickness of a nonprestressed composite member meets the requirements of Table 9.5(a), it is not required to compute deflection occurring after the member becomes composite, but the long-term deflection of the precast member shall be investigated for magnitude and duration of load prior to beginning of effective composite action.

9.5.5.3 — Deflection computed in accordance with 9.5.5.1 or 9.5.5.2 shall not exceed limits stipulated in Table 9.5(b).
CHAPTER 10 — FLEXURE AND AXIAL LOADS

CODE

10.1 — Scope

Provisions of Chapter 10 shall apply for design of members subject to flexure or axial loads or to combined flexure and axial loads.

10.2 — Design assumptions

10.2.1 — Strength design of members for flexure and axial loads shall be based on assumptions given in 10.2.2 through 10.2.7, and on satisfaction of applicable conditions of equilibrium and compatibility of strains.

10.2.2 — Strain in reinforcement and concrete shall be assumed directly proportional to the distance from the neutral axis, except that, for deep beams as defined in 10.7.1, an analysis that considers a nonlinear distribution of strain shall be used. Alternatively, it shall be permitted to use a strut-and-tie model. See 10.7, 11.7, and Appendix A.

10.2.3 — Maximum usable strain at extreme concrete compression fiber shall be assumed equal to 0.003.

10.2.4 — Stress in reinforcement below \(f_y \) shall be taken as \(E_s \) times steel strain. For strains greater than that corresponding to \(f_y \), stress in reinforcement shall be considered independent of strain and equal to \(f_y \).

COMMENTARY

R10.2 — Design assumptions

R10.2.1 — The strength of a member computed by the strength design method of the Code requires that two basic conditions be satisfied: (1) static equilibrium, and (2) compatibility of strains. Equilibrium between the compressive and tensile forces acting on the cross section at nominal strength should be satisfied. Compatibility between the stress and strain for the concrete and the reinforcement at nominal strength conditions should also be established within the design assumptions allowed by 10.2.

R10.2.2 — Many tests have confirmed that the distribution of strain is essentially linear across a reinforced concrete cross section, even near ultimate strength.

The strain in both reinforcement and in concrete is assumed to be directly proportional to the distance from the neutral axis. This assumption is of primary importance in design for determining the strain and corresponding stress in the reinforcement.

R10.2.3 — The maximum concrete compressive strain at crushing of the concrete has been observed in tests of various kinds to vary from 0.003 to higher than 0.008 under special conditions. However, the strain at which ultimate moments are developed is usually about 0.003 to 0.004 for members of normal proportions and materials.

R10.2.4 — For deformed reinforcement, it is reasonably accurate to assume that the stress in reinforcement is proportional to strain below the specified yield strength \(f_y \). The increase in strength due to the effect of strain hardening of the reinforcement is neglected for strength computations. In strength computations, the force developed in tensile or compressive reinforcement is computed as:

when \(\varepsilon_s < \varepsilon_y \) (yield strain)

\[
A_s f_s = A_s E_s \varepsilon_s
\]

when \(\varepsilon_s \geq \varepsilon_y \)

\[
A_s f_s = A_s f_y
\]
10.2.5 — Tensile strength of concrete shall be neglected in axial and flexural calculations of reinforced concrete, except when meeting requirements of 18.4.

10.2.6 — The relationship between concrete compressive stress distribution and concrete strain shall be assumed to be rectangular, trapezoidal, parabolic, or any other shape that results in prediction of strength in substantial agreement with results of comprehensive tests.

10.2.7 — Requirements of 10.2.6 are satisfied by an equivalent rectangular concrete stress distribution defined by the following:

10.2.7.1 — Concrete stress of 0.85f′c shall be assumed uniformly distributed over an equivalent compression zone bounded by edges of the cross section and a straight line located parallel to the neutral axis at a distance \(a = \beta_1 c \) from the fiber of maximum compressive strain.

10.2.7.2 — Distance from the fiber of maximum strain to the neutral axis, \(c \), shall be measured in a direction perpendicular to the neutral axis.

where \(\varepsilon_s \) is the value from the strain diagram at the location of the reinforcement. For design, the modulus of elasticity of steel reinforcement \(E_s \) may be taken as 29,000,000 psi (see 8.5.2).

R10.2.5 — The tensile strength of concrete in flexure (modulus of rupture) is a more variable property than the compressive strength and is about 10 to 15 percent of the compressive strength. Tensile strength of concrete in flexure is neglected in strength design. For members with normal percentages of reinforcement, this assumption is in good agreement with tests. For very small percentages of reinforcement, neglect of the tensile strength at ultimate is usually correct.

The strength of concrete in tension, however, is important in cracking and deflection considerations at service loads.

R10.2.6 — This assumption recognizes the inelastic stress distribution of concrete at high stress. As maximum stress is approached, the stress-strain relationship for concrete is not a straight line but some form of a curve (stress is not proportional to strain). The general shape of a stress-strain curve is primarily a function of concrete strength and consists of a rising curve from zero to a maximum at a compressive strain between 0.0015 and 0.002 followed by a descending curve to an ultimate strain (crushing of the concrete) from 0.003 to higher than 0.008. As discussed under R10.2.3, the Code sets the maximum usable strain at 0.003 for design.

The actual distribution of concrete compressive stress is complex and usually not known explicitly. Research has shown that the important properties of the concrete stress distribution can be approximated closely using any one of several different assumptions as to the form of stress distribution. The Code permits any particular stress distribution to be assumed in design if shown to result in predictions of ultimate strength in reasonable agreement with the results of comprehensive tests. Many stress distributions have been proposed. The three most common are the parabola, trapezoid, and rectangle.

R10.2.7 — For design, the Code allows the use of an equivalent rectangular compressive stress distribution (stress block) to replace the more exact concrete stress distribution. In the equivalent rectangular stress block, an average stress of 0.85f′c is used with a rectangle of depth \(a = \beta_1 c \) from the fiber of maximum compressive strain.

In the 1976 supplement to the 1971 Code, a lower limit of \(\beta_1 \) equal to 0.65 was adopted for concrete strengths greater than 8000 psi. Research data from tests with high-strength concretes10.1,10.2 supported the equivalent rectangular stress block for concrete strengths exceeding 8000 psi, with a \(\beta_1 \)}
CODE

10.2.7.3 — For \(f'_c \) between 2500 and 4000 psi, \(\beta_1 \) shall be taken as 0.85. For \(f'_c \) above 4000 psi, \(\beta_1 \) shall be reduced linearly at a rate of 0.05 for each 1000 psi of strength in excess of 4000 psi, but \(\beta_1 \) shall not be taken less than 0.65.

10.3 — General principles and requirements

10.3.1 — Design of cross sections subject to flexure or axial loads, or to combined flexure and axial loads, shall be based on stress and strain compatibility using assumptions in 10.2.

10.3.2 — Balanced strain conditions exist at a cross section when tension reinforcement reaches the strain corresponding to \(f_y \) just as concrete in compression reaches its assumed ultimate strain of 0.003.

10.3.3 — Sections are compression-controlled if the net tensile strain in the extreme tension steel, \(\varepsilon_t \), is equal to or less than the compression-controlled strain limit when the concrete in compression reaches its assumed strain limit of 0.003. The compression-controlled strain limit is the net tensile strain in the reinforcement at balanced strain conditions. For Grade 60 reinforcement, and for all prestressed reinforcement, it shall be permitted to set the compression-controlled strain limit equal to 0.002.

COMMENTARY

equal to 0.65. Use of the equivalent rectangular stress distribution specified in the 1971 Code, with no lower limit on \(\beta_1 \), resulted in inconsistent designs for high-strength concrete for members subject to combined flexure and axial load.

The equivalent rectangular stress distribution does not represent the actual stress distribution in the compression zone at ultimate, but does provide essentially the same results as those obtained in tests.10.3

R10.3 — General principles and requirements

R10.3.1 — Design strength equations for members subject to flexure or combined flexure and axial load are derived in the paper, “Rectangular Concrete Stress Distribution in Ultimate Strength Design.”10.3 Reference 10.3 and previous editions of this Commentary also give the derivations of strength equations for cross sections other than rectangular.

R10.3.2 — A balanced strain condition exists at a cross section when the maximum strain at the extreme compression fiber just reaches 0.003 simultaneously with the first yield strain \(f_y/E_s \) in the tension reinforcement. The reinforcement ratio \(\rho_b \), which produces balanced strain conditions under flexure, depends on the shape of the cross section and the location of the reinforcement.

R10.3.3 — The nominal flexural strength of a member is reached when the strain in the extreme compression fiber reaches the assumed strain limit 0.003. The net tensile strain \(\varepsilon_t \) is the tensile strain in the extreme tension steel at nominal strength, exclusive of strains due to prestress, creep, shrinkage, and temperature. The net tensile strain in the extreme tension steel is determined from a linear strain distribution at nominal strength, shown in Fig. R10.3.3, using similar triangles.

![Fig. R10.3.3—Strain distribution and net tensile strain.](image)
When the net tensile strain in the extreme tension steel is sufficiently large (equal to or greater than 0.005), the section is defined as tension-controlled where ample warning of failure with excessive deflection and cracking may be expected. When the net tensile strain in the extreme tension steel is small (less than or equal to the compression-controlled strain limit), a brittle failure condition may be expected, with little warning of impending failure. Flexural members are usually tension-controlled, whereas compression members are usually compression-controlled. Some sections, such as those with small axial load and large bending moment, will have net tensile strain in the extreme tension steel between the above limits. These sections are in a transition region between compression- and tension-controlled sections. Section 9.3.2 specifies the appropriate strength reduction factors for tension-controlled and compression-controlled sections, and for intermediate cases in the transition region.

Before the development of these provisions, the limiting tensile strain for flexural members was not stated, but was implicit in the maximum tension reinforcement ratio that was given as a fraction of ρ_b, which was dependent on the yield strength of the reinforcement. The net tensile strain limit of 0.005 for tension-controlled sections was chosen to be a single value that applies to all types of steel (prestressed and nonprestressed) permitted by this Code.

Unless unusual amounts of ductility are required, the 0.005 limit will provide ductile behavior for most designs. One condition where greater ductile behavior is required is in design for redistribution of moments in continuous members and frames. Section 8.4 permits redistribution of moments. Since moment redistribution is dependent on adequate ductility in hinge regions, moment redistribution is limited to sections that have a net tensile strain of at least 0.0075.

For beams with compression reinforcement, or T-beams, the effects of compression reinforcement and flanges are automatically accounted for in the computation of net tensile strain ε_t.

10.3.4 — Sections are tension-controlled if the net tensile strain in the extreme tension steel, ε_t, is equal to or greater than 0.005 when the concrete in compression reaches its assumed strain limit of 0.003. Sections with ε_t between the compression-controlled strain limit and 0.005 constitute a transition region between compression-controlled and tension-controlled sections.

10.3.5 — For nonprestressed flexural members and nonprestressed members with factored axial compressive load less than $0.10f'_cA_g$, ε_t at nominal strength shall not be less than 0.004.

R10.3.5 — The effect of this limitation is to restrict the reinforcement ratio in nonprestressed beams to about the same ratio as in editions of the Code before 2002. The reinforcement limit of $0.75\rho_b$ results in a net tensile strain in extreme tension steel at nominal strength of 0.00376. The limit of 0.004 is slightly more conservative. This limitation does not apply to prestressed members.
10.3.5.1 — Use of compression reinforcement shall be permitted in conjunction with additional tension reinforcement to increase the strength of flexural members.

10.3.6 — Design axial strength ϕP_n of compression members shall not be taken greater than $\phi P_{n,max}$, computed by Eq. (10-1) or (10-2).

10.3.6.1 — For nonprestressed members with spiral reinforcement conforming to 7.10.4 or composite members conforming to 10.13:

$$\phi P_{n,max} = 0.85 \phi [0.85 f_c'(A_g - A_{st}) + f_y A_{st}] \quad (10-1)$$

10.3.6.2 — For nonprestressed members with tie reinforcement conforming to 7.10.5:

$$\phi P_{n,max} = 0.80 \phi [0.85 f_c'(A_g - A_{st}) + f_y A_{st}] \quad (10-2)$$

10.3.6.3 — For prestressed members, design axial strength, ϕP_n, shall not be taken greater than 0.85 (for members with spiral reinforcement) or 0.80 (for members with tie reinforcement) of the design axial strength at zero eccentricity, ϕP_o.

10.3.7 — Members subject to compressive axial load shall be designed for the maximum moment that can accompany the axial load. The factored axial force P_u at given eccentricity shall not exceed that given in 10.3.6. The maximum factored moment M_u shall be magnified for slenderness effects in accordance with 10.10.

R10.3.6 and R10.3.7 — The minimum design eccentricities included in the 1963 and 1971 Codes were deleted from the 1977 Code except for consideration of slenderness effects in compression members with small or zero computed end moments (see 10.10.6.5). The specified minimum eccentricities were originally intended to serve as a means of reducing the axial load design strength of a section in pure compression to account for accidental eccentricities not considered in the analysis that may exist in a compression member, and to recognize that concrete strength may be less than f'_c under sustained high loads. The primary purpose of the minimum eccentricity requirement was to limit the maximum design axial strength of a compression member. This is now accomplished directly in 10.3.6 by limiting the design axial strength of a section in pure compression to 85 or 80 percent of the nominal strength. These percentage values approximate the axial strengths at eccentricity-to-depth ratios of 0.05 and 0.10, specified in the earlier Codes for the spirally reinforced and tied members, respectively. The same axial load limitation applies to both cast-in-place and precast compression members. Design aids and computer programs based on the minimum eccentricity requirement of the 1963 and 1971 Codes are equally applicable.

For prestressed members, the design axial strength in pure compression is computed by the strength design methods of Chapter 10, including the effect of the prestressing force.

Compression member end moments should be considered in the design of adjacent flexural members. In nonsway frames, the effects of magnifying the end moments need not be considered in the design of the adjacent beams. In sway frames, the magnified end moments should be considered in designing the flexural members, as required in 10.10.7.1.

Corner and other columns exposed to known moments about each axis simultaneously should be designed for biaxial bending and axial load. Satisfactory methods are available in the ACI Design Handbook and the CRSI Handbook. The reciprocal load method and the load contour method are the methods used in those two handbooks. Research indicates that using the equivalent rectangular stress block provisions of 10.2.7 produces satisfactory strength estimates for doubly symmetric sections. A simple and somewhat conservative estimate of nominal strength P_{ni} can be obtained from the reciprocal load relationship

$$\frac{1}{P_{ni}} = \frac{1}{P_{nx}} + \frac{1}{P_{ny}} - \frac{1}{P_o}$$
CODE

10.4 — Distance between lateral supports of flexural members

10.4.1 — Spacing of lateral supports for a beam shall not exceed 50 times b, the least width of compression flange or face.

10.4.2 — Effects of lateral eccentricity of load shall be taken into account in determining spacing of lateral supports.

10.5 — Minimum reinforcement of flexural members

10.5.1 — At every section of a flexural member where tensile reinforcement is required by analysis, except as provided in 10.5.2, 10.5.3, and 10.5.4, A_s provided shall not be less than that given by

$$A_{s, \text{min}} = \frac{3}{f'_c} b_w d$$ \hspace{1cm} (10-3)

and not less than $200b_w df_y$.

10.5.2 — For statically determinate members with a flange in tension, $A_{s, \text{min}}$ shall not be less than the value given by Eq. (10-3), except that b_w is replaced by either $2b_w$ or the width of the flange, whichever is smaller.

COMMENTARY

R10.4 — Distance between lateral supports of flexural members

Tests10,10,11 have shown that laterally unbraced reinforced concrete beams of any reasonable dimensions, even when very deep and narrow, will not fail prematurely by lateral buckling provided the beams are loaded without lateral eccentricity that causes torsion.

Laterally unbraced beams are frequently loaded off center (lateral eccentricity) or with slight inclination. Stresses and deformations set up by such loading become detrimental for narrow, deep beams, the more so as the unsupported length increases. Lateral supports spaced closer than $50b$ may be required by loading conditions.

R10.5 — Minimum reinforcement of flexural members

The provision for a minimum amount of reinforcement applies to flexural members, which for architectural or other reasons, are larger in cross section than required for strength. With a very small amount of tensile reinforcement, the computed moment strength as a reinforced concrete section using cracked section analysis becomes less than that of the corresponding unreinforced concrete section computed from its modulus of rupture. Failure in such a case can be sudden.

To prevent such a failure, a minimum amount of tensile reinforcement is required by 10.5.1 in both positive and negative moment regions. When concrete strength higher than about 5000 psi is used, the $200f_y$ value previously prescribed may not be sufficient. Equation (10-3) gives the same amount of reinforcement as $200b_w df_y$ when f'_c equals 4440 psi. When the flange of a section is in tension, the amount of tensile reinforcement needed to make the strength of the reinforced section equal that of the unreinforced section is about twice that for a rectangular section or that of a flanged section with the flange in compression. A higher amount of minimum tensile reinforcement is particularly necessary in cantilevers and other statically determinate members where there is no possibility for redistribution of moments.

Where:

- P_{ni} = nominal axial load strength at given eccentricity along both axes
- P_o = nominal axial load strength at zero eccentricity
- P_{nx} = nominal axial load strength at given eccentricity along x-axis
- P_{ny} = nominal axial load strength at given eccentricity along y-axis

This relationship is most suitable when values P_{nx} and P_{ny} are greater than the balanced axial force P_b for the particular axis.

where:

- P_{ni} = nominal axial load strength at given eccentricity along both axes
- P_o = nominal axial load strength at zero eccentricity
- P_{nx} = nominal axial load strength at given eccentricity along x-axis
- P_{ny} = nominal axial load strength at given eccentricity along y-axis

This relationship is most suitable when values P_{nx} and P_{ny} are greater than the balanced axial force P_b for the particular axis.
10.5.3 — The requirements of 10.5.1 and 10.5.2 need not be applied if, at every section, A_s provided is at least one-third greater than that required by analysis.

10.5.4 — For structural slabs and footings of uniform thickness, $A_{s,min}$ in the direction of the span shall be the same as that required by 7.12.2.1. Maximum spacing of this reinforcement shall not exceed three times the thickness, nor 18 in.

10.6 — Distribution of flexural reinforcement in beams and one-way slabs

10.6.1 — This section prescribes rules for distribution of flexural reinforcement to control flexural cracking in beams and in one-way slabs (slabs reinforced to resist flexural stresses in only one direction).

R10.5.3 — The minimum reinforcement required by Eq. (10-3) is to be provided wherever reinforcement is needed, except where such reinforcement is at least one-third greater than that required by analysis. This exception provides sufficient additional reinforcement in large members where the amount required by 10.5.1 or 10.5.2 would be excessive.

R10.5.4 — The minimum reinforcement required for slabs should be equal to the same amount as that required by 7.12.2.1 for shrinkage and temperature reinforcement.

Slabs-on-ground are not considered to be structural slabs in the context of this section, unless they transmit vertical loads or lateral forces from other parts of the structure to the soil. Reinforcement, if any, in slabs-on-ground should be proportioned with due consideration of all design forces. Mat foundations and other slabs that help support the structure vertically should meet the requirements of this section.

In reevaluating the overall treatment of 10.5, the maximum spacing for reinforcement in structural slabs (including footings) was reduced from the $5h$ for temperature and shrinkage reinforcement to the compromise value of $3h$, which is somewhat larger than the $2h$ limit of 13.3.2 for two-way slab systems.

R10.6 — Distribution of flexural reinforcement in beams and one-way slabs

R10.6.1 — Many structures designed by working stress methods and with low steel stress served their intended functions with very limited flexural cracking. When high-strength reinforcing steels are used at high service load stresses, however, visible cracks should be expected, and steps should be taken in detailing of the reinforcement to control cracking. For reasons of durability and appearance, many fine cracks are preferable to a few wide cracks.

Control of cracking is particularly important when reinforcement with a yield strength in excess of 40,000 psi is used. Current good detailing practices will usually lead to adequate crack control even when reinforcement of 60,000 psi yield strength is used.

Extensive laboratory work involving deformed bars has confirmed that crack width at service loads is proportional to steel stress. The significant variables reflecting steel detailing were found to be thickness of concrete cover and the spacing of reinforcement.

Crack width is inherently subject to wide scatter even in careful laboratory work and is influenced by shrinkage and other time-dependent effects. Improved crack control is obtained when the steel reinforcement is well distributed over the zone of maximum concrete tension.
CODE

10.6.2 — Distribution of flexural reinforcement in two-way slabs shall be as required by 13.3.

10.6.3 — Flexural tension reinforcement shall be well distributed within maximum flexural tension zones of a member cross section as required by 10.6.4.

10.6.4 — The spacing of reinforcement closest to the tension face, s, shall not exceed that given by

$$s = 15 \left(\frac{40,000}{f_s} \right) - 2.5c_c$$ \hspace{1cm} (10-4)

but not greater than $12(40,000/f_s)$, where c_c is the least distance from surface of reinforcement or prestressing steel to the tension face. If there is only one bar or wire nearest to the extreme tension face, s used in Eq. (10-4) is the width of the extreme tension face.

Calculated stress f_s in reinforcement closest to the tension face at service load shall be computed based on the unfactored moment. It shall be permitted to take f_s as $2/3f_y$.

10.6.5 — Provisions of 10.6.4 are not sufficient for structures subject to very aggressive exposure or designed to be watertight. For such structures, special investigations and precautions are required.

10.6.6 — Where flanges of T-beam construction are in tension, part of the flexural tension reinforcement shall be distributed over an effective flange width as defined in 8.12, or a width equal to one-tenth the span, whichever is smaller. If the effective flange width exceeds one-tenth the span, some longitudinal reinforcement shall be provided in the outer portions of the flange.

10.6.7 — Where h of a beam or joist exceeds 36 in., longitudinal skin reinforcement shall be uniformly distributed along both side faces of the member. Skin reinforcement shall extend for a distance $h/2$ from the tension face. The spacing s shall be as provided in 10.6.4, where c_c is the least distance from the surface

COMMENTARY

R10.6.3 — Several bars at moderate spacing are much more effective in controlling cracking than one or two larger bars of equivalent area.

R10.6.4 — This section was updated in the 2005 edition to reflect the higher service stresses that occur in flexural reinforcement with the use of the load combinations introduced in the 2002 Code. The maximum bar spacing is specified directly to control cracking. For the usual case of beams with Grade 60 reinforcement and 2 in. clear cover to the main reinforcement, with $f_s = 40,000$ psi, the maximum bar spacing is 10 in.

Crack widths in structures are highly variable. In Codes before the 1999 edition, provisions were given for distribution of reinforcement that were based on empirical equations using a calculated maximum crack width of 0.016 in. The current provisions for spacing are intended to limit surface cracks to a width that is generally acceptable in practice but may vary widely in a given structure.

The role of cracks in the corrosion of reinforcement is controversial. Research shows that corrosion is not clearly correlated with surface crack widths in the range normally found with reinforcement stresses at service load levels. For this reason, the former distinction between interior and exterior exposure has been eliminated.

R10.6.5 — Although a number of studies have been conducted, clear experimental evidence is not available regarding the crack width beyond which a corrosion danger exists. Exposure tests indicate that concrete quality, adequate compaction, and ample concrete cover may be of greater importance for corrosion protection than crack width at the concrete surface.

R10.6.6 — In major T-beams, distribution of the negative reinforcement for control of cracking should take into account two considerations: (1) wide spacing of the reinforcement across the full effective width of flange may cause some wide cracks to form in the slab near the web, and (2) close spacing near the web leaves the outer regions of the flange unprotected. The one-tenth limitation is to guard against too wide a spacing, with some additional reinforcement required to protect the outer portions of the flange.

R10.6.7 — For relatively deep flexural members, some reinforcement should be placed near the vertical faces of the tension zone to control cracking in the web. (See Fig. R10.6.7.) Without such auxiliary steel, the width of the cracks in the web may exceed the crack widths at the level of the flexural tension reinforcement. This section was
of the skin reinforcement or prestressing steel to the side face. It shall be permitted to include such reinforcement in strength computations if a strain compatibility analysis is made to determine stress in the individual bars or wires.

10.7 — Deep beams

10.7.1 — Deep beams are members loaded on one face and supported on the opposite face so that compression struts can develop between the loads and the supports, and have either:

(a) clear spans, \(t_n \), equal to or less than four times the overall member depth; or

(b) regions with concentrated loads within twice the member depth from the face of the support.

Deep beams shall be designed either taking into account nonlinear distribution of strain, or by Appendix A. (See also 11.7.1 and 12.10.6.) Lateral buckling shall be considered.

10.7.2 — \(V_N \) of deep beams shall be in accordance with 11.7.

10.7.3 — Minimum area of flexural tension reinforcement, \(A_{s,min} \), shall conform to 10.5.

modified in the 2005 edition to make the skin reinforcement spacing consistent with that of the flexural reinforcement. The size of the skin reinforcement is not specified; research has indicated that the spacing rather than bar size is of primary importance. 10.21 Bar sizes No. 3 to No. 5 (or welded wire reinforcement with a minimum area of 0.1 in. \(^2\) per foot of depth) are typically provided.

Where the provisions for deep beams, walls, or precast panels require more reinforcement, those provisions (along with their spacing requirements) will govern.

R10.7 — Deep beams

The span-to-depth ratios used to define deep beams in the 1999 and earlier Codes were based on papers published in 1946 and 1953. The definitions of deep beams given in 10.7.1 and 11.8.1 of these earlier Codes were different from each other and different from the current Code definition that is based on D-region behavior (see Appendix A). The definitions of deep beams in Sections 10.7.1 and 11.8.1 are consistent with each other and different from the definition introduced in 2002, which is based on D-region behavior (see Appendix A). Since 2002, the definitions of deep beams in Sections 10.7.1 and 11.8.1 are consistent with each other.

This Code does not contain detailed requirements for designing deep beams for flexure except that nonlinearity of strain distribution and lateral buckling is to be considered. Suggestions for the design of deep beams for flexure are given in References 10.22, 10.23, and 10.24.
CODE

10.7.4 — Minimum horizontal and vertical reinforcement in the side faces of deep beams shall satisfy either A.3.3 or 11.7.4 and 11.7.5.

10.8 — Design dimensions for compression members

10.8.1 — Isolated compression member with multiple spirals

Outer limits of the effective cross section of a compression member with two or more interlocking spirals shall be taken at a distance outside the extreme limits of the spirals equal to the minimum concrete cover required by 7.7.

10.8.2 — Compression member built monolithically with wall

Outer limits of the effective cross section of a spirally reinforced or tied reinforced compression member built monolithically with a concrete wall or pier shall be taken not greater than 1-1/2 in. outside the spiral or tie reinforcement.

10.8.3 — Equivalent circular compression member

As an alternative to using the full gross area for design of a compression member with a square, octagonal, or other shaped cross section, it shall be permitted to use a circular section with a diameter equal to the least lateral dimension of the actual shape. Gross area considered, required percentage of reinforcement, and design strength shall be based on that circular section.

10.8.4 — Limits of section

For a compression member with a cross section larger than required by considerations of loading, it shall be permitted to base the minimum reinforcement and strength on a reduced effective area \(A_g \) not less than one-half the total area. This provision shall not apply to special moment frames or special structural walls designed in accordance with Chapter 21.

10.9 — Limits for reinforcement of compression members

10.9.1 — Area of longitudinal reinforcement, \(A_{sl} \), for noncomposite compression members shall be not less than \(0.01A_g \) or more than \(0.08A_g \).

COMMENTARY

R10.8 — Design dimensions for compression members

With the 1971 Code, minimum sizes for compression members were eliminated to allow wider utilization of reinforced concrete compression members in smaller size and lightly loaded structures, such as low-rise residential and light office buildings. When small sections are used, there is a greater need for careful workmanship and shrinkage stresses have increased significance.

R10.8.2, R10.8.3, and R10.8.4 — For column design, the Code provisions for quantity of reinforcement, both vertical and spiral, are based on the gross column area and core area, and the design strength of the column is based on the gross area of the column section. In some cases, however, the gross area is larger than necessary to carry the factored load. The basis of 10.8.2, 10.8.3, and 10.8.4 is that it is satisfactory to design a column of sufficient size to carry the factored load and then simply add concrete around the designed section without increasing the reinforcement to meet the minimum percentages required by 10.9.1. The additional concrete should not be considered as carrying load; however, the effects of the additional concrete on member stiffness should be included in the structural analysis. The effects of the additional concrete also should be considered in design of the other parts of the structure that interact with the oversize member.

R10.9 — Limits for reinforcement of compression members

R10.9.1 — This section prescribes the limits on the amount of longitudinal reinforcement for noncomposite compression members. If the use of high reinforcement ratios would involve practical difficulties in the placing of concrete, a lower percentage and hence a larger column, or higher strength concrete or reinforcement (see R9.4) should be
considered. The percentage of reinforcement in columns should usually not exceed 4 percent if the column bars are required to be lap spliced.

Minimum reinforcement — Since the design methods for columns incorporate separate terms for the load carried by concrete and by reinforcement, it is necessary to specify some minimum amount of reinforcement to ensure that only reinforced concrete columns are designed by these procedures. Reinforcement is necessary to provide resistance to bending, which may exist whether or not computations show that bending exists, and to reduce the effects of creep and shrinkage of the concrete under sustained compressive stresses. Tests have shown that creep and shrinkage tend to transfer load from the concrete to the reinforcement, with a consequent increase in stress in the reinforcement, and that this increase is greater as the ratio of reinforcement decreases. Unless a lower limit is placed on this ratio, the stress in the reinforcement may increase to the yield level under sustained service loads. This phenomenon was emphasized in the report of ACI Committee 105.26 and minimum reinforcement ratios of 0.01 and 0.005 were recommended for spiral and tied columns, respectively. However, in all editions of the Code since 1936, the minimum ratio has been 0.01 for both types of laterally reinforced columns.

Maximum reinforcement — Extensive tests of the ACI column investigation 10.26 included reinforcement ratios no greater than 0.06. Although other tests with as much as 17 percent reinforcement in the form of bars produced results similar to those obtained previously, it is necessary to note that the loads in these tests were applied through bearing plates on the ends of the columns and the problem of transferring a proportional amount of the load to the bars was thus minimized or avoided. Maximum ratios of 0.08 and 0.03 were recommended by ACI Committee 105.26 for spiral and tied columns, respectively. In the 1936 Code, these limits were made 0.08 and 0.04, respectively. In the 1956 Code, the limit for tied columns with bending was raised to 0.08. Since the 1963 Code, it has been required that bending be considered in the design of all columns, and the maximum ratio of 0.08 has been applied to both types of columns. This limit can be considered a practical maximum for reinforcement in terms of economy and requirements for placing.

10.9.2 — Minimum number of longitudinal bars in compression members shall be 4 for bars within rectangular or circular ties, 3 for bars within triangular ties, and 6 for bars enclosed by spirals conforming to 10.9.3.

R10.9.2 — For compression members, a minimum of four longitudinal bars are required when bars are enclosed by rectangular or circular ties. For other shapes, one bar should be provided at each apex or corner and proper lateral reinforcement provided. For example, tied triangular columns require three longitudinal bars, one at each apex of the triangular ties. For bars enclosed by spirals, six bars are required.

When the number of bars in a circular arrangement is less than eight, the orientation of the bars will affect the moment
CODE

10.9.3 — Volumetric spiral reinforcement ratio, ρ_s, shall be not less than the value given by

$$\rho_s = 0.45 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f'_c}{f_{yt}} \quad (10-5)$$

where the value of f_{yt} used in Eq. (10-5) shall not exceed 100,000 psi. For f_{yt} greater than 60,000 psi, lap splices according to 7.10.4.5(a) shall not be used.

10.10 — Slenderness effects in compression members

10.10.1 — Slenderness effects shall be permitted to be neglected in the following cases:

(a) for compression members not braced against sidesway when:

$$\frac{k t_u}{r} \leq 22 \quad (10-6)$$

(b) for compression members braced against sidesway when:

$$\frac{k t_u}{r} \leq 34 - 12 \left(\frac{M_1}{M_2} \right) \leq 40 \quad (10-7)$$

where M_1/M_2 is positive if the column is bent in single curvature, and negative if the member is bent in double curvature.

It shall be permitted to consider compression members braced against sidesway when bracing elements have a total stiffness, resisting lateral movement of that story, of at least 12 times the gross stiffness of the columns within the story.

COMMENTARY

strength of eccentrically loaded columns and should be considered in design.

R10.9.3 — The effect of spiral reinforcement in increasing the load-carrying strength of the concrete within the core is not realized until the column has been subjected to a load and deformation sufficient to cause the concrete shell outside the core to spall off. The amount of spiral reinforcement required by Eq. (10-5) is intended to provide additional load-carrying strength for concentrically loaded columns equal to or slightly greater than the strength lost when the shell spalls off. This principle was recommended by ACI Committee 10510.26 and has been a part of the Code since 1936. The derivation of Eq. (10-5) is given in the ACI Committee 105 report. Tests and experience show that columns containing the amount of spiral reinforcement required by this section exhibit considerable toughness and ductility. Research10.27-10.29 has indicated that 100,000 psi yield strength reinforcement can be used for confinement. For the 2005 Code, the limit in yield strength for spiral reinforcement was increased from 60,000 to 100,000 psi.

R10.10 — Slenderness effects in compression members

The slenderness provisions have been reorganized in the 2008 edition of the Code to reflect the evolution of current practice where second-order effects are considered primarily using computer analysis techniques.

R10.10.1 — Second-order effects in many structures are negligible. In these cases, it is not necessary to consider slenderness effects and compression members can be designed based on forces determined from first-order analyses. Slenderness effects can be neglected in both braced and unbraced systems depending on the $k t_u/r$ of the member. In evaluation of unbraced systems, moments are based on first-order elastic analysis.

The primary design aid to estimate the effective length factor k is the Jackson and Moreland Alignment Charts (Fig. R10.10.1.1), which allow a graphical determination of k for a column of constant cross section in a multibay frame.10.4,10.30

Equation (10-7) is based on Eq. (10-11) assuming that a 5 percent increase in moments due to slenderness is acceptable.10.31 As a first approximation, k may be taken equal to 1.0 in Eq. (10-7).

The Commentary used to state that a compression member may be assumed braced if located in a story in which the bracing elements have a total stiffness, resisting lateral movement of the story, at least six times the sum of the stiffnesses of all the columns in the story. In ACI 318-95, the
language was changed to: “... the bracing elements have such substantial lateral stiffness to resist the lateral deflections of the story that any resulting lateral deflection is not large enough to affect the column strength substantially.” The change was made because of some concern that the multiplier of six might not be conservative enough. For the 2008 Code, a more conservative multiplier of 12 was chosen. The stiffness of the lateral bracing is considered based on the principal directions of the framing system. Bracing elements in typical building structures consist of shear walls or lateral braces. Torsional eccentricity of the structural system can increase second-order effects and should be considered.

10.10.1.2 — It shall be permitted to take the radius of gyration, \(r \), equal to 0.30 times the overall dimension in the direction stability is being considered for rectangular compression members and 0.25 times the diameter for circular compression members. For other shapes, it shall be permitted to compute \(r \) for the gross concrete section.

Fig. R10.10.1.1—Effective length factors \(k \).
10.10.2 — When slenderness effects are not neglected as permitted by 10.10.1, the design of compression members, restraining beams, and other supporting members shall be based on the factored forces and moments from a second-order analysis satisfying 10.10.3, 10.10.4, or 10.10.5. These members shall also satisfy 10.10.2.1 and 10.10.2.2. The dimensions of each member cross section used in the analysis shall be within 10 percent of the dimensions of the members shown on the design drawings or the analysis shall be repeated.

10.10.2.1 — Total moment including second-order effects in compression members, restraining beams, or other structural members shall not exceed 1.4 times the moment due to first-order effects.

10.10.2.2 — Second-order effects shall be considered along the length of compression members. It shall be permitted to account for these effects using the moment magnification procedure outlined in 10.10.6.

10.10.3 — Nonlinear second-order analysis

Second-order analysis shall consider material nonlinearity, member curvature and lateral drift, duration of loads, shrinkage and creep, and interaction with the supporting foundation. The analysis procedure shall have been shown to result in prediction of strength in substantial agreement with results of comprehensive tests of columns in statically indeterminate reinforced concrete structures.

R10.10.2 — Design may be based on a nonlinear second-order analysis, an elastic second-order analysis, or the moment magnifier approach. The structure that is analyzed should have members similar to those in the final structure. If the members in the final structure have cross-sectional dimensions more than 10 percent different from those assumed in the analysis, new member properties should be computed and the analysis repeated.

R10.10.2.1 — If the weight of a structure is high in proportion to its lateral stiffness, excessive $P\Delta$ effects (where secondary moments are more than 25 percent of the primary moments) may result, which will eventually introduce singularities into the solution to the equations of equilibrium, indicating physical structural instability. Analytical research on reinforced concrete frames showed that the probability of stability failure increases rapidly when the stability index Q exceeds 0.2, which is equivalent to a secondary-to-primary moment ratio of 1.25. According to ASCE/SEI 7-05, the maximum value of the stability coefficient $θ$, which is close to the ACI stability coefficient Q, is 0.25. This value is equivalent to a secondary-to-primary moment ratio of 1.33. The upper limit of 1.4 on the secondary-to-primary moment ratio was chosen considering the above. By providing an upper limit on the second-order moment, it is unnecessary to retain the stability check given in 10.13.6 of the 2005 Code.

R10.10.2.2 — The maximum moment in a compression member may occur between its ends. While second-order computer analysis programs may be used to evaluate magnification of the end moments, magnification between the ends may not be accounted for unless the member is subdivided along its length. The magnification may be evaluated using the procedure outlined in 10.10.6.

R10.10.3 — Nonlinear second-order analysis

The nonlinear second-order analysis procedure should have been shown to predict ultimate loads within 15 percent of those reported in tests of indeterminate reinforced concrete structures. At the very least, the comparison should include tests of columns in planar nonsway frames, sway frames, and frames with varying column stiffnesses. To allow for variability in the actual member properties and in the analysis, the member properties used in analysis should be multiplied by a stiffness reduction factor $ϕ_K$ less than 1. The concept of a stiffness reduction factor $ϕ_K$ is discussed in R10.10.4. For consistency with the second-order analysis in 10.10.4, the stiffness reduction factor $ϕ_K$ can be taken as 0.80.
Elastic second-order analysis shall consider section properties determined taking into account the influence of axial loads, the presence of cracked regions along the length of the member, and the effects of load duration.

10.10.4.1 — It shall be permitted to use the following properties for the members in the structure:

(a) Modulus of elasticity E_c from 8.5.1
(b) Moments of inertia, I

Compression members:
- Columns: $0.70I_g$
- Walls—Uncracked: $0.70I_g$
- Cracked: $0.35I_g$

Flexural members:
- Beams: $0.35I_g$
- Flat plates and flat slabs: $0.25I_g$

(c) Area: $1.0A_g$

Alternatively, the moments of inertia of compression and flexural members, I, shall be permitted to be computed as follows:

Compression members:

$$I = \left(0.80 + 25\frac{A_{st}}{A_g}\right)\left(1 - \frac{M_u}{P_u h} - 0.5\frac{P_u}{P_o}\right)I_g \leq 0.875I_g$$ \hspace{1cm} (10-8)

where P_u and M_u shall be determined from the particular load combination under consideration, or the combination of P_u and M_u resulting in the smallest value of I. I need not be taken less than $0.35I_g$.

Flexural members:

$$I = (0.10 + 25\rho)\left(1.2 - 0.2\frac{b_w}{d}\right)I_g \leq 0.5I_g$$ \hspace{1cm} (10-9)

The stiffnesses EI used in an analysis for strength design should represent the stiffnesses of the members immediately prior to failure. This is particularly true for a second-order analysis that should predict the lateral deflections at loads approaching ultimate. The EI values should not be based totally on the moment-curvature relationship for the most highly loaded section along the length of each member. Instead, they should correspond to the moment-end rotation relationship for a complete member.

Design computations for slender columns and frames include both a strength reduction factor ϕ for the cross-sectional strength and a stiffness reduction factor ϕ_K for the member stiffnesses. The variability in the cross-sectional strength is accounted for by ϕ in the interaction diagrams while the variability of member stiffness is accounted for by ϕ_K in the structural analysis.

The moment of inertia of T-beams should be based on the effective flange width defined in 8.12. It is generally sufficiently accurate to take I_g of a T-beam as two times the I_g for the web, $2(2b_wh^3/12)$.

If the factored moments and shears from an analysis based on the moment of inertia of a wall, taken equal to $0.70I_g$, indicate that the wall will crack in flexure, based on the modulus of rupture, the analysis should be repeated with $I = 0.35I_g$ in those stories where cracking is predicted using factored loads.

The values of the moments of inertia were derived for nonprestressed members. For prestressed members, the moments of inertia may differ depending on the amount, location, and type of the reinforcement and the degree of cracking prior to ultimate. The stiffness values for prestressed concrete members should include an allowance for the variability of the stiffnesses.
Section 10.10 provides requirements for strength and assumes frame analyses will be carried out using factored loads. Analyses of deflections, vibrations, and building periods are needed at various service (unfactored) load levels to determine the serviceability of the structure and to estimate the wind forces in wind tunnel laboratories. The moments of inertia of the structural members in the service load analyses should be representative of the degree of cracking at the various service load levels investigated. Unless a more accurate estimate of the degree of cracking at service load level is available, it is satisfactory to use 1.0/0.70 = 1.43 times the moments of inertia given here for service load analyses.

Equations (10-8) and (10-9) provide more refined values of EI considering axial load, eccentricity, reinforcement ratio, and concrete compressive strength as presented in References 10.39 and 10.40. The stiffnesses provided in these references are applicable for all levels of loading, including service and ultimate, and consider a stiffness reduction factor \(\phi_K \) comparable to that included in 10.10.4.1(b). For use at load levels other than ultimate, \(P_u \) and \(M_u \) should be replaced with their appropriate values at the desired load level.

10.10.4.2 — When sustained lateral loads are present, \(I \) for compression members shall be divided by \((1 + \beta_{ds})\). The term \(\beta_{ds} \) shall be taken as the ratio of maximum factored sustained shear within a story to the maximum factored shear in that story associated with the same load combination, but shall not be taken greater than 1.0.

10.10.5 — Moment magnification procedure

Columns and stories in structures shall be designated as nonsway or sway columns or stories. The design of columns in nonsway frames or stories shall be based on 10.10.6. The design of columns in sway frames or stories shall be based on 10.10.7.

10.10.5.1 — It shall be permitted to assume a column in a structure is nonsway if the increase in column end moments due to second-order effects does not exceed 5 percent of the first-order end moments.

10.10.5.2 — It also shall be permitted to assume a story within a column is nonsway if:

\[
Q = \frac{\Sigma P_u \Delta o}{V_{uS} \Delta} \leq 0.05
\]

(10-10)

where \(\Sigma P_u \) and \(V_{uS} \) are the total factored vertical load and the horizontal story shear, respectively, in the story being evaluated, and \(\Delta o \) is the first-order relative lateral deflection between the top and the bottom of that story due to \(V_{uS} \).
10.10.6 — Moment magnification procedure — Nonsway

Compression members shall be designed for factored axial force P_u and the factored moment amplified for the effects of member curvature M_c where

$$M_c = \delta M_2$$ \hspace{1cm} (10-11)

where

$$\delta = \frac{C_m}{P_u - 0.75P_c} \geq 1.0$$ \hspace{1cm} (10-12)

and

$$P_c = \frac{\pi^2 EI}{(kd_u)^2}$$ \hspace{1cm} (10-13)

10.10.6.1 — EI shall be taken as

$$EI = \frac{0.2E_c Ig + E_s Is_e}{1 + \beta_{dns}}$$ \hspace{1cm} (10-14)

or

$$EI = \frac{0.4E_c Ig}{1 + \beta_{dns}}$$ \hspace{1cm} (10-15)

Alternatively, EI shall be permitted to be computed using the value of I from Eq. (10-8) divided by $(1 + \beta_{dns})$.

R10.10.6 — Moment magnification procedure — Nonsway

The ϕ-factors used in the design of slender columns represent two different sources of variability. First, the stiffness reduction ϕ_K-factor accounts for the variability in the stiffness EI and the moment magnification analysis. Second, the strength reduction ϕ-factor for tied and spiral columns accounts for the variability of the strength of the cross section. Studies reported in Reference 10.41 indicate that the stiffness reduction factor ϕ_K and the cross-sectional strength reduction ϕ-factors do not have the same values. These studies suggest the stiffness reduction factor ϕ_K for an isolated column should be 0.75 for both tied and spiral columns. The 0.75 factor in Eq. (10-12) is the stiffness reduction factor ϕ_K. The factor is based on the probability of understrength of a single isolated slender column. In the case of a multistory frame, the column and frame deflections depend on the average concrete strength, which is higher than the strength of the concrete in the critical single understrength column. For this reason, the value of ϕ_K in 10.10.4 is 0.875.

R10.10.6.1 — In defining the critical load, the main problem is the choice of a stiffness EI that reasonably approximates the variations in stiffness due to cracking, creep, and nonlinearity of the concrete stress-strain curve. Either Eq. (10-14) or (10-15) may be used to compute EI. Equation (10-14) was derived for small eccentricity ratios and high levels of axial load where slenderness effects are most pronounced. Equation (10-15) is a simplified approximation to Eq. (10-14) and is less accurate. For improved accuracy, EI can be approximated using the suggested E and I values provided by Eq. (10-8) divided by $(1 + \beta_{dns})$.
CODE

10.10.6.2 — The term β_{dns} shall be taken as the ratio of maximum factored axial sustained load to maximum factored axial load associated with the same load combination, but shall not be taken greater than 1.0.

10.10.6.3 — The effective length factor, k, shall be permitted to be taken as 1.0.

10.10.6.4 — For members without transverse loads between supports, C_m shall be taken as

$$C_m = 0.6 + 0.4 \frac{M_1}{M_2}$$ \hspace{1cm} (10-16)

where M_1/M_2 is positive if the column is bent in single curvature, and negative if the member is bent in double curvature. For members with transverse loads between supports, C_m shall be taken as 1.0.

10.10.6.5 — Factored moment, M_2, in Eq. (10-11) shall not be taken less than

$$M_{2,\text{min}} = P_u (0.6 + 0.03h)$$ \hspace{1cm} (10-17)

about each axis separately, where 0.6 and h are in inches. For members in which $M_{2,\text{min}}$ exceeds M_2, the value of C_m in Eq. (10-16) shall either be taken equal to 1.0, or shall be based on the ratio of the computed end moments, M_1/M_2.

COMMENTARY

R10.10.6.2 — Creep due to sustained load will increase the lateral deflections of a column and hence the moment magnification. This is approximated for design by reducing the stiffness EI used to compute P_c and hence δ by dividing EI by $(1 + \beta_{dns})$. Both the concrete and steel terms in Eq. (10-14) are divided by $(1 + \beta_{dns})$ to reflect the premature yielding of steel in columns subjected to sustained load. For simplification, it can be assumed that $\beta_{dns} = 0.6$. In this case, Eq. (10-15) becomes

$$EI = 0.25E_cI_g$$

R10.10.6.3 — The effective length factor for a compression member considering braced behavior ranges from 0.5 and 1.0. While lower values can be justified, it is recommended that a k value of 1.0 be used. If lower values are used, the calculation of k should be based on analysis of the frame using E_c and I values given in 10.10.4. The Jackson and Moreland Alignment Charts (Fig. R10.10.1.1) can be used to estimate lower values of k.10.4,10.30

R10.10.6.4 — The factor C_m is a correction factor relating the actual moment diagram to an equivalent uniform moment diagram. The derivation of the moment magnifier assumes that the maximum moment is at or near midheight of the column. If the maximum moment occurs at one end of the column, design should be based on an equivalent uniform moment $C_m M_2$ that would lead to the same maximum moment when magnified.10.31

In the case of compression members that are subjected to transverse loading between supports, it is possible that the maximum moment will occur at a section away from the end of the member. If this occurs, the value of the largest calculated moment occurring anywhere along the member should be used for the value of M_2 in Eq. (10-11). C_m is to be taken as 1.0 for this case.

R10.10.6.5 — In the Code, slenderness is accounted for by magnifying the column end moments. If the factored column moments are very small or zero, the design of slender columns should be based on the minimum eccentricity given in this section. It is not intended that the minimum eccentricity be applied about both axes simultaneously.

The factored column end moments from the structural analysis are used in Eq. (10-16) in determining the ratio M_1/M_2 for the column when the design should be based on minimum eccentricity. This eliminates what would otherwise be a discontinuity between columns with computed eccentricities less than the minimum eccentricity and columns with computed eccentricities equal to or greater than the minimum eccentricity.
10.10.7 — Moment magnification procedure — Sway

Moments M_1 and M_2 at the ends of an individual compression member shall be taken as

$$M_1 = M_{1ns} + \delta_s M_{1s}$$

$$M_2 = M_{2ns} + \delta_s M_{2s}$$

where δ_s is computed according to 10.10.7.3 or 10.10.7.4.

10.10.7.1 — Flexural members shall be designed for the total magnified end moments of the compression members at the joint.

10.10.7.2 — The effective length factor k shall be determined using the values of E_c and I given in 10.10.4 and shall not be less than 1.0.

10.10.7.3 — The moment magnifier δ_s shall be calculated as

$$\delta_s = \frac{1}{1 - Q} \geq 1$$

If δ_s calculated by Eq. (10-20) exceeds 1.5, δ_s shall be calculated using second-order elastic analysis or 10.10.7.4.

R10.10.7.1 — The strength of a sway frame is governed by the stability of the columns and by the degree of end restraint provided by the beams in the frame. If plastic hinges form in the restraining beam, the structure approaches a failure mechanism and its axial load capacity is drastically reduced. This section provides that the designer make certain that the restraining flexural members have the strength to resist the magnified column moments.

R10.10.7.3 — The iterative $P\Delta$ analysis for second-order moments can be represented by an infinite series. The solution of this series is given by Eq. (10-20). Reference 10.43 shows that Eq. (10-20) closely predicts the second-order moments in a sway frame until δ_s exceeds 1.5.

The $P\Delta$ moment diagrams for deflected columns are curved, with Δ related to the deflected shape of the columns. Equation (10-20) and most commercially available second-order frame analyses have been derived assuming that the $P\Delta$ moments result from equal and opposite forces of $P\Delta/l_c$ applied at the bottom and top of the story. These forces give a straight line $P\Delta$ moment diagram. The curved $P\Delta$ moment diagrams lead to lateral displacements on the order of 15 percent larger than those from the straight line $P\Delta$ moment diagrams. This effect can be included in Eq. (10-20) by writing the denominator as $(1 - 1.15Q)$ rather than $(1 - Q)$. The 1.15 factor has been left out of Eq. (10-20) for simplicity.

If deflections have been calculated using service loads, Q in Eq. (10-20) should be calculated in the manner explained in R10.10.5.

The Q factor analysis is based on deflections calculated using the values of E_c and I from 10.10.4, which include the equivalent of a stiffness reduction factor ϕ_K. These values of E_c and I lead to a 20 to 25 percent overestimation of the lateral deflections that corresponds to a stiffness reduction factor ϕ_K between 0.80 and 0.85 on the $P\Delta$ moments. As a result, no additional ϕ-factor is needed. Once the moments
10.10.7.4 — Alternatively, it shall be permitted to calculate δ_s as

$$\delta_s = \frac{1}{\frac{\Sigma P_u}{0.75 \Sigma P_c}} \geq 1 \tag{10-21}$$

where ΣP_u is the summation for all the factored vertical loads in a story and ΣP_c is the summation for all sway-resisting columns in a story. P_c is calculated using Eq. (10-13) with k determined from 10.10.7.2 and EI from 10.10.6.1.

COMMENTARY

are established using Eq. (10-20), selection of the cross sections of the columns involves the strength reduction factors ϕ from 9.3.2.2.

R10.10.7.4 — To check the effects of story stability, δ_s is computed as an averaged value for the entire story based on use of $\Sigma P_u/\Sigma P_c$. This reflects the interaction of all sway-resisting columns in the story in the $P\Delta$ effects since the lateral deflection of all columns in the story should be equal in the absence of torsional displacements about a vertical axis. In addition, it is possible that a particularly slender individual column in a sway frame could have substantial midheight deflections even if adequately braced against lateral end deflections by other columns in the story. Such a column should be checked using 10.10.6.

If the lateral load deflections involve a significant torsional displacement, the moment magnification in the columns farthest from the center of twist may be underestimated by the moment magnifier procedure. In such cases, a three-dimensional second-order analysis should be considered.

The 0.75 in the denominator of Eq. (10-21) is a stiffness reduction factor ϕ_k as explained in R10.10.6.

In the calculation of EI, β_{ds} will normally be zero for a sway frame because the lateral loads are generally of short duration. Sway deflections due to short-term loads such as wind or earthquake are a function of the short-term stiffness of the columns following a period of sustained gravity load. For this case, the definition of β_{ds} in 10.10.4.2 gives $\beta_{ds} = 0$.

In the unusual case of a sway frame where the lateral loads are sustained, β_{ds} will not be zero. This might occur if a building on a sloping site is subjected to earth pressure on one side but not on the other.

10.11 — Axially loaded members supporting slab system

Axially loaded members supporting a slab system included within the scope of 13.1 shall be designed as provided in Chapter 10 and in accordance with the additional requirements of Chapter 13.

10.12 — Transmission of column loads through floor system

If f'_c of a column is greater than 1.4 times that of the floor system, transmission of load through the floor system shall be provided by 10.12.1, 10.12.2, or 10.12.3.

R10.12 — Transmission of column loads through floor system

The requirements of this section are based on the effect of floor concrete strength on column strength. The provisions mean that where the column concrete strength does not exceed the floor concrete strength by more than 40 percent, no special precautions need be taken. For higher column concrete strengths, methods in 10.12.1 or 10.12.2 should be used for corner or edge columns. Methods in 10.12.1, 10.12.2, or 10.12.3 should be used for interior columns with adequate restraint on all four sides.
10.12.1 — Concrete of strength specified for the column shall be placed in the floor at the column location. Top surface of the column concrete shall extend 2 ft into the slab from face of column. Column concrete shall be well integrated with floor concrete, and shall be placed in accordance with 6.4.6 and 6.4.7.

R10.12.1 — Application of the concrete placement procedure described in 10.12.1 requires the placing of two different concrete mixtures in the floor system. The lower-strength mixture should be placed while the higher-strength concrete is still plastic and should be adequately vibrated to ensure the concretes are well integrated. This requires careful coordination of the concrete deliveries and the possible use of retarders. In some cases, additional inspection services will be required when this procedure is used. It is important that the higher-strength concrete in the floor in the region of the column be placed before the lower-strength concrete in the remainder of the floor to prevent accidental placing of the low-strength concrete in the column area. It is the responsibility of the licensed design professional to indicate on the drawings where the high- and low-strength concretes are to be placed.

Beginning with the 1983 Code, the amount of column concrete to be placed within the floor is expressed as a simple 2 ft extension from face of the column. Since the concrete placement requirement should be carried out in the field, it is now expressed in a way that is directly evident to workers. The new requirement will also locate the interface between column and floor concrete farther out into the floor, away from regions of very high shear.

10.12.2 — Strength of a column through a floor system shall be based on the lower value of concrete strength with vertical dowels and spirals as required.

10.12.3 — For columns laterally supported on four sides by beams of approximately equal depth or by slabs, it shall be permitted to base strength of the column on an assumed concrete strength in the column joint equal to 75 percent of column concrete strength plus 35 percent of floor concrete strength. In the application of 10.12.3, the ratio of column concrete strength to slab concrete strength shall not be taken greater than 2.5 for design.

R10.12.3 — Research10.45 has shown that heavily loaded slabs do not provide as much confinement as lightly loaded slabs when ratios of column concrete strength to slab concrete strength exceed about 2.5. Consequently, a limit is placed on the concrete strength ratio assumed in design.

10.13 — Composite compression members

10.13.1 — Composite compression members shall include all such members reinforced longitudinally with structural steel shapes, pipe, or tubing with or without longitudinal bars.

R10.13.1 — Composite columns are defined without reference to classifications of combination, composite, or concrete-filled pipe column. Reference to other metals used for reinforcement has been omitted because they are seldom used in concrete construction.

10.13.2 — Strength of a composite member shall be computed for the same limiting conditions applicable to ordinary reinforced concrete members.

R10.13.2 — The same rules used for computing the load-moment interaction strength for reinforced concrete sections can be applied to composite sections. Interaction charts for concrete-filled tubing would have a form identical to those of the ACI Design Handbook10.4 but with γ slightly greater than 1.0.
10.13.3 — Any axial load strength assigned to concrete of a composite member shall be transferred to the concrete by members or brackets in direct bearing on the composite member concrete.

10.13.4 — All axial load strength not assigned to concrete of a composite member shall be developed by direct connection to the structural steel shape, pipe, or tube.

10.13.5 — For evaluation of slenderness effects, radius of gyration, \(r \), of a composite section shall be not greater than the value given by

\[
r = \frac{(E_c I_d/5) + E_s I_{sx}}{(E_c A_d/5) + E_s A_{sx}}
\]

and, as an alternative to a more accurate calculation, \(EI \) in Eq. (10-13) shall be taken either as Eq. (10-14) or

\[
EI = \frac{(E_c I_d/5)}{1 + \beta_d} + E_s I_{sx}
\]

10.13.6 — Structural steel encased concrete core

10.13.6.1 — For a composite member with a concrete core encased by structural steel, the thickness of the steel encasement shall be not less than

\[
b = \frac{f_y}{3E_s}
\]

for each face of width \(b \)

nor

\[
h = \frac{f_y}{8E_s}
\]

for circular sections of diameter \(h \)

10.13.6.2 — Longitudinal bars located within the encased concrete core shall be permitted to be used in computing \(A_{sx} \) and \(I_{sx} \).

10.13.7 — Spiral reinforcement around structural steel core

A composite member with spirally reinforced concrete around a structural steel core shall conform to 10.13.7.1 through 10.13.7.4.

R10.13.3 and R10.13.4 — Direct bearing or direct connection for transfer of forces between steel and concrete can be developed through lugs, plates, or reinforcing bars welded to the structural shape or tubing before the concrete is cast. Flexural compressive stress need not be considered a part of direct compression load to be developed by bearing. A concrete encasement around a structural steel shape may stiffen the shape, but it would not necessarily increase its strength.

R10.13.5 — Equation (10-22) is given because the rules of 10.10.1.2 for estimating the radius of gyration are overly conservative for concrete-filled tubing and are not applicable for members with enclosed structural shapes.

In reinforced concrete columns subject to sustained loads, creep transfers some of the load from the concrete to the steel, increasing the steel stresses. In the case of lightly reinforced columns, this load transfer may cause the compression steel to yield prematurely, resulting in a loss in the effective \(EI \). Accordingly, both the concrete and steel terms in Eq. (10-14) are reduced to account for creep. For heavily reinforced columns or for composite columns in which the pipe or structural shape makes up a large percentage of the cross section, the load transfer due to creep is not significant. Accordingly, Eq. (10-23) was revised in the 1980 Code supplement so that only the \(EI \) of the concrete is reduced for sustained load effects.

R10.13.6 — Structural steel-encased concrete core

Steel-encased concrete sections should have a metal wall thickness large enough to attain longitudinal yield stress before buckling outward.

R10.13.7 — Spiral reinforcement around structural steel core

Concrete that is laterally confined by a spiral has increased strength, and the size of the spiral required can be regulated on the basis of the strength of the concrete outside the
CODE

10.13.7.1 — Design yield strength of structural steel core shall be the specified minimum yield strength for the grade of structural steel used but not to exceed 50,000 psi.

10.13.7.2 — Spiral reinforcement shall conform to 10.9.3.

10.13.7.3 — Longitudinal bars located within the spiral shall be not less than 0.01 nor more than 0.08 times net area of concrete section.

10.13.7.4 — Longitudinal bars located within the spiral shall be permitted to be used in computing A_{sx} and I_{sx}.

10.13.8 — Tie reinforcement around structural steel core

A composite member with laterally tied concrete around a structural steel core shall conform to 10.13.8.1 through 10.13.8.7.

10.13.8.1 — Design yield strength of structural steel core shall be the specified minimum yield strength for the grade of structural steel used but not to exceed 50,000 psi.

10.13.8.2 — Lateral ties shall extend completely around the structural steel core.

10.13.8.3 — Lateral ties shall have a diameter not less than 0.02 times the greatest side dimension of composite member, except that ties shall not be smaller than No. 3 and are not required to be larger than No. 5. Welded wire reinforcement of equivalent area shall be permitted.

10.13.8.4 — Vertical spacing of lateral ties shall not exceed 16 longitudinal bar diameters, 48 tie bar diameters, or 0.5 times the least side dimension of the composite member.

10.13.8.5 — Longitudinal bars located within the ties shall be not less than 0.01 nor more than 0.08 times net area of concrete section.

10.13.8.6 — A longitudinal bar shall be located at every corner of a rectangular cross section, with other longitudinal bars spaced not farther apart than one-half the least side dimension of the composite member.

10.13.8.7 — Longitudinal bars located within the ties shall be permitted to be used in computing A_{sx} and I_{sx}.

COMMENTARY

spiral—the same reasoning that applies for columns reinforced only with longitudinal bars. The radial pressure provided by the spiral ensures interaction between concrete, reinforcing bars, and steel core such that longitudinal bars will both stiffen and strengthen the cross section.

R10.13.8 — Tie reinforcement around structural steel core

The yield strength of the steel core should be limited to that which exists at strains below those that can be sustained without spalling of the concrete. It has been assumed that axially compressed concrete will not spall at strains less than 0.0018. The yield strength of $0.0018 \times 29,000,000$, or 52,000 psi, represents an upper limit of the useful maximum steel stress.

Research has shown that the required amount of tie reinforcement around the structural steel core is sufficient for the longitudinal steel bars to be included in the flexural stiffness of the composite column.
10.14 — Bearing strength

10.14.1 — Design bearing strength of concrete shall not exceed $\phi (0.85 f'_c A_1)$, except when the supporting surface is wider on all sides than the loaded area, then the design bearing strength of the loaded area shall be permitted to be multiplied by $\sqrt{A_2 / A_1}$ but by not more than 2.

10.14.2 — Section 10.14 does not apply to post-tensioning anchorages.

R10.14 — Bearing strength

R10.14.1 — This section deals with bearing strength of concrete supports. The permissible bearing stress of $0.85 f'_c$ is based on tests reported in Reference 10.47. (See also 15.8).

When the supporting area is wider than the loaded area on all sides, the surrounding concrete confines the bearing area, resulting in an increase in bearing strength. No minimum depth is given for a supporting member. The minimum depth of support will be controlled by the shear requirements of 11.11.

When the top of the support is sloped or stepped, advantage may still be taken of the condition that the supporting member is larger than the loaded area, provided the supporting member does not slope at too great an angle. Figure R10.14 illustrates the application of the frustum to find A_2. The frustum should not be confused with the path by which a load spreads out as it travels downward through the support. Such a load path would have steeper sides. However, the frustum described has somewhat flat side slopes to ensure that there is concrete immediately surrounding the zone of high stress at the bearing. A_1 is the loaded area but not greater than the bearing plate or bearing cross-sectional area.

R10.14.2 — Post-tensioning anchorages are usually laterally reinforced, in accordance with 18.13.
Fig. R10.14—Application of frustum to find A_2 in stepped or sloped supports.
CHAPTER 11 — SHEAR AND TORSION

CODE

11.1 — Shear strength

11.1.1 — Except for members designed in accordance with Appendix A, design of cross sections subject to shear shall be based on

$$\phi V_n \geq V_u$$ \hspace{1cm} (11-1)

where \(V_u\) is the factored shear force at the section considered and \(V_n\) is nominal shear strength computed by

$$V_n = V_c + V_s$$ \hspace{1cm} (11-2)

where \(V_c\) is nominal shear strength provided by concrete calculated in accordance with 11.2, 11.3, or 11.11, and \(V_s\) is nominal shear strength provided by shear reinforcement calculated in accordance with 11.4, 11.9.9, or 11.11.

COMMENTARY

R11.1 — Shear strength

This chapter includes shear and torsion provisions for both nonprestressed and prestressed concrete members. The shear-friction concept (11.6) is particularly applicable to design of reinforcement details in precast structures. Provisions are included for deep flexural members (11.7), brackets and corbels (11.8), and shear walls (11.9). Shear provisions for slabs and footings are given in 11.11.

The shear strength is based on an average shear stress on the full effective cross section \(b_wd\). In a member without shear reinforcement, shear is assumed to be carried by the concrete web. In a member with shear reinforcement, a portion of the shear strength is assumed to be provided by the concrete and the remainder by the shear reinforcement.

The shear strength provided by concrete \(V_c\) is assumed to be the same for beams with and without shear reinforcement and is taken as the shear causing significant inclined cracking. These assumptions are discussed in References 11.1, 11.2, and 11.3.

Appendix A allows the use of strut-and-tie models in the shear design of disturbed regions. The traditional shear design procedures, which ignore D-regions, are acceptable in shear spans that include B-regions.

R11.1.1.1 — Openings in the web of a member can reduce its shear strength. The effects of openings are discussed in Section 4.7 of Reference 11.1 and in References 11.4 and 11.5.

R11.1.1.2 — In a member of variable depth, the internal shear at any section is increased or decreased by the vertical component of the inclined flexural stresses. Computation methods are outlined in various textbooks and in the 1940 Joint Committee Report.\(^{11,6}\)

R11.1.2 — Because of a lack of test data and practical experience with concretes having compressive strengths greater than 10,000 psi, the 1989 edition of the Code imposed a maximum value of 100 psi on \(\sqrt{f'_c}\) for use in the calculation of shear strength of concrete beams, joists, and slabs. Exceptions to this limit were permitted in beams and joists when the transverse reinforcement satisfied an increased value for the minimum amount of web reinforcement. There are limited test data on the two-way shear strength of high-strength concrete slabs. Until more experience is obtained for two-way slabs built with concretes that have strengths greater than 10,000 psi, it is prudent to limit \(\sqrt{f'_c}\) to 100 psi for the calculation of shear strength.
CODE

11.1.2.1 — Values of \(\sqrt[3]{f_c'} \) greater than 100 psi shall be permitted in computing \(V_c \), \(V_{cl} \), and \(V_{cw} \) for reinforced or prestressed concrete beams and concrete joist construction having minimum web reinforcement in accordance with 11.4.6.3, 11.4.6.4, or 11.5.5.2.

11.1.3 — Computation of maximum \(V_u \) at supports in accordance with 11.1.3.1 or 11.1.3.2 shall be permitted if all conditions (a), (b), and (c) are satisfied:

(a) Support reaction, in direction of applied shear, introduces compression into the end regions of member;

(b) Loads are applied at or near the top of the member;

(c) No concentrated load occurs between face of support and location of critical section defined in 11.1.3.1 or 11.1.3.2.

11.1.3.1 — For nonprestressed members, sections located less than a distance \(d \) from face of support shall be permitted to be designed for \(V_u \) computed at a distance \(d \).

COMMENTARY

R11.1.2.1 — Based on the test results in References 11.7, 11.8, 11.9, 11.10, and 11.11, an increase in the minimum amount of transverse reinforcement is required for high-strength concrete. These tests indicated a reduction in the reserve shear strength as \(f_c' \) increased in beams reinforced with the specified minimum amount of transverse reinforcement, which is equivalent to an effective shear stress of 50 psi. A provision introduced in the 1989 edition of the Code required an increase in the minimum amount of transverse reinforcement for concrete strengths between 10,000 and 15,000 psi. This provision, which led to a sudden increase in the minimum amount of transverse reinforcement at a compressive strength of 10,000 psi, has been replaced by a gradual increase in the minimum \(A_v \) as \(f_c' \) increases, as given by Eq. (11-13).

R11.1.3.1 — The closest inclined crack to the support of the beam in Fig. R11.1.3.1(a) will extend upward from the face of the support reaching the compression zone about \(d \) from the face of the support. If loads are applied to the top of this beam, the stirrups across this crack are stressed by loads acting on the lower freebody in Fig. R11.1.3.1(a). The loads applied to the beam between the face of the column and the point \(d \) away from the face are transferred directly to the support by compression in the web above the crack. Accordingly, the Code permits design for a maximum factored shear force \(V_u \) at a distance \(d \) from the support for nonprestressed members, and at a distance \(h/2 \) for prestressed members. Two things are emphasized: first, stirrups are required across the potential crack designed for the shear at \(d \) from the support, and second, a tension force exists in the longitudinal reinforcement at the face of the support.

In Fig. R11.1.3.1(b), loads are shown acting near the bottom of a beam. In this case, the critical section is taken at the face of the support. Loads acting near the support should be transferred across the inclined crack extending upward from the support face. The shear force acting on the critical section should include all loads applied below the potential inclined crack.

Typical support conditions where the shear force at a distance \(d \) from the support may be used include: (1)
Fig. R11.1.3.1(a)—Free body diagrams of the end of a beam.

Fig. R11.1.3.1(b)—Location of critical section for shear in a member loaded near bottom.

Fig. R11.1.3.1(c), (d), (e), (f)—Typical support conditions for locating factored shear force V_u.
11.1.3.2 — For prestressed members, sections located less than a distance \(h/2 \) from face of support shall be permitted to be designed for \(V_u \) computed at a distance \(h/2 \).

11.1.4 — For deep beams, brackets and corbels, walls, and slabs and footings, the special provisions of 11.7 through 11.11 shall apply.

11.2 — Shear strength provided by concrete for non prestressed members

11.2.1 — \(V_c \) shall be computed by provisions of 11.2.1.1 through 11.2.1.3, unless a more detailed calculation is made in accordance with 11.2.2. Throughout this chapter, except in 11.6, \(\lambda \) shall be as defined in 8.6.1.

11.2.1.1 — For members subject to shear and flexure only,

\[
V_c = 2\lambda \sqrt{f'_c} b_w d \quad (11-3)
\]

11.2.1.2 — For members subject to axial compression,

\[
V_c = 2\left(1 + \frac{N_u}{2000A_g}\right) \lambda \sqrt{f'_c} b_w d \quad (11-4)
\]

Quantity \(N_u/A_g \) shall be expressed in psi.

Support conditions where this provision should not be applied include: (1) Members framing into a supporting member in tension, such as shown in Fig. R11.1.3.1(e). For this case, the critical section for shear should be taken at the face of the support. Shear within the connection should also be investigated and special corner reinforcement should be provided. (2) Members for which loads are not applied at or near the top of the member. This is the condition referred to in Fig. 11.1.3.1(b). For such cases, the critical section is taken at the face of the support. Loads acting near the support should be transferred across the inclined crack extending upward from the support face. The shear force acting on the critical section should include all loads applied below the potential inclined crack. (3) Members loaded such that the shear at sections between the support and a distance \(d \) from the support differs radically from the shear at distance \(d \). This commonly occurs in brackets and in beams where a concentrated load is located close to the support, as shown in Fig. R11.1.3.1(f) or in footings supported on piles. In this case, the shear at the face of the support should be used.

R11.1.3.2 — Because \(d \) frequently varies in prestressed members, the location of the critical section has arbitrarily been taken as \(h/2 \) from the face of the support.

R11.2 — Shear strength provided by concrete for non prestressed members

R11.2.1.1 — See R11.2.2.1.

R11.2.1.2 and R11.2.1.3 — See R11.2.2.2.
11.2.1.3 — For members subject to significant axial tension, \(V_c \) shall be taken as zero unless a more detailed analysis is made using 11.2.2.3.

11.2.2 — \(V_c \) shall be permitted to be computed by the more detailed calculation of 11.2.2.1 through 11.2.2.3.

11.2.2.1 — For members subject to shear and flexure only,

\[
V_c = \left(1.9 \lambda \sqrt{f_c' + 2500 \rho_w \frac{V_u d}{M_u}} \right) b_w d \quad (11-5)
\]

but not greater than \(3.5 \lambda \sqrt{f_c' b_w d} \). When computing \(V_c \) by Eq. (11-5), \(V_u d/M_u \) shall not be taken greater than 1.0, where \(M_u \) occurs simultaneously with \(V_u \) at section considered.

11.2.2.2 — For members subject to axial compression, it shall be permitted to compute \(V_c \) using Eq. (11-5) with \(M_m \) substituted for \(M_u \) and \(V_u d/M_u \) not then limited to 1.0, where

\[
M_m = M_u - N_u \frac{(4h - d)}{8} \quad (11-6)
\]

However, \(V_c \) shall not be taken greater than

\[
V_c = 3.5 \lambda \sqrt{f_c' b_w d} \left(1 + \frac{N_u}{500 A_g} \right) \quad (11-7)
\]

\(N_u/A_g \) shall be expressed in psi. When \(M_m \) as computed by Eq. (11-6) is negative, \(V_c \) shall be computed by Eq. (11-7).

R11.2.2.1 — Equation (11-5) is the basic expression for shear strength of members without shear reinforcement. The three variables in Eq. (11-5), \(\lambda \sqrt{f_c' + \rho_w V_u d/M_u} \) are known to affect shear strength, although some research data\(^{11.1,11.12} \) indicate that Eq. (11-5) overestimates the influence of \(f_c' \) and underestimates the influence of \(\rho_w \) and \(V_u d/M_u \). Further information\(^{11.13} \) has indicated that shear strength decreases as the overall depth of the member increases.

The minimum value of \(M_u \) equal to \(V_u d \) in Eq. (11-5) is to limit \(V_c \) near points of inflection.

For most designs, it is convenient to assume that the second term of Eq. (11-5) equals 0.1 \(\sqrt{f_c'} \) and use \(V_c \) equal to \(2 \lambda \sqrt{f_c' b_w d} \) as permitted in 11.2.1.1.

R11.2.2.2 — Equations (11-6) and (11-7), for members subject to axial compression in addition to shear and flexure, are derived in the Joint ACI-ASCE Committee 326 report.\(^{11.3} \) As \(N_u \) is increased, the value of \(V_c \) computed from Eq. (11-5) and (11-6) will exceed the upper limit given by Eq. (11-7) before the value of \(M_m \) given by Eq. (11-6) becomes negative. The value of \(V_c \) obtained from Eq. (11-5) has no physical significance if a negative value of \(M_m \) is substituted. For this condition, Eq. (11-7) or Eq. (11-4) should be used to calculate \(V_c \). Values of \(V_c \) for members subject to shear and axial load are illustrated in Fig. R11.2.2.2. The background for these equations is discussed and comparisons are made with test data in Reference 11.2.

Because of the complexity of Eq. (11-5) and (11-6), an alternative design provision, Eq. (11-4), is permitted.
CODE

11.2.2.3 — For members subject to significant axial tension,

\[V_c = 2\left(1 + \frac{N_u}{500A_g}\right)\frac{\lambda}{f'_c}b_wd \] \hspace{1cm} (11-8)

but not less than zero, where \(N_u \) is negative for tension. \(N_u / A_g \) shall be expressed in psi.

11.2.3 — For circular members, the area used to compute \(V_c \) shall be taken as the product of the diameter and effective depth of the concrete section. It shall be permitted to take \(d \) as 0.80 times the diameter of the concrete section.

11.3 — Shear strength provided by concrete for prestressed members

11.3.1 — For the provisions of 11.3, \(d \) shall be taken as the distance from extreme compression fiber to centroid of prestressed and nonprestressed longitudinal tension reinforcement, if any, but need not be taken less than \(0.80h \).

11.3.2 — For members with effective prestress force not less than 40 percent of the tensile strength of flexural reinforcement, unless a more detailed calculation is made in accordance with 11.3.3,

\[V_c = \left(0.6\frac{\lambda}{f'_c} + 700\frac{V_u d}{M_u}\right)b_wd \] \hspace{1cm} (11-9)

but \(V_c \) need not be taken less than \(2\frac{\lambda}{f'_c}b_wd \). \(V_c \) shall not be taken greater than \(5\frac{\lambda}{f'_c}b_wd \) or the value given in 11.3.4 or 11.3.5. \(V_u d_p / M_u \) shall not be taken greater than \(1.0 \), where \(M_u \) occurs simultaneously with \(V_u \) at the section considered.

11.3.3 — \(V_c \) shall be permitted to be computed in accordance with 11.3.3.1 and 11.3.3.2, where \(V_c \) shall be the lesser of \(V_{ci} \) and \(V_{cw} \).

COMMENTARY

R11.2.2.3 — Equation (11-8) may be used to compute \(V_c \) for members subject to significant axial tension. Shear reinforcement may then be designed for \(V_n - V_c \). The term “significant” is used to recognize judgment is required in deciding whether axial tension needs to be considered. Low levels of axial tension often occur due to volume changes, but are not important in structures with adequate expansion joints and minimum reinforcement. It may be desirable to design shear reinforcement to carry total shear if there is uncertainty about the magnitude of axial tension.

R11.2.3 — Shear tests of members with circular sections indicate that the effective area can be taken as the gross area of the section or as an equivalent rectangular area. 11.1.11.14,11.15

R11.3 — Shear strength provided by concrete for prestressed members

R11.3.2 — Equation (11-9) offers a simple means of computing \(V_c \) for prestressed concrete beams. 11.2 It may be applied to beams having prestressed reinforcement only, or to members reinforced with a combination of prestressed reinforcement and nonprestressed deformed bars. Equation (11-9) is most applicable to members subject to uniform loading and may give conservative results when applied to composite girders for bridges.

In applying Eq. (11-9) to simply supported members subject to uniform loads, \(V_u d_p / M_u \) can be expressed as

\[\frac{V_u d_p}{M_u} = \frac{d_p(\ell - 2x)}{\ell(x - x)} \]

where \(\ell \) is the span length and \(x \) is the distance from the section being investigated to the support. For concrete with \(f'_c \) equal to 5000 psi, \(V_c \) from 11.3.2 varies as shown in Fig. R11.3.2. Design aids based on this equation are given in Reference 11.16.

R11.3.3 — Two types of inclined cracking occur in concrete beams: web-shear cracking and flexure-shear cracking. These two types of inclined cracking are illustrated in Fig. R11.3.3.
CODE

11.3.3.1 — V_{ci} shall be computed by

$$V_{ci} = 0.6 \lambda \sqrt{f_c} b_w d_p + V_d + \frac{V_i M_{cre}}{M_{max}} \quad (11-10)$$

where d_p need not be taken less than $0.80h$ and

$$M_{cre} = (l/y_t)(6 \lambda \sqrt{f_c} + f_{pe} - f_d) \quad (11-11)$$

and values of M_{max} and V_i shall be computed from the load combination causing maximum factored moment to occur at the section. V_{ci} need not be taken less than $1.7 \lambda \sqrt{f_c} b_w d$.

11.3.3.2 — V_{cw} shall be computed by

$$V_{cw} = (3.5 \lambda \sqrt{f_c} + 0.3 f_{pc}) b_w d_p + V_p \quad (11-12)$$

where d_p need not be taken less than $0.80h$.

Alternatively, V_{cw} shall be computed as the shear force corresponding to dead load plus live load that results in a principal tensile stress of $4 \lambda \sqrt{f_c}$ at the centroidal axis of member, or at the intersection of flange and web when the centroidal axis is in the flange. In composite members, the principal tensile stress shall be computed using the cross section that resists live load.

COMMENTARY

Equations (11-10) and (11-12) may be used to determine the shear forces causing flexure-shear and web-shear cracking, respectively. The nominal shear strength provided by the concrete V_c is assumed equal to the lesser of V_{ci} and V_{cw}. The derivations of Eq. (11-10) and (11-12) are summarized in Reference 11.17.

In deriving Eq. (11-10) it was assumed that V_{ci} is the sum of the shear required to cause a flexural crack at the point in question given by

$$V = \frac{V_i M_{cre}}{M_{max}}$$
plus an additional increment of shear required to change the flexural crack to a flexure-shear crack. The externally applied factored loads, from which V_i and M_{max} are determined, include superimposed dead load, earth pressure, and live load. In computing M_{cre} for substitution into Eq. (11-10), I and γ are the properties of the section resisting the externally applied loads.

For a composite member, where part of the dead load is resisted by only a part of the section, appropriate section properties should be used to compute f_d. The shear due to dead loads, V_d, and that due to other loads, V_i, are separated in this case. V_d is then the total shear force due to unfactored dead load acting on that part of the section carrying the dead loads acting prior to composite action plus the unfactored superimposed dead load acting on the composite member. The terms V_i and M_{max} may be taken as

$$V_i = V_u - V_d$$

$$M_{max} = M_u - M_d$$

where V_u and M_u are the factored shear and moment due to the total factored loads, and M_d is the moment due to unfactored dead load (the moment corresponding to f_d).

For noncomposite, uniformly loaded beams, the total cross section resists all the shear and the live and dead load shear force diagrams are similar. In this case, Eq. (11-10) reduces to

$$V_{ci} = 0.6 \lambda \sqrt{f_c} b w d + \frac{V_u M_{ct}}{M_u}$$

where

$$M_{ct} = (I \gamma_t)(6 \lambda \sqrt{f_c} + f_{pe})$$

The symbol M_{ct} in the two preceding equations represents the total moment, including dead load, required to cause cracking at the extreme fiber in tension. This is not the same as M_{cre} in Code Eq. (11-10) where the cracking moment is that due to all loads except the dead load. In Eq. (11-10), the dead load shear is added as a separate term.

M_u is the factored moment on the beam at the section under consideration, and V_u is the factored shear force occurring simultaneously with M_u. Since the same section properties apply to both dead and live load stresses, there is no need to compute dead load stresses and shears separately. The cracking moment M_{ct} reflects the total stress change from effective prestress to a tension of $6 \lambda \sqrt{f_c}$, assumed to cause flexural cracking.
11.3.4 — In a pretensioned member in which the section at a distance $h/2$ from face of support is closer to the end of member than the transfer length of the prestressing steel, the reduced prestress shall be considered when computing V_{cw}. This value of V_{cw} shall also be taken as the maximum limit for Eq. (11-9). The prestress force shall be assumed to vary linearly from zero at end of the prestressing steel, to a maximum at a distance from end of the prestressing steel equal to the transfer length, assumed to be 50 diameters for strand and 100 diameters for single wire.

11.3.5 — In a pretensioned member where bonding of some tendons does not extend to the end of member, a reduced prestress shall be considered when computing V_c in accordance with 11.3.2 or 11.3.3. The value of V_{cw} calculated using the reduced prestress shall also be taken as the maximum limit for Eq. (11-9). The prestress force due to tendons for which bonding does not extend to the end of member shall be assumed to vary linearly from zero at the point at which bonding commences to a maximum at a distance from this point equal to the transfer length, assumed to be 50 diameters for strand and 100 diameters for single wire.

11.4 — Shear strength provided by shear reinforcement

11.4.1 — Types of shear reinforcement

11.4.1.1 — Shear reinforcement consisting of the following shall be permitted:

(a) Stirrups perpendicular to axis of member;

(b) Welded wire reinforcement with wires located perpendicular to axis of member;

(c) Spirals, circular ties, or hoops.

11.4.1.2 — For nonprestressed members, shear reinforcement shall be permitted to also consist of:

(a) Stirrups making an angle of 45 degrees or more with longitudinal tension reinforcement;

(b) Longitudinal reinforcement with bent portion making an angle of 30 degrees or more with the longitudinal tension reinforcement;

R11.3.4 and R11.3.5 — The effect of the reduced prestress near the ends of pretensioned beams on the shear strength should be taken into account. Section 11.3.4 relates to the shear strength at sections within the transfer length of prestressing steel when bonding of prestressing steel extends to the end of the member.

Section 11.3.5 relates to the shear strength at sections within the length over which some of the prestressing steel is not bonded to the concrete, or within the transfer length of the prestressing steel for which bonding does not extend to the end of the beam.

R11.4 — Shear strength provided by shear reinforcement
CODE

(c) Combinations of stirrups and bent longitudinal reinforcement.

11.4.2 — The values of f_y and f_{yt} used in design of shear reinforcement shall not exceed 60,000 psi, except the value shall not exceed 80,000 psi for welded deformed wire reinforcement.

11.4.3 — Where the provisions of 11.4 are applied to prestressed members, d shall be taken as the distance from extreme compression fiber to centroid of the prestressed and nonprestressed longitudinal tension reinforcement, if any, but need not be taken less than $0.80h$.

11.4.4 — Stirrups and other bars or wires used as shear reinforcement shall extend to a distance d from extreme compression fiber and shall be developed at both ends according to 12.13.

11.4.5 — Spacing limits for shear reinforcement

11.4.5.1 — Spacing of shear reinforcement placed perpendicular to axis of member shall not exceed $d/2$ in nonprestressed members or $0.75h$ in prestressed members, nor 24 in.

11.4.5.2 — Inclined stirrups and bent longitudinal reinforcement shall be so spaced that every 45-degree line, extending toward the reaction from mid-depth of member $d/2$ to longitudinal tension reinforcement, shall be crossed by at least one line of shear reinforcement.

11.4.5.3 — Where V_s exceeds $4\sqrt{f'c} b_w d$, maximum spacings given in 11.4.5.1 and 11.4.5.2 shall be reduced by one-half.

11.4.6 — Minimum shear reinforcement

11.4.6.1 — A minimum area of shear reinforcement, $A_{v,min}$, shall be provided in all reinforced concrete flexural members (prestressed and nonprestressed) where V_u exceeds $0.5\phi V_c$, except in members satisfying one or more of (a) through (f):

(a) Footings and solid slabs;

R11.4.2 — Limiting the values of f_y and f_{yt} used in design of shear reinforcement to 60,000 psi provides a control on diagonal crack width. In the 1995 Code, the limitation of 60,000 psi for shear reinforcement was raised to 80,000 psi for welded deformed wire reinforcement. Research11.18-11.20 has indicated that the performance of higher-strength steels as shear reinforcement has been satisfactory. In particular, full-scale beam tests described in Reference 11.19 indicated that the widths of inclined shear cracks at service load levels were less for beams reinforced with smaller-diameter welded deformed wire reinforcement cages designed on the basis of a yield strength of 75 ksi than beams reinforced with deformed Grade 60 stirrups.

R11.4.3 — Although the value of d may vary along the span of a prestressed beam, studies11.2 have shown that, for prestressed concrete members, d need not be taken less than $0.80h$. The beams considered had some straight tendons or reinforcing bars at the bottom of the section and had stirrups that enclosed the steel.

R11.4.4 — It is essential that shear (and torsion) reinforcement be adequately anchored at both ends to be fully effective on either side of any potential inclined crack. This generally requires a hook or bend at the end of the reinforcement as provided by 12.13.

R11.4.6 — Minimum shear reinforcement

R11.4.6.1 — Shear reinforcement restrains the growth of inclined cracking. Ductility is increased and a warning of failure is provided. In an unreinforced web, the sudden formation of inclined cracking might lead directly to failure without warning. Such reinforcement is of great value if a member is subjected to an unexpected tensile force or an overload. Accordingly, a minimum area of shear reinforcement
CODE

(b) Hollow-core units with total untopped depth not greater than 12.5 in. and hollow-core units where V_u is not greater than $0.5 \phi V_{cw}$;

(c) Concrete joist construction defined by 8.13;

(d) Beams with h not greater than 10 in.;

(e) Beam integral with slabs with h not greater than 24 in. and not greater than the larger of 2.5 times thickness of flange, and 0.5 times width of web;

(f) Beams constructed of steel fiber-reinforced, normalweight concrete with f_c' not exceeding 6000 psi, h not greater than 24 in., and V_u not greater than $\phi 2 f_c' b_w d$.

COMMENTARY

not less than that given by Eq. (11-13) or (11-14) is required wherever V_u is greater than $0.5 \phi V_c$. Solid slabs, footings and joists are excluded from the minimum shear reinforcement requirement because there is a possibility of load sharing between weak and strong areas. However, research has shown that deep, lightly reinforced one-way slabs and beams, particularly if constructed with high-strength concrete, or concrete having a small coarse aggregate size, may fail at shear loads less than V_c, calculated from Eq. (11-3) especially if subjected to concentrated loads. Because of this, the exclusion for certain beam types in 11.4.6.1(e) is restricted to cases in which h does not exceed 24 in. For beams where f_c' is greater than 7000 psi, consideration should be given to providing minimum shear reinforcement when h is greater than 18 in. and V_u is greater than $0.5 \phi V_c$.

Even when V_u is less than $0.5 \phi V_c$, the use of some web reinforcement is recommended in all thin-web post-tensioned prestressed concrete members (joists, waffle slabs, beams, and T-beams) to reinforce against tensile forces in webs resulting from local deviations from the design tendon profile, and to provide a means of supporting the tendons in the design profile during construction. If sufficient support is not provided, lateral wobble and local deviations from the smooth parabolic tendon profile assumed in design may result during placement of the concrete. In such cases, the deviations in the tendons tend to straighten out when the tendons are stressed. This process may impose large tensile stresses in webs, and severe cracking may develop if no web reinforcement is provided. Unintended curvature of the tendons, and the resulting tensile stresses in webs, may be minimized by securely tying tendons to stirrups that are rigidly held in place by other elements of the reinforcing cage and held down in the forms. The maximum spacing of stirrups used for this purpose should not exceed the smaller of $1.5 h$ or 4 ft. When applicable, the shear reinforcement provisions of 11.4.5 and 11.4.6 will require closer stirrup spacings.

For repeated loading of flexural members, the possibility of inclined diagonal tension cracks forming at stresses appreciably smaller than under static loading should be taken into account in the design. In these instances, it would be prudent to use at least the minimum shear reinforcement expressed by Eq. (11-13) or (11-14), even though tests or calculations based on static loads show that shear reinforcement is not required.

R11.4.6.1(b) — Test results of hollow core units with h values of 12.5 in. and less have shown shear strengths greater than those calculated by Eq. (11-12) and (11-10). Test results of precast prestressed concrete hollow core units with greater depths have shown that web-shear strengths in end regions can be less than strengths computed by Eq. (11-12). By contrast, flexure-shear strengths in those tests equaled or exceeded strengths computed by Eq. (11-10).
R11.4.6.1(f) — This exception is intended to provide a design alternative to the use of shear reinforcement, as defined in 11.4.1.1, for members with longitudinal flexural reinforcement in which V_u does not exceed $\phi_2 \sqrt{f'_c} b_w d$. Fiber-reinforced concrete beams with hooked or crimped steel fibers in dosages as required by 5.6.6.2 have been shown, through laboratory tests, to exhibit shear strengths larger than $3.5 \sqrt{f'_c} b_w d$. There are no data for the use of steel fibers as shear reinforcement in concrete members exposed to chlorides from deicing chemicals, salt, salt water, brackish water, seawater, or spray from these sources. Where steel fibers are used as shear reinforcement in corrosive environments, corrosion protection should be considered.

R11.4.6.2 — When a member is tested to demonstrate that its shear and flexural strengths are adequate, the actual member dimensions and material strengths are known. The strength used as a basis for comparison should therefore be that corresponding to a strength reduction factor of unity ($\phi = 1.0$), i.e. the required nominal strength V_n and M_n. This ensures that if the actual material strengths in the field were less than specified, or the member dimensions were in error such as to result in a reduced member strength, a satisfactory margin of safety will be retained.

R11.4.6.3 — Previous versions of the Code have required a minimum area of transverse reinforcement that is independent of concrete strength. Tests have indicated the need to increase the minimum area of shear reinforcement as concrete strength increases to prevent sudden shear failures when inclined cracking occurs. Equation (11-13) provides for a gradual increase in the minimum area of transverse reinforcement, while maintaining the previous minimum value.

R11.4.6.4 — Tests of prestressed beams with minimum web reinforcement based on Eq. (11-13) and (11-14) indicated that the smaller A_v from these two equations was sufficient to develop ductile behavior.

Equation (11-14) may be used only for prestressed members meeting the minimum prestress force requirements given in 11.4.6.4. This equation is discussed in Reference 11.28.
11.4.7 — Design of shear reinforcement

11.4.7.1 — Where V_u exceeds ϕV_c, shear reinforcement shall be provided to satisfy Eq. (11-1) and (11-2), where V_s shall be computed in accordance with 11.4.7.2 through 11.4.7.9.

11.4.7.2 — Where shear reinforcement perpendicular to axis of member is used,

$$V_s = \frac{A_v f_y d}{s} \quad (11-15)$$

where A_v is the area of shear reinforcement within spacing s.

11.4.7.3 — Where circular ties, hoops, or spirals are used as shear reinforcement, V_s shall be computed using Eq. (11-15) where d is defined in 11.2.3 for circular members, A_v shall be taken as two times the area of the bar in a circular tie, hoop, or spiral at a spacing s, s is measured in a direction parallel to longitudinal reinforcement, and f_y is the specified yield strength of circular tie, hoop, or spiral reinforcement.

11.4.7.4 — Where inclined stirrups are used as shear reinforcement,

$$V_s = \frac{A_v f_y (\sin \alpha + \cos \alpha) d}{s} \quad (11-16)$$

where α is angle between inclined stirrups and longitudinal axis of the member, and s is measured in direction parallel to longitudinal reinforcement.

11.4.7.5 — Where shear reinforcement consists of a single bar or a single group of parallel bars, all bent up at the same distance from the support,

$$V_s = A_v f_y \sin \alpha \quad (11-17)$$

but not greater than $3 \sqrt{f_c} b_w d$, where α is angle between bent-up reinforcement and longitudinal axis of the member.

R11.4.7 — Design of shear reinforcement

Design of shear reinforcement is based on a modified truss analogy. The truss analogy assumes that the total shear is carried by shear reinforcement. However, considerable research on both nonprestressed and prestressed members has indicated that shear reinforcement needs to be designed to carry only the shear exceeding that which causes inclined cracking, provided the diagonal members in the truss are assumed to be inclined at 45 degrees.

Equations (11-15), (11-16), and (11-17) are presented in terms of nominal shear strength provided by shear reinforcement V_s. When shear reinforcement perpendicular to axis of member is used, the required area of shear reinforcement A_v and its spacing s are computed by

$$\frac{A_v}{s} = \frac{(V_u - \phi V_c)}{\phi f_y d}$$

Research11.29,11.30 has shown that shear behavior of wide beams with substantial flexural reinforcement is improved if the transverse spacing of stirrup legs across the section is reduced.

R11.4.7.3 — Although the transverse reinforcement in a circular section may not consist of straight legs, tests indicate that Eq. (11-15) is conservative if d is taken as defined in 11.2.3,11.14,11.15
CODE

11.4.7.6 — Where shear reinforcement consists of a series of parallel bent-up bars or groups of parallel bent-up bars at different distances from the support, V_s shall be computed by Eq. (11-16).

11.4.7.7 — Only the center three-fourths of the inclined portion of any longitudinal bent bar shall be considered effective for shear reinforcement.

11.4.7.8 — Where more than one type of shear reinforcement is used to reinforce the same portion of a member, V_s shall be computed as the sum of the values computed for the various types of shear reinforcement.

11.4.7.9 — V_s shall not be taken greater than $8 \sqrt{f_c' b_n d}$.

11.5 — Design for torsion

Design for torsion shall be in accordance with 11.5.1 through 11.5.6, or 11.5.7.

COMMENTARY

R11.5 — Design for torsion

The design for torsion in 11.5.1 through 11.5.6 is based on a thin-walled tube, space truss analogy. A beam subjected to torsion is idealized as a thin-walled tube with the core concrete cross section in a solid beam neglected as shown in Fig. R11.5(a). Once a reinforced concrete beam has cracked in torsion, its torsional resistance is provided primarily by closed stirrups and longitudinal bars located near the surface.

Fig. R11.5—(a) Thin-walled tube; (b) area enclosed by shear flow path.
of the member. In the thin-walled tube analogy, the resistance is assumed to be provided by the outer skin of the cross section roughly centered on the closed stirrups. Both hollow and solid sections are idealized as thin-walled tubes both before and after cracking.

In a closed thin-walled tube, the product of the shear stress \(\tau \) and the wall thickness \(t \) at any point in the perimeter is known as the shear flow, \(q = \tau t \). The shear flow \(q \) due to torsion acts as shown in Fig. R11.5(a) and is constant at all points around the perimeter of the tube. The path along which it acts extends around the tube at midthickness of the walls of the tube. At any point along the perimeter of the tube the shear stress due to torsion is \(\tau = T/(2A_\theta t) \) where \(A_\theta \) is the gross area enclosed by the shear flow path, shown shaded in Fig. R11.5(b), and \(t \) is the thickness of the wall at the point where \(\tau \) is being computed. The shear flow follows the midthickness of the walls of the tube and \(A_\theta \) is the area enclosed by the path of the shear flow. For a hollow member with continuous walls, \(A_\theta \) includes the area of the hole.

In the 1995 Code, the elliptic interaction between the nominal shear strength provided by the concrete, \(V_c \), and the nominal torsion strength provided by the concrete was eliminated. \(V_c \) remains constant at the value it has when there is no torsion, and the torsion carried by the concrete is always taken as zero.

The design procedure is derived and compared with test results in References 11.31 and 11.32.

R11.5.1 — Threshold torsion

Torques that do not exceed approximately one-quarter of the cracking torque \(T_{cr} \) will not cause a structurally significant reduction in either the flexural or shear strength and can be ignored. The cracking torsion under pure torsion \(T_{cr} \) is derived by replacing the actual section with an equivalent thin-walled tube with a wall thickness \(t \) prior to cracking of \(0.75A_{cp}/p_{cp} \) and an area enclosed by the wall centerline \(A_\theta \) equal to \(2A_{cp}/3 \). Cracking is assumed to occur when the principal tensile stress reaches \(4\lambda \sqrt{f_c'} \). In a nonprestressed beam loaded with torsion alone, the principal tensile stress is equal to the torsional shear stress, \(\tau = T/(2A_\theta t) \). Thus, cracking occurs when \(\tau \) reaches \(4\lambda \sqrt{f_c'} \), giving the cracking torque \(T_{cr} \) as

\[
T_{cr} = 4\lambda \sqrt{f_c'} \left(\frac{A_{cp}^2}{p_{cp}} \right)
\]

For solid members, the interaction between the cracking torsion and the inclined cracking shear is approximately circular or elliptical. For such a relationship, a torque of \(0.25T_{cr} \), as used in 11.5.1, corresponds to a reduction of
CODE

For members cast monolithically with a slab, the overhanging flange width used in computing A_{cp} and p_{cp} shall conform to 13.2.4. For a hollow section, A_g shall be used in place of A_{cp} in 11.5.1, and the outer boundaries of the section shall conform to 13.2.4.

11.5.1.1 — For isolated members with flanges and for members cast monolithically with a slab, the overhanging flange width used to compute A_{cp} and p_{cp} shall conform to 13.2.4, except that the overhanging flanges shall be neglected in cases where the parameter A_{cp}^2/p_{cp} calculated for a beam with flanges is less than that computed for the same beam ignoring the flanges.

11.5.2 — Calculation of factored torsional moment

11.5.2.1 — If the factored torsional moment, T_u, in a member is required to maintain equilibrium and exceeds the minimum value given in 11.5.1, the member shall be designed to carry T_u in accordance with 11.5.3 through 11.5.6.

11.5.2.2 — In a statically indeterminate structure where reduction of the torsional moment in a member can occur due to redistribution of internal forces upon cracking, the maximum T_u shall be permitted to be reduced to the values given in (a), (b), or (c), as applicable:

(a) For nonprestressed members, at the sections described in 11.5.2.4

COMMENTARY

3 percent in the inclined cracking shear. This reduction in the inclined cracking shear was considered negligible. The stress at cracking $4\lambda f'c$ has purposely been taken as a lower bound value.

For prestressed members, the torsional cracking load is increased by the prestress. A Mohr's Circle analysis based on average stresses indicates the torque required to cause a principal tensile stress equal to $4\lambda f'c$ is $4\lambda f'c(1+p_{cp}/(4\lambda f'c))$ times the corresponding torque in a nonprestressed beam. A similar modification is made in part (c) of 11.5.1 for members subjected to axial load and torsion.

For torsion, a hollow member is defined as having one or more longitudinal voids, such as a single-cell or multiple-cell box girder. Small longitudinal voids, such as ungrouted post-tensioning ducts that result in A_g/A_{cp} greater than or equal to 0.95, can be ignored when computing the threshold torque in 11.5.1. The interaction between torsional cracking and shear cracking for hollow sections is assumed to vary from the elliptical relationship for members with small voids, to a straight-line relationship for thin-walled sections with large voids. For a straight-line interaction, a torque of $0.25T_{cr}$ would cause a reduction in the inclined cracking shear of about 25 percent. This reduction was judged to be excessive.

In the 2002 Code, two changes were made to modify 11.5.1 to apply to hollow sections. First, the minimum torque limits from the 1999 Code were multiplied by (A_g/A_{cp}) because tests of solid and hollow beams indicate that the cracking torque of a hollow section is approximately (A_g/A_{cp}) times the cracking torque of a solid section with the same outside dimensions. The second change was to multiply the cracking torque by (A_g/A_{cp}) a second time to reflect the transition from the circular interaction between the inclined cracking loads in shear and torsion for solid members, to the approximately linear interaction for thin-walled hollow sections.

R11.5.2 — Calculation of factored torsional moment

R11.5.2.1 and R11.5.2.2 — In designing for torsion in reinforced concrete structures, two conditions may be identified: 11.34, 11.35.

(a) The torsional moment cannot be reduced by redistribution of internal forces (11.5.2.1). This is referred to as equilibrium torsion, since the torsional moment is required for the structure to be in equilibrium.

For this condition, illustrated in Fig. R11.5.2.1, torsion reinforcement designed according to 11.5.3 through 11.5.6 must be provided to resist the total design torsional moments.
(b) For prestressed members, at the sections described in 11.5.2.5

\[
\phi 4.0 \sqrt{\lambda_f} \left(\frac{A_{cp}^2}{P_{cp}} \right) \left(1 + \frac{f_{pc}}{4 \lambda_f f_c} \right)
\]

(c) For nonprestressed members subjected to an axial tensile or compressive force

\[
\phi 4.0 \sqrt{\lambda_f} \left(\frac{A_{cp}^2}{P_{cp}} \right) \left(1 + \frac{N_u}{4 A_g \lambda_f f_c} \right)
\]

In (a), (b), or (c), the correspondingly redistributed bending moments and shears in the adjoining members shall be used in the design of these members. For hollow sections, \(A_{cp} \) shall not be replaced with \(A_g \) in 11.5.2.2.

(b) The torsional moment can be reduced by redistribution of internal forces after cracking (11.5.2.2) if the torsion arises from the member twisting to maintain compatibility of deformations. This type of torsion is referred to as compatibility torsion.

For this condition, illustrated in Fig. R11.5.2.2, the torsional stiffness before cracking corresponds to that of the uncracked section according to St. Venant's theory. At torsional cracking, however, a large twist occurs under an essentially constant torque, resulting in a large redistribution of forces in the structure.\(^{11.34,11.35}\) The cracking torque under combined shear, flexure, and torsion corresponds to a principal tensile stress somewhat less than the \(4.0 \sqrt{\lambda_f f_c} \) quoted in R11.5.1.

When the torsional moment exceeds the cracking torque, a maximum factored torsional moment equal to the cracking torque may be assumed to occur at the critical sections near the faces of the supports. This limit has been established to control the width of torsional cracks. The replacement of \(A_{cp} \) with \(A_g \) as in the calculation of the threshold torque for hollow sections in 11.5.1, is not applied here. Thus, the torque after redistribution is larger and hence more conservative.
11.5.2.3 — Unless determined by a more exact analysis, it shall be permitted to take the torsional loading from a slab as uniformly distributed along the member.

11.5.2.4 — In nonprestressed members, sections located less than a distance d from the face of a support shall be designed for not less than T_u computed at a distance d. If a concentrated torque occurs within this distance, the critical section for design shall be at the face of the support.

11.5.2.5 — In prestressed members, sections located less than a distance $h/2$ from the face of a support shall be designed for not less than T_u computed at a distance $h/2$. If a concentrated torque occurs within this distance, the critical section for design shall be at the face of the support.

11.5.3 — Torsional moment strength

11.5.3.1 — The cross-sectional dimensions shall be such that:

(a) For solid sections

$$\left(\frac{V_u}{b_w d} \right)^2 + \left(\frac{T_u P_h}{1.7 A_{oh}^2} \right)^2 \leq \phi \left(\frac{V_c}{b_w d} + 8 \sqrt{f'_c} \right)$$ (11-18)

(b) For hollow sections

$$\left(\frac{V_u}{b_w d} \right)^2 + \left(\frac{T_u P_h}{1.7 A_{oh}^2} \right) \leq \phi \left(\frac{V_c}{b_w d} + 8 \sqrt{f'_c} \right)$$ (11-19)

For prestressed members, d shall be determined in accordance with 11.4.3.

R11.5.2.4 and R11.5.2.5 — It is not uncommon for a beam to frame into one side of a girder near the support of the girder. In such a case, a concentrated shear and torque are applied to the girder.

R11.5.3 — Torsional moment strength

R11.5.3.1 — The size of a cross section is limited for two reasons: first, to reduce unsightly cracking, and second, to prevent crushing of the surface concrete due to inclined compressive stresses due to shear and torsion. In Eq. (11-18) and (11-19), the two terms on the left-hand side are the shear stresses due to shear and torsion. The sum of these stresses may not exceed the stress causing shear cracking plus $8 \sqrt{f'_c}$, similar to the limiting strength given in 11.4.7.9 for shear without torsion. The limit is expressed in terms of V_c to allow its use for nonprestressed or prestressed concrete. It was originally derived on the basis of crack control. It is not necessary to check against crushing of the web because this happens at higher shear stresses.

In a hollow section, the shear stresses due to shear and torsion both occur in the walls of the box as shown in Fig. 11.5.3.1(a) and hence are directly additive at point A as given in Eq. (11-19). In a solid section, the shear stresses due to torsion act in the “tubular” outside section while the shear stresses due to V_u are spread across the width of the section as shown in Fig. R11.5.3.1(b). For this reason, stresses are combined in Eq. (11-18) using the square root of the sum of the squares rather than by direct addition.
11.5.3.2 — If the wall thickness varies around the perimeter of a hollow section, Eq. (11-19) shall be evaluated at the location where the left-hand side of Eq. (11-19) is a maximum.

11.5.3.3 — If the wall thickness is less than A_{oh}/p_h, the second term in Eq. (11-19) shall be taken as

$$\left(\frac{T_u}{1.7A_{oh}t}\right)$$

where t is the thickness of the wall of the hollow section at the location where the stresses are being checked.

11.5.3.4 — The values of f_y and f_{yt} used for design of torsional reinforcement shall not exceed 60,000 psi.

11.5.3.5 — Where T_u exceeds the threshold torsion, design of the cross section shall be based on

$$\phi T_n \geq T_u \quad (11-20)$$

R11.5.3.2 — Generally, the maximum will be on the wall where the torsional and shearing stresses are additive [Point A in Fig. R11.5.3.1(a)]. If the top or bottom flanges are thinner than the vertical webs, it may be necessary to evaluate Eq. (11-19) at points B and C in Fig. R11.5.3.1(a). At these points, the stresses due to the shear force are usually negligible.

R11.5.3.4 — Limiting the values of f_y and f_{yt} used in design of torsion reinforcement to 60,000 psi provides a control on diagonal crack width.

R11.5.3.5 — The factored torsional resistance ϕT_n must equal or exceed the torsion T_u due to the factored loads. In the calculation of T_n, all the torque is assumed to be resisted by stirrups and longitudinal steel with $T_c = 0$. At the same
11.5.3.6 — \(T_n \) shall be computed by

\[
T_n = \frac{2A_o f_{y'_c} t}{s \cot \theta}
\]

(11-21)

where \(A_o \) shall be determined by analysis except that it shall be permitted to take \(A_o \) equal to 0.85\(A_{oh} \); \(\theta \) shall not be taken smaller than 30 degrees nor larger than 60 degrees. It shall be permitted to take \(\theta \) equal to:

(a) 45 degrees for nonprestressed members or members with less prestress than in (b); or

(b) 37.5 degrees for prestressed members with an effective prestress force not less than 40 percent of the tensile strength of the longitudinal reinforcement.

The shear flow \(q \) in the walls of the tube, discussed in R11.5, can be resolved into the shear forces \(V_1 \) to \(V_4 \) acting...
11.5.3.7 — The additional area of longitudinal reinforcement to resist torsion, A_l, shall not be less than

$$A_l = \frac{A_t}{s} p_h \left(\frac{f_y}{f_y}\right) \cot^2\theta$$ \hspace{1cm} (11-22)

where θ shall be the same value used in Eq. (11-21) and A_t/s shall be taken as the amount computed from Eq. (11-21) not modified in accordance with 11.5.5.2 or 11.5.5.3; f_y refers to closed transverse torsional reinforcement, and f_y refers to longitudinal torsional reinforcement.

in the individual sides of the tube or space truss, as shown in Fig. R11.5.3.6(a).

The angle θ can be obtained by analysis or may be taken to be equal to the values given in 11.5.3.6(a) or (b). The same value of θ should be used in both Eq. (11-21) and (11-22). As θ gets smaller, the amount of stirrups required by Eq. (11-21) decreases. At the same time, the amount of longitudinal steel required by Eq. (11-22) increases.

R11.5.3.7 — Figure R11.5.3.6(a) shows the shear forces V_1 to V_4 resulting from the shear flow around the walls of the tube. On a given wall of the tube, the shear flow V_i is resisted by a diagonal compression component, $D_i = V_i / \sin \theta$, in the concrete. An axial tension force, $N_i = V_i (\cot \theta)$, is needed in the longitudinal steel to complete the resolution of V_i.

Figure R11.5.3.7 shows the diagonal compressive stresses and the axial tension force, N_i, acting on a short segment along one wall of the tube. Because the shear flow due to torsion is constant at all points around the perimeter of the tube, the resultants of D_i and N_i act through the midheight of side i. As a result, half of N_i can be assumed to be resisted by each of the top and bottom chords as shown. Longitudinal reinforcement with a strength $A_l f_y$ should be provided to resist the sum of the N_i forces, ΣN_i, acting in all of the walls of the tube.

In the derivation of Eq. (11-22), axial tension forces are summed along the sides of the area A_o. These sides form a perimeter length, p_o, approximately equal to the length of the line joining the centers of the bars in the corners of the tube. For ease in computation, this has been replaced with the perimeter of the closed stirrups, p_h.

Frequently, the maximum allowable stirrup spacing governs the amount of stirrups provided. Furthermore, when combined shear and torsion act, the total stirrup area is the sum of the amounts provided for shear and torsion. To avoid the need to provide excessive amounts of longitudinal reinforcement, 11.5.3.7 states that the A_t/s used in calculating A_l at any given section should be taken as the A_t/s calculated at that section using Eq. (11-21).
CODE

11.5.3.8 — Reinforcement required for torsion shall be added to that required for the shear, moment, and axial force that act in combination with the torsion. The most restrictive requirements for reinforcement spacing and placement shall be met.

COMMENTARY

R11.5.3.8 — The stirrup requirements for torsion and shear are added and stirrups are provided to supply at least the total amount required. Since the stirrup area \(A_v \) for shear is defined in terms of all the legs of a given stirrup while the stirrup area \(A_t \) for torsion is defined in terms of one leg only, the addition of stirrups is carried out as follows

\[
\text{Total } \left(\frac{A_v + t}{s} \right) = \frac{A_v}{s} + 2 \frac{A_t}{s}
\]

If a stirrup group had four legs for shear, only the legs adjacent to the sides of the beam would be included in this summation since the inner legs would be ineffective for torsion.

The longitudinal reinforcement required for torsion is added at each section to the longitudinal reinforcement required for bending moment that acts at the same time as the torsion. The longitudinal reinforcement is then chosen for this sum, but should not be less than the amount required for the maximum bending moment at that section if this exceeds the moment acting at the same time as the torsion. If the maximum bending moment occurs at one section, such as the midspan, while the maximum torsional moment occurs at another, such as the support, the total longitudinal steel required may be less than that obtained by adding the maximum flexural steel plus the maximum torsional steel. In such a case, the required longitudinal steel is evaluated at several locations.

The most restrictive requirements for spacing, cut-off points, and placement for flexural, shear, and torsional steel should be satisfied. The flexural steel should be extended a distance \(d \), but not less than \(12d_{\text{pu}} \), past where it is no longer needed for flexure as required in 12.10.3.

11.5.3.9 — It shall be permitted to reduce the area of longitudinal torsion reinforcement in the flexural compression zone by an amount equal to \(M_u/(0.9f_y) \), where \(M_u \) occurs at the section simultaneously with \(T_u \), except that the reinforcement provided shall not be less than that required by 11.5.5.3 or 11.5.6.2.

R11.5.3.9 — The longitudinal tension due to torsion is offset in part by the compression in the flexural compression zone, allowing a reduction in the longitudinal torsion steel required in the compression zone.

11.5.3.10 — In prestressed beams:

(a) The total longitudinal reinforcement including prestressing steel at each section shall resist \(M_u \) at that section plus an additional concentric longitudinal tensile force equal to \(A_t f_y \), based on \(T_u \) at that section;

(b) The spacing of the longitudinal reinforcement including tendons shall satisfy the requirements in 11.5.6.2.

R11.5.3.10 — As explained in R11.5.3.7, torsion causes an axial tension force. In a nonprestressed beam, this force is resisted by longitudinal reinforcement having an axial tensile strength of \(A_t f_y \). This steel is in addition to the flexural reinforcement and is distributed uniformly around the sides of the perimeter so that the resultant of \(A_t f_y \) acts along the axis of the member.

In a prestressed beam, the same technique (providing additional reinforcing bars with capacity \(A_t f_y \)) can be followed, or overstrength of the prestressing steel can be used to resist some of the axial force \(A_t f_y \) as outlined in the next paragraph.
In a prestressed beam, the stress in the prestressing steel at nominal strength will be between f_{se} and f_{ps}. A portion of the $A_f f_s$ force can be resisted by a force of $A_{ps} \Delta f_{pt}$ in the prestressing steel, where Δf_{pt} is the difference between the stress which can be developed in the strand at the section under consideration and the stress required to resist the bending moment at this section, M_u. The stress required to resist the bending moment can be calculated as $[M_u / \phi 0.9 d_p A_{ps}]$. For pretensioned strands, the stress which can be developed near the free end of the strand can be calculated using the procedure illustrated in Fig. R12.9. Note that near the ends of a pretensioned member, the available stress in the prestressing steel will need to be reduced to account for lack of full development, and should be determined in conjunction with 9.3.2.7.

11.5.3.11 — In prestressed beams, it shall be permitted to reduce the area of longitudinal torsional reinforcement on the side of the member in compression due to flexure below that required by 11.5.3.10 in accordance with 11.5.3.9.

11.5.4 — Details of torsional reinforcement

11.5.4.1 — Torsion reinforcement shall consist of longitudinal bars or tendons and one or more of the following:

(a) Closed stirrups or closed ties, perpendicular to the axis of the member;

(b) A closed cage of welded wire reinforcement with transverse wires perpendicular to the axis of the member;

(c) In nonprestressed beams, spiral reinforcement.

11.5.4.2 — Transverse torsional reinforcement shall be anchored by one of the following:

(a) A 135-degree standard hook, or seismic hook as defined in 2.2, around a longitudinal bar;

(b) According to 12.13.2.1, 12.13.2.2, or 12.13.2.3 in regions where the concrete surrounding the anchorage is restrained against spalling by a flange or slab or similar member.

R11.5.4 — Details of torsional reinforcement

R11.5.4.1 — Both longitudinal and closed transverse reinforcement are required to resist the diagonal tension stresses due to torsion. The stirrups must be closed, since inclined cracking due to torsion may occur on all faces of a member.

In the case of sections subjected primarily to torsion, the concrete side cover over the stirrups spalls off at high torques. This renders lapped-spliced stirrups ineffective, leading to a premature torsional failure. In such cases, closed stirrups should not be made up of pairs of U-stirrups lapping one another.

R11.5.4.2 — When a rectangular beam fails in torsion, the corners of the beam tend to spall off due to the inclined compressive stresses in the concrete diagonals of the space truss changing direction at the corner as shown in Fig. R11.5.4.2(a). In tests, closed stirrups anchored by 90-degree hooks failed when this occurred. For this reason, 135-degree standard hooks or seismic hooks are preferable for torsional stirrups in all cases. In regions where this spalling is prevented by an adjacent slab or flange, 11.5.4.2(b) relaxes this and allows 90-degree hooks (see Fig. R11.5.4.2(b)).
11.5.4.3 — Longitudinal torsion reinforcement shall be developed at both ends.

11.5.4.4 — For hollow sections in torsion, the distance from the centerline of the transverse torsional reinforcement to the inside face of the wall of the hollow section shall not be less than \(0.5A_{oh}/P_h\).

CODE

COMMENTARY

R11.5.4.4 — If high torsion acts near the end of a beam, the longitudinal torsion reinforcement should be adequately anchored. Sufficient development length should be provided outside the inner face of the support to develop the needed tension force in the bars or tendons. In the case of bars, this may require hooks or horizontal U-shaped bars lapped with the longitudinal torsion reinforcement.

R11.5.5 — Minimum torsion reinforcement

R11.5.5.1 — A minimum area of torsional reinforcement shall be provided in all regions where \(T_u\) exceeds the threshold torsion given in 11.5.1.

R11.5.5.2 — Where torsional reinforcement is required by 11.5.5.1, the minimum area of transverse closed stirrups shall be computed by

\[
(A_v + 2A_t) = 0.75 \frac{f_y}{f_{ct}} \frac{b_w s}{f_yt} \quad (11-23)
\]

but shall not be less than \((50b_w s)/f_yt\).

Fig. R11.5.4.2—Spalling of corners of beams loaded in torsion.

R11.5.5.1 and R11.5.5.2 — If a member is subject to a factored torsional moment \(T_u\) greater than the values specified in 11.5.1, the minimum amount of transverse web reinforcement for combined shear and torsion is \(50b_w s/5f_yt\). The differences in the definition of \(A_v\) and the symbol \(A_t\) should be noted; \(A_v\) is the area of two legs of a closed stirrup whereas \(A_t\) is the area of only one leg of a closed stirrup.

Tests\(^{11.9}\) of high-strength reinforced concrete beams have indicated the need to increase the minimum area of shear reinforcement to prevent shear failures when inclined cracking occurs. Although there are a limited number of tests of high-strength concrete beams in torsion, the equation
11.5.5.3 — Where torsional reinforcement is required by 11.5.5.1, the minimum total area of longitudinal torsional reinforcement, A_l,min, shall be computed by

$$A_{l,\text{min}} = \frac{5 \sqrt{f_c A_{cp}}}{f_y} \left(\frac{A_t}{s} \right) p_h f_{yt}$$ \hspace{1cm} (11-24)

where A_t/s shall not be taken less than $25b w f_{mt}$; f_{yt} refers to closed transverse torsional reinforcement, and f_y refers to longitudinal torsional reinforcement.

11.5.6 — Spacing of torsion reinforcement

11.5.6.1 — The spacing of transverse torsion reinforcement shall not exceed the smaller of $p_h/8$ or 12 in.

11.5.6.2 — The longitudinal reinforcement required for torsion shall be distributed around the perimeter of the closed stirrups with a maximum spacing of 12 in. The longitudinal bars or tendons shall be inside the stirrups. There shall be at least one longitudinal bar or tendon in each corner of the stirrups. Longitudinal bars shall have a diameter at least 0.042 times the stirrup spacing, but not less than 3/8 in.

11.5.6.3 — Torsional reinforcement shall be provided for a distance of at least $(b_t + d)$ beyond the point required by analysis.

11.5.7 — Alternative design for torsion

For torsion design of solid sections within the scope of this Code with an aspect ratio, h/b_t, of 3 or greater, it shall be permitted to use another procedure, the adequacy of which has been shown by analysis and substantial agreement with results of comprehensive tests. Sections 11.5.4 and 11.5.6 shall apply.

for the minimum area of transverse closed stirrups has been changed for consistency with calculations required for minimum shear reinforcement.

R11.5.5.3 — Reinforced concrete beam specimens with less than 1 percent torsional reinforcement by volume have failed in pure torsion at torsional cracking.\(^{11.31}\) In the 1989 and prior Codes, a relationship was presented that required about 1 percent torsional reinforcement in beams loaded in pure torsion and less in beams with combined shear and torsion, as a function of the ratio of shear stresses due to torsion and shear. Equation (11-24) was simplified by assuming a single value of this reduction factor and results in a volumetric ratio of about 0.5 percent.

R11.5.6 — Spacing of torsion reinforcement

R11.5.6.1 — The spacing of the stirrups is limited to ensure the development of the ultimate torsional strength of the beam, to prevent excessive loss of torsional stiffness after cracking, and to control crack widths. For a square cross section, the $p_h/8$ limitation requires stirrups at $d/2$, which corresponds to 11.4.5.1.

R11.5.6.2 — In R11.5.3.7, it was shown that longitudinal reinforcement is needed to resist the sum of the longitudinal tensile forces due to torsion in the walls of the thin-walled tube. Since the force acts along the centroidal axis of the section, the centroid of the additional longitudinal reinforcement for torsion should approximately coincide with the centroid of the section. The Code accomplishes this by requiring the longitudinal torsional reinforcement to be distributed around the perimeter of the closed stirrups. Longitudinal bars or tendons are required in each corner of the stirrups to provide anchorage for the legs of the stirrups. Corner bars have also been found to be very effective in developing torsional strength and in controlling cracks.

R11.5.6.3 — The distance $(b_t + d)$ beyond the point theoretically required for torsional reinforcement is larger than that used for shear and flexural reinforcement because torsional diagonal tension cracks develop in a helical form.

R11.5.7 — Alternative design for torsion

Examples of such procedures are to be found in References 11.39 to 11.41, which have been extensively and successfully used for design of precast, prestressed concrete beams with ledges. The procedure described in References 11.39 and 11.40 is an extension to prestressed concrete sections of the torsion procedures of pre-1995 editions of the Code. The sixth edition of the PCI Design Handbook\(^{11.16}\) describes the procedure of References 11.40 and 11.41. This procedure was experimentally verified by the tests described in Reference 11.42.
11.6 — Shear-friction

11.6.1 — Provisions of 11.6 are to be applied where it is appropriate to consider shear transfer across a given plane, such as: an existing or potential crack, an interface between dissimilar materials, or an interface between two concretes cast at different times.

11.6.2 — Design of cross sections subject to shear transfer as described in 11.6.1 shall be based on Eq. (11-1), where \(V_n \) is calculated in accordance with provisions of 11.6.3 or 11.6.4.

11.6.3 — A crack shall be assumed to occur along the shear plane considered. The required area of shear-friction reinforcement \(A_{sf} \) across the shear plane shall be designed using either 11.6.4 or any other shear transfer design methods that result in prediction of strength in substantial agreement with results of comprehensive tests.

11.6.3.1 — Provisions of 11.6.5 through 11.6.10 shall apply for all calculations of shear transfer strength.

The relationship between shear-transfer strength and the reinforcement crossing the shear plane can be expressed in various ways. Equations (11-25) and (11-26) of 11.6.4 are based on the shear-friction model. This gives a conservative prediction of shear-transfer strength. Other relationships that give a closer estimate of shear-transfer strength\(^{11.16,11.45,11.46}\) can be used under the provisions of 11.6.3. For example, when the shear-friction reinforcement is perpendicular to the shear plane, the nominal shear strength \(V_n \) is given by\(^{11.45,11.46}\)

\[
V_n = 0.8A_{sf}f_y + A_cK_1
\]

where \(A_c \) is the area of concrete section resisting shear transfer (in.\(^2\)) and \(K_1 = 400 \) psi for normalweight concrete, 200 psi for all-lightweight concrete, and 250 psi for sand-lightweight concrete. These values of \(K_1 \) apply to both monolithically cast concrete and to concrete cast against hardened concrete with a rough surface, as defined in 11.6.9.
In this equation, the first term represents the contribution of friction to shear-transfer resistance (0.8 representing the coefficient of friction). The second term represents the sum of the resistance to shearing of protrusions on the crack faces and the dowel action of the reinforcement.

When the shear-friction reinforcement is inclined to the shear plane, such that the shear force produces tension in that reinforcement, the nominal shear strength \(V_n \) is given by

\[
V_n = A_{vf} f_y (0.8 \sin \alpha + \cos \alpha) + A_s K_1 \sin^2 \alpha
\]

where \(\alpha \) is the angle between the shear-friction reinforcement and the shear plane (that is, \(0 < \alpha < 90 \, \text{degrees} \)).

When using the modified shear-friction method, the terms \((A_{vf} f_y / A_s) \) or \((A_{vf} f_y \sin \alpha / A_s) \) should not be less than 200 psi for the design equations to be valid.

11.6.4 — Shear-friction design method

11.6.4.1 — Where shear-friction reinforcement is perpendicular to the shear plane, \(V_n \) shall be computed by

\[
V_n = A_{vf} f_y \mu \quad (11-25)
\]

where \(\mu \) is coefficient of friction in accordance with 11.6.4.3.

11.6.4.2 — Where shear-friction reinforcement is inclined to the shear plane, such that the shear force produces tension in shear-friction reinforcement, \(V_n \) shall be computed by

\[
V_n = A_{vf} f_y (\mu \sin \alpha + \cos \alpha) \quad (11-26)
\]

where \(\alpha \) is angle between shear-friction reinforcement and shear plane.
Equation (11-26) should be used only when the shear force component parallel to the reinforcement produces tension in the reinforcement, as shown in Fig. R11.6.4. When α is greater than 90 degrees, the relative movement of the surfaces tends to compress the bar and Eq. (11-26) is not valid.

R11.6.4.3 — In the shear-friction method of calculation, it is assumed that all the shear resistance is due to the friction between the crack faces. It is therefore necessary to use artificially high values of the coefficient of friction in the shear-friction equations so that the calculated shear strength will be in reasonable agreement with test results. For concrete cast against hardened concrete not roughened in accordance with 11.6.9, shear resistance is primarily due to dowel action of the reinforcement and tests11,47 indicate that reduced value of $\mu = 0.6 \lambda$ specified for this case is appropriate.

The value of μ for concrete placed against as-rolled structural steel relates to the design of connections between precast concrete members, or between structural steel members and structural concrete members. The shear-transfer reinforcement may be either reinforcing bars or headed stud shear connectors; also, field welding to steel plates after casting of concrete is common. The design of shear connectors for composite action of concrete slabs and steel beams is not covered by these provisions, but should be in accordance with Reference 11.48.

R11.6.5 — These upper limits on shear friction strength are necessary as Eq. (11-25) and (11-26) may become unsatisfactory for some cases. Test data11,49,11,50 on normal-weight concrete either placed monolithically or placed against hardened concrete with surface intentionally roughened as specified in 11.6.9 show that a higher upper limit can be used on shear friction strength for concrete with f'_c greater than 4000 psi than was allowed before the 2008 revisions. In higher-strength concretes, additional effort may be required to achieve the roughness specified in 11.6.9.

11.6.4.3 — The coefficient of friction μ in Eq. (11-25) and Eq. (11-26) shall be taken as:

Concrete placed monolithically 1.4λ

Concrete placed against hardened concrete with surface intentionally roughened as specified in 11.6.9 .. 1.0λ

Concrete placed against hardened concrete not intentionally roughened 0.6λ

Concrete anchored to as-rolled structural steel by headed studs or by reinforcing bars (see 11.6.10) 0.7λ

where $\lambda = 1.0$ for normal weight concrete and 0.75 for all lightweight concrete. Otherwise, λ shall be determined based on volumetric proportions of lightweight and normal weight aggregates as specified in 8.6.1, but shall not exceed 0.85.

11.6.5 — For normal weight concrete either placed monolithically or placed against hardened concrete with surface intentionally roughened as specified in 11.6.9, V_n shall not exceed the smallest of $0.2f'_cA_c$, $(480 + 0.08f'_c)A_c$ and $1600A_c$, where A_c is area of concrete section resisting shear transfer. For all other cases, V_n shall not exceed the smaller of $0.2f'_cA_c$ or $800A_c$. Where concretes of different strengths are cast against each other, the value of f'_c used to evaluate V_n shall be that of the lower-strength concrete.

11.6.6 — The value of f_y used for design of shear-friction reinforcement shall not exceed 60,000 psi.

11.6.7 — Net tension across shear plane shall be resisted by additional reinforcement. Permanent net compression across shear plane shall be permitted to be taken as additive to $A_{vf}f_y$, the force in the shear-friction reinforcement, when calculating required A_{vf}.

R11.6.7 — If a resultant tensile force acts across a shear plane, reinforcement to carry that tension should be provided in addition to that provided for shear transfer. Tension may be caused by restraint of deformations due to temperature change, creep, and shrinkage. Such tensile forces have caused failures, particularly in beam bearings.

When moment acts on a shear plane, the flexural tension stresses and flexural compression stresses are in equilibrium. There is no change in the resultant compression $A_{vf}f_y$ acting across the shear plane and the shear-transfer strength is not changed. It is therefore not necessary to provide additional reinforcement to resist the flexural tension stresses, unless the required flexural tension reinforcement exceeds the amount
11.6.8 — Shear-friction reinforcement shall be appropriately placed along the shear plane and shall be anchored to develop \(f_y \) on both sides by embedment, hooks, or welding to special devices.

11.6.9 — For the purpose of 11.6, when concrete is placed against previously hardened concrete, the interface for shear transfer shall be clean and free of laitance. If \(\mu \) is assumed equal to 1.0, interface shall be roughened to a full amplitude of approximately 1/4 in.

11.6.10 — When shear is transferred between as-rolled steel and concrete using headed studs or welded reinforcing bars, steel shall be clean and free of paint.

11.7 — Deep beams

11.7.1 — The provisions of 11.7 shall apply to members with \(\ell_n \) not exceeding four times the overall member depth or regions of beams with concentrated loads within twice the member depth from the support that are loaded on one face and supported on the opposite face so that compression struts can develop between the loads and supports. See also 12.10.6.

R11.6.8 — If no moment acts across the shear plane, reinforcement should be uniformly distributed along the shear plane to minimize crack widths. If a moment acts across the shear plane, it is desirable to distribute the shear-transfer reinforcement primarily in the flexural tension zone.

Since the shear-friction reinforcement acts in tension, it should have full tensile anchorage on both sides of the shear plane. Further, the shear-friction reinforcement anchorage should engage the primary reinforcement, otherwise a potential crack may pass between the shear-friction reinforcement and the body of the concrete. This requirement applies particularly to welded headed studs used with steel inserts for connections in precast and cast-in-place concrete. Anchorage may be developed by bond, by a welded mechanical anchorage, or by threaded dowels and screw inserts. Space limitations often require a welded mechanical anchorage. For anchorage of headed studs in concrete, see Reference 11.16.

R11.7.1 — The behavior of a deep beam is discussed in References 11.5 and 11.46. For a deep beam supporting gravity loads, this section applies if the loads are applied on the top of the beam and the beam is supported on its bottom face. If the loads are applied through the sides or bottom of such a member, the design for shear should be the same as for ordinary beams.

The longitudinal reinforcement in deep beams should be extended to the supports and adequately anchored by
11.7.2 — Deep beams shall be designed using either nonlinear analysis as permitted in 10.7.1, or Appendix A.

11.7.3 — V_n for deep beams shall not exceed $10\sqrt{f'c/bwd}$.

11.7.4 — The area of shear reinforcement perpendicular to the flexural tension reinforcement, A_v, shall not be less than $0.0025b_w s$, and s shall not exceed the smaller of $d/5$ and 12 in.

11.7.5 — The area of shear reinforcement parallel to the flexural tension reinforcement, A_{vh}, shall not be less than $0.0015b_w s_2$, and s_2 shall not exceed the smaller of $d/5$ and 12 in.

11.7.6 — It shall be permitted to provide reinforcement satisfying A.3.3 instead of the minimum horizontal and vertical reinforcement specified in 11.7.4 and 11.7.5.

11.8 — Provisions for brackets and corbels

11.8.1 — Brackets and corbels with a shear span-to-depth ratio a_v/d less than 2 shall be permitted to be designed using Appendix A. Design shall be permitted using 11.8.3 and 11.8.4 for brackets and corbels with:

(a) a_v/d not greater than 1, and

(b) subject to factored horizontal tensile force, N_{uc}, not larger than V_u.

COMMENTARY

embedment, hooks, or welding to special devices. Bent-up bars are not recommended.

R11.7.2 — Deep beams can be designed using strut-and-tie models, regardless of how they are loaded and supported. Section 10.7.1 allows the use of nonlinear stress fields when proportioning deep beams. Such analyses should consider the effects of cracking on the stress distribution.

R11.7.3 — In the 1999 and earlier Codes, a sliding maximum shear strength was specified. A re-examination of the test data suggests that this strength limit was derived from tests in which the beams failed due to crushing of support regions. This possibility is specifically addressed in the design process specified in this Code.

R11.7.4 and R11.7.5 — The relative amounts of horizontal and vertical shear reinforcement have been interchanged from those required in the 1999 and earlier Codes because tests\(^{11.52-11.54}\) have shown that vertical shear reinforcement is more effective than horizontal shear reinforcement. The maximum spacing of bars has been reduced from 18 to 12 in. because this steel is provided to restrain the width of the cracks.

R11.8 — Provisions for brackets and corbels

Brackets and corbels are cantilevers having shear span-to-depth ratios not greater than unity, which tend to act as simple trusses or deep beams, rather than flexural members designed for shear according to 11.2.

The corbel shown in Fig. R11.8.1 may fail by shearing along the interface between the column and the corbel, by yielding of the tension tie, by crushing or splitting of the compression strut, or by localized bearing or shearing failure under the loading plate. These failure modes are illustrated and are discussed more fully in Reference 11.1. The notation used in 11.8 is illustrated in Fig. R11.8.2.

R11.8.1 — An upper limit of 1.0 for a_v/d is imposed for design by 11.8.3 and 11.8.4 for two reasons. First, for a_v/d shear span-to-depth ratios exceeding unity, the diagonal tension cracks are less steeply inclined and the use of horizontal stirrups alone as specified in 11.8.4 is not appropriate. Second, this method of design has only been validated experimentally for a_v/d of unity or less. An upper limit is provided for N_{uc} because this method of design has only been validated experimentally for N_{uc} less than or equal to V_u, including N_{uc} equal to zero.
CODE

The requirements of 11.8.2, 11.8.3.2.1, 11.8.3.2.2, 11.8.5, 11.8.6, and 11.8.7 shall apply to design of brackets and corbels. Effective depth d shall be determined at the face of the support.

11.8.2 — Depth at outside edge of bearing area shall not be less than $0.5d$.

11.8.3 — Section at face of support shall be designed to resist simultaneously V_u, a factored moment $[V_u a_v + N_{uc}(h - d)]$, and a factored horizontal tensile force, N_{uc}.

11.8.3.1 — In all design calculations in accordance with 11.8, ϕ shall be taken equal to 0.75.

COMMENTARY

R11.8.2 — A minimum depth is required at the outside edge of the bearing area so that a premature failure will not occur due to a major diagonal tension crack propagating from below the bearing area to the outer sloping face of the corbel or bracket. Failures of this type have been observed in corbels having depths at the outside edge of the bearing area less than required in this section of the Code.

R11.8.3.1 — Corbel and bracket behavior is predominantly controlled by shear; therefore, a single value of $\phi = 0.75$ is required for all design conditions.
CODE

11.8.3.2 — Design of shear-friction reinforcement, A_{v_f}, to resist V_u shall be in accordance with 11.6.

11.8.3.2.1 — For normalweight concrete, V_n shall not exceed the smallest of $0.2f'_c b_w d$, $(480 + 0.08f'_c)b_w d$, and $1600b_w d$.

11.8.3.2.2 — For all-lightweight or sand-lightweight concrete, V_n shall not be taken greater than the smaller of $(0.2 – 0.07a_v/d)f'_c b_w d$ and $(800 – 280a_v/d)b_w d$.

11.8.3.3 — Reinforcement A_f to resist factored moment $[V_u a_v + \frac{N_{uc}}{h – d}]$ shall be computed in accordance with 10.2 and 10.3.

11.8.3.4 — Reinforcement A_n to resist factored tensile force N_{uc} shall be determined from $\phi A_n f_y \geq N_{uc}$. Factored tensile force, N_{uc}, shall not be taken less than $0.2V_u$ unless provisions are made to avoid tensile forces. N_{uc} shall be regarded as a live load even if tension results from restraint of creep, shrinkage, or temperature change.

11.8.3.5 — Area of primary tension reinforcement A_{sc} shall not be less than the larger of $(A_f + A_n)$ and $(2A_{vf}/3 + A_n)$.

11.8.4 — Total area, A_h, of closed stirrups or ties parallel to primary tension reinforcement shall not be less than $0.5(A_{sc} – A_n)$. Distribute A_h uniformly within $(2/3)d$ adjacent to primary tension reinforcement.

COMMENTARY

R11.8.3.2.2 — Tests11,56 have shown that the maximum shear strength of lightweight concrete corbels or brackets is a function of both f'_c and a_v/d. No data are available for corbels or brackets made of sand-lightweight concrete. As a result, the same limitations have been placed on both all-lightweight and sand-lightweight brackets and corbels.

R11.8.3.3 — Reinforcement required to resist moment can be calculated using flexural theory. The factored moment is calculated by summing moments about the flexural reinforcement at the face of support.

R11.8.3.4 — Because the magnitude of horizontal forces acting on corbels or brackets cannot usually be determined with great accuracy, it is required that N_{uc} be regarded as a live load.

R11.8.3.5 — Tests11,56 suggest that the total amount of reinforcement $(A_{sc} + A_h)$ required to cross the face of support should be the greater of:

(a) The sum of A_f calculated according to 11.8.3.2 and A_n calculated according to 11.8.3.4;

(b) The sum of 1.5 times A_f calculated according to 11.8.3.3 and A_n calculated according to 11.8.3.4.

If (a) controls, $A_{sc} = (2A_f/3 + A_n)$ is required as primary tensile reinforcement, and the remaining $A_f/3$ should be provided as closed stirrups parallel to A_{sc} and distributed within $2d/3$, adjacent to A_{sc}. Section 11.8.4 satisfies this by requiring $A_h = 0.5(2A_f/3)$.

If (b) controls, $A_{sc} = (A_f + A_n)$ is required as primary tension reinforcement, and the remaining $A_f/2$ should be provided as closed stirrups parallel to A_{sc} and distributed within $2d/3$, adjacent to A_{sc}. Again, 11.8.4 satisfies this requirement.

R11.8.4 — Closed stirrups parallel to the primary tension reinforcement are necessary to prevent a premature diagonal tension failure of the corbel or bracket. The required area of closed stirrups $A_h = 0.5(A_{sc} – A_n)$ automatically yields the appropriate amounts, as discussed in R11.8.3.5 above.
CODE

11.8.5 — \(A_{sc}/bd \) shall not be less than \(0.04(f'_c/f_y) \).

11.8.6 — At front face of bracket or corbel, primary tension reinforcement shall be anchored by one of the following:

(a) By a structural weld to a transverse bar of at least equal size; weld to be designed to develop \(f_y \) of primary tension reinforcement;

(b) By bending primary tension reinforcement back to form a horizontal loop; or

(c) By some other means of positive anchorage.

11.8.7 — Bearing area on bracket or corbel shall not project beyond straight portion of primary tension reinforcement, nor project beyond interior face of transverse anchor bar (if one is provided).

COMMENTARY

R11.8.5 — A minimum amount of reinforcement is required to prevent the possibility of sudden failure should the bracket or corbel concrete crack under the action of flexural moment and outward tensile force \(N_{uc} \).

R11.8.6 — Because the horizontal component of the inclined concrete compression strut (see Fig. R11.8.1) is transferred to the primary tension reinforcement at the location of the vertical load, the primary tension reinforcement is essentially uniformly stressed from the face of the support to the point where the vertical load is applied. It should, therefore, be anchored at its outer end and in the supporting column, so as to be able to develop its specified yield strength from the face of support to the vertical load. Satisfactory anchorage at the outer end can be obtained by bending the primary tension reinforcement bars in a horizontal loop as specified in (b), or by welding a bar of equal diameter or a suitably sized angle across the ends of the primary tension reinforcement bars. The welds should be designed to develop the yield strength of the primary tension reinforcement. The weld detail used successfully in the corbel tests reported in Reference 11.56 is shown in Fig. R11.8.6. The primary tension reinforcement should be anchored within the supporting column in accordance with the requirements of Chapter 12. See additional discussion on end anchorage in R12.10.6.

R11.8.7 — The restriction on the location of the bearing area is necessary to ensure development of the specified yield strength of the primary tension reinforcement near the load. When corbels are designed to resist horizontal forces, the bearing plate should be welded to the primary tension reinforcement.

Fig. R11.8.6—Weld details used in tests of Reference 11.56.
CODE

11.9 — Provisions for walls

11.9.1 — Design for shear forces perpendicular to face of wall shall be in accordance with provisions for slabs in 11.11. Design for horizontal in-plane shear forces in a wall shall be in accordance with 11.9.2 through 11.9.9. Alternatively, it shall be permitted to design walls with a height not exceeding two times the length of the wall for horizontal shear forces in accordance with Appendix A and 11.9.9.2 through 11.9.9.5.

11.9.2 — Design of horizontal section for shear in plane of wall shall be based on Eq. (11-1) and (11-2), where \(V_c \) shall be in accordance with 11.9.5 or 11.9.6 and \(V_s \) shall be in accordance with 11.9.9.

11.9.3 — \(V_n \) at any horizontal section for shear in plane of wall shall not be taken greater than \(10 \sqrt{f^c} h d \), where \(h \) is thickness of wall, and \(d \) is defined in 11.9.4.

11.9.4 — For design for horizontal shear forces in plane of wall, \(d \) shall be taken equal to 0.8\(l_w \). A larger value of \(d \), equal to the distance from extreme compression fiber to center of force of all reinforcement in tension, shall be permitted to be used when determined by a strain compatibility analysis.

11.9.5 — Unless a more detailed calculation is made in accordance with 11.9.6, \(V_c \) shall not be taken greater than \(2 \lambda \sqrt{f^c} h d \) for walls subject to axial compression, or \(V_c \) shall not be taken greater than the value given in 11.2.2.3 for walls subject to axial tension.

11.9.6 — \(V_c \) shall be permitted to be the lesser of the values computed from Eq. (11-27) and (11-28)

\[
V_c = 3.3 \lambda \sqrt{f^c} h d + \frac{N_u d}{4\ell_w} \tag{11-27}
\]

or

\[
V_c = \begin{cases}
0.6 \lambda \sqrt{f^c} + \frac{\ell_w \left(1.25 \lambda \sqrt{f^c} + 0.2 \frac{N_u}{\ell_w h} \right)}{\frac{M_u}{V_u} - \frac{\ell_w}{2}} h d & \text{if} \ (\frac{M_u}{V_u} - \frac{\ell_w}{2}) > 0 \ \\ \frac{M_u}{V_u} - \frac{\ell_w}{2} & \text{otherwise}
\end{cases} \tag{11-28}
\]

where \(\ell_w \) is the overall length of the wall, and \(N_u \) is positive for compression and negative for tension. If \((\frac{M_u}{V_u} - \frac{\ell_w}{2}) \) is negative, Eq. (11-28) shall not apply.

COMMENTARY

R11.9 — Provisions for walls

R11.9.1 — Shear in the plane of the wall is primarily of importance for shear walls with a small height-to-length ratio. The design of higher walls, particularly walls with uniformly distributed reinforcement, will probably be controlled by flexural considerations.

R11.9.3 — Although the width-to-depth ratio of shear walls is less than that for ordinary beams, tests\(^{11.57}\) on shear walls with a thickness equal to \(\ell_w / 25 \) have indicated that ultimate shear stresses in excess of \(10 \sqrt{f^c} \) can be obtained.

R11.9.5 and R11.9.6 — Equations (11-27) and (11-28) may be used to determine the inclined cracking strength at any section through a shear wall. Equation (11-27) corresponds to the occurrence of a principal tensile stress of approximately \(4 \lambda \sqrt{f^c} \) at the centroid of the shear wall cross section. Equation (11-28) corresponds approximately to the occurrence of a flexural tensile stress of \(6 \lambda \sqrt{f^c} \) at a section \(\ell_w / 2 \) above the section being investigated. As the term

\[
\left(\frac{M_u}{V_u} - \frac{\ell_w}{2} \right)
\]

decreases, Eq. (11-27) will control before this term becomes negative. When this term becomes negative, Eq. (11-27) should be used.
11.9.7 — Sections located closer to wall base than a distance \(\ell_w/2 \) or one-half the wall height, whichever is less, shall be permitted to be designed for the same \(V_c \) as that computed at a distance \(\ell_w/2 \) or one-half the height.

11.9.8 — Where \(V_u \) is less than \(0.5 \phi V_c \), reinforcement shall be provided in accordance with 11.9.9 or in accordance with Chapter 14. Where \(V_u \) exceeds \(0.5 \phi V_c \), wall reinforcement for resisting shear shall be provided in accordance with 11.9.9.

11.9.9 — Design of shear reinforcement for walls

11.9.9.1 — Where \(V_u \) exceeds \(\phi V_c \), horizontal shear reinforcement shall be provided to satisfy Eq. (11-1) and (11-2), where \(V_s \) shall be computed by

\[
V_s = \frac{A_v f_{yd}}{s} \quad (11-29)
\]

where \(A_v \) is area of horizontal shear reinforcement within spacing \(s \), and \(d \) is determined in accordance with 11.9.4. Vertical shear reinforcement shall be provided in accordance with 11.9.9.4.

11.9.9.2 — Ratio of horizontal shear reinforcement area to gross concrete area of vertical section, \(\rho_t \), shall not be less than 0.0025.

11.9.9.3 — Spacing of horizontal shear reinforcement shall not exceed the smallest of \(\ell_w/5 \), \(3h \), and 18 in., where \(\ell_w \) is the overall length of the wall.

11.9.9.4 — Ratio of vertical shear reinforcement area to gross concrete area of horizontal section, \(\rho_v \), shall not be less than the larger of

\[
\rho_v = 0.0025 + 0.5 \left(2.5 - \frac{h_w}{\ell_w} \right) (\rho_t - 0.0025) \quad (11-30)
\]

and 0.0025. The value of \(\rho_v \) calculated by Eq. (11-30) need not be greater than \(\rho_t \) required by 11.9.9.1. In Eq. (11-30), \(\ell_w \) is the overall length of the wall, and \(h_w \) is the overall height of the wall.

11.9.9.5 — Spacing of vertical shear reinforcement shall not exceed the smallest of \(\ell_w/3 \), \(3h \), and 18 in., where \(\ell_w \) is the overall length of the wall.
11.10 — Transfer of moments to columns

11.10.1 — When gravity load, wind, earthquake, or other lateral forces cause transfer of moment at connections of framing elements to columns, the shear resulting from moment transfer shall be considered in the design of lateral reinforcement in the columns.

11.10.2 — Except for connections not part of a primary seismic load-resisting system that are restrained on four sides by beams or slabs of approximately equal depth, connections shall have lateral reinforcement not less than that required by Eq. (11-13) within the column for a depth not less than that of the deepest connection of framing elements to the columns. See also 7.9.

11.11 — Provisions for slabs and footings

11.11.1 — The shear strength of slabs and footings in the vicinity of columns, concentrated loads, or reactions is governed by the more severe of two conditions:

11.11.1.1 — Beam action where each critical section to be investigated extends in a plane across the entire width. For beam action, the slab or footing shall be designed in accordance with 11.1 through 11.4.

11.11.1.2 — For two-way action, each of the critical sections to be investigated shall be located so that its perimeter b_o is a minimum but need not approach closer than $d/2$ to:

(a) Edges or corners of columns, concentrated loads, or reaction areas; and

(b) Changes in slab thickness such as edges of capitals, drop panels, or shear caps.

For two-way action, the slab or footing shall be designed in accordance with 11.11.2 through 11.11.6.

R11.10 — Transfer of moments to columns

R11.10.1 — Tests have shown that the joint region of a beam-to-column connection in the interior of a building does not require shear reinforcement if the joint is confined on four sides by beams of approximately equal depth. However, joints without lateral confinement, such as at the exterior of a building, need shear reinforcement to prevent deterioration due to shear cracking.

For regions where strong earthquakes may occur, joints may be required to withstand several reversals of loading that develop the flexural strength of the adjoining beams. See Chapter 21 for provisions for seismic design.

R11.11 — Provisions for slabs and footings

R11.11.1 — Differentiation should be made between a long and narrow slab or footing acting as a beam, and a slab or footing subject to two-way action where failure may occur by punching along a truncated cone or pyramid around a concentrated load or reaction area.

R11.11.2 — The critical section for shear in slabs subjected to bending in two directions follows the perimeter at the edge of the loaded area. The shear stress acting on this section at factored loads is a function of $\sqrt{f''c}$ and the ratio of the side dimension of the column to the effective slab depth. A much simpler design equation results by assuming a pseudocritical section located at a distance $d/2$ from the periphery of the concentrated load. When this is done, the shear strength is almost independent of the ratio of column size to slab depth. For rectangular columns, this critical section was defined by straight lines drawn parallel to and at a distance $d/2$ from the edges of the loaded area. Section 11.11.1.3 allows the use of a rectangular critical section.

For slabs of uniform thickness, it is sufficient to check shear on one section. For slabs with changes in thickness, such as the edge of drop panels or shear caps, it is necessary to check shear at several sections.
11.11.1.3 — For square or rectangular columns, concentrated loads, or reaction areas, the critical sections with four straight sides shall be permitted.

11.11.2 — The design of a slab or footing for two-way action is based on Eq. (11-1) and (11-2). V_c shall be computed in accordance with 11.11.2.1, 11.11.2.2, or 11.11.3. V_s shall be computed in accordance with 11.11.3. For slabs with shearheads, V_n shall be in accordance with 11.11.4. When moment is transferred between a slab and a column, 11.11.6 shall apply.

11.11.2.1 — For nonprestressed slabs and footings, V_c shall be the smallest of (a), (b), and (c):

(a)
$$V_c = \left(2 + \frac{\beta}{\lambda} \sqrt{f_c' b_o d}\right)$$
(11-31)

where β is the ratio of long side to short side of the column, concentrated load or reaction area;

(b)
$$V_c = \frac{\alpha_s d}{b_o} + 2 \sqrt{f_c' b_o d}$$
(11-32)

where α_s is 40 for interior columns, 30 for edge columns, 20 for corner columns; and

(c)
$$V_c = 4 \sqrt{f_c' b_o d}$$
(11-33)

11.11.2.2 — At columns of two-way prestressed slabs and footings that meet the requirements of 18.9.3

$$V_c = (\beta_p \lambda \sqrt{f_c' + 0.3 f_{pc}} b_o d + V_p$$
(11-34)

where β_p is the smaller of 3.5 and $(\alpha_s d/b_o + 1.5)$, α_s is 40 for interior columns, 30 for edge columns, and 20 for corner columns, b_o is perimeter of critical section defined in 11.11.1.2, f_{pc} is taken as the average value of f_{pc} for the two directions, and V_p is the vertical component of all effective prestress forces crossing the critical section. V_c shall be permitted to be computed by Eq. (11-34) if the following are satisfied; otherwise, 11.11.2.1 shall apply:

R11.11.2.1 — For square columns, the shear stress due to ultimate loads in slabs subjected to bending in two directions is limited to $4 \lambda \sqrt{f_c'}$. However, tests have indicated that the value of $4 \lambda \sqrt{f_c'}$ is unconservative when the ratio β of the lengths of the long and short sides of a rectangular column or loaded area is larger than 2.0. In such cases, the actual shear stress on the critical section at punching shear failure varies from a maximum of about $4 \lambda \sqrt{f_c'}$ around the corners of the column or loaded area, down to $2 \lambda \sqrt{f_c'}$ or less along the long sides between the two end sections. Other tests indicate that v_c decreases as the ratio b_o/d increases. Equations (11-31) and (11-32) were developed to account for these two effects. The words “interior,” “edge,” and “corner columns” in 11.11.2.1(b) refer to critical sections with four, three, and two sides, respectively.

For shapes other than rectangular, β is taken to be the ratio of the longest overall dimension of the effective loaded area to the largest overall perpendicular dimension of the effective loaded area, as illustrated for an L-shaped reaction area in Fig. R11.11.2. The effective loaded area is that area totally enclosing the actual loaded area, for which the perimeter is a minimum.

R11.11.2.2 — For prestressed slabs and footings, a modified form of Code Eq. (11-31) and (11-34) is specified for two-way action shear strength. Research indicates that the shear strength of two-way prestressed slabs around interior columns is conservatively predicted by Eq. (11-34). V_c from Eq. (11-34) corresponds to a diagonal tension failure of the concrete initiating at the critical section defined in 11.11.1.2. The mode of failure differs from a punching shear failure of the concrete compression zone around the perimeter of the loaded area predicted by Eq. (11-31). Consequently, the term β does not enter into Eq. (11-34). Values for $\sqrt{f_c'}$ and f_{pc} are restricted in design due to limited test data available for higher values. When computing f_{pc}, loss of prestress due to restraint of the slab by shear walls and other structural elements should be taken into account.
(a) No portion of the column cross section shall be closer to a discontinuous edge than four times the slab thickness;

(b) The value of \(\sqrt{\frac{f_c'}{f_c}} \) used in Eq. (11-34) shall not be taken greater than 70 psi; and

(c) In each direction, \(f_{pc} \) shall not be less than 125 psi, nor be taken greater than 500 psi.

In a prestressed slab with distributed tendons, the \(V_p \) term in Eq. (11-34) contributes only a small amount to the shear strength; therefore, it may be conservatively taken as zero. If \(V_p \) is to be included, the tendon profile assumed in the calculations should be noted.

For an exterior column support where the distance from the outside of the column to the edge of the slab is less than four times the slab thickness, the prestress is not fully effective around \(b_o \), the total perimeter of the critical section. Shear strength in this case is therefore conservatively taken the same as for a nonprestressed slab.

11.11.3 — Shear reinforcement consisting of bars or wires and single- or multiple-leg stirrups shall be permitted in slabs and footings with \(d \) greater than or equal to 6 in., but not less than 16 times the shear reinforcement bar diameter. Shear reinforcement shall be in accordance with 11.11.3.1 through 11.11.3.4.

11.11.3.1 — \(V_n \) shall be computed by Eq. (11-2), where \(V_c \) shall not be taken greater than \(2 \lambda_1 \sqrt{f_c' \times b_o d} \), and \(V_s \) shall be calculated in accordance with 11.4. In Eq. (11-15), \(A_v \) shall be taken as the cross-sectional area of all legs of reinforcement on one peripheral line that is geometrically similar to the perimeter of the column section.

11.11.3.2 — \(V_n \) shall not be taken greater than \(6 \sqrt{\frac{f_c'}{f_c}} \times b_o d \).

Fig. R11.11.2—Value of \(\beta \) for a nonrectangular loaded area.
Fig. R11.11.3(a)-(c): Single- or multiple-leg stirrup-type slab shear reinforcement.

(a) single-leg stirrup or bar

(b) multiple-leg stirrup or bar

(c) closed stirrups

Fig. R11.11.3(d)—Arrangement of stirrup shear reinforcement, interior column.
CODE

11.11.3.3 — The distance between the column face and the first line of stirrup legs that surround the column shall not exceed \(d/2\). The spacing between adjacent stirrup legs in the first line of shear reinforcement shall not exceed \(2d\) measured in a direction parallel to the column face. The spacing between successive lines of shear reinforcement that surround the column shall not exceed \(d/2\) measured in a direction perpendicular to the column face.

11.11.3.4 — Slab shear reinforcement shall satisfy the anchorage requirements of 12.13 and shall engage the longitudinal flexural reinforcement in the direction being considered.

COMMENTARY

Fig. R11.11.3(e)—Arrangement of stirrup shear reinforcement, edge column.

In a slab-column connection for which the moment transfer is negligible, the shear reinforcement should be symmetrical about the centroid of the critical section (Fig. R11.11.3(d)). Spacing limits defined in 11.11.3.3 are also shown in Fig. R11.11.3(d) and (e). At edge columns or for interior connections where moment transfer is significant, closed stirrups are recommended in a pattern as symmetrical as possible. Although the average shear stresses on faces \(AD\) and \(BC\) of the exterior column in Fig. R11.11.3(e) are lower than on face \(AB\), the closed stirrups extending from faces \(AD\) and \(BC\) provide some torsional strength along the edge of the slab.

11.11.4 — Shear reinforcement consisting of structural steel I- or channel-shaped sections (shearheads) shall be permitted in slabs. The provisions of 11.11.4.1 through 11.11.4.9 shall apply where shear due to gravity load is transferred at interior column supports. Where moment is transferred to columns, 11.11.7.3 shall apply.

11.11.4.1 — Each shearhead shall consist of steel shapes fabricated by welding with a full penetration weld into identical arms at right angles. Shearhead arms shall not be interrupted within the column section.

R11.11.4 — Based on reported test data,11.70 design procedures are presented for shearhead reinforcement consisting of structural steel shapes. For a column connection transferring moment, the design of shearheads is given in 11.11.7.3.

Three basic criteria should be considered in the design of shearhead reinforcement for connections transferring shear due to gravity load. First, a minimum flexural strength should be provided to ensure that the required shear strength of the slab is reached before the flexural strength of the shearhead is exceeded. Second, the shear stress in the slab at

CODE

11.11.4.2 — A shearhead shall not be deeper than 70 times the web thickness of the steel shape.

11.11.4.3 — The ends of each shearhead arm shall be permitted to be cut at angles not less than 30 degrees with the horizontal, provided the plastic moment strength of the remaining tapered section is adequate to resist the shear force attributed to that arm of the shearhead.

11.11.4.4 — All compression flanges of steel shapes shall be located within 0.3d of the compression surface of slab.

11.11.4.5 — The ratio α_v between the flexural stiffness of each shearhead arm and that of the surrounding composite cracked slab section of width $(c_2 + d)$ shall not be less than 0.15.

11.11.4.6 — Plastic moment strength, M_p, required for each arm of the shearhead shall be computed by

$$M_p = \frac{V_u}{2\phi n} \left[h_v + \alpha_v (\ell_v - \frac{c_1}{2}) \right]$$ (11-35)

where ϕ is for tension-controlled members, n is number of shearhead arms, and ℓ_v is minimum length of each shearhead arm required to comply with requirements of 11.11.4.7 and 11.11.4.8.

11.11.4.7 — The critical slab section for shear shall be perpendicular to the plane of the slab and shall cross each shearhead arm at three-quarters the distance $[\ell_v - (c_1/2)]$ from the column face to the end of the shearhead arm. The critical section shall be located so that its perimeter b_o is a minimum, but need not be closer than the perimeter defined in 11.11.1.2(a).

11.11.4.8 — The test results[1770] indicated that slabs containing under-reinforcing shearheads failed at a shear stress on a critical section at the end of the shearhead reinforcement less than $4f'c$. Although the use of over-reinforcing shearheads brought the shear strength back to about the equivalent of $4f'c$, the limited test data suggest that a conservative design is desirable. Therefore, the shear strength is calculated as $4f'c$ on an assumed critical section located inside the end of the shearhead reinforcement.

COMMENTARY

![Fig. R11.11.4.5—Idealized shear acting on shearhead.](image_url)

R11.11.4.5 and **R11.11.4.6** — The assumed idealized shear distribution along an arm of a shearhead at an interior column is shown in Fig. R11.11.4.5. The shear along each of the arms is taken as $\alpha_v V_c/n$, where V_c is defined in 11.11.2.1(c). However, the peak shear at the face of the column is taken as the total shear considered per arm V_u/n minus the shear considered carried to the column by the concrete compression zone of the slab. The latter term is expressed as $\phi V_c/n(1 - \alpha_v)$, so that it approaches zero for a heavy shearhead and approaches V_u/n when a light shearhead is used. Equation (11-35) then follows from the assumption that ϕV_c is about one-half the factored shear force V_u. In this equation, M_p is the required plastic moment strength of each shearhead arm necessary to ensure that V_u is attained as the moment strength of the shearhead is reached. The quantity ℓ_v is the length from the center of the column to the point at which the shearhead is no longer required, and the distance $c_1/2$ is one-half the dimension of the column in the direction considered.
11.11.4.8 — V_n shall not be taken greater than $4 \sqrt{f'_c} b_0 d$ on the critical section defined in 11.11.4.7. When shearhead reinforcement is provided, V_n shall not be taken greater than $7 \sqrt{f'_c} b_0 d$ on the critical section defined in 11.11.1.2(a).

11.11.4.9 — Moment resistance M_V contributed to each slab column strip by a shearhead shall not be taken greater than

$$M_V = \frac{\phi \alpha \nu V_u}{2n} \left(\ell_v - \frac{c_1}{2} \right)$$ \hspace{1cm} (11-36)

where ϕ is for tension-controlled members, n is number of shearhead arms, and ℓ_v is length of each shearhead arm actually provided. However, M_V shall not be taken larger than the smallest of:

(a) 30 percent of the total factored moment required for each slab column strip;

(b) 30% of the total factored moment required for each slab column strip;

(c) $7 \sqrt{f'_c} b_0 d$ on the critical section defined in 11.11.4.7.

Fig. R11.11.4.7—Location of critical section defined in 11.11.4.7.

The critical section is taken through the shearhead arms three-fourths of the distance $[\ell_v - (c_1/2)]$ from the face of the column to the end of the shearhead. However, this assumed critical section need not be taken closer than $d/2$ to the column. See Fig. R11.11.4.7.

R11.11.4.9 — If the peak shear at the face of the column is neglected, and ϕV_c is again assumed to be about one-half of V_u, the moment resistance contribution of the shearhead M_c can be conservatively computed from Eq. (11-36), in which ϕ is the factor for flexure.
(b) The change in column strip moment over the length ℓ_v;

(c) M_p computed by Eq. (11-35).

11.11.4.10 — When unbalanced moments are considered, the shearhead must have adequate anchorage to transmit M_p to the column.

11.11.5 — Headed shear stud reinforcement, placed perpendicular to the plane of a slab or footing, shall be permitted in slabs and footings in accordance with 11.11.5.1 through 11.11.5.4. The overall height of the shear stud assembly shall not be less than the thickness of the member less the sum of: (1) the concrete cover on the top flexural reinforcement; (2) the concrete cover on the base rail; and (3) one-half the bar diameter of the tension flexural reinforcement. Where flexural tension reinforcement is at the bottom of the section, as in a footing, the overall height of the shear stud assembly shall not be less than the thickness of the member less the sum of: (1) the concrete cover on the bottom flexural reinforcement; (2) the concrete cover on the head of the stud; and (3) one-half the bar diameter of the bottom flexural reinforcement.

R11.11.5.1 — See R11.11.7.3.

11.11.5 — Headed shear stud reinforcement was introduced in the 2008 Code. Using headed stud assemblies, as shear reinforcement in slabs and footings, requires specifying the stud shank diameter, the spacing of the studs, and the height of the assemblies for the particular applications.

Tests show that vertical studs mechanically anchored as close as possible to the top and bottom of slabs are effective in resisting punching shear. The bounds of the overall specified height achieve this objective while providing a reasonable tolerance in specifying that height as shown in Fig. R7.7.5.

Compared with a leg of a stirrup having bends at the ends, a stud head exhibits smaller slip, and thus results in smaller shear crack widths. The improved performance results in larger limits for shear strength and spacing between peripheral lines of headed shear stud reinforcement. Typical arrangements of headed shear stud reinforcement are shown in Fig. R11.11.5. The critical section beyond the shear reinforcement generally has a polygonal shape. Equations for calculating shear stresses on such sections are given in Reference 11.69.

R11.11.5.2 — The specified spacings between peripheral lines of shear reinforcement are justified by experiments. The clear spacing between the heads of the studs should be adequate to permit placing of the flexural reinforcement.

11.11.5.2 — The critical section beyond the shear reinforcement generally has a polygonal shape. Equations for calculating shear stresses on such sections are given in Reference 11.69.

R11.11.5.2 — The specified spacings between peripheral lines of shear reinforcement are justified by experiments. The clear spacing between the heads of the studs should be adequate to permit placing of the flexural reinforcement.
(b) **0.5d** where maximum shear stresses due to factored loads are greater than \(6\phi \sqrt{f'_c} \).

11.11.5.3 — The spacing between adjacent shear reinforcement elements, measured on the perimeter of the first peripheral line of shear reinforcement, shall not exceed \(2d\).

11.11.5.4 — Shear stress due to factored shear force and moment shall not exceed \(2\phi \lambda \sqrt{f'_c} \) at the critical section located \(d/2\) outside the outermost peripheral line of shear reinforcement.
CODE

11.11.6 — Openings in slabs

When openings in slabs are located at a distance less than 10 times the slab thickness from a concentrated load or reaction area, or when openings in flat slabs are located within column strips as defined in Chapter 13, the critical slab sections for shear defined in 11.11.1.2 and 11.11.4.7 shall be modified as follows:

11.11.6.1 — For slabs without shearheads, that part of the perimeter of the critical section that is enclosed by straight lines projecting from the centroid of the column, concentrated load, or reaction area and tangent to the boundaries of the openings shall be considered ineffective.

11.11.6.2 — For slabs with shearheads, the ineffective portion of the perimeter shall be one-half of that defined in 11.11.6.1.

11.11.7 — Transfer of moment in slab-column connections

11.11.7.1 — Where gravity load, wind, earthquake, or other lateral forces cause transfer of unbalanced moment M_u between a slab and column, $\gamma f M_u$ shall be transferred by flexure in accordance with 13.5.3. The remainder of the unbalanced moment, $\gamma v M_u$, shall be considered to be transferred by eccentricity of shear about the centroid of the critical section defined in 11.11.1.2 where

$$\gamma v = (1 - \gamma f)$$ \hspace{1cm} (11-37)

COMMENTARY

R11.11.6 — Openings in slabs

Provisions for design of openings in slabs (and footings) were developed in Reference 11.3. The locations of the effective portions of the critical section near typical openings and free edges are shown by the dashed lines in Fig. R11.11.6. Additional research\(^{11.61}\) has confirmed that these provisions are conservative.

R11.11.7 — Transfer of moment in slab-column connections

R11.11.7.1 — In Reference 11.71 it was found that where moment is transferred between a column and a slab, 60 percent of the moment should be considered transferred by flexure across the perimeter of the critical section defined in 11.11.1.2, and 40 percent by eccentricity of the shear about the centroid of the critical section. For rectangular columns, the portion of the moment transferred by flexure increases as the width of the face of the critical section resisting the moment increases, as given by Eq. (13-1).

![Fig. R11.11.6—Effect of openings and free edges (effective perimeter shown with dashed lines).](image-url)
11.11.7.2 — The shear stress resulting from moment transfer by eccentricity of shear shall be assumed to vary linearly about the centroid of the critical sections defined in 11.11.1.2. The maximum shear stress due to V_u and M_u shall not exceed $\phi \gamma v$;

(a) For members without shear reinforcement,

$$\phi \gamma v = \phi V_c / (b_0 d)$$ \hspace{1cm} (11-38)

where V_c is as defined in 11.11.2.1 or 11.11.2.2.

(b) For members with shear reinforcement other than shearheads,

$$\phi \gamma v = \phi (V_c + V_s) / (b_0 d)$$ \hspace{1cm} (11-39)

where V_c and V_s are defined in 11.11.3.1. The design shall take into account the variation of shear stress around the column. The shear stress due to factored shear force and moment shall not exceed $\phi(2\lambda \sqrt{f'_c})$ at the critical section located $d/2$ outside the outermost line of stirrup legs that surround the column.

Most of the data in Reference 11.71 were obtained from tests of square columns, and little information is available for round columns. These can be approximated as square columns. Figure R13.6.2.5 shows square supports having the same area as some nonrectangular members.
11.11.7.3 — When shear reinforcement consisting of structural steel I- or channel-shaped sections (shearheads) is provided, the sum of the shear stresses due to vertical load acting on the critical section defined by 11.11.4.7 and the shear stresses resulting from moment transferred by eccentricity of shear about the centroid of the critical section defined in 11.11.1.2(a) and 11.11.1.3 shall not exceed \(\phi A_{\lambda} \sqrt{f_c'} \).

\[
\begin{align*}
\frac{d(c_1 + d)^3}{6} & + \frac{(c_1 + d)d^3}{6} + \frac{d(c_2 + d)(c_1 + d)^2}{2} \\
\end{align*}
\]

Similar equations may be developed for \(A_c \) and \(J_c \) for columns located at the edge or corner of a slab.

The fraction of the unbalanced moment between slab and column not transferred by eccentricity of the shear should be transferred by flexure in accordance with 13.5.3. A conservative method assigns the fraction transferred by flexure over an effective slab width defined in 13.5.3.2. Often column strip reinforcement is concentrated near the column to accommodate this unbalanced moment. Available test data\(^{11.71} \) seem to indicate that this practice does not increase shear strength but may be desirable to increase the stiffness of the slab-column junction.

Test data\(^{11.72} \) indicate that the moment transfer strength of a prestressed slab-to-column connection can be calculated using the procedures of 11.11.7 and 13.5.3.

Where shear reinforcement has been used, the critical section beyond the shear reinforcement generally has a polygonal shape (Fig. R11.11.3(d) and (e)). Equations for calculating shear stresses on such sections are given in Reference 11.69.

R11.11.7.3 — Tests\(^{11.73} \) indicate that the critical sections are defined in 11.11.1.2(a) and 11.11.1.3 and are appropriate for calculations of shear stresses caused by transfer of moments even when shearheads are used. Then, even though the critical sections for direct shear and shear due to moment transfer differ, they coincide or are in close proximity at the column corners where the failures initiate. Because a shearhead attracts most of the shear as it funnels toward the column, it is conservative to take the maximum shear stress as the sum of the two components.

Section 11.11.4.10 requires the moment \(M_p \) to be transferred to the column in shearhead connections transferring unbalanced moments. This may be done by bearing within the column or by mechanical anchorage.
Notes
CHAPTER 12 — DEVELOPMENT AND SPLICES OF REINFORCEMENT

CODE

12.1 — Development of reinforcement — General

12.1.1 — Calculated tension or compression in reinforcement at each section of structural concrete members shall be developed on each side of that section by embedment length, hook, headed deformed bar or mechanical device, or a combination thereof. Hooks and heads shall not be used to develop bars in compression.

12.1.2 — The values of $\sqrt{f'_c}$ used in this chapter shall not exceed 100 psi.

12.1.3 — In addition to requirements in this chapter that affect detailing of reinforcement, structural integrity requirements of 7.13 shall be satisfied.

COMMENTARY

R12.1 — Development of reinforcement — General

The development length concept for anchorage of reinforcement was first introduced in the 1971 Code, to replace the dual requirements for flexural bond and anchorage bond contained in earlier editions. It is no longer necessary to consider the flexural bond concept, which placed emphasis on the computation of nominal peak bond stresses. Consideration of an average bond resistance over a full development length of the reinforcement is more meaningful, partially because all bond tests consider an average bond resistance over a length of embedment of the reinforcement, and partially because uncalculated extreme variations in local bond stresses exist near flexural cracks.12.1

The development length concept is based on the attainable average bond stress over the length of embedment of the reinforcement. Development lengths are required because of the tendency of highly stressed bars to split relatively thin sections of restraining concrete. A single bar embedded in a mass of concrete should not require as great a development length; although a row of bars, even in mass concrete, can create a weakened plane with longitudinal splitting along the plane of the bars.

In application, the development length concept requires minimum lengths or extensions of reinforcement beyond all points of peak stress in the reinforcement. Such peak stresses generally occur at the points in 12.10.2.

Structural integrity requirements of 7.13 may control detailing of reinforcement at splices and terminations.

The strength reduction factor ϕ is not used in the development length and lap splice equations. An allowance for strength reduction is already included in the expressions for determining development and splice lengths. Units of measurement are given in the Notation to assist the user and are not intended to preclude the use of other correctly applied units for the same symbol, such as ft or kip.

From a point of peak stress in reinforcement, some length of reinforcement or anchorage is necessary to develop the stress. This development length or anchorage is necessary on both sides of such peak stress points. Often the reinforcement continues for a considerable distance on one side of a critical stress point so that calculations need involve only the other side, for example, the negative moment reinforcement continuing through a support to the middle of the next span.
CODE

12.2 — Development of deformed bars and deformed wire in tension

12.2.1 — Development length for deformed bars and deformed wire in tension, ℓ_d, shall be determined from either 12.2.2 or 12.2.3 and applicable modification factors of 12.2.4 and 12.2.5, but ℓ_d shall not be less than 12 in.

12.2.2 — For deformed bars or deformed wire, ℓ_d shall be as follows:

<table>
<thead>
<tr>
<th>Spacing and cover</th>
<th>No. 6 and smaller bars and deformed wires</th>
<th>No. 7 and larger bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear spacing of bars or wires being developed or spliced not less than d_b, clear cover not less than d_b, and stirrups or ties throughout ℓ_d, not less than the Code minimum or Clear spacing of bars or wires being developed or spliced not less than $2d_b$ and clear cover not less than d_b</td>
<td>$\frac{f_y \psi_t \psi_s}{25 \lambda_c f'_c} d_b$</td>
<td>$\frac{f_y \psi_t \psi_s}{20 \lambda_c f'_c} d_b$</td>
</tr>
<tr>
<td>Other cases</td>
<td>$\frac{3f_y \psi_t \psi_s}{50 \lambda_c f'_c} d_b$</td>
<td>$\frac{3f_y \psi_t \psi_s}{40 \lambda_c f'_c} d_b$</td>
</tr>
</tbody>
</table>

12.2.3 — For deformed bars or deformed wire, ℓ_d shall be

$$\ell_d = \frac{3}{40} \frac{f_y}{\lambda_c f'_c} \frac{\psi_t \psi_s \psi_s}{c_b + K_{tr}} d_b$$

(12-1)

in which the confinement term $(c_b + K_{tr})/d_b$ shall not be taken greater than 2.5, and

$$K_{tr} = \frac{40 A_{fr}}{sn}$$

(12-2)

where n is the number of bars or wires being spliced or developed along the plane of splitting. It shall be permitted to use $K_{tr} = 0$ as a design simplification even if transverse reinforcement is present.

COMMENTARY

R12.2 — Development of deformed bars and deformed wire in tension

The general development length equation (Eq. (12-1)) is given in 12.2.3. The equation is based on the expression for development length previously endorsed by Committee 408.122,12.3 In Eq. (12-1), ψ_t is a factor that represents the smallest of the side cover, the cover over the bar or wire (in both cases measured to the center of the bar or wire), or one-half the center-to-center spacing of the bars or wires. K_{tr} is a factor that represents the contribution of confining reinforcement across potential splitting planes. ψ_t is the traditional reinforcement location factor to reflect the adverse effects of the top reinforcement casting position. ψ_t is a coating factor reflecting the effects of epoxy coating. There is a limit on the product $\psi_t \psi_c$. The reinforcement size factor ψ_c reflects the more favorable performance of smaller-diameter reinforcement. In 2008, a revision was made to the λ term which is essentially the inverse of the λ used previously in Chapter 12.

A limit of 2.5 is placed on the term $(c_b + K_{tr})/d_b$. When $(c_b + K_{tr})/d_b$ is less than 2.5, splitting failures are likely to occur. For values above 2.5, a pullout failure is expected and an increase in cover or transverse reinforcement is unlikely to increase the anchorage capacity.

Equation (12-1) includes the effects of all variables controlling the development length. Terms in Eq. (12-1) may be disregarded when such omission results in longer and hence, more conservative, development lengths.

The provisions of 12.2.2 and 12.2.3 give a two-tier approach. The user can either calculate ℓ_d based on the actual $(c_b + K_{tr})/d_b$ (12.2.3) or calculate ℓ_d using 12.2.2, which is based on two preselected values of $(c_b + K_{tr})/d_b$.

Section 12.2.2 recognizes that many current practical construction cases utilize spacing and cover values along with confining reinforcement, such as stirrups or ties, that result in a value of $(c_b + K_{tr})/d_b$ of at least 1.5. Examples include a minimum clear cover of d_b, along with either minimum clear spacing of $2d_b$, or a combination of minimum clear spacing of d_b and minimum ties or stirrups. For these frequently occurring cases, the development length for larger bars can be taken as $\ell_d = \frac{f_y \psi_t \psi_c}{(20 \lambda_c f'_c)} d_b$. In the development of ACI 318-95, a comparison with past provisions and a check of a database of experimental results maintained by ACI Committee 408.122 indicated that for No. 6 deformed bars and smaller, as well as for deformed wire, the development lengths could be reduced 20 percent using $\psi_t = 0.8$. This is the basis for the middle column of the table in 12.2.2. With less cover and in the absence of minimum ties or stirrups, the minimum clear spacing limits of 7.6.1 and the minimum concrete cover requirements of 7.7 result in minimum values of c_b equal to d_b. Thus, for “other cases,” the values are based on using $(c_b + K_{tr})/d_b = 1.0$ in Eq. (12-1).
12.2.4 — The factors used in the expressions for development of deformed bars and deformed wires in tension in 12.2 are as follows:

(a) Where horizontal reinforcement is placed such that more than 12 in. of fresh concrete is cast below the development length or splice, \(\psi_t = 1.3 \). For other situations, \(\psi_t = 1.0 \).

(b) For epoxy-coated bars or wires with cover less than 3\(d_b \), or clear spacing less than 6\(d_b \), \(\psi_e = 1.5 \). For all other epoxy-coated bars or wires, \(\psi_e = 1.2 \). For uncoated and zinc-coated (galvanized) reinforcement, \(\psi_e = 1.0 \).

However, the product \(\psi_t \psi_e \) need not be greater than 1.7.

(c) For No. 6 and smaller bars and deformed wires, \(\psi_s = 0.8 \). For No. 7 and larger bars, \(\psi_s = 1.0 \).

The user may easily construct simple, useful expressions. For example, in all structures with normal weight concrete (\(\lambda = 1.0 \)), uncoated reinforcement (\(\psi_e = 1.0 \)), No. 7 or larger bottom bars (\(\psi_t = 1.0 \)) with \(f'_c = 4000 \) psi and Grade 60 reinforcement, the equations reduce to

\[
\ell_d = \frac{(60,000)(1.0)(1.0)}{20(1.0)} \frac{d_b}{4000} = 47d_b
\]

or

\[
\ell_d = \frac{3(60,000)(1.0)(1.0)}{40(1.0)} \frac{d_b}{4000} = 71d_b
\]

Thus, as long as minimum cover of \(d_b \) is provided along with a minimum clear spacing of 2\(d_b \), or a minimum clear cover of \(d_b \) and a minimum clear spacing of \(d_b \) are provided along with minimum ties or stirrups, then \(\ell_d = 47d_b \). The penalty for spacing bars closer or providing less cover is the requirement that \(\ell_d = 71d_b \).

Many practical combinations of side cover, clear cover, and confining reinforcement can be used with 12.2.3 to produce significantly shorter development lengths than allowed by 12.2.2. For example, bars or wires with minimum clear cover not less than 2\(d_b \) and minimum clear spacing not less than 4\(d_b \) and without any confining reinforcement would have a \((c_p + K_{tr})/d_b \) value of 2.5 and would require a development length of only 28\(d_b \) for the example above.

Before ACI 318-08, Eq. (12-2) for \(K_{tr} \) included the yield strength of transverse reinforcement. The current expression includes only the area and spacing of the transverse reinforcement and the number of wires or bars being developed or lap spliced because tests demonstrate that transverse reinforcement rarely yields during a bond failure.\(^{12.4} \)

R12.2.4 — The reinforcement location factor \(\psi_t \) accounts for position of the reinforcement in freshly placed concrete. The factor was reduced to 1.3 in the 1989 Code to reflect research.\(^{12.5,12.6} \)

The factor \(\lambda \) for lightweight concrete was made the same for all types of lightweight aggregates in the 1989 Code. Research on hooked bar anchorage did not support the variations in previous Codes for all-lightweight and sand-lightweight concrete and a single value, 1.3 (used at that time as a multiplier in the numerator of development length equations), was selected. A unified definition of \(\lambda \) was adopted in the 2008 Code. Because a single definition of \(\lambda \) is now used in the Code, the term \(\lambda \) has been moved from the numerator to the denominator in the development length equations (1/0.75 = 1.33). Section 12.2.4 allows a higher factor to be used when the splitting tensile strength of the lightweight concrete is specified. See 5.1.4.
Studies of the anchorage of epoxy-coated bars show that bond strength is reduced because the coating prevents adhesion and friction between the bar and the concrete. The factors reflect the type of anchorage failure likely to occur. When the cover or spacing is small, a splitting failure can occur and the anchorage or bond strength is substantially reduced. If the cover and spacing between bars is large, a splitting failure is precluded and the effect of the epoxy coating on anchorage strength is not as large. Studies have shown that although the cover or spacing may be small, the anchorage strength may be increased by adding transverse steel crossing the plane of splitting, and restraining the splitting crack.

Because the bond of epoxy-coated bars is already reduced due to the loss of adhesion between the bar and the concrete, an upper limit of 1.7 is established for the product of the top reinforcement and epoxy-coated reinforcement factors.

Although there is no requirement for transverse reinforcement along the tension development or splice length, recent research indicates that in concrete with very high compressive strength, brittle anchorage failure occurred in bars with inadequate transverse reinforcement. In splice tests of No. 8 and No. 11 bars in concrete with an $f_{c'}$ of approximately 15,000 psi, transverse reinforcement improved ductile anchorage behavior.

R12.2.5 — Excess reinforcement

The reduction factor based on area is not to be used in those cases where anchorage development for full f_y is required. For example, the excess reinforcement factor does not apply for development of positive moment reinforcement at supports according to 12.11.2, for development of shrinkage and temperature reinforcement according to 7.12.2.3, or for development of reinforcement provided according to 7.13 and 13.3.8.5.

R12.3 — Development of deformed bars and deformed wire in compression

The weakening effect of flexural tension cracks is not present for bars and wire in compression, and usually end bearing of the bars on the concrete is beneficial. Therefore, shorter development lengths are specified for compression than for tension. The development length may be reduced 25 percent when the reinforcement is enclosed within spirals or ties. A reduction in development length is also permitted if excess reinforcement is provided.

In 2008, the term λ was added to the expression for development in 12.3.2 recognizing that there is no known test data on compression development in lightweight concrete but that splitting is more likely in lightweight concrete.
CODE

(a) Reinforcement in excess of that required by analysis\(\frac{A_s \text{ required}}{A_s \text{ provided}}\)

(b) Reinforcement enclosed within spiral reinforcement not less than 1/4 in. diameter and not more than 4 in. pitch or within No. 4 ties in conformance with 7.10.5 and spaced at not more than 4 in. on center ... 0.75

12.4 — Development of bundled bars

12.4.1 — Development length of individual bars within a bundle, in tension or compression, shall be that for the individual bar, increased 20 percent for three-bar bundle, and 33 percent for four-bar bundle.

R12.4 — Development of bundled bars

R12.4.1 — An increased development length for individual bars is required when three or four bars are bundled together. The extra extension is needed because the grouping makes it more difficult to mobilize bond resistance from the core between the bars.

It is important to also note 7.6.6.4 relating to the cutoff points of individual bars within a bundle and 12.14.2.2 relating to splices of bundled bars. The increases in development length of 12.4 do apply when computing splice lengths of bundled bars in accordance with 12.14.2.2. The development of bundled bars by a standard hook of the bundle is not covered by the provisions of 12.5.

R12.4.2 — Although splice and development lengths of bundled bars are a multiple of the diameter of the individual bars being spliced increased by 20 or 33 percent, as appropriate, it is necessary to use an equivalent diameter of the entire bundle derived from the equivalent total area of bars when determining the spacing and cover values in 12.2.2, the confinement term, \[(\frac{c_h + K_{tr}}{d_b})\], in 12.2.3, and the \(\psi_e\) factor in 12.2.4(b). For bundled bars, bar diameter, \(d_b\), outside the brackets in the expressions of 12.2.2 and of Eq. (12-1) is that of a single bar.

12.5 — Development of standard hooks in tension

12.5.1 — Development length for deformed bars in tension terminating in a standard hook (see 7.1), \(\ell_{dh}\), shall be determined from 12.5.2 and the applicable modification factors of 12.5.3, but \(\ell_{dh}\) shall not be less than the larger of \(8d_b\) and 6 in.

R12.5 — Development of standard hooks in tension

R12.5.1 — Development length for deformed bars in tension terminating in a standard hook (see 7.1), \(\ell_{dh}\), shall be determined from 12.5.2 and the applicable modification factors of 12.5.3, but \(\ell_{dh}\) shall not be less than the larger of \(8d_b\) and 6 in.

12.5.2 — For deformed bars, \(\ell_{dh}\) shall be \(0.02\psi_e f_y / \lambda (f'c) d_b\) with \(\psi_e\) taken as 1.2 for epoxy-coated reinforcement, and \(\lambda\) taken as 0.75 for lightweight concrete. For other cases, \(\psi_e\) and \(\lambda\) shall be taken as 1.0.

R12.5.2 — For deformed bars, \(\ell_{dh}\) shall be \(0.02\psi_e f_y / \lambda (f'c) d_b\) with \(\psi_e\) taken as 1.2 for epoxy-coated reinforcement, and \(\lambda\) taken as 0.75 for lightweight concrete. For other cases, \(\psi_e\) and \(\lambda\) shall be taken as 1.0.

12.5.3 — Length \(\ell_{dh}\) in 12.5.2 shall be permitted to be multiplied by the following applicable factors:

(a) For No. 11 bar and smaller hooks with side cover (normal to plane of hook) not less than 2-1/2 in., and

The provisions for hooked bar anchorage were extensively revised in the 1983 Code. Study of failures of hooked bars indicate that splitting of the concrete cover in the plane of the hook is the primary cause of failure and that splitting originates at the inside of the hook where the local stress concentrations are very high. Thus, hook development is a direct function of bar diameter \(d_b\), which governs the magnitude of compressive stresses on the inside of the hook. Only standard hooks (see 7.1) are considered and the influence of larger radius of bend cannot be evaluated by 12.5.

The hooked bar anchorage provisions give the total hooked bar embedment length as shown in Fig. R12.5. The development length \(\ell_{dh}\) is measured from the critical section to the outside end (or edge) of the hook.
for 90-degree hook with cover on bar extension beyond hook not less than 2 in. 0.7

(b) For 90-degree hooks of No. 11 and smaller bars that are either enclosed within ties or stirrups perpendicular to the bar being developed, spaced not greater than $3d_b$ along l_{dh}; or enclosed within ties or stirrups parallel to the bar being developed, spaced not greater than $3d_b$ along the length of the tail extension of the hook plus bend.............. 0.8

(c) For 180-degree hooks of No. 11 and smaller bars that are enclosed within ties or stirrups perpendicular to the bar being developed, spaced not greater than $3d_b$ along l_{dh}.. 0.8

(d) Where anchorage or development for f_y is not specifically required, reinforcement in excess of that required by analysis....... (A_s required)/(A_s provided)

In 12.5.3(b) and 12.5.3(c), d_b is the diameter of the hooked bar, and the first tie or stirrup shall enclose the bent portion of the hook, within $2d_b$ of the outside of the bend.

The development length for standard hooks l_{dh} of 12.5.2 can be reduced by all applicable modification factors of 12.5.3. As an example, if the conditions of both 12.5.3(a) and (c) are met, both factors may be applied.

The effects of bar yield strength, excess reinforcement, lightweight concrete, and factors to reflect the resistance to splitting provided from confinement by concrete and transverse ties or stirrups are based on recommendations from References 12.2 and 12.3.

Tests12,13 indicate that closely spaced ties at or near the bend portion of a hooked bar are most effective in confining the hooked bar. For construction purposes, this is not always practicable. The cases where the modification factor of 12.5.3(b) may be used are illustrated in Fig. R12.5.3(a) and (b). Figure R12.5.3(a) shows placement of ties or stirrups perpendicular to the bar being developed, spaced along the development length, l_{dh}, of the hook. Figure R12.5.3(b) shows placement of ties or stirrups parallel to the bar being developed along the length of the tail extension of the hook plus bend. The latter configuration would be typical in a beam column joint.

The factor for excess reinforcement in 12.5.3(d) applies only where anchorage or development for full f_y is not specifically required. The A factor for lightweight concrete is a simplification over the procedure in 12.2.3.3 of ACI 318-83 in which the increase varies from 18 to 33 percent, depending on the amount of lightweight aggregate used. Unlike straight bar development, no distinction is made between top bars and other bars; such a distinction is difficult for hooked bars in any case. A minimum value of l_{dh} is specified to prevent failure by direct pullout in cases where a hook may be located very near the critical section. Hooks cannot be considered effective in compression.
Tests12,14 indicate that the development length for hooked bars should be increased by 20 percent to account for reduced bond when reinforcement is epoxy coated.

\textbf{12.5.4} — For bars being developed by a standard hook at discontinuous ends of members with both side cover and top (or bottom) cover over hook less than 2-1/2 in., the hooked bar shall be enclosed within ties or stirrups perpendicular to the bar being developed, spaced not greater than 3d_b along ℓ_{dh}. The first tie or stirrup shall enclose the bent portion of the hook, within 2d_b of the outside of the bend, where d_b is the diameter of the hooked bar. For this case, the factors of 12.5.3(b) and (c) shall not apply.

\textbf{R12.5.4} — Bar hooks are especially susceptible to a concrete splitting failure if both side cover (normal to plane of hook) and top or bottom cover (in plane of hook) are small. See Fig. R12.5.4. With minimum confinement provided by concrete, additional confinement provided by ties or stirrups is essential, especially if full bar strength should be developed by a hooked bar with such small cover. Cases where hooks may require ties or stirrups for confinement are at ends of simply supported beams, at free end of cantilevers, and at ends of members framing into a joint.

CODE

12.5.5 — Hooks shall not be considered effective in developing bars in compression.

12.6 — Development of headed and mechanically anchored deformed bars in tension

12.6.1 — Development length for headed deformed bars in tension, \(\ell_{dt} \), shall be determined from 12.6.2. Use of heads to develop deformed bars in tension shall be limited to conditions satisfying (a) through (f):

(a) Bar \(f_y \) shall not exceed 60,000 psi;
(b) Bar size shall not exceed No. 11;
(c) Concrete shall be normalweight;
(d) Net bearing area of head \(A_{brg} \) shall not be less than \(4A_b \);
(e) Clear cover for bar shall not be less than \(2d_b \); and
(f) Clear spacing between bars shall not be less than \(4d_b \).

12.6.2 — For headed deformed bars satisfying 3.5.9, development length in tension \(\ell_{dt} \) shall be \(\left(0.016v_e f_y / (f' c) d_b \right) \), where the value of \(f' c \) used to calculate \(\ell_{dt} \) shall not exceed 6000 psi, and factor \(v_e \) shall be taken as 1.2 for epoxy-coated reinforcement and 1.0 for other cases. Where reinforcement provided is in excess of that required by analysis, except where development of \(f_y \) is specifically required, a factor of \((A_s \text{ required})/(A_s \text{ provided}) \) may be applied to the expression for \(\ell_{dt} \). Length \(\ell_{dt} \) shall not be less than the larger of \(8d_b \) and 6 in.

COMMENTARY

where members do not extend beyond the joint. In contrast, if calculated bar stress is so low that the hook is not needed for bar anchorage, the ties or stirrups are not necessary. Also, provisions of 12.5.4 do not apply for hooked bars at discontinuous ends of slabs with confinement provided by the slab continuous on both sides normal to the plane of the hook.

R12.5.5 — In compression, hooks are ineffective and may not be used as anchorage.

R12.6 — Development of headed and mechanically anchored deformed bars in tension

The development of headed deformed bars and the development and anchorage of reinforcement through the use of mechanical devices within concrete are addressed in 12.6. As used in 12.6, development describes cases in which the force in the bar is transferred to the concrete through a combination of a bearing force at the head and bond forces along the bar, such cases are covered in 12.6.1 and 12.6.2. In contrast, anchorage describes cases in which the force in the bar is transferred through bearing to the concrete at the head alone. General provisions for anchorage are given in Appendix D. The limitation on obstructions and interruptions of the deformations is included in 3.5.9 because there is a wide variety of methods to attach heads to bars, some of which involve obstructions or interruptions of the deformations that extend more than \(2d_b \) from the bearing face of the head. These systems were not evaluated in the tests used to formulate the provisions in 12.6.2, which were limited to systems that meet the criteria in 3.5.9.

The provisions for headed deformed bars were written with due consideration of the provisions for anchorage in Appendix D and the bearing strength provisions of 10.14.12.15.12.16 Appendix D contains provisions for headed anchors related to the individual failure modes of concrete breakout, side-face blowout, and pullout, all of which were considered in the formulation of 12.6.2. The restrictions on normalweight concrete, maximum bar size of No. 11, and upper limit of 60,000 psi for \(f_y \) are based on the available data from tests. 12.15-12.17

The provisions for developing headed deformed bars give the length of bar \(\ell_{dt} \) measured from the critical section to the bearing face of the head, as shown in Fig. R12.6(a).

For bars in tension, heads allow the bars to be developed in a shorter length than required for standard hooks. 12.15-12.17 The minimum limits on clear cover, clear spacing, and head size are based on the lower limits of these parameters used in the tests to establish the expression for \(\ell_{dt} \) in 12.6.2. The clear cover and clear spacing requirements in 12.6.1 are based on dimensions measured to the bar, not to the head.
The head is considered to be part of the bar for the purposes of satisfying the specified cover requirements in 7.7, and aggregate size requirements of 3.3.2(c). To avoid congestion, it may be desirable to stagger the heads. Headed bars with $A_{brg} < 4A_h$ have been used in practice, but their performance is not accurately represented by the provisions in 12.6.2, and they should be used only with designs that are supported by test results under 12.6.4. These provisions do not address the design of studs or headed stud assemblies used for shear reinforcement.

A 1.2 factor is conservatively used for epoxy-coated headed deformed reinforcing bars, the same value used for epoxy-coated standard hooks. The upper limit on the value of $f'c$ in 12.6.2 for use in calculating ℓ_{dt} is based on the concrete strengths used in the tests.12.15-12.17 Because transverse reinforcement has been shown to be largely ineffective in
improving the anchorage of headed deformed bars, \(12.15-12.17\) additional reductions in development length, such as those allowed for standard hooks with additional confinement provided by transverse reinforcement in \(12.5.3\), are not used for headed deformed reinforcing bars. Transverse reinforcement, however, helps limit splitting cracks in the vicinity of the head and for that reason is recommended.

Where longitudinal headed deformed bars from a beam or a slab terminate at a supporting member, such as the column shown in Fig. \(R12.6(b)\), the bars should extend through the joint to the far face of the confined core of the supporting member, allowing for cover and avoidance of interference with column reinforcement, even though the resulting anchorage length exceeds \(l_{dt}\). Extending the bar to the far side of the column core helps to anchor compressive forces (as identified in a strut-and-tie model) that are likely to form in such a connection and improves the performance of the joint.

\[R12.6.3 \quad \text{— No data are available that demonstrate that the use of heads adds significantly to anchorage strength in compression.} \]

\[R12.6.4 \quad \text{— Headed deformed reinforcement that does not meet the requirements in 3.5.9, including the limitation on obstructions and interruptions of the deformations, or is not anchored in accordance with 12.6.1 and 12.6.2 may be used if tests demonstrate the ability of the head and bar system to develop or anchor the desired force in the bar, as described in 12.6.4.} \]

\[12.7 \quad \text{— Development of welded deformed wire reinforcement in tension} \]

\[12.7.1 \quad \text{— Development length for welded deformed wire reinforcement in tension,} \ l_d, \ \text{measured from the point of critical section to the end of wire shall be computed as the product of} \ l_d, \ \text{from 12.2.2 or 12.2.3, times welded deformed wire reinforcement factor,} \ \psi_w, \ \text{from 12.7.2 or 12.7.3. It shall be permitted to reduce} \ l_d \ \text{in accordance with 12.2.5 when applicable, but} \ l_d \ \text{shall not be less than 8 in. except in computation of lap splices by 12.18. When using} \ \psi_w \ \text{from 12.7.2, it shall be permitted to use an epoxy-coating factor,} \ \psi_e, \ \text{of 1.0 for epoxy-coated welded deformed wire reinforcement in 12.2.2 and 12.2.3.} \]

\[12.7.2 \quad \text{— For welded deformed wire reinforcement with at least one cross wire within} \ l_d \text{and not less than 2 in. from the point of the critical section,} \ \psi_w \ \text{shall be the greater of} \]

\[
\left(\frac{f_y - 35,000}{f_y} \right)
\]

\[\text{Fig. R12.7—Development of welded deformed wire reinforcement in tension.} \]
wire development by assuming that only one cross wire is contained in the development length. The welded deformed wire reinforcement factor, \(\psi_w \), in 12.7.2 is applied to the deformed wire development length computed from 12.2. The factor \(\psi_w \) was derived using the general relationships between welded deformed wire reinforcement and deformed wires in the \(\ell_{db} \) values of the 1983 Code.

Tests12.18 have indicated that epoxy-coated welded wire reinforcement has essentially the same development and splice strengths as uncoated welded wire reinforcement because the cross wires provide the primary anchorage for the wire. Therefore, an epoxy-coating factor of 1.0 is used for development and splice lengths of epoxy-coated welded wire reinforcement with cross wires within the splice or development length.

Deformed wire larger than D-31 is treated as plain wire because tests show that D-45 wire will achieve only approximately 60 percent of the bond strength in tension given by Eq. (12-1).12.19

\section*{R12.8 — Development of welded plain wire reinforcement in tension}

Figure R12.8 shows the development requirements for welded plain wire reinforcement with development primarily dependent on the location of cross wires. For welded plain wire reinforcement made with the smaller wires, an embedment of at least two cross wires 2 in. or more beyond the point of critical section is adequate to develop the full yield strength of the anchored wires. However, for welded plain wire reinforcement made with larger closely spaced wires, a longer embedment is required and a minimum development length is provided for this reinforcement.
12.9 — Development of prestressing strand

12.9.1 — Except as provided in 12.9.1.1, seven-wire strand shall be bonded beyond the critical section, a distance not less than

\[l_d = \left(\frac{f_{se}}{3000} \right) d_b + \left(\frac{f_{ps} - f_{se}}{1000} \right) d_b \]

(12-4)

The expressions in parentheses are used as constants without units.

12.9.1.1 — Embedment less than \(l_d \) shall be permitted at a section of a member provided the design strand stress at that section does not exceed values obtained from the bilinear relationship defined by Eq. (12-4).

The development requirements for prestressing strand are intended to provide bond integrity for the strength of the member. The provisions are based on tests performed on normal weight concrete members with a minimum cover of 2 in. These tests may not represent the behavior of strand in low water-cementitious material ratio, no-slump, concrete. Fabrication methods should ensure consolidation of concrete around the strand with complete contact between the steel and concrete. Extra precautions should be exercised when low water-cementitious material ratio, no-slump concrete is used.

The first term in Eq. (12-4) represents the transfer length of the strand, that is, the distance over which the strand should be bonded to the concrete to develop the effective prestress in the prestressing steel \(f_{se} \). The second term represents the additional length over which the strand should be bonded so that a stress in the prestressing steel at nominal strength of the member, \(f_{ps} \), may develop.

The bond of strand is a function of a number of factors, including the configuration and surface condition of the steel, the stress in the steel, the depth of concrete beneath the strand, and the method used to transfer the force in the strand to the concrete. For bonded applications, quality assurance procedures should be used to confirm that the strand is capable of adequate bond. The precast concrete manufacturer may rely on certification from the strand manufacturer that the strand has bond characteristics that comply with this section. Strand with a slightly rusted surface can have an appreciably shorter transfer length than clean strand. Gentle release of the strand will permit a shorter transfer length than abruptly cutting the strands.

The provisions of 12.9 do not apply to plain wires or to end-anchored tendons. The length for smooth wire could be expected to be considerably greater due to the absence of mechanical interlock. Flexural bond failure would occur with plain wire when first slip occurred.

R12.9.1.1 — Figure R12.9 shows the relationship between steel stress and the distance over which the strand is bonded to the concrete represented by Eq. (12-4). This idealized variation of strand stress may be used for analyzing sections within the development region. The expressions for transfer length, and for the additional bonded length necessary to develop an increase in stress of \(f_{ps} - f_{se} \), are based on tests of members prestressed with clean, 1/4, 3/8, and 1/2 in. diameter strands for which the maximum value of \(f_{ps} \) was 275 kips/in. See References 12.24, 12.25, and 12.26.
12.9.2 — Limiting the investigation to cross sections nearest each end of the member that are required to develop full design strength under specified factored loads shall be permitted except where bonding of one or more strands does not extend to the end of the member, or where concentrated loads are applied within the strand development length.

12.9.3 — Where bonding of a strand does not extend to end of member, and design includes tension at service load in precompressed tensile zone as permitted by 18.4.2, \(\ell_d \) specified in 12.9.1 shall be doubled.

R12.9.2 — Where bonding of one or more strands does not extend to the end of the member, critical sections may be at locations other than where full design strength is required to be developed, and detailed analysis may be required. References 12.22 and 12.23 show a method that may be used in the case of strands with different points of full development. Conservatively, only the strands that are fully developed at a section may be considered effective at that section. If critical sections occur in the transfer region, additional considerations may be necessary. Some loading conditions, such as where heavy concentrated loads occur within the strand development length, may cause critical sections to occur away from the section that is required to develop full design strength.

R12.9.3 — Exploratory tests conducted in 1965\(^{12,24} \) that study the effect of debonded strand (bond not permitted to extend to the ends of members) on performance of pretensioned girders indicated that the performance of these girders with embedment lengths twice those required by 12.9.1 closely matched the flexural performance of similar pretensioned girders with strand fully bonded to ends of girders. Accordingly, doubled development length is required for strand not bonded through to the end of a member. Subsequent tests\(^{12,27} \) indicated that in pretensioned members designed for zero tension in the concrete under service load conditions (see 18.4.2), the development length for debonded strands need not be doubled. For analysis of sections with debonded strands at locations where strand is not fully developed, it is usually assumed that both the transfer length and development length are doubled.
12.10 — Development of flexural reinforcement — General

12.10.1 — Development of tension reinforcement by bending across the web to be anchored or made continuous with reinforcement on the opposite face of member shall be permitted.

12.10.2 — Critical sections for development of reinforcement in flexural members are at points of maximum stress and at points within the span where adjacent reinforcement terminates, or is bent. Provisions of 12.11.3 must be satisfied.

12.10.3 — Reinforcement shall extend beyond the point at which it is no longer required to resist flexure for a distance equal to d or $12d_b$, whichever is greater, except at supports of simple spans and at free end of cantilevers.

Fig. R12.10.2—Development of flexural reinforcement in a typical continuous beam.
To provide for shifts in the location of maximum moments, the Code requires the extension of reinforcement a distance d or $12d_b$ beyond the point at which it is theoretically no longer required to resist flexure, except as noted. Cutoff points of bars to meet this requirement are illustrated in Fig. R12.10.2.

When bars of different sizes are used, the extension should be in accordance with the diameter of bar being terminated. A bar bent to the far face of a beam and continued there may logically be considered effective, in satisfying this section, to the point where the bar crosses the mid-depth of the member.

R12.10.4 — Peak stresses exist in the remaining bars wherever adjacent bars are cut off, or bent, in tension regions. In Fig. R12.10.2, an “x” is used to indicate the peak stress points remaining in continuing bars after part of the bars have been cut off. If bars are cut off as short as the moment diagrams allow, these peak stresses become the full f_y, which requires a full l_d extension as indicated. This extension may exceed the length required for flexure.

R12.10.5 — Reduced shear strength and loss of ductility when bars are cut off in a tension zone, as in Fig. R12.10.2, have been reported. The Code does not permit flexural reinforcement to be terminated in a tension zone unless additional conditions are satisfied. Flexure cracks tend to open early wherever any reinforcement is terminated in a tension zone. If the steel stress in the continuing reinforcement and the shear strength are each near their limiting values, diagonal tension cracking tends to develop prematurely from these flexure cracks. Diagonal cracks are less likely to form where shear stress is low (see 12.10.5.1). Diagonal cracks can be restrained by closely spaced stirrups (see 12.10.5.2). A lower steel stress reduces the probability of such diagonal cracking (see 12.10.5.3). These requirements are not intended to apply to tension splices that are covered by 12.2, 12.13.5, and the related 12.15.

R12.10.6 — Brackets, members of variable depth, and other members where f_s, calculated stress in reinforcement at service loads, does not decrease linearly in proportion to a decreasing moment, require additional consideration for proper development of the flexural reinforcement. For the bracket shown in Fig. R12.10.6, the stress at ultimate in the reinforcement is almost constant at approximately f_y from the face of support to the load point. In such a case, development of the flexural reinforcement depends largely on the end anchorage provided at the loaded end. Reference 12.1 suggests a welded cross bar of equal diameter as a means of providing effective end anchorage. An end hook in the vertical plane, with the minimum diameter bend, is not totally effective because an essentially plain concrete corner
12.11 — Development of positive moment reinforcement

12.11.1 — At least one-third the positive moment reinforcement in simple members and one-fourth the positive moment reinforcement in continuous members shall extend along the same face of member into the support. In beams, such reinforcement shall extend into the support at least 6 in.

12.11.2 — When a flexural member is part of a primary seismic-load-resisting system, positive moment reinforcement required to be extended into the support by 12.11.1 shall be anchored to develop f_y in tension at the face of support.

12.11.3 — At simple supports and at points of inflection, positive moment tension reinforcement shall be limited to a diameter such that ℓ_d computed for f_y by 12.2 satisfies Eq. (12-5); except, Eq. (12-5) need not be satisfied for reinforcement terminating beyond centerline of simple supports by a standard hook, or a mechanical anchorage at least equivalent to a standard hook.

$$\ell_d \leq \frac{M_n}{V_u} + \ell_a$$ \hspace{1cm} (12-5)

R12.11 — Development of positive moment reinforcement

R12.11.1 — Positive moment reinforcement is carried into the support to provide for some shifting of the moments due to changes in loading, settlement of supports, and lateral loads.

R12.11.2 — When a flexural member is part of a primary seismic-load-resisting system, loads greater than those anticipated in design may cause reversal of moment at supports; some positive reinforcement should be well anchored into the support. This anchorage is required to ensure ductility of response in the event of serious over-stress, such as from blast or earthquake. It is not sufficient to use more reinforcement at lower stresses.

R12.11.3 — At simple supports and points of inflection such as “P.I.” in Fig. R12.10.2, the diameter of the positive reinforcement should be small enough so that computed development length of the bar ℓ_d does not exceed $M_n/V_u + \ell_a$, or under favorable support conditions, $1.3M_n/V_u + \ell_a$. Figure R12.11.3(a) illustrates the use of the provision.

At the point of inflection, the value of ℓ_a should not exceed the actual bar extension used beyond the point of zero moment. The M_n/V_u portion of the available length is a theoretical quantity not generally associated with an obvious maximum stress point. M_n is the nominal flexural
where:

- M_n is calculated assuming all reinforcement at the section to be stressed to f_y;
- V_u is calculated at the section;
- l_a at a support shall be the embedment length beyond center of support; or
- l_a at a point of inflection shall be limited to d or $12d_b$, whichever is greater.

An increase of 30 percent in the value of M_n/V_u shall be permitted when the ends of reinforcement are confined by a compressive reaction.

The strength of the cross section without the ϕ-factor and is not the applied factored moment.

The length M_n/V_u corresponds to the development length for the maximum size bar obtained from the previously used flexural bond equation $\Sigma_o = V/ujd$, where u is bond stress, and jd is the moment arm. In the 1971 Code, this anchorage requirement was relaxed from previous Codes by crediting the available end anchorage length l_a and by including a 30 percent increase for M_n/V_u when the ends of the reinforcement are confined by a compressive reaction.

For example, a bar size is provided at a simple support such that l_d is computed in accordance with 12.2. The bar size provided is satisfactory only if computed l_d does not exceed $1.3M_n/V_u + l_a$.

The l_a to be used at points of inflection is limited to the effective depth of the member d or 12 bar diameters ($12d_b$), whichever is greater. Fig. R12.11.3(b) illustrates this provision at points of inflection. The l_a limitation is added since test
12.11.4 — At simple supports of deep beams, positive moment tension reinforcement shall be anchored to develop f_y in tension at the face of the support except that if design is carried out using Appendix A, the positive moment tension reinforcement shall be anchored in accordance with A.4.3. At interior supports of deep beams, positive moment tension reinforcement shall be continuous or be spliced with that of the adjacent spans.

12.12 — Development of negative moment reinforcement

12.12.1 — Negative moment reinforcement in a continuous, restrained, or cantilever member, or in any member of a rigid frame, shall be anchored in or through the supporting member by embedment length, hooks, or mechanical anchorage.

12.12.2 — Negative moment reinforcement shall have an embedment length into the span as required by 12.1 and 12.10.3.

12.12.3 — At least one-third the total tension reinforcement provided for negative moment at a support shall have an embedment length beyond the point of inflection not less than $d, 12d_b, \text{ or } l_n/16$, whichever is greater.

12.12.4 — At interior supports of deep flexural members, negative moment tension reinforcement shall be continuous with that of the adjacent spans.

12.13 — Development of web reinforcement

12.13.1 — Web reinforcement shall be as close to the compression and tension surfaces of the member as cover requirements and proximity of other reinforcement permits.

12.13.2 — Ends of single leg, simple U-, or multiple U-stirrups shall be anchored as required by 12.13.2.1 through 12.13.2.5.
12.13.2.1 — For No. 5 bar and D31 wire, and smaller, and for No. 6, No. 7, and No. 8 bars with \(f_{yt} \) of 40,000 psi or less, a standard hook around longitudinal reinforcement.

12.13.2.2 — For No. 6, No. 7, and No. 8 stirrups with \(f_{yt} \) greater than 40,000 psi, a standard stirrup hook around a longitudinal bar plus an embedment between midheight of the member and the outside end of the hook equal to or greater than \(0.014d_b f_{yt} (\lambda / f'_c) \).

R12.13.2.1 — For a No. 5 bar or smaller, anchorage is provided by a standard stirrup hook, as defined in 7.1.3, hooked around a longitudinal bar. The 1989 Code eliminated the need for a calculated straight embedment length in addition to the hook for these small bars, but 12.13.1 requires a full-depth stirrup. Likewise, larger stirrups with \(f_{yt} \) equal to or less than 40,000 psi are sufficiently anchored with a standard stirrup hook around the longitudinal reinforcement.

R12.13.2.2 — Since it is not possible to bend a No. 6, No. 7, or No. 8 stirrup tightly around a longitudinal bar and due to the force in a bar with a design stress greater than 40,000 psi, stirrup anchorage depends on both the value of the hook and whatever development length is provided. A longitudinal...
12.13.2.3 — For each leg of welded plain wire reinforcement forming simple U-stirrups, either:

(a) Two longitudinal wires spaced at a 2 in. spacing along the member at the top of the U; or

(b) One longitudinal wire located not more than \(d/4\) from the compression face and a second wire closer to the compression face and spaced not less than 2 in. from the first wire. The second wire shall be permitted to be located on the stirrup leg beyond a bend, or on a bend with an inside diameter of bend not less than \(8d_b\).

12.13.2.4 — For each end of a single leg stirrup of welded wire reinforcement, two longitudinal wires at a minimum spacing of 2 in. and with the inner wire at least the greater of \(d/4\) or 2 in. from \(d/2\). Outer longitudinal wire at tension face shall not be farther from the face than the portion of primary flexural reinforcement closest to the face.

R12.13.2.4 — Use of welded wire reinforcement for shear reinforcement has become commonplace in the precast, prestressed concrete industry. The rationale for acceptance of straight sheets of welded wire reinforcement as shear reinforcement is presented in a report by a joint PCI/WRI Ad Hoc Committee on Welded Wire Fabric for Shear Reinforcement.12.29
The provisions for anchorage of single leg welded wire reinforcement in the tension face emphasize the location of the longitudinal wire at the same depth as the primary flexural reinforcement to avoid a splitting problem at the tension steel level. Figure R12.13.2.4 illustrates the anchorage requirements for single leg, welded wire reinforcement. For anchorage of single leg, welded wire reinforcement, the Code has permitted hooks and embedment length in the compression and tension faces of members (see 12.13.2.1 and 12.13.2.3), and embedment only in the compression face (see 12.13.2.2). Section 12.13.2.4 provides for anchorage of straight, single leg, welded wire reinforcement using longitudinal wire anchorage with adequate embedment length in compression and tension faces of members.

Fig. R12.13.2.4—Anchorage of single leg welded wire reinforcement shear reinforcement.

12.13.2.5 — In joist construction as defined in 8.11, for No. 4 bar and D20 wire and smaller, a standard hook.

12.13.3 — Between anchored ends, each bend in the continuous portion of a simple U-stirrup or multiple U-stirrup shall enclose a longitudinal bar.

12.13.4 — Longitudinal bars bent to act as shear reinforcement, if extended into a region of tension, shall be continuous with longitudinal reinforcement and, if extended into a region of compression, shall be anchored beyond mid-depth \(d/2 \) as specified for development length in 12.2 for that part of \(f_{yf} \) required to satisfy Eq. (11-17).

12.13.5 — Pairs of U-stirrups or ties so placed as to form a closed unit shall be considered properly spliced when length of laps are \(1.3d_{fl} \) In members at least 18 in. deep, such splices with \(A_{bf}f_{yf} \) not more than 9000 lb per leg shall be considered adequate if stirrup legs extend the full available depth of member.

R12.13.5 — These requirements for lapping of double U-stirrups to form closed stirrups control over the provisions of 12.15.
12.14 — Splices of reinforcement — General

12.14.1 — Splices of reinforcement shall be made only as required or permitted on design drawings, or in specifications, or as authorized by the licensed design professional.

12.14.2 — Lap splices

12.14.2.1 — Lap splices shall not be used for bars larger than No. 11 except as provided in 12.16.2 and 15.8.2.3.

12.14.2.2 — Lap splices of bars in a bundle shall be based on the lap splice length required for individual bars within the bundle, increased in accordance with 12.4. Individual bar splices within a bundle shall not overlap. Entire bundles shall not be lap spliced.

12.14.2.3 — Bars spliced by noncontact lap splices in flexural members shall not be spaced transversely farther apart than the smaller of one-fifth the required lap splice length, and 6 in.

12.14.3 — Mechanical and welded splices

12.14.3.1 — Mechanical and welded splices shall be permitted.

12.14.3.2 — A full mechanical splice shall develop in tension or compression, as required, at least $1.25f_y$ of the bar.

12.14.3.3 — Except as provided in this Code, all welding shall conform to “Structural Welding Code—Reinforcing Steel” (AWS D1.4).

12.14.3.4 — A full welded splice shall develop at least $1.25f_y$ of the bar.

R12.14 — Splices of reinforcement — General

Splices should, if possible, be located away from points of maximum tensile stress. The lap splice requirements of 12.15 encourage this practice.

R12.14.2 — Lap splices

R12.14.2.1 — Because of lack of adequate experimental data on lap splices of No. 14 and No. 18 bars in compression and in tension, lap splicing of these bar sizes is prohibited except as permitted in 12.16.2 and 15.8.2.3 for compression lap splices of No. 14 and No. 18 bars with smaller bars.

R12.14.2.2 — The increased length of lap required for bars in bundles is based on the reduction in the exposed perimeter of the bars. Only individual bars are lap spliced along the bundle.

R12.14.2.3 — If individual bars in noncontact lap splices are too widely spaced, an unreinforced section is created. Forcing a potential crack to follow a zigzag line (5-to-1 slope) is considered a minimum precaution. The 6 in. maximum spacing is added because most research available on the lap splicing of deformed bars was conducted with reinforcement within this spacing.

R12.14.3 — Mechanical and welded splices

R12.14.3.2 — The maximum reinforcement stress used in design under the Code is the specified yield strength. To ensure sufficient strength in splices so that yielding can be achieved in a member and thus brittle failure avoided, the 25 percent increase above the specified yield strength was selected as both an adequate minimum for safety and a practicable maximum for economy.

R12.14.3.3 — See R3.5.2 for discussion on welding.

R12.14.3.4 — A full welded splice is primarily intended for large bars (No. 6 and larger) in main members. The tensile strength requirement of 125 percent of specified yield strength is intended to provide sound welding that is also adequate for compression. See the discussion on strength in R12.14.3.2. The 1995 Code eliminated a requirement that the bars be butted since indirect butt welds are permitted by AWS D1.4, although AWS D1.4 does indicate that wherever practical, direct butt splices are preferable for No. 7 bars and larger.
12.14.3.5 — Mechanical or welded splices not meeting requirements of 12.14.3.2 or 12.14.3.4 shall be permitted only for No. 5 bars and smaller and in accordance with 12.15.5.

12.15 — Splices of deformed bars and deformed wire in tension

12.15.1 — Minimum length of lap for tension lap splices shall be as required for Class A or B splice, but not less than 12 in., where:

Class A splice... 1.0\(\ell_d \)
Class B splice... 1.3\(\ell_d \)

where \(\ell_d \) is calculated in accordance with 12.2 to develop \(f_y \), but without the 12 in. minimum of 12.2.1 and without the modification factor of 12.2.5.

R12.14.3.5 — The use of mechanical or welded splices of less strength than 125 percent of specified yield strength is permitted if the minimum design criteria of 12.15.5 are met. Therefore, lap welds of reinforcing bars, either with or without backup material, welds to plate connections, and end-bearing splices are allowed under certain conditions. The 1995 Code limited these lower strength welds and connections to No. 5 bars and smaller due to the potentially brittle nature of failure at these welds.

R12.15 — Splices of deformed bars and deformed wire in tension

R12.15.1 — Lap splices in tension are classified as Type A or B, with length of lap a multiple of the tensile development length \(\ell_d \) calculated in accordance with 12.2.2 or 12.2.3. The development length \(\ell_d \) used to obtain lap length should be based on \(f_y \) because the splice classifications already reflect any excess reinforcement at the splice location; therefore, the factor from 12.2.5 for excess \(A_s \) should not be used. When multiple bars located in the same plane are spliced at the same section, the clear spacing is the minimum clear distance between the adjacent splices. For splices in columns with offset bars, Fig. R12.15.1(a) illustrates the clear spacing to be used. For staggered splices, the clear spacing is taken as the minimum distance between adjacent splices [Fig. R12.15.1(b)].

Fig. R12.15.1—Clear spacing of spliced bars.
CODE

12.15.2 — Lap splices of deformed bars and deformed wire in tension shall be Class B splices except that Class A splices are allowed when:

(a) the area of reinforcement provided is at least twice that required by analysis over the entire length of the splice; and

(b) one-half or less of the total reinforcement is spliced within the required lap length.

12.15.3 — When bars of different size are lap spliced in tension, splice length shall be the larger of l_d of larger bar and tension lap splice length of smaller bar.

12.15.4 — Mechanical or welded splices used where area of reinforcement provided is less than twice that required by analysis shall meet requirements of 12.14.3.2 or 12.14.3.4.

12.15.5 — Mechanical or welded splices not meeting the requirements of 12.14.3.2 or 12.14.3.4 shall be permitted for No. 5 bars and smaller if the requirements of 12.15.5.1 through 12.15.5.3 are met:

12.15.5.1 — Splices shall be staggered at least 24 in.

12.15.5.2 — In computing the tensile forces that can be developed at each section, the spliced reinforcement stress shall be taken as the specified splice strength, but not greater than f_y. The stress in the unspliced reinforcement shall be taken as f_y times the ratio of the shortest length embedded beyond the section to l_d, but not greater than f_y.

12.15.5.3 — The total tensile force that can be developed at each section must be at least twice that required by analysis, and at least 20,000 psi times the total area of reinforcement provided.

COMMENTARY

The 1989 Code contained several changes in development length in tension that eliminated many of the concerns regarding tension splices due to closely spaced bars with minimal cover. Thus, the Class C splice was eliminated although development lengths, on which splice lengths are based, have in some cases increased. Committee 318 considered suggestions from many sources, including ACI Committee 408, but has retained a two-level splice length primarily to encourage splicing bars at points of minimum stress and staggering splices to improve behavior of critical details.

R12.15.2 — The tension lap splice requirements of 12.15.1 encourage the location of splices away from regions of high tensile stress to locations where the area of steel provided is at least twice that required by analysis. Table R12.15.2 presents the splice requirements in tabular form as presented in earlier Code editions.

R12.15.4 — A mechanical or welded splice should develop at least 125 percent of the specified yield strength when located in regions of high tensile stress in the reinforcement. Such splices need not be staggered, although such staggering is encouraged where the area of reinforcement provided is less than twice that required by the analysis.

R12.15.5 — See R12.14.3.5. Section 12.15.5 concerns the situation where mechanical or welded splices of strength less than 125 percent of the specified yield strength of the reinforcement may be used. It provides a relaxation in the splice requirements where the splices are staggered and excess reinforcement area is available. The criterion of twice the computed tensile force is used to cover sections containing partial tensile splices with various percentages of total continuous steel. The usual partial tensile splice is a flare groove weld between bars or bar and structural steel piece.

To detail such welding, the length of weld should be specified. Such welds are rated at the product of total weld length

<table>
<thead>
<tr>
<th>Table R12.15.2 — Tension Lap Splices</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{s\text{ provided}}^{*}$</td>
</tr>
<tr>
<td>$A_{s\text{ required}}$</td>
</tr>
<tr>
<td>Equal to or greater than 2</td>
</tr>
<tr>
<td>Less than 2</td>
</tr>
</tbody>
</table>

*Ratio of area of reinforcement provided to area of reinforcement required by analysis at splice locations.
12.15.6 — Splices in tension tie members shall be made with a full mechanical or full welded splice in accordance with 12.14.3.2 or 12.14.3.4 and splices in adjacent bars shall be staggered at least 30 in.

A full mechanical or welded splice conforming to 12.14.3.2 or 12.14.3.4 can be used without the stagger requirement instead of the lower strength mechanical or welded splice.

12.16 — Splices of deformed bars in compression

12.16.1 — Compression lap splice length shall be $0.0005f_yd_b$ for f_y of 60,000 psi or less, or $(0.0009f_y - 24)d_b$ for f_y greater than 60,000 psi, but not less than 12 in. For $f_c' < 3000$ psi, length of lap shall be increased by one-third.

Bond research has been primarily related to bars in tension. Bond behavior of compression bars is not complicated by the problem of transverse tension cracking and thus compression splices do not require provisions as strict as those specified for tension splices. The minimum lengths for column splices contained originally in the 1956 Code have been carried forward in later Codes, and extended to compression bars in beams and to higher strength steels. No changes have been made in the provisions for compression splices since the 1971 Code.

R12.16.1 — Essentially, lap requirements for compression splices have remained the same since the 1963 Code.

The 1963 Code values were modified in the 1971 Code to recognize various degrees of confinement and to permit design with reinforcement having a specified yield strength up to 80,000 psi. Tests have shown that splice strengths in compression depend considerably on end bearing and do not increase proportionally in strength when the splice length is doubled. Accordingly, for specified yield strengths above 60,000 psi, compression lap lengths are significantly increased, except where spiral enclosures are used (as in spiral columns) the where the increase is about 10 percent for an increase in specified yield strength from 60,000 to 75,000 psi.
CODE

12.16.2 — When bars of different size are lap spliced in compression, splice length shall be the larger of l_{dc} of larger bar and compression lap splice length of smaller bar. Lap splices of No. 14 and No. 18 bars to No. 11 and smaller bars shall be permitted.

12.16.3 — Mechanical or welded splices used in compression shall meet requirements of 12.14.3.2 or 12.14.3.4.

12.16.4 — End-bearing splices

12.16.4.1 — In bars required for compression only, transmission of compressive stress by bearing of square cut ends held in concentric contact by a suitable device shall be permitted.

12.16.4.2 — Bar ends shall terminate in flat surfaces within 1.5 degrees of a right angle to the axis of the bars and shall be fitted within 3 degrees of full bearing after assembly.

12.16.4.3 — End-bearing splices shall be used only in members containing closed ties, closed stirrups, or spirals.

12.17 — Splice requirements for columns

12.17.1 — Lap splices, mechanical splices, butt-welded splices, and end-bearing splices shall be used with the limitations of 12.17.2 through 12.17.4. A splice shall satisfy requirements for all load combinations for the column.

COMMENTARY

R12.16.2 — The lap splice length is to be computed based on the larger of the compression splice length of the smaller bar; or the compression development length of the larger bar. Lap splices are generally prohibited for No. 14 or No. 18 bars; however, for compression only, lap splices are permitted for No. 14 or No. 18 bars to No. 11 or smaller bars.

R12.16.4 — End-bearing splices

R12.16.4.1 — Experience with end-bearing splices has been almost exclusively with vertical bars in columns. If bars are significantly inclined from the vertical, attention is required to ensure that adequate end-bearing contact can be achieved and maintained.

R12.16.4.2 — These tolerances were added in the 1971 Code, representing practice based on tests of full-size members containing No. 18 bars.

R12.16.4.3 — This limitation was added in the 1971 Code to ensure a minimum shear resistance in sections containing end-bearing splices.

R12.17 — Splice requirements for columns

In columns subject to flexure and axial loads, tension stresses may occur on one face of the column for moderate and large eccentricities as shown in Fig. R12.17. When such tensions occur, 12.17 requires tension splices to be used or an adequate tensile resistance to be provided. Furthermore, a minimum tension strength is required in each face of all columns even where analysis indicates compression only.

Fig. R12.17—Special splice requirements for columns.
CODE

12.17.2 — Lap splices in columns

12.17.2.1 — Where the bar stress due to factored loads is compressive, lap splices shall conform to 12.16.1, 12.16.2, and, where applicable, to 12.17.2.4 or 12.17.2.5.

12.17.2.2 — Where the bar stress due to factored loads is tensile and does not exceed $0.5f_y$ in tension, lap splices shall be Class B tension lap splices if more than one-half of the bars are spliced at any section, or Class A tension lap splices if half or fewer of the bars are spliced at any section and alternate lap splices are staggered by l_d.

12.17.2.3 — Where the bar stress due to factored loads is greater than $0.5f_y$ in tension, lap splices shall be Class B tension lap splices.

12.17.2.4 — In tied reinforced compression members, where ties throughout the lap splice length have an effective area not less than $0.0015hs$ in both directions, lap splice length shall be permitted to be multiplied by 0.83, but lap length shall not be less than 12 in. Tie legs perpendicular to dimension h shall be used in determining effective area.

12.17.2.5 — In spirally reinforced compression members, lap splice length of bars within a spiral shall be permitted to be multiplied by 0.75, but lap length shall not be less than 12 in.

12.17.3 — Mechanical or welded splices in columns

Mechanical or welded splices in columns shall meet the requirements of 12.14.3.2 or 12.14.3.4.

COMMENTARY

The 1989 Code clarifies this section on the basis that a compressive lap splice has a tension strength of at least one-quarter f_y, which simplifies the calculation requirements in previous Codes.

Note that the column splice should satisfy requirements for all load combinations for the column. Frequently, the basic gravity load combination will govern the design of the column itself, but a load combination including wind or seismic loads may induce greater tension in some column bars, and the column splice should be designed for this tension.

R12.17.2 — Lap splices in columns

R12.17.2.1 — The 1989 Code was simplified for column bars always in compression on the basis that a compressive lap splice is adequate for sufficient tension to preclude special requirements.

R12.17.2.4 — Reduced lap lengths are allowed when the splice is enclosed throughout its length by minimum ties.

The tie legs perpendicular to each direction are computed separately and the requirement satisfied in each direction to apply the 0.83 reduction factor. This is illustrated in Fig. R12.17.2, where four legs are effective in one direction and two legs in the other direction. This calculation is critical in one direction, which normally can be determined by inspection.

R12.17.2.5 — Compression lap lengths may be reduced when the lap splice is enclosed throughout its length by spirals because of increased splitting resistance. Spirals should meet requirements of 7.10.4 and 10.9.3.

R12.17.3 — Mechanical or welded splices in columns

Mechanical or welded splices are allowed for splices in columns but should be designed as a full mechanical splice or a full welded splice developing 125 percent f_y as required by 12.14.3.2 or 12.14.3.4. Splice strength is traditionally tested in tension and full strength is required to reflect the high compression loads possible in column reinforcement.
12.17.4 — End-bearing splices in columns

End-bearing splices complying with 12.16.4 shall be permitted to be used for column bars stressed in compression provided the splices are staggered or additional bars are provided at splice locations. The continuing bars in each face of the column shall have a tensile strength, based on f_y, not less than $0.25f_y$ times the area of the vertical reinforcement in that face.

12.18 — Splices of welded deformed wire reinforcement in tension

12.18.1 — Minimum lap splice length of welded deformed wire reinforcement measured between the ends of each reinforcement sheet shall be not less than the larger of $1.3\ell_d$ and 8 in., and the overlap measured between outermost cross wires of each reinforcement sheet shall be not less than 2 in., where ℓ_d is calculated in accordance with 12.7 to develop f_y.

12.18.2 — Lap splices of welded deformed wire reinforcement, with no cross wires within the lap splice length, shall be determined as for deformed wire.

12.18.3 — Where any plain wires, or deformed wires larger than D-31, are present in the welded deformed wire reinforcement in the direction of the lap splice or where welded deformed wire reinforcement is lap spliced to welded plain wire reinforcement, the reinforcement shall be lap spliced in accordance with 12.19.

R12.17.4 — End-bearing splices in columns

End-bearing splices used to splice column bars always in compression should have a tension strength of 25 percent of the specified yield strength of the steel area on each face of the column, either by staggering the end-bearing splices or by adding additional steel through the splice location. The end-bearing splice should conform to 12.16.4.

R12.18 — Splices of welded deformed wire reinforcement in tension

Splice provisions for welded deformed wire reinforcement are based on available tests. The requirements were simplified (1976 Code supplement) from provisions of the 1971 Code by assuming that only one cross wire of each welded wire reinforcement sheet is overlapped and by computing the splice length as $1.3\ell_d$. The development length ℓ_d is that computed in accordance with the provisions of 12.7 without regard to the 8 in. minimum. The 8 in. applies to the overall splice length. See Fig. R12.18. If no cross wires are within the lap length, the provisions for deformed wire apply.

Deformed wire larger than D-31 is treated as plain wire because tests show that D-45 wire will achieve only approximately 60 percent of the bond strength in tension given by Eq. (21-1).
CODE

12.19 — Splices of welded plain wire reinforcement in tension

Minimum length of lap for lap splices of welded plain wire reinforcement shall be in accordance with 12.19.1 and 12.19.2.

12.19.1 — Where A_s provided is less than twice that required by analysis at splice location, length of overlap measured between outermost cross wires of each reinforcement sheet shall be not less than the largest of one spacing of cross wires plus 2 in., $1.5\ell_d$, and 6 in., where ℓ_d is calculated in accordance with 12.8 to develop f_y.

12.19.2 — Where A_s provided is at least twice that required by analysis at splice location, length of overlap measured between outermost cross wires of each reinforcement sheet shall not be less than the larger of $1.5\ell_d$, and 2 in., where ℓ_d is calculated in accordance with 12.8 to develop f_y.

COMMENTARY

R12.19 — Splices of welded plain wire reinforcement in tension

The strength of lap splices of welded plain wire reinforcement is dependent primarily on the anchorage obtained from the cross wires rather than on the length of wire in the splice. For this reason, the lap is specified in terms of overlap of cross wires rather than in wire diameters or inches. The 2 in. additional lap required is to assure overlapping of the cross wires and to provide space for satisfactory consolidation of the concrete between cross wires. Research\(^{12.32}\) has shown an increased splice length is required when welded wire reinforcement of large, closely spaced wires is lapped and, as a consequence, additional splice length requirements are provided for this reinforcement in addition to an absolute minimum of 6 in. The development length ℓ_d is that computed in accordance with the provisions of 12.8 without regard to the 6 in. minimum. Splice requirements are illustrated in Fig. R12.19.

![Fig. R12.18—Lap splices of welded deformed wire reinforcement.](image)

![Fig. R12.19—Lap splices of plain welded wire reinforcement.](image)
CHAPTER 13 — TWO-WAY SLAB SYSTEMS

CODE

13.1 — Scope

13.1.1 — Provisions of Chapter 13 shall apply for design of slab systems reinforced for flexure in more than one direction, with or without beams between supports.

13.1.2 — For a slab system supported by columns or walls, dimensions c_1, c_2, and l_1 shall be based on an effective support area defined by the intersection of the bottom surface of the slab, or of the drop panel or shear cap if present, with the largest right circular cone, right pyramid, or tapered wedge whose surfaces are located within the column and the capital or bracket and are oriented no greater than 45 degrees to the axis of the column.

13.1.3 — Solid slabs and slabs with recesses or pockets made by permanent or removable fillers between ribs or joists in two directions are included within the scope of Chapter 13.

13.1.4 — Minimum thickness of slabs designed in accordance with Chapter 13 shall be as required by 9.5.3.

COMMENTARY

R13.1 — Scope

The design methods given in Chapter 13 are based on analysis of the results of an extensive series of tests and the well-established performance record of various slab systems. Much of Chapter 13 is concerned with the selection and distribution of flexural reinforcement. Safety of a slab system requires consideration of the transmission of load from the slab to the columns by flexure, torsion, and shear. Design criteria for shear and torsion in slabs are given in Chapter 11.

The fundamental design principles contained in Chapter 13 are applicable to all planar structural systems subjected to transverse loads. Some of the specific design rules, as well as historical precedents, limit the types of structures to which Chapter 13 applies. General characteristics of slab systems that may be designed according to Chapter 13 are described in this section. These systems include flat slabs, flat plates, two-way slabs, and waffle slabs. Slabs with paneled ceilings are two-way wide-band beam systems.

True one-way slabs, slabs reinforced to resist flexural stresses in only one direction, are excluded. Also excluded are slabs-on-ground that do not transmit vertical loads from other parts of the structure to the soil.

For slabs with beams, the explicit design procedures of Chapter 13 apply only when the beams are located at the edges of the panel and when the beams are supported by columns or other essentially nondeflecting supports at the corners of the panel. Two-way slabs with beams in one direction, with both slab and beams supported by girders in the other direction, may be designed under the general requirements of Chapter 13. Such designs should be based upon analysis compatible with the deflected position of the supporting beams and girders.

For slabs supported on walls, the explicit design procedures in this chapter treat the wall as a beam of infinite stiffness; therefore, each wall should support the entire length of an edge of the panel (see 13.2.3). Wall-like columns less than a full panel length can be treated as columns.

Design aids for use in the engineering analysis and design of two-way slab systems are given in the ACI Design Handbook. Design aids are provided to simplify application of the direct design and equivalent frame methods of Chapter 13.
CODE

13.2 — General

13.2.1 — Column strip is a design strip with a width on each side of a column centerline equal to $0.25c_2$ or $0.25c_1$, whichever is less. Column strip includes beams, if any.

13.2.2 — Middle strip is a design strip bounded by two column strips.

13.2.3 — A panel is bounded by column, beam, or wall centerlines on all sides.

13.2.4 — For monolithic or fully composite construction, a beam includes that portion of slab on each side of the beam extending a distance equal to the projection of the beam above or below the slab, whichever is greater, but not greater than four times the slab thickness.

13.2.5 — When used to reduce the amount of negative moment reinforcement over a column or minimum required slab thickness, a drop panel shall:

(a) project below the slab at least one-quarter of the adjacent slab thickness; and

(b) extend in each direction from the centerline of support a distance not less than one-sixth the span length measured from center-to-center of supports in that direction.

13.2.6 — When used to increase the critical condition section for shear at a slab-column joint, a shear cap shall project below the slab and extend a minimum horizontal distance from the face of the column that is equal to the thickness of the projection below the slab soffit.

COMMENTARY

R13.2 — General

R13.2.3 — A panel includes all flexural elements between column centerlines. Thus, the column strip includes the beam, if any.

R13.2.4 — For monolithic or fully composite construction, the beams include portions of the slab as flanges. Two examples of the rule are provided in Fig. R13.2.4.

R13.2.5-R13.2.6 — Drop panel dimensions specified in 13.2.5 are necessary when reducing the amount of negative moment reinforcement following 13.3.7 or to satisfy some minimum slab thicknesses permitted in 9.5.3. If the dimensions are less than specified in 13.2.5, the projection may be used as a shear cap to increase the shear strength of the slab. For slabs with changes in thickness it is necessary to check the shear strength at several sections. See 11.11.1.2.

Fig. R13.2.4—Examples of the portion of slab to be included with the beam under 13.2.4.
CODE

13.3 — Slab reinforcement

13.3.1 — Area of reinforcement in each direction for two-way slab systems shall be determined from moments at critical sections, but shall not be less than required by 7.12.2.1.

13.3.2 — Spacing of reinforcement at critical sections shall not exceed two times the slab thickness, except for portions of slab area of cellular or ribbed construction. In the slab over cellular spaces, reinforcement shall be provided as required by 7.12.

13.3.3 — Positive moment reinforcement perpendicular to a discontinuous edge shall extend to the edge of slab and have embedment, straight or hooked, at least 6 in. in spandrel beams, columns, or walls.

13.3.4 — Negative moment reinforcement perpendicular to a discontinuous edge shall be bent, hooked, or otherwise anchored in spandrel beams, columns, or walls, and shall be developed at face of support according to provisions of Chapter 12.

13.3.5 — Where a slab is not supported by a spandrel beam or wall at a discontinuous edge, or where a slab cantilevers beyond the support, anchorage of reinforcement shall be permitted within the slab.

13.3.6 — At exterior corners of slabs supported by edge walls or where one or more edge beams have a value of α_f greater than 1.0, top and bottom slab reinforcement shall be provided at exterior corners in accordance with 13.3.6.1 through 13.3.6.4.

13.3.6.1 — Corner reinforcement in both top and bottom of slab shall be sufficient to resist a moment per unit of width equal to the maximum positive moment per unit width in the slab panel.

13.3.6.2 — The moment shall be assumed to be about an axis perpendicular to the diagonal from the corner in the top of the slab and about an axis parallel to the diagonal from the corner in the bottom of the slab.

13.3.6.3 — Corner reinforcement shall be provided for a distance in each direction from the corner equal to one-fifth the longer span.

13.3.6.4 — Corner reinforcement shall be placed parallel to the diagonal in the top of the slab and perpendicular to the diagonal in the bottom of the slab.

COMMENTARY

R13.3 — Slab reinforcement

R13.3.2 — The requirement that the center-to-center spacing of the reinforcement be not more than two times the slab thickness applies only to the reinforcement in solid slabs, and not to reinforcement joists or waffle slabs. This limitation is to ensure slab action, cracking, and provide for the possibility of loads concentrated on small areas of the slab. See also R10.6.

R13.3.3-R13.3.5 — Bending moments in slabs at spandrel beams can be subject to great variation. If spandrel beams are built solidly into walls, the slab approaches complete fixity. Without an integral wall, the slab could approach simply supported, depending on the torsional rigidity of the spandrel beam or slab edge. These requirements provide for unknown conditions that might normally occur in a structure.

R13.3.6 — Unrestrained corners of two-way slabs tend to lift when loaded. If this lifting tendency is restrained by edge walls or beams, bending moments result in the slab. This section provides steel to resist these moments and control cracking. Reinforcement provided for flexure in the primary directions may be used to satisfy this requirement. See Fig. R.13.3.6.
Alternatively, reinforcement shall be placed in two layers parallel to the sides of the slab in both the top and bottom of the slab.

13.3.7 — When a drop panel is used to reduce the amount of negative moment reinforcement over the column of a flat slab, the dimensions of the drop panel shall be in accordance with 13.2.5. In computing required slab reinforcement, the thickness of the drop panel below the slab shall not be assumed to be greater than one-quarter the distance from the edge of drop panel to the face of column or column capital.

13.3.8 — Details of reinforcement in slabs without beams

13.3.8.1 — In addition to the other requirements of 13.3, reinforcement in slabs without beams shall have minimum extensions as prescribed in Fig. 13.3.8.

13.3.8.2 — Where adjacent spans are unequal, extensions of negative moment reinforcement beyond the face of support as prescribed in Fig. 13.3.8 shall be based on requirements of the longer span.

R13.3.8 — Details of reinforcement in slabs without beams

In the 1989 Code, bent bars were removed from Fig. 13.3.8. This was done because bent bars are seldom used and are difficult to place properly. Bent bars are permitted, however, if they comply with 13.3.8.3. Refer to 13.4.8 of the 1983 Code.
Fig. 13.3.8—Minimum extensions for reinforcement in slabs without beams. (See 12.11.1 for reinforcement extension into supports).

13.3.8.3 — Bent bars shall be permitted only when depth-span ratio permits use of bends of 45 degrees or less.

13.3.8.4 — In frames where two-way slabs act as primary members resisting lateral loads, lengths of reinforcement shall be determined by analysis but shall not be less than those prescribed in Fig. 13.3.8.

13.3.8.5 — All bottom bars or wires within the column strip, in each direction, shall be continuous or spliced with Class B tension splices or with mechanical or welded splices satisfying 12.14.3. Splices shall be located as shown in Fig. 13.3.8. At least two of the column strip bottom bars or wires in each direction shall pass within the region bounded by the longitudinal reinforcement of the column and shall be anchored at exterior supports.

R13.3.8.4 — For moments resulting from combined lateral and gravity loadings, the minimum lengths and extensions of bars in Fig. 13.3.8 may not be sufficient.

R13.3.8.5 — The continuous column strip bottom reinforcement provides the slab some residual ability to span to the adjacent supports should a single support be damaged. The two continuous column strip bottom bars or wires through the column may be termed “integrity steel,” and are provided to give the slab some residual strength following a single punching shear failure at a single support. In the 2002 Code, mechanical and welded splices were explicitly recognized as alternative methods of splicing reinforcement.
CODE

13.3.8.6 — In slabs with shearheads and in lift-slab construction where it is not practical to pass the bottom bars required by 13.3.8.5 through the column, at least two bonded bottom bars or wires in each direction shall pass through the shearhead or lifting collar as close to the column as practicable and be continuous or spliced with a Class A splice. At exterior columns, the reinforcement shall be anchored at the shearhead or lifting collar.

13.4 — Openings in slab systems

13.4.1 — Openings of any size shall be permitted in slab systems if shown by analysis that the design strength is at least equal to the required strength set forth in 9.2 and 9.3, and that all serviceability conditions, including the limits on deflections, are met.

13.4.2 — As an alternate to analysis as required by 13.4.1, openings shall be permitted in slab systems without beams only, in accordance with 13.4.2.1 through 13.4.2.4.

13.4.2.1 — Openings of any size shall be permitted in the area common to intersecting middle strips, provided total amount of reinforcement required for the panel without the opening is maintained.

13.4.2.2 — In the area common to intersecting column strips, not more than one-eighth the width of column strip in either span shall be interrupted by openings. An amount of reinforcement equivalent to that interrupted by an opening shall be added on the sides of the opening.

13.4.2.3 — In the area common to one column strip and one middle strip, not more than one-quarter of the reinforcement in either strip shall be interrupted by openings. An amount of reinforcement equivalent to that interrupted by an opening shall be added on the sides of the opening.

13.4.2.4 — Shear requirements of 11.11.6 shall be satisfied.

13.5 — Design procedures

13.5.1 — A slab system shall be designed by any procedure satisfying conditions of equilibrium and geometric compatibility, if shown that the design strength at every section is at least equal to the required strength set forth in 9.2 and 9.3, and that all serviceability conditions, including limits on deflections, are met.

COMMENTARY

R13.3.8.6 — In the 1992 Code, this provision was added to require the same integrity steel as for other two-way slabs without beams in case of a punching shear failure at a support.

In some instances, there is sufficient clearance so that the bonded bottom bars can pass under shearheads and through the column. Where clearance under the shearhead is inadequate, the bottom bars should pass through holes in the shearhead arms or within the perimeter of the lifting collar. Shearheads should be kept as low as possible in the slab to increase their effectiveness.

R13.4 — Openings in slab systems

See R11.11.6.

R13.5 — Design procedures

R13.5.1 — This section permits a design to be based directly on fundamental principles of structural mechanics, provided it can be demonstrated explicitly that all strength and serviceability criteria are satisfied. The design of the slab may be achieved through the combined use of classic solutions based on a linearly elastic continuum, numerical
13.5.1.1 — Design of a slab system for gravity loads, including the slab and beams (if any) between supports and supporting columns or walls forming orthogonal frames, by either the Direct Design Method of 13.6 or the Equivalent Frame Method of 13.7, shall be permitted.

13.5.1.2 — For lateral loads, analysis of frames shall take into account effects of cracking and reinforcement on stiffness of frame members.

13.5.1.3 — Combining the results of the gravity load analysis with the results of the lateral load analysis shall be permitted.
13.5.2 — The slab and beams (if any) between supports shall be proportioned for factored moments prevailing at every section.

13.5.3 — When gravity load, wind, earthquake, or other lateral forces cause transfer of moment between slab and column, a fraction of the unbalanced moment shall be transferred by flexure in accordance with 13.5.3.2 through 13.5.3.4.

13.5.3.1 — The fraction of unbalanced moment not transferred by flexure shall be transferred by eccentricity of shear in accordance with 11.11.7.

13.5.3.2 — A fraction of the unbalanced moment given by $\gamma_f M_u$ shall be considered to be transferred by flexure within an effective slab width between lines that are one and one-half slab or drop panel thickness $(1.5h)$ outside opposite faces of the column or capital, where M_u is the factored moment to be transferred and

$$\gamma_f = \frac{1}{1 + (2/3)\left(\frac{b_1}{b_2}\right)}$$

13.5.3.3 — For nonprestressed slabs with unbalanced moments transferred between the slab and columns, it shall be permitted to increase the value of γ_f given by Eq. (13-1) in accordance with the following:

(a) For edge columns with unbalanced moments about an axis parallel to the edge, $\gamma_f = 1.0$ provided that V_u at an edge support does not exceed $0.75\phi V_c$, or at a corner support does not exceed $0.5\phi V_c$.

(b) For unbalanced moments at interior supports, and for edge columns with unbalanced moments about an axis perpendicular to the edge, increase γ_f to as much as 1.25 times the value from Eq. (13-1), but not more than $\gamma_f = 1.0$, provided that V_u at the support does not exceed $0.4\phi V_c$. The net tensile strain ε_t calculated for the effective slab width defined in 13.5.3.2 shall not be less than 0.010.

The value of V_c in items (a) and (b) shall be calculated in accordance with 11.11.2.1.

R13.5.3 — This section is concerned primarily with slab systems without beams. Tests and experience have shown that, unless measures are taken to resist the torsional and shear stresses, all reinforcement resisting that part of the moment to be transferred to the column by flexure should be placed between lines that are one and one-half the slab or drop panel thickness, $1.5h$, on each side of the column. The calculated shear stresses in the slab around the column are required to conform to the requirements of 11.11.2. See R11.11.1.2 and R11.11.2.1 for more details on application of this section.

At exterior supports, for unbalanced moments about an axis parallel to the edge, the portion of moment transferred by eccentricity of shear $\gamma_v M_u$ may be reduced provided that the factored shear at the support (excluding the shear produced by moment transfer) does not exceed 75 percent of the shear strength ϕV_c as defined in 11.11.2.1 for edge columns or 50 percent for corner columns. Tests indicate that there is no significant interaction between shear and unbalanced moment at the exterior support in such cases. Note that as $\gamma_v M_u$ is decreased, $\gamma_f M_u$ is increased.

Evaluation of tests of interior supports indicate that some flexibility in distributing unbalanced moments transferred by shear and flexure is possible, but with more severe limitations than for exterior supports. For interior supports, the unbalanced moment transferred by flexure is permitted to be increased up to 25 percent provided that the factored shear (excluding the shear caused by the moment transfer) at the interior supports does not exceed 40 percent of the shear strength ϕV_c as defined in 11.11.2.1.
When the factored shear for a slab-column connection is large, the slab-column joint cannot always develop all of the reinforcement provided in the effective width. The modifications for interior slab-column connections in 13.5.3.3 are permitted only when the reinforcement (within the effective width) required to develop the unbalanced moment γfM_u has a net tensile strain ε_t not less than 0.010. The use of Eq. (13-1) without the modification permitted in 13.5.3.3 will generally indicate overstress conditions on the joint. The provisions of 13.5.3.3 are intended to improve ductile behavior of the slab-column joint. When a reversal of moments occurs at opposite faces of an interior support, both top and bottom reinforcement should be concentrated within the effective width. A ratio of top to bottom reinforcement of approximately 2 has been observed to be appropriate.

For the 2008 Code, two changes were introduced to 13.5.3.3: (1) the limitation for the amount of reinforcement in the effective slab width to 37.5 percent of the balanced steel ratio was updated to refer to a minimum net tensile strain of 0.010 to be consistent with the unified design approach adopted in the 2002 Code, and (2) the requirement for the minimum net tensile strain was eliminated for moment transfer about the slab edge for edge and corner connections based on the original recommendations from Joint ACI-ASCE Committee 352.13.15

13.5.3.4 — Concentration of reinforcement over the column by closer spacing or additional reinforcement shall be used to resist moment on the effective slab width defined in 13.5.3.2.

13.5.4 — Design for transfer of load from slabs to supporting columns or walls through shear and torsion shall be in accordance with Chapter 11.

13.6 — Direct design method

R13.6 — Direct design method

The direct design method consists of a set of rules for distributing moments to slab and beam sections to satisfy safety requirements and most serviceability requirements simultaneously. Three fundamental steps are involved as follows:

(1) Determination of the total factored static moment (see 13.6.2);

(2) Distribution of the total factored static moment to negative and positive sections (see 13.6.3);

(3) Distribution of the negative and positive factored moments to the column and middle strips and to the beams, if any (see 13.6.4 through 13.6.6). The distribution of moments to column and middle strips is also used in the equivalent frame method (see 13.7).
CODE

13.6.1 — Limitations

Design of slab systems within the limitations of 13.6.1.1 through 13.6.1.8 by the direct design method shall be permitted.

13.6.1.1 — There shall be a minimum of three continuous spans in each direction.

13.6.1.2 — Panels shall be rectangular, with a ratio of longer to shorter span center-to-center of supports within a panel not greater than 2.

13.6.1.3 — Successive span lengths center-to-center of supports in each direction shall not differ by more than one-third the longer span.

13.6.1.4 — Offset of columns by a maximum of 10 percent of the span (in direction of offset) from either axis between centerlines of successive columns shall be permitted.

13.6.1.5 — All loads shall be due to gravity only and uniformly distributed over an entire panel. The unfactored live load shall not exceed two times the unfactored dead load.

13.6.1.6 — For a panel with beams between supports on all sides, Eq. (13-2) shall be satisfied for beams in the two perpendicular directions

\[0.2 \leq \frac{\alpha_{f1} \ell_2^2}{\alpha_{f2} \ell_1^2} \leq 5.0\] (13-2)

where \(\alpha_{f1}\) and \(\alpha_{f2}\) are calculated in accordance with Eq. (13-3).

COMMENTARY

R13.6.1 — Limitations

The direct design method was developed from considerations of theoretical procedures for the determination of moments in slabs with and without beams, requirements for simple design and construction procedures, and precedents supplied by performance of slab systems. Consequently, the slab systems to be designed using the direct design method should conform to the limitations in this section.

R13.6.1.1 — The primary reason for the limitation in this section is the magnitude of the negative moments at the interior support in a structure with only two continuous spans. The rules given for the direct design method assume that the slab system at the first interior negative moment section is neither fixed against rotation nor discontinuous.

R13.6.1.2 — If the ratio of the two spans (long span/short span) of a panel exceeds 2, the slab resists the moment in the shorter span essentially as a one-way slab.

R13.6.1.3 — The limitation in this section is related to the possibility of developing negative moments beyond the point where negative moment reinforcement is terminated, as prescribed in Fig. 13.3.8.

R13.6.1.4 — Columns can be offset within specified limits from a regular rectangular array. A cumulative total offset of 20 percent of the span is established as the upper limit.

R13.6.1.5 — The direct design method is based on tests\(^{13.16}\) for uniform gravity loads and resulting column reactions determined by statics. Lateral loads such as wind or seismic require a frame analysis. Inverted foundation mats designed as two-way slabs (see 15.10) involve application of known column loads. Therefore, even where the soil reaction is assumed to be uniform, a frame analysis should be performed.

In the 1995 Code, the limit of applicability of the direct design method for ratios of live load to dead load was reduced from 3 to 2. In most slab systems, the live to dead load ratio will be less than 2 and it will not be necessary to check the effects of pattern loading.

R13.6.1.6 — The elastic distribution of moments will deviate significantly from those assumed in the direct design method unless the requirements for stiffness are satisfied.
13.6.1.7 — Moment redistribution as permitted by 8.4 shall not be applied for slab systems designed by the direct design method. See 13.6.7.

13.6.1.8 — Variations from the limitations of 13.6.1 shall be permitted if demonstrated by analysis that requirements of 13.5.1 are satisfied.

13.6.2 — Total factored static moment for a span

13.6.2.1 — Total factored static moment, M_o, for a span shall be determined in a strip bounded laterally by centerline of panel on each side of centerline of supports.

13.6.2.2 — Absolute sum of positive and average negative factored moments in each direction shall not be less than

$$M_o = \frac{q_u l_n^2 l_n}{8}$$

(13-4)

where l_n is length of clear span in direction that moments are being determined.

13.6.2.3 — Where the transverse span of panels on either side of the centerline of supports varies, l_2 in Eq. (13-4) shall be taken as the average of adjacent transverse spans.

13.6.2.4 — When the span adjacent and parallel to an edge is being considered, the distance from edge to panel centerline shall be substituted for l_2 in Eq. (13-4).

13.6.2.5 — Clear span l_n shall extend from face to face of columns, capitals, brackets, or walls. Value of l_n used in Eq. (13-4) shall not be less than $0.65l_1$. Circular or regular polygon-shaped supports shall be treated as square supports with the same area.

13.6.3 — Negative and positive factored moments

13.6.3.1 — Negative factored moments shall be located at face of rectangular supports. Circular or regular polygon-shaped supports shall be treated as square supports with the same area.

R13.6.1.7 — Moment redistribution as permitted by 8.4 is not intended for use where approximate values for bending moments are used. For the direct design method, 10 percent modification is allowed by 13.6.7.

R13.6.1.8 — It is permitted to use the direct design method even if the structure does not fit the limitations in this section, provided it can be shown by analysis that the particular limitation does not apply to that structure. For a slab system carrying a nonmovable load (such as a water reservoir in which the load on all panels is expected to be the same), live load limitation of 13.6.1.5 need not be satisfied.

R13.6.2.2 — Equation (13-4) follows directly from Nichol’s derivation with the simplifying assumption that the reactions are concentrated along the faces of the support perpendicular to the span considered. In general, it will be expedient to calculate static moments for two adjacent half panels that include a column strip with a half middle strip along each side.

R13.6.2.5 — If a supporting member does not have a rectangular cross section or if the sides of the rectangle are not parallel to the spans, it is to be treated as a square support having the same area, as illustrated in Fig. R13.6.2.5.
13.6.3.2 — In an interior span, total static moment, M_o, shall be distributed as follows:

- Negative factored moment: 0.65
- Positive factored moment: 0.35

13.6.3.3 — In an end span, total factored static moment, M_o, shall be distributed as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior edge unrestrained</td>
<td>0.75</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>Slab with beams between all supports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab without beams between interior supports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without edge beam</td>
<td>0.63</td>
<td>0.57</td>
<td>0.52</td>
<td>0.50</td>
<td>0.35</td>
</tr>
<tr>
<td>With edge beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior edge fully restrained</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R13.6.3.3 — The moment coefficients for an end span are based on the equivalent column stiffness expressions from References 13.18, 13.19, and 13.20. The coefficients for an unrestrained edge would be used, for example, if the slab were simply supported on a masonry or concrete wall. Those for a fully restrained edge would apply if the slab were constructed integrally with a concrete wall having a flexural stiffness so large compared to that of the slab that little rotation occurs at the slab-to-wall connection.

For other than unrestrained or fully restrained edges, coefficients in the table were selected to be near the upper bound of the range for positive moments and interior negative moments. As a result, exterior negative moments were usually closer to a lower bound. The exterior negative moment strength for most slab systems is governed by minimum reinforcement to control cracking. The final coefficients in the table have been adjusted so that the absolute sum of the positive and average moments equal M_o.

For two-way slab systems with beams between supports on all sides (two-way slabs), moment coefficients of Column (2) of the table apply. For slab systems without beams between interior supports (flat plates and flat slabs), the moment coefficients of Column (3) or (4) apply, without or with an edge (spandrel) beam, respectively.

In the 1977 Code, distribution factors defined as a function of the stiffness ratio of the equivalent exterior support were used for proportioning the total static moment M_o in an end span. The approach may be used in place of values in 13.6.3.3.
CODE

13.6.3.4 — Negative moment sections shall be designed to resist the larger of the two interior negative factored moments determined for spans framing into a common support unless an analysis is made to distribute the unbalanced moment in accordance with stiffnesses of adjoining elements.

13.6.3.5 — Edge beams or edges of slab shall be proportioned to resist in torsion their share of exterior negative factored moments.

13.6.3.6 — The gravity load moment to be transferred between slab and edge column in accordance with 13.5.3.1 shall be $0.3M_o$.

13.6.4 — Factored moments in column strips

13.6.4.1 — Column strips shall be proportioned to resist the following portions in percent of interior negative factored moments:

<table>
<thead>
<tr>
<th>t_2/l_1</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha_{II}t_2/l_1) = 0$</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>$(\alpha_{II}t_2/l_1) \geq 1.0$</td>
<td>90</td>
<td>75</td>
<td>45</td>
</tr>
</tbody>
</table>

Linear interpolations shall be made between values shown.

13.6.4.2 — Column strips shall be proportioned to resist the following portions in percent of exterior negative factored moments:

<table>
<thead>
<tr>
<th>t_2/l_1</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\alpha_{III}t_2/l_1) = 0$</td>
<td>$\beta_t = 0$</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$\beta_t \geq 2.5$</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>$(\alpha_{III}t_2/l_1) \geq 1.0$</td>
<td>$\beta_t = 0$</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>$\beta_t \geq 2.5$</td>
<td>90</td>
<td>75</td>
<td>45</td>
</tr>
</tbody>
</table>

Linear interpolations shall be made between values shown, where β_t is calculated in Eq. (13-5) and C is calculated in Eq. (13-6).

$$\beta_t = \frac{E_{cb}C}{2E_{cs}I_s}$$ (13-5)

$$C = \sum (1 - 0.63\frac{x}{y}) \frac{x^3y}{3}$$ (13-6)

The constant C for T- or L-sections shall be permitted to be evaluated by dividing the section into separate rectangular parts, as defined in 13.2.4, and summing the values of C for each part.

COMMENTARY

R13.6.3.4 — The differences in slab moment on either side of a column or other type of support should be accounted for in the design of the support. If an analysis is made to distribute unbalanced moments, flexural stiffness may be obtained on the basis of the gross concrete section of the members involved.

R13.6.3.5 — Moments perpendicular to, and at the edge of, the slab structure should be transmitted to the supporting columns or walls. Torsional stresses caused by the moment assigned to the slab should be investigated.

R13.6.4, R13.6.5, and R13.6.6 — Factored moments in column strips, beams, and middle strips

The rules given for assigning moments to the column strips, beams, and middle strips are based on studies of moments in linearly elastic slabs with different beam stiffness tempered by the moment coefficients that have been used successfully.

For the purpose of establishing moments in the half column strip adjacent to an edge supported by a wall, l_n in Eq. (13-4) may be assumed equal to l_n of the parallel adjacent column to column span, and the wall may be considered as a beam having a moment of inertia I_b equal to infinity.

R13.6.4.2 — The effect of the torsional stiffness parameter β_t is to assign all of the exterior negative factored moment to the column strip, and none to the middle strip, unless the beam torsional stiffness is high relative to flexural stiffness of the supported slab. In the definition of β_t, shear modulus has been taken as $E_{cb}/2$.

Where walls are used as supports along column lines, they can be regarded as very stiff beams with an $\alpha_f t_2/l_1$ value greater than 1. Where the exterior support consists of a wall perpendicular to the direction in which moments are being determined, β_t may be taken as zero if the wall is of masonry without torsional resistance, and β_t may be taken as 2.5 for a concrete wall with great torsional resistance that is monolithic with the slab.
CODE

13.6.4.3 — Where supports consist of columns or walls extending for a distance equal to or greater than \((3/4)\ell_2\) used to compute \(M_0\), negative moments shall be considered to be uniformly distributed across \(\ell_2\).

13.6.4.4 — Column strips shall be proportioned to resist the following portions in percent of positive factored moments:

<table>
<thead>
<tr>
<th>(\ell_2/\ell_1)</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha f \ell_2/\ell_1) = 0)</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>((\alpha f \ell_2/\ell_1) \geq 1.0)</td>
<td>90</td>
<td>75</td>
<td>45</td>
</tr>
</tbody>
</table>

Linear interpolations shall be made between values shown.

13.6.4.5 — For slabs with beams between supports, the slab portion of column strips shall be proportioned to resist that portion of column strip moments not resisted by beams.

13.6.5 — Factored moments in beams

13.6.5.1 — Beams between supports shall be proportioned to resist 85 percent of column strip moments if \(\alpha f \ell_2/\ell_1\) is equal to or greater than 1.0.

13.6.5.2 — For values of \(\alpha f \ell_2/\ell_1\) between 1.0 and zero, proportion of column strip moments resisted by beams shall be obtained by linear interpolation between 85 and zero percent.

13.6.5.3 — In addition to moments calculated for uniform loads according to 13.6.2.2, 13.6.5.1, and 13.6.5.2, beams shall be proportioned to resist all moments caused by concentrated or linear loads applied directly to beams, including weight of projecting beam stem above or below the slab.

13.6.6 — Factored moments in middle strips

13.6.6.1 — That portion of negative and positive factored moments not resisted by column strips shall be proportionately assigned to corresponding half middle strips.

13.6.6.2 — Each middle strip shall be proportioned to resist the sum of the moments assigned to its two half middle strips.

13.6.6.3 — A middle strip adjacent to and parallel with a wall-supported edge shall be proportioned to resist twice the moment assigned to the half middle strip corresponding to the first row of interior supports.

COMMENTARY

13.6.6.1 — That portion of negative and positive factored moments not resisted by column strips shall be proportionately assigned to corresponding half middle strips.

13.6.6.2 — Each middle strip shall be proportioned to resist the sum of the moments assigned to its two half middle strips.

13.6.6.3 — A middle strip adjacent to and parallel with a wall-supported edge shall be proportioned to resist twice the moment assigned to the half middle strip corresponding to the first row of interior supports.

13.6.4.4 — Column strips shall be proportioned to resist the following portions in percent of positive factored moments:

<table>
<thead>
<tr>
<th>(\ell_2/\ell_1)</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\alpha f \ell_2/\ell_1) = 0)</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>((\alpha f \ell_2/\ell_1) \geq 1.0)</td>
<td>90</td>
<td>75</td>
<td>45</td>
</tr>
</tbody>
</table>

Linear interpolations shall be made between values shown.

13.6.4.5 — For slabs with beams between supports, the slab portion of column strips shall be proportioned to resist that portion of column strip moments not resisted by beams.

13.6.5 — Factored moments in beams

13.6.5.1 — Beams between supports shall be proportioned to resist 85 percent of column strip moments if \(\alpha f \ell_2/\ell_1\) is equal to or greater than 1.0.

13.6.5.2 — For values of \(\alpha f \ell_2/\ell_1\) between 1.0 and zero, proportion of column strip moments resisted by beams shall be obtained by linear interpolation between 85 and zero percent.

13.6.5.3 — In addition to moments calculated for uniform loads according to 13.6.2.2, 13.6.5.1, and 13.6.5.2, beams shall be proportioned to resist all moments caused by concentrated or linear loads applied directly to beams, including weight of projecting beam stem above or below the slab.

13.6.6 — Factored moments in middle strips

13.6.6.1 — That portion of negative and positive factored moments not resisted by column strips shall be proportionately assigned to corresponding half middle strips.

13.6.6.2 — Each middle strip shall be proportioned to resist the sum of the moments assigned to its two half middle strips.

13.6.6.3 — A middle strip adjacent to and parallel with a wall-supported edge shall be proportioned to resist twice the moment assigned to the half middle strip corresponding to the first row of interior supports.

R13.6.5 — Factored moments in beams

Load assigned directly to beams are in addition to the uniform dead load of the slab; uniform superimposed dead loads, such as the ceiling, floor finish, or assumed equivalent partition loads; and uniform live loads. All of these loads are normally included with \(q_u\) in Eq. (13-4). Linear loads applied directly to beams include partition walls over or along beam centerlines and additional dead load of the projecting beam stem. Concentrated loads include posts above or hangers below the beams. For the purpose of assigning directly applied loads, only loads located within the width of the beam stem should be considered as directly applied to the beams. (The effective width of a beam as defined in 13.2.4 is solely for strength and relative stiffness calculations.) Line loads and concentrated loads located on the slab away from the beam stem require consideration to determine their apportionment to slab and beams.
CODE

13.6.7 — Modification of factored moments

Modification of negative and positive factored moments by 10 percent shall be permitted provided the total static moment for a panel, \(M_o \), in the direction considered is not less than that required by Eq. (13-4).

13.6.8 — Factored shear in slab systems with beams

13.6.8.1 — Beams with \(\alpha f l_2/l_1 \) equal to or greater than 1.0 shall be proportioned to resist shear caused by factored loads on tributary areas which are bounded by 45-degree lines drawn from the corners of the panels and the centerlines of the adjacent panels parallel to the long sides.

13.6.8.2 — In proportioning beams with \(\alpha f l_2/l_1 \) less than 1.0 to resist shear, linear interpolation, assuming beams carry no load at \(\alpha f = 0 \), shall be permitted.

13.6.8.3 — In addition to shears calculated according to 13.6.8.1 and 13.6.8.2, beams shall be proportioned to resist shears caused by factored loads applied directly on beams.

13.6.8.4 — Computation of slab shear strength on the assumption that load is distributed to supporting beams in accordance with 13.6.8.1 or 13.6.8.2 shall be permitted. Resistance to total shear occurring on a panel shall be provided.

13.6.8.5 — Shear strength shall satisfy the requirements of Chapter 11.

COMMENTARY

R13.6.7 — Modification of factored moments

This section permits a reduction of 10 percent in negative or positive factored moments, calculated in accordance with 13.6.3, provided that the total static moment for a panel in the direction considered is not less than \(M_o \) required by Eq. (13-4). This is intended to recognize a limited amount of inelastic behavior and moment redistribution can occur in slabs that were analyzed with the direct design method.

R13.6.8 — Factored shear in slab systems with beams

The tributary area for computing shear on an interior beam is shown shaded in Fig. R13.6.8. If the stiffness for the beam \(\alpha f l_2/l_1 \) is less than 1.0, the shear on the beam may be obtained by linear interpolation. In such cases, the beams framing into the column will not account for all of the shear force applied on the column. The remaining shear force will produce shear stresses in the slab around the column that should be checked in the same manner as for flat slabs, as required by 13.6.8.4. Sections 13.6.8.1 through 13.6.8.3 do not apply to the calculation of torsional moments on the beams. These moments should be based on the calculated flexural moments acting on the sides of the beam.

Fig. R13.6.8—Tributary area for shear on an interior beam.
CODE

13.6.9 — Factored moments in columns and walls

13.6.9.1 — Columns and walls built integrally with a slab system shall resist moments caused by factored loads on the slab system.

13.6.9.2 — At an interior support, supporting elements above and below the slab shall resist the factored moment specified by Eq. (13-7) in direct proportion to their stiffnesses unless a general analysis is made.

\[M_u = 0.07\left[(q_{Du} + 0.5q_{Lu})\ell_2\ell_n^2 - q_{Du}'\ell_2'(\ell_n')^2\right] \quad (13-7) \]

where \(q_{Du}' \), \(\ell_2' \), and \(\ell_n' \) refer to shorter span.

13.7 — Equivalent frame method

13.7.1 — Design of slab systems by the equivalent frame method shall be based on assumptions given in 13.7.2 through 13.7.6, and all sections of slabs and supporting members shall be proportioned for moments and shears thus obtained.

13.7.1.1 — Where metal column capitals are used, it shall be permitted to take account of their contributions to stiffness and resistance to moment and to shear.

13.7.1.2 — It shall be permitted to neglect the change in length of columns and slabs due to direct stress, and deflections due to shear.

13.7.2 — Equivalent frame

13.7.2.1 — The structure shall be considered to be made up of equivalent frame strips on column lines taken longitudinally and transversely through the building.

COMMENTARY

R13.6.9 — Factored moments in columns and walls

Equation (13-7) refers to two adjoining spans, with one span longer than the other, and with full dead load plus one-half live load applied on the longer span and only dead load applied on the shorter span.

Design and detailing of the reinforcement transferring the moment from the slab to the edge column is critical to both the performance and the safety of flat slabs or flat plates without edge beams or cantilever slabs. It is important that complete design details be shown on design drawings, such as concentration of reinforcement over the column by closer spacing or additional reinforcement.

R13.7 — Equivalent frame method

The equivalent frame method involves the representation of the three-dimensional slab system by a series of two-dimensional frames that are then analyzed for loads acting in the plane of the frames. The negative and positive moments so determined at the critical design sections of the frame are distributed to the slab sections in accordance with 13.6.4 (column strips), 13.6.5 (beams), and 13.6.6 (middle strips). The equivalent frame method is based on studies reported in References 13.18, 13.19, and 13.20. Many of the details of the equivalent frame method given in the Commentary in the 1989 Code were removed in the 1995 Code.

R13.7.2 — Equivalent frame

Application of the equivalent frame to a regular structure is illustrated in Fig. R13.7.2. The three-dimensional building is divided into a series of two-dimensional frame bents (equivalent frames) centered on column or support centerlines.

Fig. R13.7.2—Definitions of equivalent frame.
13.7.2.2 — Each frame shall consist of a row of columns or supports and slab-beam strips, bounded laterally by the centerline of panel on each side of the centerline of columns or supports.

13.7.2.3 — Columns or supports shall be assumed to be attached to slab-beam strips by torsional members (see 13.7.5) transverse to the direction of the span for which moments are being determined and extending to bounding lateral panel centerlines on each side of a column.

13.7.2.4 — Frames adjacent and parallel to an edge shall be bounded by that edge and the centerline of adjacent panel.

13.7.2.5 — Analysis of each equivalent frame in its entirety shall be permitted. Alternatively, for gravity loading, a separate analysis of each floor or roof with far ends of columns considered fixed shall be permitted.

13.7.2.6 — Where slab-beams are analyzed separately, determination of moment at a given support assuming that the slab-beam is fixed at any support two panels distant therefrom, shall be permitted, provided the slab continues beyond that point.

13.7.3 — Slab-beams

13.7.3.1 — Determination of the moment of inertia of slab-beams at any cross section outside of joints or column capitals using the gross area of concrete shall be permitted.

13.7.3.2 — Variation in moment of inertia along axis of slab-beams shall be taken into account.

13.7.3.3 — Moment of inertia of slab-beams from center of column to face of column, bracket, or capital shall be assumed equal to the moment of inertia of the slab-beam at face of column, bracket, or capital divided by the quantity \((1 - \frac{c_2}{l_2})^2\), where \(c_2\) and \(l_2\) are measured transverse to the direction of the span for which moments are being determined.

13.7.4 — Columns

13.7.4.1 — Determination of the moment of inertia of columns at any cross section outside of joints or column capitals using the gross area of concrete shall be permitted.

13.7.4.2 — Variation in moment of inertia along axis of columns shall be taken into account.

The equivalent frame comprises three parts: (1) the horizontal slab strip, including any beams spanning in the direction of the frame, (2) the columns or other vertical supporting members, extending above and below the slab, and (3) the elements of the structure that provide moment transfer between the horizontal and vertical members.

R13.7.3 — Slab-beams

A support is defined as a column, capital, bracket, or wall. A beam is not considered to be a support member for the equivalent frame.

R13.7.3.3 — A support is defined as a column, capital, bracket, or wall. A beam is not considered to be a support member for the equivalent frame.

R13.7.4 — Columns

Column stiffness is based on the length of the column from mid-depth of slab above to mid-depth of slab below. Column moment of inertia is computed on the basis of its cross section, taking into account the increase in stiffness provided by the capital, if any.

When slab-beams are analyzed separately for gravity loads, the concept of an equivalent column, combining the stiffness
13.7.4.3 — Moment of inertia of columns from top to bottom of the slab-beam at a joint shall be assumed to be infinite.

13.7.5 — Torsional members

13.7.5.1 — Torsional members (see 13.7.2.3) shall be assumed to have a constant cross section throughout their length consisting of the largest of (a), (b), and (c):

(a) A portion of slab having a width equal to that of the column, bracket, or capital in the direction of the span for which moments are being determined;

(b) For monolithic or fully composite construction, the portion of slab specified in (a) plus that part of the transverse beam above and below the slab;

(c) The transverse beam as defined in 13.2.4.

13.7.5.2 — Where beams frame into columns in the direction of the span for which moments are being determined, the torsional stiffness shall be multiplied by the ratio of the moment of inertia of the slab with such a beam to the moment of inertia of the slab without such a beam.

R13.7.5 — Torsional members

Computation of the stiffness of the torsional member requires several simplifying assumptions. If no transverse beam frames into the column, a portion of the slab equal to the width of the column or capital is assumed to be the torsional member. If a beam frames into the column, T-beam or L-beam action is assumed, with the flanges extending on each side of the beam a distance equal to the projection of the beam above or below the slab but not greater than four times the thickness of the slab. Furthermore, it is assumed that no torsional rotation occurs in the beam over the width of the support.

The member sections to be used for calculating the torsional stiffness are defined in 13.7.5.1. Up to the 1989 Code, Eq. (13-6) specified the stiffness coefficient K_t of the torsional members. In 1995, the approximate expression for K_t was moved to the Commentary.
Studies of three-dimensional analyses of various slab configurations suggest that a reasonable value of the torsional stiffness can be obtained by assuming a moment distribution along the torsional member that varies linearly from a maximum at the center of the column to zero at the middle of the panel. The assumed distribution of unit twisting moment along the column centerline is shown in Fig. R13.7.5.

An approximate expression for the stiffness of the torsional member, based on the results of three-dimensional analyses of various slab configurations (References 13.18, 13.19, and 13.20) is given below as

$$K_t = \sum \frac{9E_{cs}C}{l_2^2\left(1 - \frac{c_2}{l_2}\right)^3}$$

$\text{R13.7.6} \quad \text{Arrangement of live load}$

The use of only three-quarters of the full factored live load for maximum moment loading patterns is based on the fact that maximum negative and maximum positive live load moments cannot occur simultaneously and that redistribution of maximum moments is thus possible before failure occurs. This procedure, in effect, permits some local overstress under the full factored live load if it is distributed in the prescribed manner, but still ensures that the design strength of the slab system after redistribution of moment is not less than that required to carry the full factored dead and live loads on all panels.
CODE

13.7.7 — Factored moments

13.7.7.1 — At interior supports, the critical section for negative factored moment (in both column and middle strips) shall be taken at face of rectilinear supports, but not farther away than $0.175\ell_1$ from the center of a column.

13.7.7.2 — At exterior supports with brackets or capitals, the critical section for negative factored moment in the span perpendicular to an edge shall be taken at a distance from face of supporting element not greater than one-half the projection of bracket or capital beyond face of supporting element.

13.7.7.3 — Circular or regular polygon-shaped supports shall be treated as square supports with the same area for location of critical section for negative design moment.

13.7.7.4 — Where slab systems within limitations of 13.6.1 are analyzed by the equivalent frame method, it shall be permitted to reduce the resulting computed moments in such proportion that the absolute sum of the positive and average negative moments used in design need not exceed the value obtained from Eq. (13-4).

13.7.7.5 — Distribution of moments at critical sections across the slab-beam strip of each frame to column strips, beams, and middle strips as provided in 13.6.4, 13.6.5, and 13.6.6 shall be permitted if the requirement of 13.6.1.6 is satisfied.

COMMENTARY

R13.7.7 — Factored moments

R13.7.7.1-R13.7.7.3 — These Code sections adjust the negative factored moments to the face of the supports. The adjustment is modified at an exterior support to limit reductions in the exterior negative moment. Figure R13.6.2.5 illustrates several equivalent rectangular supports for use in establishing faces of supports for design with nonrectangular supports.

R13.7.7.4 — Previous Codes have contained this section. It is based on the principle that if two different methods are prescribed to obtain a particular answer, the Code should not require a value greater than the least acceptable value. Due to the long satisfactory experience with designs having total factored static moments not exceeding those given by Eq. (13-4), it is considered that these values are satisfactory for design when applicable limitations are met.
CHAPTER 14 — WALLS

CODE

14.1 — Scope

14.1.1 — Provisions of Chapter 14 shall apply for design of walls subjected to axial load, with or without flexure.

14.1.2 — Cantilever retaining walls are designed according to flexural design provisions of Chapter 10 with minimum horizontal reinforcement according to 14.3.3.

14.2 — General

14.2.1 — Walls shall be designed for eccentric loads and any lateral or other loads to which they are subjected.

14.2.2 — Walls subject to axial loads shall be designed in accordance with 14.2, 14.3, and either 14.4, 14.5, or 14.8.

14.2.3 — Design for shear shall be in accordance with 11.9.

14.2.4 — Unless otherwise demonstrated by an analysis, the horizontal length of wall considered as effective for each concentrated load shall not exceed the smaller of the center-to-center distance between loads, and the bearing width plus four times the wall thickness.

14.2.5 — Compression members built integrally with walls shall conform to 10.8.2.

14.2.6 — Walls shall be anchored to intersecting elements, such as floors and roofs; or to columns pilasters, buttresses, of intersecting walls; and to footings.

14.2.7 — Quantity of reinforcement and limits of thickness required by 14.3 and 14.5 shall be permitted to be waived where structural analysis shows adequate strength and stability.

14.2.8 — Transfer of force to footing at base of wall shall be in accordance with 15.8.

COMMENTARY

R14.1 — Scope

Chapter 14 applies generally to walls as vertical load-carrying members. Cantilever retaining walls are designed according to the flexural design provisions of Chapter 10. Walls designed to resist shear forces, such as shear walls, should be designed in accordance with Chapter 14 and 11.9 as applicable.

In the 1977 Code, walls could be designed according to Chapter 14 or 10.15. In the 1983 Code, these two were combined in Chapter 14.

R14.2 — General

Walls should be designed to resist all loads to which they are subjected, including eccentric axial loads and lateral forces. Design is to be carried out in accordance with 14.4 unless the wall meets the requirements of 14.5.1.
14.3 — Minimum reinforcement

14.3.1 — Minimum vertical and horizontal reinforcement shall be in accordance with 14.3.2 and 14.3.3 unless a greater amount is required for shear by 11.9.8 and 11.9.9.

14.3.2 — Minimum ratio of vertical reinforcement area to gross concrete area, ρ_l, shall be:

(a) 0.0012 for deformed bars not larger than No. 5 with f_y not less than 60,000 psi; or

(b) 0.0015 for other deformed bars; or

(c) 0.0012 for welded wire reinforcement not larger than W31 or D31.

14.3.3 — Minimum ratio of horizontal reinforcement area to gross concrete area, ρ_t, shall be:

(a) 0.0020 for deformed bars not larger than No. 5 with f_y not less than 60,000 psi; or

(b) 0.0025 for other deformed bars; or

(c) 0.0020 for welded wire reinforcement not larger than W31 or D31.

14.3.4 — Walls more than 10 in. thick, except basement walls, shall have reinforcement for each direction placed in two layers parallel with faces of wall in accordance with the following:

(a) One layer consisting of not less than one-half and not more than two-thirds of total reinforcement required for each direction shall be placed not less than 2 in. nor more than one-third the thickness of wall from the exterior surface;

(b) The other layer, consisting of the balance of required reinforcement in that direction, shall be placed not less than 3/4 in. nor more than one-third the thickness of wall from the interior surface.

14.3.5 — Vertical and horizontal reinforcement shall not be spaced farther apart than three times the wall thickness, nor farther apart than 18 in.

14.3.6 — Vertical reinforcement need not be enclosed by lateral ties if vertical reinforcement area is not greater than 0.01 times gross concrete area, or where vertical reinforcement is not required as compression reinforcement.

14.3.7 — In addition to the minimum reinforcement required by 14.3.1, not less than two No. 5 bars in walls having two layers of reinforcement in both directions.
and one No. 5 bar in walls having a single layer of reinforcement in both directions shall be provided around window, door, and similar sized openings. Such bars shall be anchored to develop f_y in tension at the corners of the openings.

14.4 — Walls designed as compression members

Except as provided in 14.5, walls subject to axial load or combined flexure and axial load shall be designed as compression members in accordance with provisions of 10.2, 10.3, 10.10, 10.11, 10.14, 14.2, and 14.3.

14.5 — Empirical design method

14.5.1 — Walls of solid rectangular cross section shall be permitted to be designed by the empirical provisions of 14.5 if the resultant of all factored loads is located within the middle third of the overall thickness of the wall and all limits of 14.2, 14.3, and 14.5 are satisfied.

14.5.2 — Design axial strength ϕP_n of a wall satisfying limitations of 14.5.1 shall be computed by Eq. (14-1) unless designed in accordance with 14.4.

$$\phi P_n = 0.55\phi f'_c A_g \left(1 - \left(\frac{k e_c}{32 h}\right)^2\right)$$ \hspace{1cm} (14-1)

where ϕ shall correspond to compression-controlled sections in accordance with 9.3.2.2 and effective length factor k shall be:

For walls braced top and bottom against lateral translation and

(a) Restricted against rotation at one or both ends (top, bottom, or both) ... 0.8

(b) Unrestricted against rotation at both ends 1.0

For walls not braced against lateral translation........2.0

R14.5 — Empirical design method

The empirical design method applies only to solid rectangular cross sections. All other shapes should be designed according to 14.4.

Eccentric loads and lateral forces are used to determine the total eccentricity of the factored axial force P_u. When the resultant load for all applicable load combinations falls within the middle third of the wall thickness (eccentricity not greater than $h/6$) at all sections along the length of the undeformed wall, the empirical design method may be used. The design is then carried out considering P_u as the concentric load. The factored axial force P_u should be less than or equal to the design axial strength ϕP_n computed by Eq. (14-1), $P_u \leq \phi P_n$.

With the 1980 Code supplement, Eq. (14-1) was revised to reflect the general range of end conditions encountered in wall designs. The wall strength equation in the 1977 Code was based on the assumption of a wall with top and bottom fixed against lateral movement, and with moment restraint at one end corresponding to an effective length factor between 0.8 and 0.9. Axial strength values determined from the original equation were unconservative when compared to test results for walls with pinned conditions at both ends, as occurs with some precast and tilt-up applications, or when the top of the wall is not effectively braced against translation, as occurs with free-standing walls or in large structures where significant roof diaphragm deflections occur due to wind and seismic loads. Equation (14-1) gives the same results as the 1977 Code for walls braced against translation and with reasonable base restraint against rotation. Values of effective length factors k are given for commonly occurring wall end conditions. The end condition “restricted against rotation” required for a k of 0.8 implies attachment to a member having flexural stiffness EI/E at least as large as that of the wall.

The slenderness portion of Eq. (14-1) results in relatively comparable strengths by 14.4 for members loaded at the
14.5.3 — Minimum thickness of walls designed by empirical design method

14.5.3.1 — Thickness of bearing walls shall not be less than 1/25 the supported height or length, whichever is shorter, nor less than 4 in.

14.5.3.2 — Thickness of exterior basement walls and foundation walls shall not be less than 7-1/2 in.

14.6 — Nonbearing walls

14.6.1 — Thickness of nonbearing walls shall not be less than 4 in., nor less than 1/30 the least distance between members that provide lateral support.

14.7 — Walls as grade beams

14.7.1 — Walls designed as grade beams shall have top and bottom reinforcement as required for moment in accordance with provisions of 10.2 through 10.7. Design for shear shall be in accordance with provisions of Chapter 11.

14.7.2 — Portions of grade beam walls exposed above grade shall also meet requirements of 14.3.
CODE

14.8 — Alternative design of slender walls

14.8.1 — When flexural tension controls the out-of-plane design of a wall, the requirements of 14.8 are considered to satisfy 10.10.

14.8.2 — Walls designed by the provisions of 14.8 shall satisfy 14.8.2.1 through 14.8.2.6.

14.8.2.1 — The wall panel shall be designed as a simply supported, axially loaded member subjected to an out-of-plane uniform lateral load, with maximum moments and deflections occurring at midspan.

14.8.2.2 — The cross section shall be constant over the height of the panel.

14.8.2.3 — The wall shall be tension-controlled.

14.8.2.4 — Reinforcement shall provide a design strength

$$\phi M_n \geq M_{cr}$$ \hspace{1cm} (14-2)

where M_{cr} shall be obtained using the modulus of rupture, f_r, given by Eq. (9-10).

14.8.2.5 — Concentrated gravity loads applied to the wall above the design flexural section shall be assumed to be distributed over a width:

(a) Equal to the bearing width, plus a width on each side that increases at a slope of 2 vertical to 1 horizontal down to the design section; but

(b) Not greater than the spacing of the concentrated loads; and

(c) Not extending beyond the edges of the wall panel.

14.8.2.6 — Vertical stress P_u/A_g at the midheight section shall not exceed $0.06 f'_c$.

COMMENTARY

R14.8 — Alternative design of slender walls

Section 14.8 was introduced in the 1999 edition and the provisions are based on requirements in the 1997 Uniform Building Code (UBC) and experimental research. Changes were included in the 2008 edition to reduce differences in the serviceability provisions and ensure that the intent of the UBC provisions is included in future editions of the International Building Code.

The procedure is presented as an alternative to the requirements of 10.10 for the out-of-plane design of slender wall panels, where the panels are restrained against overturning at the top.

Panels that have windows or other large openings are not considered to have constant cross section over the height of the panel. Such walls are to be designed taking into account the effects of openings.

Many aspects of the design of tilt-up walls and buildings are discussed in References 14.5 and 14.6.

R14.8.2.3 — This section was updated in the 2005 Code to reflect the change in design approach that was introduced in 10.3 of the 2002 Code. The previous requirement that the reinforcement ratio should not exceed $0.6 \rho_{bal}$ was replaced by the requirement that the wall be tension-controlled, leading to approximately the same reinforcement ratio.
CODE

R14.8.3 — Before the 2008 edition, the effective area of longitudinal reinforcement in a slender wall for obtaining an approximate cracked moment of inertia was calculated using an effective area of tension reinforcement defined as

\[A_{se, w} = A_s + \frac{P_u}{f_y} \left(\frac{h}{d} \right) \]

However, this term overestimated the contribution of axial load in many cases where two layers of reinforcement were used in the slender wall. Therefore, the effective area of longitudinal reinforcement was modified in 2008

\[A_{se, w} = A_s + \frac{P_u (h/2)}{f_y} \]

The neutral axis depth, \(c \), in Eq. (14-7) corresponds to this effective area of longitudinal reinforcement.

COMMENTARY

R14.8.3 — Before the 2008 edition, the effective area of longitudinal reinforcement in a slender wall for obtaining an approximate cracked moment of inertia was calculated using an effective area of tension reinforcement defined as

\[A_{se, w} = A_s + \frac{P_u}{f_y} \left(\frac{h}{d} \right) \]

However, this term overestimated the contribution of axial load in many cases where two layers of reinforcement were used in the slender wall. Therefore, the effective area of longitudinal reinforcement was modified in 2008

\[A_{se, w} = A_s + \frac{P_u (h/2)}{f_y} \]

The neutral axis depth, \(c \), in Eq. (14-7) corresponds to this effective area of longitudinal reinforcement.
where

\[\Delta_{cr} = \frac{5M_{cr}l_c^2}{48E_cI_g} \]

(14-10)

\[\Delta_n = \frac{5M_{n}l_c^2}{48E_cI_{cr}} \]

(14-11)

\(I_{cr} \) shall be calculated by Eq. (14-7), and \(M_n \) shall be obtained by iteration of deflections.

quake effects, \(E \), and \(E \) is based on strength-level seismic forces, the following load combination is considered to be appropriate for evaluating the service-level lateral deflections

\[D + 0.5L + 0.7E \]
Notes
CHAPTER 15 — FOOTINGS

CODE

15.1 — Scope

15.1.1 — Provisions of Chapter 15 shall apply for design of isolated footings and, where applicable, to combined footings and mats.

15.1.2 — Additional requirements for design of combined footings and mats are given in 15.10.

15.2 — Loads and reactions

15.2.1 — Footings shall be proportioned to resist the factored loads and induced reactions, in accordance with the appropriate design requirements of this Code and as provided in Chapter 15.

15.2.2 — Base area of footing or number and arrangement of piles shall be determined from unfactored forces and moments transmitted by footing to soil or piles and permissible soil pressure or permissible pile capacity determined through principles of soil mechanics.

15.2.3 — For footings on piles, computations for moments and shears shall be permitted to be based on the assumption that the reaction from any pile is concentrated at pile center.

COMMENTARY

R15.1 — Scope

While the provisions of Chapter 15 apply to isolated footings supporting a single column or wall, most of the provisions are generally applicable to combined footings and mats supporting several columns or walls or a combination thereof. 15.1.15.2

R15.2 — Loads and reactions

Footings are required to be proportioned to sustain the applied factored loads and induced reactions, which include axial loads, moments, and shears that have to be resisted at the base of the footing or pile cap.

After the permissible soil pressure or the permissible pile capacity has been determined by principles of soil mechanics and in accord with the general building code, the size of the base area of a footing on soil or the number and arrangement of the piles should be established on the basis of unfactored (service) loads such as D, L, W, and E in whatever combination that governs the design.

Only the computed end moments that exist at the base of a column (or pedestal) need to be transferred to the footing; the minimum moment requirement for slenderness considerations given in 10.6.5 need not be considered for transfer of forces and moments to footings.

In cases in which eccentric loads or moments are to be considered, the extreme soil pressure or pile reaction obtained from this loading should be within the permissible values. Similarly, the resultant reactions due to service loads combined with moments, shears, or both, caused by wind or earthquake loads should not exceed the increased values that may be permitted by the general building code.

To proportion a footing or pile cap for strength, the contact soil pressure or pile reaction due to the applied factored loading (see 8.1.1) should be determined. For a single concentrically loaded spread footing, the soil reaction \(q_s \) due to the factored loading is \(q_s = \frac{U}{A_f} \), where \(U \) is the factored concentric load to be resisted by the footing, and \(A_f \) is the base area of the footing as determined by the principles stated in 15.2.2 using the unfactored loads and the permissible soil pressure.

\(q_s \) is a calculated reaction to the factored loading used to produce the same required strength conditions regarding flexure, shear, and development of reinforcement in the footing or pile cap, as in any other member.
15.3 — Footings supporting circular or regular polygon-shaped columns or pedestals

For location of critical sections for moment, shear, and development of reinforcement in footings, it shall be permitted to treat circular or regular polygon-shaped concrete columns or pedestals as square members with the same area.

15.4 — Moment in footings

15.4.1 — External moment on any section of a footing shall be determined by passing a vertical plane through the footing, and computing the moment of the forces acting over entire area of footing on one side of that vertical plane.

15.4.2 — Maximum factored moment, M_u, for an isolated footing shall be computed as prescribed in 15.4.1 at critical sections located as follows:

(a) At face of column, pedestal, or wall, for footings supporting a concrete column, pedestal, or wall;

(b) Halfway between middle and edge of wall, for footings supporting a masonry wall;

(c) Halfway between face of column and edge of steel base plate, for footings supporting a column with steel base plate.

15.4.3 — In one-way footings and two-way square footings, reinforcement shall be distributed uniformly across entire width of footing.

15.4.4 — In two-way rectangular footings, reinforcement shall be distributed in accordance with 15.4.4.1 and 15.4.4.2.

15.4.4.1 — Reinforcement in long direction shall be distributed uniformly across entire width of footing.

15.4.4.2 — For reinforcement in short direction, a portion of the total reinforcement, $\gamma_s A_s$, shall be distributed uniformly over a band width (centered on centerline of column or pedestal) equal to the length of short side of footing. Remainder of reinforcement required in short direction, $(1 - \gamma_s)A_s$, shall be distributed uniformly outside center band width of footing.

R15.4 — Moment in footings

In previous Codes, the reinforcement in the short direction of rectangular footings should be distributed so that an area of steel given by Eq. (15-1) is provided in a band width equal to the length of the short side of the footing. The band width is centered about the column centerline.

The remaining reinforcement required in the short direction is to be distributed equally over the two segments outside the band width, one-half to each segment.
where β is ratio of long to short sides of footing.

15.5 — Shear in footings

15.5.1 — Shear strength of footings supported on soil or rock shall be in accordance with 11.11.

15.5.2 — Location of critical section for shear in accordance with Chapter 11 shall be measured from face of column, pedestal, or wall, for footings supporting a column, pedestal, or wall. For footings supporting a column or pedestal with steel base plates, the critical section shall be measured from location defined in 15.4.2(c).

15.5.3 — Where the distance between the axis of any pile to the axis of the column is more than two times the distance between the top of the pile cap and the top of the pile, the pile cap shall satisfy 11.11 and 15.5.4. Other pile caps shall satisfy either Appendix A, or both 11.11 and 15.5.4. If Appendix A is used, the effective concrete compressive strength is from A.3.2.2(b) because it is generally not feasible to provide confining reinforcement satisfying A.3.3.1 and A.3.3.2 in a pile cap.

15.5.4 — Computation of shear on any section through a footing supported on piles shall be in accordance with 15.5.4.1, 15.5.4.2, and 15.5.4.3.

15.5.4.1 — Entire reaction from any pile with its center located $d_{	ext{pile}}/2$ or more outside the section shall be considered as producing shear on that section.

15.5.4.2 — Reaction from any pile with its center located $d_{	ext{pile}}/2$ or more inside the section shall be considered as producing no shear on that section.

15.5.4.3 — For intermediate positions of pile center, the portion of the pile reaction to be considered as producing shear on the section shall be based on straight-line interpolation between full value at $d_{	ext{pile}}/2$ outside the section and zero value at $d_{	ext{pile}}/2$ inside the section.

Computation of shear requires that the soil reaction q_s be obtained from the factored loads and the design be in accordance with the appropriate equations of Chapter 11.

Where necessary, shear around individual piles may be investigated in accordance with 11.11.1.2. If shear perimeters overlap, the modified critical perimeter b_o should be taken as that portion of the smallest envelope of individual shear perimeter that will actually resist the critical shear for the group under consideration. One such situation is illustrated in Fig. R15.5.

15.5.5 — Pile caps supported on piles in more than one plane can be designed using three-dimensional strut-and-tie models satisfying Appendix A. The effective concrete compressive strength is from A.3.2.2(b) because it is generally not feasible to provide confining reinforcement satisfying A.3.3.1 and A.3.3.2 in a pile cap.

15.5.6 — When piles are located inside the critical sections d or $d/2$ from face of column, for one-way or two-way shear, respectively, an upper limit on the shear strength at a section adjacent to the face of the column should be considered. The CRSI Handbook offers guidance for this situation.

$$
\gamma_s = \frac{2}{(\beta + 1)}
$$

(15-1)

Fig. R15.5—Modified critical perimeter for shear with overlapping critical perimeters.
CODE

15.6 — Development of reinforcement in footings

15.6.1 — Development of reinforcement in footings shall be in accordance with Chapter 12.

15.6.2 — Calculated tension or compression in reinforcement at each section shall be developed on each side of that section by embedment length, hook (tension only) or mechanical device, or a combination thereof.

15.6.3 — Critical sections for development of reinforcement shall be assumed at the same locations as defined in 15.4.2 for maximum factored moment, and at all other vertical planes where changes of section or reinforcement occur. See also 12.10.6.

15.7 — Minimum footing depth

Depth of footing above bottom reinforcement shall not be less than 6 in. for footings on soil, nor less than 12 in. for footings on piles.

15.8 — Transfer of force at base of column, wall, or reinforced pedestal

15.8.1 — Forces and moments at base of column, wall, or pedestal shall be transferred to supporting pedestal or footing by bearing on concrete and by reinforcement, dowels, and mechanical connectors.

15.8.1.1 — Bearing stress on concrete at contact surface between supported and supporting member shall not exceed concrete bearing strength for either surface as given by 10.14.

COMMENTARY

R15.8 — Transfer of force at base of column, wall, or reinforced pedestal

Section 15.8 provides the specific requirements for force transfer from a column, wall, or pedestal (supported member) to a pedestal or footing (supporting member). Force transfer should be by bearing on concrete (compressive force only) and by reinforcement (tensile or compressive force). Reinforcement may consist of extended longitudinal bars, dowels, anchor bolts, or suitable mechanical connectors.

The requirements of 15.8.1 apply to both cast-in-place construction and precast construction. Additional requirements for cast-in-place construction are given in 15.8.2. Section 15.8.3 gives additional requirements for precast construction.

R15.8.1.1 — Compressive force may be transmitted to a supporting pedestal or footing by bearing on concrete. For strength design, allowable bearing stress on the loaded area is equal to $0.85 \phi_c'$, if the loaded area is equal to the area on which it is supported.

In the common case of a column bearing on a footing larger than the column, bearing strength should be checked at the base of the column and the top of the footing. Strength in the lower part of the column should be checked since the column reinforcement cannot be considered effective near the column base because the force in the reinforcement is not developed for some distance above the base, unless dowels are provided, or the column reinforcement is...
15.8.1.2 — Reinforcement, dowels, or mechanical connectors between supported and supporting members shall be adequate to transfer:

(a) All compressive force that exceeds concrete bearing strength of either member;

(b) Any computed tensile force across interface.

In addition, reinforcement, dowels, or mechanical connectors shall satisfy 15.8.2 or 15.8.3.

15.8.1.3 — If calculated moments are transferred to supporting pedestal or footing, then reinforcement, dowels, or mechanical connectors shall be adequate to satisfy 12.17.

15.8.1.4 — Lateral forces shall be transferred to supporting pedestal or footing in accordance with shear-friction provisions of 11.6, or by other appropriate means.

15.8.2 — In cast-in-place construction, reinforcement required to satisfy 15.8.1 shall be provided either by extending longitudinal bars into supporting pedestal or footing, or by dowels.

15.8.2.1 — For cast-in-place columns and pedestals, area of reinforcement across interface shall be not less than \(0.005A_g\), where \(A_g\) is the gross area of the supported member.

15.8.2.2 — For cast-in-place walls, area of reinforcement across interface shall be not less than minimum vertical reinforcement given in 14.3.2.

15.8.2.3 — At footings, it shall be permitted to lap splice No. 14 and No. 18 longitudinal bars, in compression only, with dowels to provide reinforcement required to satisfy 15.8.1. Dowels shall not be larger than No. 11 bar and shall extend into supported extended into the footing. The unit bearing stress on the column will normally be \(0.85\phi f'_c\). The permissible bearing strength on the footing may be increased in accordance with 10.14 and will usually be two times \(0.85\phi f'_c\). The compressive force that exceeds that developed by the permissible bearing strength at the base of the column or at the top of the footing should be carried by dowels or extended longitudinal bars.

R15.8.1.2 — All tensile forces, whether created by uplift, moment, or other means, should be transferred to supporting pedestal or footing entirely by reinforcement or suitable mechanical connectors. Generally, mechanical connectors would be used only in precast construction.

R15.8.1.3 — If computed moments are transferred from the column to the footing, the concrete in the compression zone of the column will be stressed to \(0.85\phi f'_c\) under factored load conditions and, as a result, all the reinforcement will generally have to be doweled into the footing.

R15.8.1.4 — The shear-friction method given in 11.6 may be used to check for transfer of lateral forces to supporting pedestal or footing. Shear keys may be used, provided that the reinforcement crossing the joint satisfies 15.8.2.1, 15.8.3.1, and the shear-friction requirements of 11.6. In precast construction, resistance to lateral forces may be provided by shear-friction, shear keys, or mechanical devices.

R15.8.2.1 and R15.8.2.2 — A minimum amount of reinforcement is required between all supported and supporting members to ensure ductile behavior. The Code does not require that all bars in a column be extended through and be anchored into a footing. However, reinforcement with an area of 0.005 times the column area or an equal area of properly spliced dowels is required to extend into the footing with proper anchorage. This reinforcement is required to provide a degree of structural integrity during the construction stage and during the life of the structure.

R15.8.2.3 — Lap splices of No. 14 and No. 18 longitudinal bars in compression only to dowels from a footing are specifically permitted in 15.8.2.3. The dowel bars should be No. 11 or smaller in size. The dowel lap splice length should meet the larger of the two criteria: (a) be able to transfer the
CODE

member a distance not less than the larger of l_{dc}, of No. 14 or No. 18 bars and compression lap splice length of the dowels, whichever is greater, and into the footing a distance not less than l_{dc} of the dowels.

COMMENTARY

stress in the No. 14 and No. 18 bars, and (b) fully develop the stress in the dowels as a splice.

This provision is an exception to 12.14.2.1, which prohibits lap splicing of No. 14 and No. 18 bars. This exception results from many years of successful experience with the lap splicing of these large column bars with footing dowels of the smaller size. The reason for the restriction on dowel bar size is recognition of the anchorage length problem of the large bars, and to allow use of the smaller size dowels. A similar exception is allowed for compression splices between different size bars in 12.16.2.

15.8.2.4 — If a pinned or rocker connection is provided in cast-in-place construction, connection shall conform to 15.8.1 and 15.8.3.

15.8.3 — In precast construction, anchor bolts or suitable mechanical connectors shall be permitted for satisfying 15.8.1. Anchor bolts shall be designed in accordance with Appendix D.

15.8.3.1 — Connection between precast columns or pedestals and supporting members shall meet the requirements of 16.5.1.3(a).

15.8.3.2 — Connection between precast walls and supporting members shall meet the requirements of 16.5.1.3(b) and (c).

15.8.3.3 — Anchor bolts and mechanical connections shall be designed to reach their design strength before anchorage failure or failure of surrounding concrete. Anchor bolts shall be designed in accordance with Appendix D.

15.9 — Sloped or stepped footings

15.9.1 — In sloped or stepped footings, angle of slope or depth and location of steps shall be such that design requirements are satisfied at every section. (See also 12.10.6.)

15.9.2 — Sloped or stepped footings designed as a unit shall be constructed to ensure action as a unit.

R15.8.3.1 and R15.8.3.2 — For cast-in-place columns, 15.8.2.1 requires a minimum area of reinforcement equal to $0.005A_c$ across the column-footing interface to provide some degree of structural integrity. For precast columns, this requirement is expressed in terms of an equivalent tensile force that should be transferred. Thus, across the joint, $A_s f_y = 200A_p$ [see 16.5.1.3(a)]. The minimum tensile strength required for precast wall-to-footing connection [see 16.5.1.3(b)] is somewhat less than that required for columns, since an overload would be distributed laterally and a sudden failure would be less likely. Since the tensile strength values of 16.5.1.3 have been arbitrarily chosen, it is not necessary to include a strength reduction factor ϕ for these calculations.
CODE

15.10 — Combined footings and mats

15.10.1 — Footings supporting more than one column, pedestal, or wall (combined footings or mats) shall be proportioned to resist the factored loads and induced reactions, in accordance with appropriate design requirements of the code.

15.10.2 — The direct design method of Chapter 13 shall not be used for design of combined footings and mats.

15.10.3 — Distribution of soil pressure under combined footings and mats shall be consistent with properties of the soil and the structure and with established principles of soil mechanics.

15.10.4 — Minimum reinforcing steel in non prestressed mat foundations shall meet the requirements of 7.12.2 in each principal direction. Maximum spacing shall not exceed 18 in.

COMMENTARY

R15.10 — Combined footings and mats

R15.10.1 — Any reasonable assumption with respect to the distribution of soil pressure or pile reactions can be used as long as it is consistent with the type of structure and the properties of the soil, and conforms with established principles of soil mechanics (see 15.1). Similarly, as prescribed in 15.2.2 for isolated footings, the base area or pile arrangement of combined footings and mats should be determined using the unfactored forces, moments, or both, transmitted by the footing to the soil, considering permissible soil pressures and pile reactions.

Design methods using factored loads and strength reduction factors ϕ can be applied to combined footings or mats, regardless of the soil pressure distribution.

Detailed recommendations for design of combined footings and mats are reported by ACI Committee 336. See also Reference 15.2.

R15.10.4 — Minimum reinforcing steel may be distributed near the top or bottom of the section, or may be allocated between the two faces of the section as deemed appropriate for specific conditions, such that the total area of continuous reinforcing steel satisfies 7.12.2.
CHAPTER 16 — PRECAST CONCRETE

CODE

16.1 — Scope

16.1.1 — All provisions of this Code, not specifically excluded and not in conflict with the provisions of Chapter 16, shall apply to structures incorporating precast concrete structural members.

16.2 — General

16.2.1 — Design of precast members and connections shall include loading and restraint conditions from initial fabrication to end use in the structure, including form removal, storage, transportation, and erection.

16.2.2 — When precast members are incorporated into a structural system, the forces and deformations occurring in and adjacent to connections shall be included in the design.

16.2.3 — Tolerances for both precast members and interfacing members shall be specified. Design of precast members and connections shall include the effects of these tolerances.

COMMENTARY

R16.1 — Scope

R16.1.1 — See 2.2 for definition of precast concrete.

Design and construction requirements for precast concrete structural members differ in some respects from those for cast-in-place concrete structural members and these differences are addressed in this chapter. Where provisions for cast-in-place concrete applied to precast concrete, they have not been repeated. Similarly, items related to composite concrete in Chapter 17 and to prestressed concrete in Chapter 18 that apply to precast concrete are not restated.

More detailed recommendations concerning precast concrete are given in References 16.1 through 16.7. Tilt-up concrete construction is a form of precast concrete. It is recommended that Reference 16.8 be reviewed for tilt-up structures.

R16.2 — General

R16.2.1 — Stresses developed in precast members during the period from casting to final connection may be greater than the service load stresses. Handling procedures may cause undesirable deformations. Care should be given to the methods of storing, transporting, and erecting precast members so that performance at service loads and strength under factored loads meet Code requirements.

R16.2.2 — The structural behavior of precast members may differ substantially from that of similar members that are cast-in-place. Design of connections to minimize or transmit forces due to shrinkage, creep, temperature change, elastic deformation, differential settlement, wind, and earthquake require consideration in precast construction.

R16.2.3 — Design of precast members and connections is particularly sensitive to tolerances on the dimensions of individual members and on their location in the structure. To prevent misunderstanding, the tolerances used in design should be specified in the contract documents. Instead of specifying individual tolerances, the tolerance standard assumed in design may be specified. It is important to specify any deviations from accepted standards.

The tolerances required by 7.5 are considered to be a minimum acceptable standard for reinforcement in precast concrete. Refer to publications of the Precast/Prestressed Concrete Institute (PCI) (References 16.9 through 16.11) for guidance on industry-established standard product and erection tolerances. Added guidance is given in Reference 16.12.
16.2.4 — In addition to the requirements for drawings and specifications in 1.2, (a) and (b) shall be included in either the contract documents or shop drawings:

(a) Details of reinforcement, inserts and lifting devices required to resist temporary loads from handling, storage, transportation, and erection;

(b) Required concrete strength at stated ages or stages of construction.

16.3 — Distribution of forces among members

16.3.1 — Distribution of forces that are perpendicular to the plane of members shall be established by analysis or by test.

16.3.2 — Where the system behavior requires in-plane forces to be transferred between the members of a precast floor or wall system, 16.3.2.1 and 16.3.2.2 shall apply.

16.3.2.1 — In-plane force paths shall be continuous through both connections and members.

16.3.2.2 — Where tension forces occur, a continuous path of steel or steel reinforcement shall be provided.

16.4 — Member design

16.4.1 — In one-way precast floor and roof slabs and in one-way precast, prestressed wall panels, all not wider than 12 ft, and where members are not mechanically connected to cause restraint in the transverse direction, the shrinkage and temperature reinforcement

CODE

COMMENTARY

R16.2.4 — The additional requirements may be included in either contract documents or shop drawings, depending on the assignment of responsibility for design.

R16.3 — Distribution of forces among members

R16.3.1 — Concentrated point and line loads can be distributed among members provided they have sufficient torsional stiffness and that shear can be transferred across joints. Torsionally stiff members such as hollow-core or solid slabs have more favorable load distribution properties than do torsionally flexible members such as double tees with thin flanges. The actual distribution of the load depends on many factors discussed in detail in References 16.13 through 16.19. Large openings can cause significant changes in distribution of forces.

R16.3.2 — In-plane forces result primarily from diaphragm action in floors and roofs, causing tension or compression in the chords and shear in the body of the diaphragm. A continuous path of steel, steel reinforcement, or both, using lap splices, mechanical or welded splices, or mechanical connectors, should be provided to carry the tension, whereas the shear and compression may be carried by the net concrete section. A continuous path of steel through a connection includes bolts, weld plates, headed studs, or other steel devices. Tension forces in the connections are to be transferred to the primary reinforcement in the members.

In-plane forces in precast wall systems result primarily from diaphragm reactions and external lateral loads.

Connection details should provide for the forces and deformations due to shrinkage, creep, and thermal effects. Connection details may be selected to accommodate volume changes and rotations caused by temperature gradients and long-term deflections. When these effects are restrained, connections and members should be designed to provide adequate strength and ductility.

R16.4 — Member design

R16.4.1 — For prestressed concrete members not wider than 12 ft, such as hollow-core slabs, solid slabs, or slabs with closely spaced ribs, there is usually no need to provide transverse reinforcement to withstand shrinkage and temperature stresses in the short direction. This is generally
requirements of 7.12 in the direction normal to the flexural reinforcement shall be permitted to be waived. This waiver shall not apply to members that require reinforcement to resist transverse flexural stresses.

16.4.2 — For precast, non prestressed walls the reinforcement shall be designed in accordance with the provisions of Chapters 10 or 14, except that the area of horizontal and vertical reinforcement each shall be not less than \(0.001 A_g\), where \(A_g\) is the gross cross-sectional area of the wall panel. Spacing of reinforcement shall not exceed 5 times the wall thickness nor 30 in. for interior walls nor 18 in. for exterior walls.

16.5 — Structural integrity

16.5.1 — Except where the provisions of 16.5.2 govern, the minimum provisions of 16.5.1.1 through 16.5.1.4 for structural integrity shall apply to all precast concrete structures.

16.5.1.1 — Longitudinal and transverse ties required by 7.13.3 shall connect members to a lateral load-resisting system.

16.5.1.2 — Where precast elements form floor or roof diaphragms, the connections between diaphragm and those members being laterally supported shall have a nominal tensile strength capable of resisting not less than 300 lb per linear ft.

16.5.1.3 — Vertical tension tie requirements of 7.13.3 shall apply to all vertical structural members, except cladding, and shall be achieved by providing true also for non prestressed floor and roof slabs. The 12 ft width is less than that in which shrinkage and temperature stresses can build up to a magnitude requiring transverse reinforcement. In addition, much of the shrinkage occurs before the members are tied into the structure. Once in the final structure, the members are usually not as rigidly connected transversely as monolithic concrete, thus the transverse restraint stresses due to both shrinkage and temperature change are significantly reduced.

The waiver does not apply to members such as single and double tees with thin, wide flanges.

R16.4.2 — This minimum area of wall reinforcement, instead of the minimum values in 14.3, has been used for many years and is recommended by the PCI and the Canadian Building Code.16.20 The provisions for reduced minimum reinforcement and greater spacing recognize that precast wall panels have very little restraint at their edges during early stages of curing and develop less shrinkage stress than comparable cast-in-place walls.

R16.5 — Structural integrity

R16.5.1 — The provisions of 7.13.3 apply to all precast concrete structures. Sections 16.5.1 and 16.5.2 give minimum requirements to satisfy 7.13.3. It is not intended that these minimum requirements override other applicable provisions of the Code for design of precast concrete structures.

The overall integrity of a structure can be substantially enhanced by minor changes in the amount, location, and detailing of member reinforcement and in the detailing of connection hardware.

R16.5.1.1 — Individual members may be connected into a lateral load-resisting system by alternative methods. For example, a load-bearing spandrel could be connected to a diaphragm (part of the lateral load-resisting system). Structural integrity could be achieved by connecting the spandrel into all or a portion of the deck members forming the diaphragm. Alternatively, the spandrel could be connected only to its supporting columns, which in turn is connected to the diaphragm.

R16.5.1.2 — Diaphragms are typically provided as part of the lateral load-resisting system. The ties prescribed in 16.5.1.2 are the minimum required to attach members to the floor or roof diaphragms. The tie force is equivalent to the service load value of 200 lb/ft given in the Uniform Building Code.

R16.5.1.3 — Base connections and connections at horizontal joints in precast columns and wall panels, including shear walls, are designed to transfer all design
CODE

connections at horizontal joints in accordance with (a) through (c):

(a) Precast columns shall have a nominal strength in tension not less than \(200A_g\), in lb. For columns with a larger cross section than required by consideration of loading, a reduced effective area \(A_g\), based on cross section required but not less than one-half the total area, shall be permitted;

(b) Precast wall panels shall have a minimum of two ties per panel, with a nominal tensile strength not less than 10,000 lb per tie;

(c) When design forces result in no tension at the base, the ties required by 16.5.1.3(b) shall be permitted to be anchored into an appropriately reinforced concrete floor slab-on-ground.

16.5.1.4 — Connection details that rely solely on friction caused by gravity loads shall not be used.

COMMENTARY

forces and moments. The minimum tie requirements of 16.5.1.3 are not additive to these design requirements. Common practice is to place the wall ties symmetrically about the vertical centerline of the wall panel and within the outer quarters of the panel width, wherever possible.

16.5.2 — For precast concrete bearing wall structures three or more stories in height, the minimum provisions of 16.5.2.1 through 16.5.2.5 shall apply.

16.5.2.1 — Longitudinal and transverse ties shall be provided in floor and roof systems to provide a nominal strength of 1500 lb per foot of width or length. Ties shall be provided over interior wall supports and between members and exterior walls. Ties shall be positioned in or within 2 ft of the plane of the floor or roof system.

R16.5.2 — The structural integrity minimum tie provisions for bearing wall structures, often called large panel structures, are intended to provide catenary hanger supports in case of loss of a bearing wall support, as shown by test. \(^{16,21}\) Forces induced by loading, temperature change, creep, and wind or seismic action may require a larger amount of tie force. It is intended that the general precast concrete provisions of 16.5.1 apply to bearing wall structures less than three stories in height.

Minimum ties in structures three or more stories in height, in accordance with 16.5.2.1, 16.5.2.2, 16.5.2.3, 16.5.2.4, and 16.5.2.5, are required for structural integrity (Fig. R16.5.2). These provisions are based on PCI’s recommendations for design of precast concrete bearing wall buildings. \(^{16,22}\) Tie strength is based on yield strength.

R16.5.2.1 — Longitudinal ties may project from slabs and be lap spliced, welded, or mechanically connected, or they may be embedded in grout joints, with sufficient length and cover to develop the required force. Bond length for unstressed prestressing steel should be sufficient to develop the yield strength. \(^{16,23}\) It is not uncommon to have ties positioned in the walls reasonably close to the plane of the floor or roof system.
16.5.2.2 — Longitudinal ties parallel to floor or roof slab spans shall be spaced not more than 10 ft on centers. Provisions shall be made to transfer forces around openings.

16.5.2.3 — Transverse ties perpendicular to floor or roof slab spans shall be spaced not greater than the bearing wall spacing.

16.5.2.4 — Ties around the perimeter of each floor and roof, within 4 ft of the edge, shall provide a nominal strength in tension not less than 16,000 lb.

16.5.2.5 — Vertical tension ties shall be provided in all walls and shall be continuous over the height of the building. They shall provide a nominal tensile strength not less than 3000 lb per horizontal foot of wall. Not less than two ties shall be provided for each precast panel.

16.6 — Connection and bearing design

16.6.1 — Forces shall be permitted to be transferred between members by grouted joints, shear keys, mechanical connectors, reinforcing steel connections, reinforced topping, or a combination of these means.

16.6.1.1 — The adequacy of connections to transfer forces between members shall be determined by analysis or by test. Where shear is the primary result of imposed loading, it shall be permitted to use the provisions of 11.6 as applicable.

16.6.1.2 — When designing a connection using materials with different structural properties, their relative stiffnesses, strengths, and ductilities shall be considered.

R16.6.1 — The Code permits a variety of methods for connecting members. These are intended for transfer of forces both in-plane and perpendicular to the plane of the members.

R16.6.1.2 — Various components in a connection (such as bolts, welds, plates, and inserts) have different properties that can affect the overall behavior of the connection.
CODE

16.6.2 — Bearing for precast floor and roof members on simple supports shall satisfy 16.6.2.1 and 16.6.2.2.

16.6.2.1 — The allowable bearing stress at the contact surface between supported and supporting members and between any intermediate bearing elements shall not exceed the bearing strength for either surface or the bearing element, or both. Concrete bearing strength shall be as given in 10.14.

16.6.2.2 — Unless shown by test or analysis that performance will not be impaired, (a) and (b) shall be met:

(a) Each member and its supporting system shall have design dimensions selected so that, after consideration of tolerances, the distance from the edge of the support to the end of the precast member in the direction of the span is at least $\ell_n/180$, but not less than:

For solid or hollow-core slabs 2 in.
For beams or stemmed members 3 in.

(b) Bearing pads at unarmored edges shall be set back a minimum of 1/2 in. from the face of the support, or at least the chamfer dimension at chamfered edges.

16.6.2.3 — The requirements of 12.11.1 shall not apply to the positive bending moment reinforcement for statically determinate precast members, but at least one-third of such reinforcement shall extend to the center of the bearing length, taking into account permitted tolerances in 7.5.2.2 and 16.2.3.

COMMENTARY

R16.6.2.1 — When tensile forces occur in the plane of the bearing, it may be desirable to reduce the allowable bearing stress, provide confinement reinforcement, or both. Guidelines are provided in Reference 16.4.

R16.6.2.2 — This section differentiates between bearing length and length of the end of a precast member over the support (Fig. R16.6.2). Bearing pads distribute concentrated loads and reactions over the bearing area, and allow limited horizontal and rotational movements for stress relief. To prevent spalling under heavily loaded bearing areas, bearing pads should not extend to the edge of the support unless the edge is armored. Edges can be armored with anchored steel plates or angles. Section 11.9.7 gives requirements for bearing on brackets or corbels.

R16.6.2.3 — It is unnecessary to develop positive bending moment reinforcement beyond the ends of the precast element if the system is statically determinate. Tolerances need to be considered to avoid bearing on structural plain concrete where reinforcement has been discontinued.

Fig. R16.6.2—Bearing length on support.
CODE

16.7 — Items embedded after concrete placement

16.7.1 — When approved by the licensed design professional, embedded items (such as dowels or inserts) that either protrude from the concrete or remain exposed for inspection shall be permitted to be embedded while the concrete is in a plastic state provided that 16.7.1.1, 16.7.1.2, and 16.7.1.3 are met.

16.7.1.1 — Embedded items are not required to be hooked or tied to reinforcement within the concrete.

16.7.1.2 — Embedded items are maintained in the correct position while the concrete remains plastic.

16.7.1.3 — The concrete is properly consolidated around the embedded item.

16.8 — Marking and identification

16.8.1 — Each precast member shall be marked to indicate its location and orientation in the structure and date of manufacture.

16.8.2 — Identification marks shall correspond to placing drawings.

16.9 — Handling

16.9.1 — Member design shall consider forces and distortions during curing, stripping, storage, transportation, and erection so that precast members are not overstressed or otherwise damaged.

16.9.2 — During erection, precast members and structures shall be adequately supported and braced to ensure proper alignment and structural integrity until permanent connections are completed.

16.10 — Strength evaluation of precast construction

16.10.1 — A precast element to be made composite with cast-in-place concrete shall be permitted to be tested in flexure as a precast element alone in accordance with 16.10.1.1 and 16.10.1.2.

COMMENTARY

R16.7 — Items embedded after concrete placement

R16.7.1 — Section 16.7.1 is an exception to the provisions of 7.5.1. Many precast products are manufactured in such a way that it is difficult, if not impossible, to position reinforcement that protrudes from the concrete before the concrete is placed. Such items as ties for horizontal shear and inserts can be placed while the concrete is plastic, if proper precautions are taken. This exception is not applicable to reinforcement that is completely embedded, or to embedded items that will be hooked or tied to embedded reinforcement.

R16.9 — Handling

R16.9.1 — The Code requires acceptable performance at service loads and adequate strength under factored loads. However, handling loads should not produce permanent stresses, strains, cracking, or deflections inconsistent with the provisions of the Code. A precast member should not be rejected for minor cracking or spalling where strength and durability are not affected. Guidance on assessing cracks is given in PCI reports on fabrication and shipment cracks.16.24,16.25

R16.9.2 — All temporary erection connections, bracing, shoring as well as the sequencing of removal of these items are shown on contract or erection drawings.

R16.10 — Strength evaluation of precast construction

The strength evaluation procedures of Chapter 20 are applicable to precast members.
16.10.1.1 — Test loads shall be applied only when calculations indicate the isolated precast element will not be critical in compression or buckling.

16.10.1.2 — The test load shall be that load which, when applied to the precast member alone, induces the same total force in the tension reinforcement as would be induced by loading the composite member with the test load required by 20.3.2.

16.10.2 — The provisions of 20.5 shall be the basis for acceptance or rejection of the precast element.
CHAPTER 17 — COMPOSITE CONCRETE FLEXURAL MEMBERS

CODE

17.1 — Scope

17.1.1 — Provisions of Chapter 17 shall apply for design of composite concrete flexural members defined as precast concrete, cast-in-place concrete elements, or both, constructed in separate placements but so interconnected that all elements respond to loads as a unit.

17.1.2 — All provisions of the Code shall apply to composite concrete flexural members, except as specifically modified in Chapter 17.

17.2 — General

17.2.1 — The use of an entire composite member or portions thereof for resisting shear and moment shall be permitted.

17.2.2 — Individual elements shall be investigated for all critical stages of loading.

17.2.3 — If the specified strength, unit weight, or other properties of the various elements are different, properties of the individual elements or the most critical values shall be used in design.

17.2.4 — In strength computations of composite members, no distinction shall be made between shored and unshored members.

17.2.5 — All elements shall be designed to support all loads introduced prior to full development of design strength of composite members.

17.2.6 — Reinforcement shall be provided as required to minimize cracking and to prevent separation of individual elements of composite members.

17.2.7 — Composite members shall meet requirements for control of deflections in accordance with 9.5.5.

COMMENTARY

R17.1 — Scope

R17.1.1 — The scope of Chapter 17 is intended to include all types of composite concrete flexural members. In some cases with fully cast-in-place concrete, it may be necessary to design the interface of consecutive placements of concrete as required for composite members. Composite structural steel-concrete members are not covered in this chapter. Design provisions for such composite members are covered in Reference 17.1.

R17.2 — General

R17.2.4 — Tests have indicated that the strength of a composite member is the same whether or not the first element cast is shored during casting and curing of the second element.

R17.2.6 — The extent of cracking is dependent on such factors as environment, aesthetics, and occupancy. In addition, composite action should not be impaired.

R17.2.7 — The premature loading of precast elements can cause excessive creep and shrinkage deflections. This is especially so at early ages when the moisture content is high and the strength low.

The transfer of shear by direct bond is important if excessive deflection from slippage is to be prevented. A shear key is an added mechanical factor of safety but it does not operate until slippage occurs.
17.3 — Shoring

When used, shoring shall not be removed until supported elements have developed design properties required to support all loads and limit deflections and cracking at time of shoring removal.

17.4 — Vertical shear strength

17.4.1 — Where an entire composite member is assumed to resist vertical shear, design shall be in accordance with requirements of Chapter 11 as for a monolithically cast member of the same cross-sectional shape.

17.4.2 — Shear reinforcement shall be fully anchored into interconnected elements in accordance with 12.13.

17.4.3 — Extended and anchored shear reinforcement shall be permitted to be included as ties for horizontal shear.

17.5 — Horizontal shear strength

17.5.1 — In a composite member, full transfer of horizontal shear forces shall be ensured at contact surfaces of interconnected elements.

17.5.2 — For the provisions of 17.5, d shall be taken as the distance from extreme compression fiber for entire composite section to centroid of prestressed and nonprestressed longitudinal tension reinforcement, if any, but need not be taken less than 0.80h for prestressed concrete members.

17.5.3 — Unless calculated in accordance with 17.5.4, design of cross sections subject to horizontal shear shall be based on

\[V_u \leq \phi V_{nh} \]

(17-1)

where \(V_{nh} \) is nominal horizontal shear strength in accordance with 17.5.3.1 through 17.5.3.4.

17.5.3.1 — Where contact surfaces are clean, free of laitance, and intentionally roughened, \(V_{nh} \) shall not be taken greater than 80b,v,d.

17.5.3.2 — Where minimum ties are provided in accordance with 17.6, and contact surfaces are clean and free of laitance, but not intentionally roughened, \(V_{nh} \) shall not be taken greater than 80b,v,d.

R17.3 — Shoring

The provisions of 9.5.5 cover the requirements pertaining to deflections of shored and unshored members.

R17.5 — Horizontal shear strength

R17.5.1 — Full transfer of horizontal shear between segments of composite members should be ensured by horizontal shear strength at contact surfaces or properly anchored ties, or both.

R17.5.2 — Prestressed members used in composite construction may have variations in depth of tension reinforcement along member length due to draped or depressed tendons. Because of this variation, the definition of \(d \) used in Chapter 11 for determination of vertical shear strength is also appropriate when determining horizontal shear strength.

R17.5.3 — The nominal horizontal shear strengths \(V_{nh} \) apply when the design is based on the load factors and \(\phi \)-factors of Chapter 9.
CODE

17.5.3.3 — Where ties are provided in accordance with 17.6, and contact surfaces are clean, free of laitance, and intentionally roughened to a full amplitude of approximately 1/4 in., \(V_{nh} \) shall be taken equal to \((260 + 0.6\rho_v f_y)\lambda b_v d\), but not greater than \(500 b_v d\). Values for \(\lambda\) in 11.6.4.3 shall apply and \(\rho_v\) is \(A_v/(b_v s)\).

17.5.3.4 — Where \(V_u\) at section considered exceeds \(\phi(500 b_v d)\), design for horizontal shear shall be in accordance with 11.6.4.

17.5.4 — As an alternative to 17.5.3, horizontal shear shall be permitted to be determined by computing the actual change in compressive or tensile force in any segment, and provisions shall be made to transfer that force as horizontal shear to the supporting element. The factored horizontal shear force \(V_u\) shall not exceed horizontal shear strength \(\phi V_{nh}\) as given in 17.5.3.1 through 17.5.3.4, where area of contact surface shall be substituted for \(b_v d\).

17.5.4.1 — Where ties provided to resist horizontal shear are designed to satisfy 17.5.4, the tie area to tie spacing ratio along the member shall approximately reflect the distribution of shear forces in the member.

17.5.5 — Where tension exists across any contact surface between interconnected elements, shear transfer by contact shall be permitted only when minimum ties are provided in accordance with 17.6.

17.6 — Ties for horizontal shear

17.6.1 — Where ties are provided to transfer horizontal shear, tie area shall not be less than that required by 11.4.6.3, and tie spacing shall not exceed four times the least dimension of supported element, nor exceed 24 in.

17.6.2 — Ties for horizontal shear shall consist of single bars or wire, multiple leg stirrups, or vertical legs of welded wire reinforcement.

17.6.3 — All ties shall be fully anchored into interconnected elements in accordance with 12.13.

COMMENTARY

R17.5.3.3 — The permitted horizontal shear strengths and the requirement of 1/4 in. amplitude for intentional roughness are based on tests discussed in References 17.2 through 17.4.

R17.5.4.1 — The distribution of horizontal shear stresses along the contact surface in a composite member will reflect the distribution of shear along the member. Horizontal shear failure will initiate where the horizontal shear stress is a maximum and will spread to regions of lower stress. Because the slip at peak horizontal shear resistance is small for a concrete-to-concrete contact surface, longitudinal redistribution of horizontal shear resistance is very limited. The spacing of the ties along the contact surface should, therefore, be such as to provide horizontal shear resistance distributed approximately as the shear acting on the member is distributed.

R17.5.5 — Proper anchorage of ties extending across interfaces is required to maintain contact of the interfaces.

R17.6 — Ties for horizontal shear

The minimum areas and maximum spacings are based on test data given in References 17.2 through 17.6.
CHAPTER 18 — PRESTRESSED CONCRETE

CODE

18.1 — Scope

18.1.1 — Provisions of Chapter 18 shall apply to members prestressed with wire, strands, or bars conforming to provisions for prestressing steel in 3.5.6.

18.1.2 — All provisions of this Code not specifically excluded, and not in conflict with provisions of Chapter 18, shall apply to prestressed concrete.

18.1.3 — The following provisions of this Code shall not apply to prestressed concrete, except as specifically noted: Sections 6.4.4, 7.6.5, 8.12.2, 8.12.3, 8.12.4, 8.13, 10.5, 10.6, 10.9.1, and 10.9.2; Chapter 13; and Sections 14.3, 14.5, and 14.6, except that certain sections of 10.6 apply as noted in 18.4.4.

COMMENTARY

R18.1 — Scope

R18.1.1 — The provisions of Chapter 18 were developed primarily for structural members such as slabs, beams, and columns that are commonly used in buildings. Many of the provisions may be applied to other types of construction, such as pressure vessels, pavements, pipes, and crossties. Application of the provisions is left to the judgment of the licensed design professional in cases not specifically cited in the Code.

R18.1.3 — Some sections of the Code are excluded from use in the design of prestressed concrete for specific reasons. The following discussion provides explanation for such exclusions:

Section 6.4.4 — Tendons of continuous post-tensioned beams and slabs are usually stressed at a point along the span where the tendon profile is at or near the centroid of the concrete cross section. Therefore, interior construction joints are usually located within the end thirds of the span, rather than the middle third of the span as required by 6.4.4. Construction joints located as described in continuous post-tensioned beams and slabs have a long history of satisfactory performance. Thus, 6.4.4 is excluded from application to prestressed concrete.

Section 7.6.5 — Section 7.6.5 of the Code is excluded from application to prestressed concrete because the requirements for bonded reinforcement and unbonded tendons for cast-in-place members are provided in 18.9 and 18.12, respectively.

Sections 8.12.2, 8.12.3, and 8.12.4 — The empirical provisions of 8.12.2, 8.12.3, and 8.12.4 for T-beams were developed for nonprestressed reinforced concrete, and if applied to prestressed concrete would exclude many standard prestressed products in satisfactory use today. Hence, proof by experience permits variations.

By excluding 8.12.2, 8.12.3, and 8.12.4, no special requirements for prestressed concrete T-beams appear in the Code. Instead, the determination of an effective width of flange is left to the experience and judgment of the licensed design professional. Where possible, the flange widths in 8.12.2, 8.12.3, and 8.12.4 should be used unless experience has proven that variations are safe and satisfactory. It is not necessarily conservative in elastic analysis and design considerations to use the maximum flange width as permitted in 8.12.2.
CODE

18.2 — General

18.2.1 — Prestressed members shall meet the strength requirements of this Code.

18.2.2 — Design of prestressed members shall be based on strength and on behavior at service conditions at all stages that will be critical during the life of the structure from the time prestress is first applied.

COMMENTARY

Sections 8.12.1 and 8.12.5 provide general requirements for T-beams that are also applicable to prestressed concrete members. The spacing limitations for slab reinforcement are based on flange thickness, which for tapered flanges can be taken as the average thickness.

Section 8.13 — The empirical limits established for nonprestressed reinforced concrete joist floors are based on successful past performance of joist construction using standard joist forming systems. See R8.13. For prestressed joist construction, experience and judgment should be used. The provisions of 8.13 may be used as a guide.

Sections 10.5, 10.9.1, and 10.9.2 — For prestressed concrete, the limitations on reinforcement given in 10.5, 10.9.1, and 10.9.2 are replaced by those in 18.8.3, 18.9, and 18.11.2.

Section 10.6 — This section does not apply to prestressed members in its entirety. However, 10.6.4 and 10.6.7 are referenced in 18.4.4 pertaining to Class C prestressed flexural members.

Chapter 13 — The design of continuous prestressed concrete slabs requires recognition of secondary moments. Also, volume changes due to the prestressing force can create additional loads on the structure that are not adequately covered in Chapter 13. Because of these unique properties associated with prestressing, many of the design procedures of Chapter 13 are not appropriate for prestressed concrete structures and are replaced by the provisions of 18.12.

Sections 14.5 and 14.6 — The requirements for wall design in 14.5 and 14.6 are largely empirical, utilizing considerations not intended to apply to prestressed concrete.

R18.2 — General

R18.2.1 and R18.2.2 — The design investigation should include all stages that may be significant. The three major stages are: (1) jacking stage, or prestress transfer stage—when the tensile force in the prestressing steel is transferred to the concrete and stress levels may be high relative to concrete strength; (2) service load stage—after long-term volume changes have occurred; and (3) the factored load stage—when the strength of the member is checked. There may be other load stages that require investigation. For example, if the cracking load is significant, this load stage may require study, or the handling and transporting stage may be critical.

From the standpoint of satisfactory behavior, the two stages of most importance are those for service load and factored load.
CODE

18.2.3 — Stress concentrations due to prestressing shall be considered in design.

18.2.4 — Provisions shall be made for effects on adjoining construction of elastic and plastic deformations, deflections, changes in length, and rotations due to prestressing. Effects of temperature and shrinkage shall also be included.

18.2.5 — The possibility of buckling in a member between points where there is intermittent contact between the prestressing steel and an oversize duct, and buckling in thin webs and flanges shall be considered.

18.2.6 — In computing section properties before bonding of prestressing steel, effect of loss of area due to open ducts shall be considered.

COMMENTARY

Service load stage refers to the loads defined in the general building code (without load factors), such as live load and dead load, while the factored load stage refers to loads multiplied by the appropriate load factors.

Section 18.3.2 provides assumptions that may be used for investigation at service loads and after transfer of the prestressing force.

18.3 — Design assumptions

18.3.1 — Strength design of prestressed members for flexure and axial loads shall be based on assumptions given in 10.2, except that 10.2.4 shall apply only to reinforcement conforming to 3.5.3.

18.3.2 — For investigation of stresses at transfer of prestress, at service loads, and at cracking loads, elastic theory shall be used with the assumptions of 18.3.2.1 and 18.3.2.2.

R18.2.5 — Section 18.2.5 refers to the type of post-tensioning where the prestressing steel makes intermittent contact with an oversize duct. Precautions should be taken to prevent buckling of such members.

If the prestressing steel is in complete contact with the member being prestressed, or is unbonded with the sheathing not excessively larger than the prestressing steel, it is not possible to buckle the member under the prestressing force being introduced.

R18.2.6 — In considering the area of the open ducts, the critical sections should include those that have coupler sheaths that may be of a larger size than the duct containing the prestressing steel. Also, in some instances, the trumpet or transition piece from the conduit to the anchorage may be of such a size as to create a critical section. If the effect of the open duct area on design is deemed negligible, section properties may be based on total area.

In post-tensioned members after grouting and in pretensioned members, section properties may be based on effective sections using transformed areas of bonded prestressing steel and nonprestressed reinforcement gross sections, or net sections.

R18.3 — Design assumptions
18.3.2.1 — Strains vary linearly with depth through the entire load range.

18.3.2.2 — At cracked sections, concrete resists no tension.

18.3.3 — Prestressed flexural members shall be classified as Class U, Class T, or Class C based on f_t, the computed extreme fiber stress in tension in the precompressed tensile zone calculated at service loads, as follows:

(a) Class U: $f_t \leq 7.5 \sqrt{f'_c}$
(b) Class T: $7.5 \sqrt{f'_c} < f_t \leq 12 \sqrt{f'_c}$
(c) Class C: $f_t > 12 \sqrt{f'_c}$

Prestressed two-way slab systems shall be designed as Class U with $f_t \leq 6 \sqrt{f'_c}$.

18.3.4 — For Class U and Class T flexural members, stresses at service loads shall be permitted to be calculated using the uncracked section. For Class C flexural members, stresses at service loads shall be calculated using the cracked transformed section.

18.3.5 — Deflections of prestressed flexural members shall be calculated in accordance with 9.5.4.

18.4 — Serviceability requirements — Flexural members

18.4.1 — Stresses in concrete immediately after prestress transfer (before time-dependent prestress losses):

(a) Extreme fiber stress in compression except as permitted in (b) shall not exceed $0.60f'_c$
(b) Extreme fiber stress in compression at ends of simply supported members shall not exceed $0.70f'_c$
(c) Where computed concrete tensile strength, f_t, exceeds $6 \sqrt{f'_c}$ at ends of simply supported

R18.3.3 — This section defines three classes of behavior of prestressed flexural members. Class U members are assumed to behave as uncracked members. Class C members are assumed to behave as cracked members. The behavior of Class T members is assumed to be in transition between uncracked and cracked. The serviceability requirements for each class are summarized in Table R18.3.3. For comparison, Table R18.3.3 also shows corresponding requirements for non prestressed members.

These classes apply to both bonded and unbonded prestressed flexural members, but prestressed two-way slab systems must be designed as Class U.

The precompressed tensile zone is that portion of a prestressed member where flexural tension, calculated using gross section properties, would occur under unfactored dead and live loads if the prestress force was not present. Prestressed concrete is usually designed so that the prestress force introduces compression into this zone, thus effectively reducing the magnitude of the tensile stress.

R18.3.4 — A method for computing stresses in a cracked section is given in Reference 18.1.

R18.3.5 — Reference 18.2 provides information on computing deflections of cracked members.

R18.4 — Serviceability requirements — Flexural members

Permissible stresses in concrete address serviceability. Permissible stresses do not ensure adequate structural strength, which should be checked in conformance with other Code requirements.

R18.4.1 — The concrete stresses at this stage are caused by the force in the prestressing steel at transfer reduced by the losses due to elastic shortening of the concrete, relaxation of the prestressing steel, seating at transfer, and the stresses due to the weight of the member. Generally, shrinkage and creep effects are not included at this stage. These stresses apply to both pretensioned and post-tensioned concrete with proper modifications of the losses at transfer. The compressive transfer stress at ends of simply supported members was raised from $0.60f'_c$ to $0.70f'_c$ in the 2008 Code to reflect research in the precast, prestressed concrete industry practice.
TABLE R18.3.3 — SERVICEABILITY DESIGN REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th>Prestressed</th>
<th></th>
<th></th>
<th>Nonprestressed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class U</td>
<td>Class T</td>
<td>Class C</td>
<td></td>
</tr>
<tr>
<td>Assumed behavior</td>
<td>Uncracked</td>
<td>Transition between uncracked and cracked</td>
<td>Cracked</td>
<td>Cracked</td>
</tr>
<tr>
<td>Section properties for stress calculation at service loads</td>
<td>Gross section 18.3.4</td>
<td>Gross section 18.3.4</td>
<td>Cracked section 18.3.4</td>
<td>No requirement</td>
</tr>
<tr>
<td>Allowable stress at transfer</td>
<td>18.4.1</td>
<td>18.4.1</td>
<td>18.4.1</td>
<td>No requirement</td>
</tr>
<tr>
<td>Allowable compressive stress based on uncracked section properties</td>
<td>18.4.2</td>
<td>18.4.2</td>
<td>No requirement</td>
<td>No requirement</td>
</tr>
<tr>
<td>Tensile stress at service loads 18.3.3</td>
<td>≤ 7.5 f'_t</td>
<td>$7.5 < f'_t < 12.0 f'_t$</td>
<td>No requirement</td>
<td>No requirement</td>
</tr>
<tr>
<td>Deflection calculation basis</td>
<td>9.5.4.1</td>
<td>Gross section 9.5.4.2</td>
<td>Cracked section, bilinear</td>
<td>Effective moment of inertia</td>
</tr>
<tr>
<td>Crack control</td>
<td>No requirement</td>
<td>No requirement</td>
<td>10.6.4 Modified by 18.4.4.1</td>
<td>10.6.4</td>
</tr>
</tbody>
</table>
| Computation of Δf_{ps} or f_s for crack control | — | — | Cracked section analysis | $M/(A_t \times \text{lever arm})$, or $0.6f'_s$
| Side skin reinforcement | No requirement | No requirement | 10.6.7 | 10.6.7 |

members, or $3 \sqrt{f'_c}$ at other locations, additional bonded reinforcement shall be provided in the tensile zone to resist the total tensile force in concrete computed with the assumption of an uncracked section.

18.4.2 — For Class U and Class T prestressed flexural members, stresses in concrete at service loads (based on uncracked section properties, and after allowance for all prestress losses) shall not exceed the following:

(a) Extreme fiber stress in compression due to prestress plus sustained load.......................... $0.45f'_c$

(b) Extreme fiber stress in compression due to prestress plus total load.................................. $0.60f'_c$

R18.4.1(c) — The tension stress limits of $3 \sqrt{f'_c}$ and $6 \sqrt{f'_c}$ refer to tensile stress at locations other than the precompressed tensile zone. Where tensile stresses exceed the permissible values, the total force in the tensile stress zone may be calculated and reinforcement proportioned on the basis of this force at a stress of $0.6f'_c$, but not more than 30,000 psi. The effects of creep and shrinkage begin to reduce the tensile stress almost immediately; however, some tension remains in these areas after allowance is made for all prestress losses.

R18.4.2(a) and (b) — The compression stress limit of $0.45f'_c$ was conservatively established to decrease the probability of failure of prestressed concrete members due to repeated loads. This limit seemed reasonable to preclude excessive creep deformation. At higher values of stress, creep strains tend to increase more rapidly as applied stress increases.

The change in allowable stress in the 1995 Code recognized that fatigue tests of prestressed concrete beams have shown that concrete failures are not the controlling criterion. Designs with transient live loads that are large compared to sustained live and dead loads have been penalized by the previous single compression stress limit. Therefore, the stress limit of $0.60f'_c$ permits a one-third increase in allowable compression stress for members subject to transient loads.

Sustained live load is any portion of the service live load that will be sustained for a sufficient period to cause significant time-dependent deflections. Thus, when the sustained live and dead loads are a large percentage of total service load, the $0.45f'_c$ limit of 18.4.2(a) may control. On the other hand, when a large portion of the total service load consists of a transient or temporary service live load, the increased stress limit of 18.4.2(b) may apply.

The compression limit of $0.45f'_c$ for prestress plus sustained loads will continue to control the long-term behavior of prestressed members.
CODE

18.4.3 — Permissible stresses in 18.4.1 and 18.4.2 shall be permitted to be exceeded if shown by test or analysis that performance will not be impaired.

18.4.4 — For Class C prestressed flexural members not subject to fatigue or to aggressive exposure, the spacing of bonded reinforcement nearest the extreme tension face shall not exceed that given by 10.6.4.

For structures subject to fatigue or exposed to corrosive environments, investigations and precautions are required.

18.4.4.1 — The spacing requirements shall be met by nonprestressed reinforcement and bonded tendons. The spacing of bonded tendons shall not exceed 2/3 of the maximum spacing permitted for nonprestressed reinforcement.

Where both reinforcement and bonded tendons are used to meet the spacing requirement, the spacing between a bar and a tendon shall not exceed 5/6 of that permitted by 10.6.4. See also 18.4.4.3.

18.4.4.2 — In applying Eq. (10-4) to prestressing tendons, \(\Delta f_{ps} \) shall be substituted for \(f_s \), where \(\Delta f_{ps} \) shall be taken as the calculated stress in the prestressing steel at service loads based on a cracked section analysis minus the decompression stress \(f_{dc} \). It shall be permitted to take \(f_{dc} \) equal to the effective stress in the prestressing steel \(f_{se} \). See also 18.4.4.3.

18.4.4.3 — In applying Eq. (10-4) to prestressing tendons, the magnitude of \(\Delta f_{ps} \) shall not exceed 36,000 psi. When \(\Delta f_{ps} \) is less than or equal to 20,000 psi, the spacing requirements of 18.4.4.1 and 18.4.4.2 shall not apply.

18.4.4.4 — Where \(h \) of a beam exceeds 36 in., the area of longitudinal skin reinforcement consisting of reinforcement or bonded tendons shall be provided as required by 10.6.7.

COMMENTARY

R18.4.3 — This section provides a mechanism whereby development of new products, materials, and techniques in prestressed concrete construction need not be inhibited by Code limits on stress. Approvals for the design should be in accordance with 1.4 of the Code.

R18.4.4 — Spacing requirements for prestressed members with calculated tensile stress exceeding \(12 \sqrt{f'c} \) were introduced in the 2002 edition of the Code.

For conditions of corrosive environments, defined as an environment in which chemical attack (such as seawater, corrosive industrial atmosphere, or sewer gas) is encountered, cover greater than that required by 7.7.2 should be used, and tension stresses in the concrete reduced to eliminate possible cracking at service loads. Judgment should be used to determine the amount of increased cover and whether reduced tension stresses are required.

R18.4.4.1 — Only tension steel nearest the tension face need be considered in selecting the value of \(c_c \) used in computing spacing requirements. To account for prestressing steel, such as strand, having bond characteristics less effective than deformed reinforcement, a 2/3 effectiveness factor is used.

For post-tensioned members designed as cracked members, it will usually be advantageous to provide crack control by the use of deformed reinforcement, for which the provisions of 10.6 may be used directly. Bonded reinforcement required by other provisions of this Code may also be used as crack control reinforcement.

R18.4.4.2 — It is conservative to take the decompression stress \(f_{dc} \) equal to \(f_{se} \), the effective stress in the prestressing steel.

R18.4.4.3 — The maximum limitation of 36,000 psi for \(\Delta f_{ps} \) and the exemption for members with \(\Delta f_{ps} \) less than 20,000 psi are intended to be similar to the Code requirements before the 2002 edition.

R18.4.4.4 — The steel area of reinforcement, bonded tendons, or a combination of both may be used to satisfy this requirement.
R18.5 — Permissible stresses in prestressing steel

The Code does not distinguish between temporary and effective prestressing steel stresses. Only one limit on prestressing steel stress is provided because the initial prestressing steel stress (immediately after transfer) can prevail for a considerable time, even after the structure has been put into service. This stress, therefore, should have an adequate safety factor under service conditions and cannot be considered as a temporary stress. Any subsequent decrease in prestressing steel stress due to losses can only improve conditions and no limit on such stress decrease is provided in the Code.

R18.5.1 — With the 1983 Code, permissible stresses in prestressing steel were revised to recognize the higher yield strength of low-relaxation wire and strand meeting the requirements of ASTM A421 and A416. For such prestressing steel, it is more appropriate to specify permissible stresses in terms of specified minimum ASTM yield strength rather than specified minimum ASTM tensile strength. For the low-relaxation wire and strands, with f_{py} equal to $0.90f_{pu}$, the $0.94f_{py}$ and $0.82f_{py}$ limits are equivalent to $0.85f_{pu}$ and $0.74f_{pu}$, respectively. In the 1986 supplement and in the 1989 Code, the maximum jacking stress for low-relaxation prestressing steel was reduced to $0.80f_{pu}$ to ensure closer compatibility with the maximum prestressing steel stress value of $0.74f_{pu}$ immediately after prestress transfer. The higher yield strength of the low-relaxation prestressing steel does not change the effectiveness of tendon anchorage devices; thus, the permissible stress at post-tensioning anchorage devices and couplers is not increased above the previously permitted value of $0.70f_{pu}$. For ordinary prestressing steel (wire, strands, and bars) with f_{py} equal to $0.85f_{pu}$, the $0.94f_{py}$ and $0.82f_{py}$ limits are equivalent to $0.80f_{pu}$ and $0.70f_{pu}$, respectively, the same as permitted in the 1977 Code. For bar prestressing steel with f_{py} equal to $0.80f_{pu}$, the same limits are equivalent to $0.75f_{pu}$ and $0.66f_{pu}$, respectively.

Because of the higher allowable initial prestressing steel stresses permitted since the 1983 Code, final stresses can be greater. Structures subject to corrosive conditions or repeated loadings should be of concern when setting a limit on final stress.

R18.6 — Loss of prestress

R18.6.1 — For an explanation of how to compute prestress losses, see References 18.6 through 18.9. Lump sum values of prestress losses for both pretensioned and post-tensioned members that were indicated before the 1983 Commentary are considered obsolete. Reasonably accurate estimates of prestress losses can be calculated in accordance with the recommendations in Reference 18.9, which include consider-
CODE

(c) Creep of concrete;
(d) Shrinkage of concrete;
(e) Relaxation of prestressing steel stress;
(f) Friction loss due to intended or unintended curvature in post-tensioning tendons.

18.6.2 — Friction loss in post-tensioning tendons

18.6.2.1 — \(P_{px} \), force in post-tensioning tendons a distance \(l_{px} \) from the jacking end shall be computed by

\[
P_{px} = P_{pj} e^{-(Kl_{px} + \mu p \alpha_{px})}
\] (18-1)

Where \((Kl_{px} + \mu p \alpha_{px})\) is not greater than 0.3, \(P_{px} \) shall be permitted to be computed by

\[
P_{px} = P_{pj}(1 + Kl_{px} + \mu p \alpha_{px})^{-1}
\] (18-2)

18.6.2.2 — Friction loss shall be based on experimentally determined wobble \(K \) and curvature \(\mu_p \) friction coefficients, and shall be verified during tendon stressing operations.

COMMENTARY

Actual losses, greater or smaller than the computed values, have little effect on the design strength of the member, but affect service load behavior (deflections, camber, cracking load) and connections. At service loads, overestimation of prestress losses can be almost as detrimental as underestimation, since the former can result in excessive camber and horizontal movement.

R18.6.2 — Friction loss in post-tensioning tendons

The coefficients tabulated in Table R18.6.2 give a range that generally can be expected. Due to the many types of prestressing steel ducts and sheathing available, these values can only serve as a guide. Where rigid conduit is used, the wobble coefficient \(K \) can be considered as zero. For large-diameter prestressing steel in semirigid type conduit, the wobble factor can also be considered zero. Values of the coefficients to be used for the particular types of prestressing steel and particular types of ducts should be obtained from the manufacturers of the tendons. An unrealistically low evaluation of the friction loss can lead to improper camber of the member and inadequate prestress. Overestimation of the friction may result in extra prestressing force. This could lead to excessive camber and excessive shortening of a member. If the friction factors are determined to be less than those assumed in the design, the tendon stressing should be adjusted to give only that prestressing force in the critical portions of the structure required by the design.

<table>
<thead>
<tr>
<th>TABLE R18.6.2 — FRICTION COEFFICIENTS FOR POST-TENSIONED TENDONS FOR USE IN EQ. (18-1) OR (18-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grouted tendons in metal sheathing</td>
</tr>
<tr>
<td>Wire tendons</td>
</tr>
<tr>
<td>High-strength bars</td>
</tr>
<tr>
<td>7-wire strand</td>
</tr>
</tbody>
</table>

| **Unbonded tendons** | **Wobble coefficient, \(K \) per foot** | **Curvature coefficient, \(\mu_p \) per radian** |
|-----------------------|---|
| **Mastic coated** | | |
| Wire tendons | 0.0010-0.0020 | 0.05-0.15 |
| 7-wire strand | 0.0010-0.0020 | 0.05-0.15 |

Pre-greased		
Wire tendons	0.0003-0.0020	0.05-0.15
7-wire strand	0.0003-0.0020	0.05-0.15
CODE

18.6.2.3 — Values of K and μ_p used in design shall be shown on design drawings.

18.6.3 — Where loss of prestress in a member occurs due to connection of the member to adjoining construction, such loss of prestress shall be allowed for in design.

18.7 — Flexural strength

18.7.1 — Design moment strength of flexural members shall be computed by the strength design methods of the Code. For prestressing steel, f_{ps} shall be substituted for f_y in strength computations.

18.7.2 — As an alternative to a more accurate determination of f_{ps} based on strain compatibility, the following approximate values of f_{ps} shall be permitted to be used if f_{se} is not less than 0.5f_{pu}.

(a) For members with bonded tendons

$$f_{ps} = f_{pu} \left[1 - \frac{\gamma_p}{\beta_1} \left(\rho_p f_{pu} \frac{d}{d_p} (\omega - \omega') \right) \right]$$

(18-3)

where ω is $\rho f_y f_p$, ω' is $\rho' f_y f_p'$, and γ_p is 0.55 for f_{py}/f_{pu} not less than 0.80; 0.40 for f_{py}/f_{pu} not less than 0.85; and 0.28 for f_{py}/f_{pu} not less than 0.90.

If any compression reinforcement is taken into account when calculating f_{ps} by Eq. (18-3), the term

$$\left[\rho_p f_{pu} \frac{d}{d_p} (\omega - \omega') \right]$$

shall be taken not less than 0.17 and d' shall be no greater than $0.15d_p$.

COMMENTARY

R18.6.2.3 — When the safety or serviceability of the structure may be involved, the acceptable range of prestressing steel jacking forces or other limiting requirements should either be given or approved by the licensed design professional in conformance with the permissible stresses of 18.4 and 18.5.

R18.7.1 — Design moment strength of prestressed flexural members may be computed using strength equations similar to those for nonprestressed concrete members. The 1983 Code provided strength equations for rectangular and flanged sections, with tension reinforcement only and with tension and compression reinforcement. When part of the prestressing steel is in the compression zone, a method based on applicable conditions of equilibrium and compatibility of strains at a factored load condition should be used.

For other cross sections, the design moment strength M_p is computed by an analysis based on stress and strain compatibility, using the stress-strain properties of the prestressing steel and the assumptions given in 10.2.

R18.7.2 — Equation (18-3) may underestimate the strength of beams with high percentages of reinforcement and, for more accurate evaluations of their strength, the strain compatibility and equilibrium method should be used. Use of Eq. (18-3) is appropriate when all of the prestressed reinforcement is in the tension zone. When part of the prestressed reinforcement is in the compression zone, a strain compatibility and equilibrium method should be used.

By inclusion of the α' term, Eq. (18-3) reflects the increased value of f_{ps} obtained when compression reinforcement is provided in a beam with a large reinforcement index. When the term $[\rho_p f_{pu} (\omega) + (d_{dp}) (\omega - \omega')]$ in Eq. (18-3) is small, the neutral axis depth is small, the compressive reinforcement does not develop its yield strength, and Eq. (18-3) becomes unconservative. This is the reason why the term $[\rho_p f_{pu} (\omega) + (d_{dp}) (\omega - \omega')]$ in Eq. (18-3) may not be taken less than 0.17 if compression reinforcement is taken into account when computing f_{ps}. If the compression reinforcement is neglected when using Eq. (18-3), α' is taken as zero, then the term $[\rho_p f_{pu} (\omega) + (d_{dp}) (\omega - \omega')]$ may be less than 0.17 and an increased and correct value of f_{ps} is obtained.

When d' is large, the strain in compression reinforcement can be considerably less than its yield strain. In such a case, the compression reinforcement does not influence f_{ps} as
CODE

(b) For members with unbonded tendons and with a span-to-depth ratio of 35 or less:

\[f_{ps} = f_{se} + 10,000 + \frac{f'_c}{100\rho_p} \] \hspace{1cm} (18-4)

but \(f_{ps} \) in Eq. (18-4) shall not be taken greater than the lesser of \(f_{py} \) and \(f_{se} + 60,000 \).

(c) For members with unbonded tendons and with a span-to-depth ratio greater than 35:

\[f_{ps} = f_{se} + 10,000 + \frac{f'_c}{300\rho_p} \] \hspace{1cm} (18-5)

but \(f_{ps} \) in Eq. (18-5) shall not be taken greater than the lesser of \(f_{py} \) and \(f_{se} + 30,000 \).

18.7.3 — Nonprestressed reinforcement conforming to 3.5.3, if used with prestressing steel, shall be permitted to be considered to contribute to the tensile force and to be included in moment strength computations at a stress equal to \(f_y \). Other nonprestressed reinforcement shall be permitted to be included in strength computations only if a strain compatibility analysis is performed to determine stresses in such reinforcement.

18.8 — Limits for reinforcement of flexural members

18.8.1 — Prestressed concrete sections shall be classified as either tension-controlled, transition, or compression-controlled sections, in accordance with 10.3.3 and 10.3.4. The appropriate strength reduction factors, \(\phi \), from 9.3.2 shall apply.

18.8.2 — Total amount of prestressed and nonprestressed reinforcement in members with bonded prestressed reinforcement shall be adequate to develop a factored load at least 1.2 times the cracking load computed on the basis of the modulus of rupture \(f_c \) specified in 9.5.2.3. This provision shall be permitted to be waived for flexural members with shear and flexural strength at least twice that required by 9.2.

COMMENTARY

favorably as implied by Eq. (18-3). For this reason, the applicability of Eq. (18-3) is limited to beams in which \(d' \) is less than or equal to 0.15\(d_p \).

The term \[\rho_p \left(\frac{f_{pu}}{f'_c} \right) + \frac{(dld_p)(\omega - \omega')}{(bd_p f'_c)} \] in Eq. (18-3) may also be written \[\rho_p \left(\frac{f_{pu}}{f'_c} \right) + \frac{A_s f_y}{(bd_p f'_c)} - \frac{A_s' f_y}{(bd_p f'_c')} \]. This form may be more convenient, such as when there is no unprestressed tension reinforcement.

Equation (18-5) reflects results of tests on members with unbonded tendons and span-to-depth ratios greater than 35 (one-way slabs, flat plates, and flat slabs).\(^{18,10}\) These tests also indicate that Eq. (18-4), formerly used for all span-depth ratios, overestimates the amount of stress increase in such members. Although these same tests indicate that the moment strength of those shallow members designed using Eq. (18-4) meets the factored load strength requirements, this reflects the effect of the Code requirements for minimum bonded reinforcement, as well as the limitation on concrete tensile stress that often controls the amount of prestressing force provided.

18.8.2 — Total amount of prestressed and nonprestressed reinforcement in members with bonded prestressed reinforcement shall be adequate to develop a factored load at least 1.2 times the cracking load computed on the basis of the modulus of rupture \(f_c \) specified in 9.5.2.3. This provision shall be permitted to be waived for flexural members with shear and flexural strength at least twice that required by 9.2.

R18.8 — Limits for reinforcement of flexural members

R18.8.1 — The net tensile strain limits for compression- and tension-controlled sections given in 10.3.3 and 10.3.4 apply to prestressed sections. These provisions take the place of maximum reinforcement limits used in the 1999 Code.

The net tensile strain limits for tension-controlled sections given in 10.3.4 may also be stated in terms of \(\omega_p \) as defined in the 1999 and earlier editions of the Code. The net tensile strain limit of 0.005 corresponds to \(\omega_p = 0.32\beta_1 \) for prestressed rectangular sections.

R18.8.2 — This provision is a precaution against abrupt flexural failure developing immediately after cracking. A flexural member designed according to Code provisions requires considerable additional load beyond cracking to reach its flexural strength. Thus, considerable deflection would warn that the member strength is approaching. If the flexural strength were reached shortly after cracking, the warning deflection would not occur. Transfer of force between the concrete and the prestressing steel, and abrupt flexural failure immediately after cracking, does not occur when the prestressing steel is unbonded\(^{18,11}\); therefore, this requirement does not apply to members with unbonded tendons.
CODE

18.8.3 — Part or all of the bonded reinforcement consisting of bars or tendons shall be provided as close as practicable to the tension face in prestressed flexural members. In members prestressed with unbonded tendons, the minimum bonded reinforcement consisting of bars or tendons shall be as required by 18.9.

18.9 — Minimum bonded reinforcement

18.9.1 — A minimum area of bonded reinforcement shall be provided in all flexural members with unbonded tendons as required by 18.9.2 and 18.9.3.

COMMENTARY

R18.8.3 — Some bonded steel is required to be placed near the tension face of prestressed flexural members. The purpose of this bonded steel is to control cracking under full service loads or overloads.

R18.9 — Minimum bonded reinforcement

R18.9.1 — Some bonded reinforcement is required by the Code in members prestressed with unbonded tendons to ensure flexural performance at ultimate member strength, rather than as a tied arch, and to limit crack width and spacing at service load when concrete tensile stresses exceed the modulus of rupture. Providing the minimum bonded reinforcement as stipulated in 18.9 helps to ensure adequate performance.

Research has shown that unbonded post-tensioned members do not inherently provide large capacity for energy dissipation under severe earthquake loadings because the member response is primarily elastic. For this reason, unbonded post-tensioned structural elements reinforced in accordance with the provisions of this section should be assumed to carry only vertical loads and to act as horizontal diaphragms between energy dissipating elements under earthquake loadings of the magnitude defined in 21.1.1. The minimum bonded reinforcement areas required by Eq. (18-6) and (18-8) are absolute minimum areas independent of grade of steel or design yield strength.

R18.9.2 — The minimum amount of bonded reinforcement for members other than two-way flat slab systems is based on research comparing the behavior of bonded and unbonded post-tensioned beams. Based on this research, it is advisable to apply the provisions of 18.9.2 also to one-way slab systems.

R18.9.3 — The minimum amount of bonded reinforcement in two-way flat slab systems is based on reports by Joint ACI-ASCE Committee 423. Limited research available for two-way flat slabs with drop panels indicates that behavior of these particular systems is similar to the behavior of flat plates. Reference 18.11 was revised by Committee 423 in 1983 to clarify that Section 18.9.3 applies to two-way flat slab systems.

18.9.2 — Except as provided in 18.9.3, minimum area of bonded reinforcement shall be computed by

\[A_s = 0.004A_{ct} \] \hspace{1cm} (18-6)

where \(A_{ct} \) is area of that part of cross section between the flexural tension face and center of gravity of gross section.

18.9.2.1 — Bonded reinforcement required by Eq. (18-6) shall be uniformly distributed over precompressed tensile zone as close as practicable to extreme tension fiber.

18.9.2.2 — Bonded reinforcement shall be required regardless of service load stress conditions.

18.9.3 — For two-way flat slab systems, minimum area and distribution of bonded reinforcement shall be as required in 18.9.3.1, 18.9.3.2, and 18.9.3.3.
18.9.3.1 — Bonded reinforcement shall not be required in positive moment areas where f_t, the extreme fiber stress in tension in the precompressed tensile zone at service loads, (after allowance for all prestress losses) does not exceed $2\sqrt{f'_c}$.

18.9.3.2 — In positive moment areas where computed tensile stress in concrete at service load exceeds $2\sqrt{f'_c}$, minimum area of bonded reinforcement shall be computed by

$$A_s = \frac{N_c}{0.5 f_y}$$ \hspace{1cm} (18-7)

where the value of f_y used in Eq. (18-7) shall not exceed 60,000 psi. Bonded reinforcement shall be uniformly distributed over precompressed tensile zone as close as practicable to the extreme tension fiber.

18.9.3.3 — In negative moment areas at column supports, the minimum area of bonded reinforcement A_s in the top of the slab in each direction shall be computed by

$$A_s = 0.00075 A_{cf}$$ \hspace{1cm} (18-8)

where A_{cf} is the larger gross cross-sectional area of the slab-beam strips in two orthogonal equivalent frames intersecting at a column in a two-way slab.

Bonded reinforcement required by Eq. (18-8) shall be distributed between lines that are 1.5h outside opposite faces of the column support. At least four bars or wires shall be provided in each direction. Spacing of bonded reinforcement shall not exceed 12 in.

18.9.4 — Minimum length of bonded reinforcement required by 18.9.2 and 18.9.3 shall be as required in 18.9.4.1, 18.9.4.2, and 18.9.4.3.

18.9.4.1 — In positive moment areas, minimum length of bonded reinforcement shall be one-third the clear span length, l_n, and centered in positive moment area.

18.9.4.2 — In negative moment areas, bonded reinforcement shall extend one-sixth the clear span, l_n, on each side of support.
CODE

18.9.4.3 — Where bonded reinforcement is provided for ϕM_n in accordance with 18.7.3, or for tensile stress conditions in accordance with 18.9.3.2, minimum length also shall conform to provisions of Chapter 12.

18.10 — Statically indeterminate structures

18.10.1 — Frames and continuous construction of prestressed concrete shall be designed for satisfactory performance at service load conditions and for adequate strength.

18.10.2 — Performance at service load conditions shall be determined by elastic analysis, considering reactions, moments, shears, and axial forces induced by prestressing, creep, shrinkage, temperature change, axial deformation, restraint of attached structural elements, and foundation settlement.

18.10.3 — Moments used to compute required strength shall be the sum of the moments due to reactions induced by prestressing (with a load factor of 1.0) and the moments due to factored loads. Adjustment of the sum of these moments shall be permitted as allowed in 18.10.4.

18.10.4 — Redistribution of moments in continuous prestressed flexural members

18.10.4.1 — Where bonded reinforcement is provided at supports in accordance with 18.9, it shall be permitted to decrease negative or positive moments calculated by elastic theory for any assumed loading, in accordance with 8.4.

18.10.4.2 — The reduced moment shall be used for calculating redistributed moments at all other sections within the spans. Static equilibrium shall be maintained after redistribution of moments for each loading arrangement.

COMMENTARY

R18.10 — Statically indeterminate structures

R18.10.3 — For statically indeterminate structures, the moments due to reactions induced by prestressing forces, referred to as secondary moments, are significant in both the elastic and inelastic states (see References 18.19 through 18.21). The elastic deformations caused by a nonconcordant tendon change the amount of inelastic rotation required to obtain a given amount of moment redistribution. Conversely, for a beam with a given inelastic rotational capacity, the amount by which the moment at the support may be varied is changed by an amount equal to the secondary moment at the support due to prestressing. Thus, the Code requires that secondary moments be included in determining design moments.

To determine the moments used in design, the order of calculation should be: (a) determine moments due to dead and live load; (b) modify by algebraic addition of secondary moments; (c) redistribute as permitted. A positive secondary moment at the support caused by a tendon transformed downward from a concordant profile will reduce the negative moments near the supports and increase the positive moments in the midspan regions. A tendon that is transformed upward will have the reverse effect.

R18.10.4 — Redistribution of moments in continuous prestressed flexural members

The provisions for redistribution of moments given in 8.4 apply equally to prestressed members. See Reference 18.22 for a comparison of research results and to Section 18.10.4 of the 1999 Code.

For the moment redistribution principles of 18.10.4 to be applicable to beams with unbonded tendons, it is necessary that such beams contain sufficient bonded reinforcement to ensure they will act as beams after cracking and not as a series of tied arches. The minimum bonded reinforcement requirements of 18.9 serve this purpose.
CODE

18.11 — Compression members — Combined flexure and axial loads

18.11.1 — Prestressed concrete members subject to combined flexure and axial load, with or without nonprestressed reinforcement, shall be proportioned by the strength design methods of this Code. Effects of prestress, creep, shrinkage, and temperature change shall be included.

18.11.2 — Limits for reinforcement of prestressed compression members

18.11.2.1 — Members with average compressive stress in concrete less than 225 psi, due to effective prestress force only, shall have minimum reinforcement in accordance with 7.10, 10.9.1 and 10.9.2 for columns, or 14.3 for walls.

18.11.2.2 — Except for walls, members with average compressive stress in concrete, due to effective prestress force only, equal to or greater than 225 psi, shall have all tendons enclosed by spirals or lateral ties in accordance with (a) through (d):

(a) Spirals shall conform to 7.10.4;

(b) Lateral ties shall be at least No. 3 in size or welded wire reinforcement of equivalent area, and shall be spaced vertically not to exceed 48 tie bar or wire diameters, or the least dimension of the compression member;

(c) Ties shall be located vertically not more than half a tie spacing above top of footing or slab in any story, and not more than half a tie spacing below the lowest horizontal reinforcement in members supported above;

(d) Where beams or brackets frame into all sides of a column, ties shall be terminated not more than 3 in. below lowest reinforcement in such beams or brackets.

18.11.2.3 — For walls with average compressive stress in concrete due to effective prestress force only equal to or greater than 225 psi, minimum reinforcement required by 14.3 shall not apply where structural analysis shows adequate strength and stability.

18.12 — Slab systems

18.12.1 — Factored moments and shears in prestressed slab systems reinforced for flexure in more than one direction shall be determined in accordance with provisions of 13.7 (excluding 13.7.7.4 and 13.7.7.5), or by more detailed design procedures.

COMMENTARY

R18.11 — Compression members — Combined flexure and axial loads

R18.11.2 — Limits for reinforcement of prestressed compression members

R18.11.2.3 — The minimum amounts of reinforcement in 14.3 need not apply to prestressed concrete walls, provided the average compressive stress in concrete due to effective prestress force only is 225 psi or greater and a structural analysis is performed to show adequate strength and stability with lower amounts of reinforcement.

R18.12 — Slab systems

R18.12.1 — Use of the equivalent frame method of analysis (see 13.7) or more precise analysis procedures is required for determination of both service and factored moments and shears for prestressed slab systems. The equivalent frame method of analysis has been shown by tests of large structural
18.12.2 — ϕM_n of prestressed slabs required by 9.3 at every section shall be greater than or equal to M_{consid} considering 9.2, 18.10.3, and 18.10.4. ϕV_n of prestressed slabs at columns required by 9.3 shall be greater than or equal to V_{u} considering 9.2, 11.1, 11.11.2, and 11.11.6.2.

18.12.3 — At service load conditions, all service-ability limitations, including limits on deflections, shall be met, with appropriate consideration of the factors listed in 18.10.2.

18.12.4 — For uniformly distributed loads, spacing of tendons or groups of tendons in at least one direction shall not exceed the smaller of eight times the slab thickness and 5 ft. Spacing of tendons also shall provide a minimum average effective prestress of 125 psi on the slab section tributary to the tendon or tendon group. For slabs with varying cross section along the slab span, either parallel or perpendicular to the tendon or tendon group, the minimum average effective prestress of 125 psi is required at every cross section tributary to the tendon or tendon group along the span. Concentrated loads and opening in slabs shall be considered when determining tendon spacing.

R18.12.2 — Tests indicate that the moment and shear strength of prestressed slabs is controlled by total prestressing steel strength and by the amount and location of nonprestressed reinforcement, rather than by tendon distribution. (See References 18.14 through 18.16, and 18.23 through 18.25.) The referenced research also shows that analysis using prismatic sections or other approximations of stiffness may provide erroneous results on the unsafe side. Section 13.7.7.4 is excluded from application to prestressed slab systems because it relates to reinforced slabs designed by the direct design method, and because moment redistribution for prestressed slabs is covered in 18.10.4. Section 13.7.7.5 does not apply to prestressed slab systems because the distribution of moments between column strips and middle strips required by 13.7.7.5 is based on tests for nonprestressed concrete slabs. Simplified methods of analysis using average coefficients do not apply to prestressed concrete slab systems.

R18.12.3 — For prestressed flat slabs continuous over two or more spans in each direction, the span-thickness ratio generally should not exceed 42 for floors and 48 for roofs; these limits may be increased to 48 and 52, respectively, if calculations verify that both short- and long-term deflection, camber, and vibration frequency and amplitude are not objectionable.

Short- and long-term deflection and camber should be computed and checked against the requirements of service-ability of the structure.

The maximum length of a slab between construction joints is generally limited to 100 to 150 ft to minimize the effects of slab shortening, and to avoid excessive loss of prestress due to friction.

R18.12.4 — This section provides specific guidance concerning tendon distribution that will permit the use of banded tendon distributions in one direction. This method of tendon distribution has been shown to provide satisfactory performance by structural research. The minimum average effective prestress of 125 psi was used in two-way test panels in the early 70s to address punching shear concerns of lightly reinforced slabs. For this reason, the minimum effective prestress must be provided at every cross section.

If the slab thickness varies along the span of a slab or perpendicular to the span of a slab, resulting in a varying slab cross section, the 125 psi minimum effective prestress and the maximum tendon spacing is required at every cross section tributary to the tendon or group of tendons along the span, considering both the thinner and the thicker slab sections. Note that this may result in higher than the minimum f_{pc} in thinner cross sections, and tendons spaced
18.12.5 — In slabs with unbonded tendons, bonded reinforcement shall be provided in accordance with 18.9.3 and 18.9.4.

18.12.6 — Except as permitted in 18.12.7, in slabs with unbonded tendons, a minimum of two 1/2 in. diameter or larger, seven-wire post-tensioned strands shall be provided in each direction at columns, either passing through or anchored within the region bounded by the longitudinal reinforcement of the column. Outside column and shear cap faces, these two structural integrity tendons shall pass under any orthogonal tendons in adjacent spans. Where the two structural integrity tendons are anchored within the region bounded by the longitudinal reinforcement of the column, the anchorage shall be located beyond the column centroid and away from the anchored span.

R18.12.6 — Unbonded prestressing tendons that pass through the slab-column joint at any location over the depth of the slab suspend the slab following a punching shear failure, provided the tendons are continuous through or anchored within the region bounded by the longitudinal reinforcement of the column and are prevented from bursting through the top surface of the slab. Between column or shear cap faces, structural integrity tendons should pass below the orthogonal tendons from adjacent spans so that vertical movements of the integrity tendons are restrained by the orthogonal tendons. Where tendons are distributed in one direction and banded in the orthogonal direction, this requirement can be satisfied by first placing the integrity tendons for the distributed tendon direction and then placing the banded tendons. Where tendons are distributed in both directions, weaving of tendons is necessary and use of 18.12.7 may be an easier approach.

18.12.7 — Prestressed slabs not satisfying 18.12.6 shall be permitted provided they contain bottom reinforcement in each direction passing within the region bounded by the longitudinal reinforcement of the column and anchored at exterior supports as required by 13.3.8.5. The area of bottom reinforcement in each direction shall be not less than 1.5 times that required by Eq. (10-3) and not less than \[300b_w d f_y\], where \(b_w\) is the width of the column face through which the reinforcement passes. Minimum extension of these bars beyond the column or shear cap face shall be equal to or greater than the bar development length required by 12.2.1.

R18.12.7 — In some prestressed slabs, tendon layout constraints make it difficult to provide the structural integrity tendons required by 18.12.6. In such situations, the structural integrity tendons can be replaced by deformed bar bottom reinforcement.

18.12.8 — In lift slabs, bonded bottom reinforcement shall be detailed in accordance with 13.3.8.6.
R18.13 — Post-tensioned tendon anchorage zones

Section 18.13 was extensively revised in the 1999 Code and was made compatible with the 1996 AASHTO “Standard Specifications for Highway Bridges” and the recommendations of NCHRP Report 356. Following the adoption by AASHTO 1994 of comprehensive provisions for post-tensioned anchorage zones, ACI Committee 318 revised the Code to be generally consistent with the AASHTO requirements. Thus, the highly detailed AASHTO provisions for analysis and reinforcement detailing are deemed to satisfy the more general ACI 318 requirements. In the specific areas of anchorage device evaluation and acceptance testing, ACI 318 incorporates the detailed AASHTO provisions by reference.

R18.13.1 — Anchorage zone

The anchorage zone shall be considered as composed of two zones:

(a) The local zone is the rectangular prism (or equivalent rectangular prism for circular or oval anchorages) of concrete immediately surrounding the anchorage device and any confining reinforcement;

(b) The general zone is the rectangular prism of concrete extending from 1.0 to 1.5 times the height of the anchorage device, depending on the location of the anchorage device within the member.

Fig. R18.13.1—anchorage zones.
(b) The general zone is the anchorage zone as defined in 2.2 and includes the local zone.

18.13.2 — Local zone

18.13.2.1 — Design of local zones shall be based upon the factored prestressing force, P_{pu}, and the requirements of 9.2.5 and 9.3.2.5.

18.13.2.2 — Local-zone reinforcement shall be provided where required for proper functioning of the anchorage device.

18.13.2.3 — Local-zone requirements of 18.13.2.2 are satisfied by 18.14.1 or 18.15.1 and 18.15.2.

R18.13.2 — Local zone

The local zone resists the very high local stresses introduced by the anchorage device and transfers them to the remainder of the anchorage zone. The behavior of the local zone is strongly influenced by the specific characteristics of the anchorage device and its confining reinforcement, and less influenced by the geometry and loading of the overall structure. Local-zone design sometimes cannot be completed until specific anchorages are determined at the shop drawing stage. When special anchorages are used, the anchorage device supplier should furnish the test information to show the device is satisfactory under AASHTO “Standard Specifications for Highway Bridges,” Division II, Article 10.3.2.3 and provide information regarding necessary conditions for use of the device. The main considerations in local-zone design are the effects of the high bearing pressure and the adequacy of any confining reinforcement provided to increase the capacity of the concrete resisting bearing stresses.

The factored prestressing force P_{pu} is the product of the load factor (1.2 from Section 9.2.5) and the maximum prestressing force allowed. Under 18.5.1, this is usually overstressing due to $0.94 f_{py}$ but not greater than $0.8 f_{pu}$, which is permitted for short periods of time.

$$P_{pu} = (1.2)(0.80) f_{pu} A_{ps} = 0.96 f_{pu} A_{ps}$$

18.13.3 — General zone

18.13.3.1 — Design of general zones shall be based upon the factored prestressing force, P_{pu}, and the requirements of 9.2.5 and 9.3.2.5.

18.13.3.2 — General-zone reinforcement shall be provided where required to resist bursting, spalling, and longitudinal edge tension forces induced by anchorage devices. Effects of abrupt change in section shall be considered.

18.13.3.3 — The general-zone requirements of 18.13.3.2 are satisfied by 18.14.4, 18.15.5, 18.13.6 and whichever one of 18.14.2 or 18.14.3 or 18.15.3 is applicable.

R18.13.3 — General zone

Within the general zone, the usual assumption of beam theory that plane sections remain plane is not valid.

Design should consider all regions of tensile stresses that can be caused by the tendon anchorage device, including bursting, spalling, and edge tension as shown in Fig. R18.13.1(c). Also, the compressive stresses immediately ahead [as shown in Fig. R18.13.1(b)] of the local zone should be checked. Sometimes, reinforcement requirements cannot be determined until specific tendon and anchorage device layouts are determined at the shop-drawing stage. Design and approval responsibilities should be clearly assigned in the project drawings and specifications.

Abrupt changes in section can cause substantial deviation in force paths. These deviations can greatly increase tension forces as shown in Fig. R18.13.3.
18.13.4 — Nominal material strengths

18.13.4.1 — Tensile stress at nominal strength of bonded reinforcement is limited to f_y for nonprestressed reinforcement and to f_{py} for prestressed reinforcement. Tensile stress at nominal strength of unbonded prestressed reinforcement for resisting tensile forces in the anchorage zone shall be limited to $f_{ps} = f_{se} + 10,000$.

18.13.4.2 — Except for concrete confined within spirals or hoops providing confinement equivalent to that corresponding to Eq. (10-5), compressive strength in concrete at nominal strength in the general zone shall be limited to $0.7 \lambda f'_{ct}$.

18.13.4.3 — Compressive strength of concrete at time of post-tensioning shall be specified in the contract documents. Unless oversize anchorage devices are sized to compensate for the lower compressive strength or the prestressing steel is stressed to no more than 50 percent of the final prestressing force, prestressing steel shall not be stressed until compressive strength of concrete as indicated by tests consistent with the curing of the member, is at least 4000 psi for multistrand tendons or at least 2500 psi for single-strand or bar tendons.

R18.13.4 — Nominal material strengths

Some inelastic deformation of concrete is expected because anchorage zone design is based on a strength approach. The low value for the nominal compressive strength for unconfined concrete reflects this possibility. For well-confined concrete, the effective compressive strength could be increased (See Reference 18.28). The value for nominal tensile strength of bonded prestressing steel is limited to the yield strength of the prestressing steel because Eq. (18-3) may not apply to these nonflexural applications. The value for unbonded prestressing steel is based on the values of 18.7.2(b) and (c), but is somewhat limited for these short-length, nonflexural applications. Test results given in Reference 18.28 indicate that the compressive stress introduced by auxiliary prestressing applied perpendicular to the axis of the main tendons is effective in increasing the anchorage zone strength. The inclusion of the λ factor for lightweight concrete reflects its lower tensile strength, which is an indirect factor in limiting compressive stresses, as well as the wide scatter and brittleness exhibited in some lightweight concrete anchorage zone tests.

To limit early shrinkage cracking, monostrand tendons are sometimes stressed at concrete strengths less than 2500 psi. In such cases, either oversized monostrand anchorages are used, or the strands are stressed in stages, often to levels 1/3 to 1/2 the final prestressing force.
CODE

18.13.5 — Design methods

18.13.5.1 — The following methods shall be permitted for the design of general zones provided that the specific procedures used result in prediction of strength in substantial agreement with results of comprehensive tests:

(a) Equilibrium-based plasticity models (strut-and-tie models);

(b) Linear stress analysis (including finite element analysis or equivalent); or

(c) Simplified equations where applicable.

18.13.5.2 — Simplified equations shall not be used where member cross sections are nonrectangular, where discontinuities in or near the general zone cause deviations in the force flow path, where minimum edge distance is less than 1-1/2 times the anchorage device lateral dimension in that direction, or where multiple anchorage devices are used in other than one closely spaced group.

COMMENTARY

R18.13.5 — Design methods

The list of design methods in 18.13.5.1 includes those procedures for which fairly specific guidelines have been given in References 18.27 and 18.28. These procedures have been shown to be conservative predictors of strength when compared to test results. The use of strut-and-tie models is especially helpful for general zone design. In many anchorage applications, where substantial or massive concrete regions surround the anchorages, simplified equations can be used except in the cases noted in 18.13.5.2.

For many cases, simplified equations based on References 18.27 and 18.28 can be used. Values for the magnitude of the bursting force, \(T_{\text{burst}} \), and its centroidal distance from the major bearing surface of the anchorage, \(d_{\text{burst}} \), may be estimated from Eq. (R18-1) and (R18-2), respectively. The terms of Eq. (R18-1) and (R18-2) are shown in Fig. R18.13.5 for a prestressing force with small eccentricity. In the applications of Eq. (R18-1) and (R18-2), the specified stressing sequence should be considered if more than one tendon is present.

\[
T_{\text{burst}} = 0.25 \Sigma P_{pu} \left(1 - \frac{h_{\text{anc}}}{h} \right) \quad \text{(R18-1)}
\]

\[
d_{\text{burst}} = 0.5(h - 2e_{\text{anc}}) \quad \text{(R18-2)}
\]

where

- \(\Sigma P_{pu} \) = the sum of the \(P_{pu} \) forces from the individual tendons, lb;
- \(h_{\text{anc}} \) = the depth of anchorage device or single group of closely spaced devices in the direction considered, in.;
- \(e_{\text{anc}} \) = the eccentricity (always taken as positive) of the anchorage device or group of closely spaced devices with respect to the centroid of the cross section, in.;
- \(h \) = the depth of the cross section in the direction considered, in.

Fig. R18.13.5—Strut-and-tie model example.
18.13.5.3 — The stressing sequence shall be specified on the design drawings and considered in the design.

18.13.5.4 — Three-dimensional effects shall be considered in design and analyzed using three-dimensional procedures or approximated by considering the summation of effects for two orthogonal planes.

18.13.5.5 — For anchorage devices located away from the end of the member, bonded reinforcement shall be provided to transfer at least $0.35P_{pu}$ into the concrete section behind the anchor. Such reinforcement shall be placed symmetrically around the anchorage devices and shall be fully developed both behind and ahead of the anchorage devices.

18.13.5.6 — Where tendons are curved in the general zone, except for monostrand tendons in slabs or where analysis shows reinforcement is not required, bonded reinforcement shall be provided to resist radial and splitting forces.

18.13.5.7 — Except for monostrand tendons in slabs or where analysis shows reinforcement is not required,
minimum reinforcement with a nominal tensile strength equal to 2 percent of each factored prestressing force shall be provided in orthogonal directions parallel to the back face of all anchorage zones to limit spalling.

18.13.5.8 — Tensile strength of concrete shall be neglected in calculations of reinforcement requirements.

18.13.6 — Detailing requirements

Selection of reinforcement sizes, spacings, cover, and other details for anchorage zones shall make allowances for tolerances on the bending, fabrication, and placement of reinforcement, for the size of aggregate, and for adequate placement and consolidation of the concrete.

18.14 — Design of anchorage zones for monostrand or single 5/8 in. diameter bar tendons

18.14.1 — Local zone design

Monostrand or single 5/8 in. or smaller diameter bar anchorage devices and local zone reinforcement shall meet the requirements of ACI 423.7 or the special anchorage device requirements of 18.15.2.

18.14.2 — General-zone design for slab tendons

18.14.2.1 — For anchorage devices for 0.5 in. or smaller diameter strands in normalweight concrete slabs, minimum reinforcement meeting the requirements of 18.14.2.2 and 18.14.2.3 shall be provided unless a detailed analysis satisfying 18.13.5 shows such reinforcement is not required.

18.14.2.2 — Two horizontal bars at least No. 4 in size shall be provided parallel to the slab edge. They shall be permitted to be in contact with the front face of the anchorage device and shall be within a distance of \(1/2h\) ahead of each device. Those bars shall extend at least 6 in. either side of the outer edges of each device.

18.14.2.3 — If the center-to-center spacing of anchorage devices is 12 in. or less, the anchorage devices shall be considered as a group. For each group of six or more anchorage devices, \(n + 1\) hairpin bars or closed stirrups at least No. 3 in size shall be provided, where \(n\) is the number of anchorage devices. One hairpin bar or stirrup shall be placed between each anchorage device and one on each side of the group. The hairpin bars or stirrups shall be provided to meet the requirements of Reference 18.28.

R18.14.2 — General-zone design for slab tendons

For monostrand slab tendons, the general-zone minimum reinforcement requirements are based on the recommendations of Joint ACI-ASCE Committee 423,18.11 which shows typical details. The horizontal bars parallel to the edge required by 18.14.2.2 should be continuous where possible.

The tests on which the recommendations of Reference 18.28 were based were limited to anchorage devices for 1/2 in. diameter, 270 ksi strand, unbonded tendons in normal-weight concrete. Thus, for larger strand anchorage devices and for all use in lightweight concrete slabs, Committee 423 recommended that the amount and spacing of reinforcement should be conservatively adjusted to provide for the larger anchorage force and smaller splitting tensile strength of lightweight concrete.18.11

Both References 18.11 and 18.28 recommend that hairpin bars also be furnished for anchorages located within 12 in. of slab corners to resist edge tension forces. The words “ahead of” in 18.14.2.3 have the meaning shown in Fig. R18.13.1.

In those cases where multistrand anchorage devices are used for slab tendons, 18.15 is applicable.
placed with the legs extending into the slab perpen-
dicular to the edge. The center portion of the hairpin
bars or stirrups shall be placed perpendicular to the
plane of the slab from $\frac{3h}{8}$ to $\frac{h}{2}$ ahead of the
anchorage devices.

18.14.2.4 — For anchorage devices not conforming
to 18.14.2.1, minimum reinforcement shall be based
upon a detailed analysis satisfying 18.13.5.

18.14.3 — General-zone design for groups of
monostrand tendons in beams and girders

Design of general zones for groups of monostrand
tendons in beams and girders shall meet the require-
ments of 18.13.3 through 18.13.5.

18.15 — Design of anchorage zones for
multistrand tendons

18.15.1 — Local zone design

Basic multistrand anchorage devices and local zone
reinforcement shall meet the requirements of AASHTO
“Standard Specification for Highway Bridges,” Division I,
Articles 9.21.7.2.2 through 9.21.7.2.4.

Special anchorage devices shall satisfy the tests
required in AASHTO “Standard Specification for
Highway Bridges,” Division I, Article 9.21.7.3 and
described in AASHTO “Standard Specification for
Highway Bridges,” Division II, Article 10.3.2.3.

18.15.2 — Use of special anchorage devices

Where special anchorage devices are to be used,
supplemental skin reinforcement shall be furnished in
the corresponding regions of the anchorage zone, in
addition to the confining reinforcement specified for the
anchorage device. This supplemental reinforcement
shall be similar in configuration and at least equivalent
in volumetric ratio to any supplementary skin reinforce-
ment used in the qualifying acceptance tests of the
anchorage device.

The bursting reinforcement perpendicular to the plane of the
slab required by 18.14.2.3 for groups of relatively closely
spaced tendons should also be provided in the case of
widely spaced tendons if an anchorage device failure could
cause more than local damage.

R18.14.3 — General-zone design for groups of
monostrand tendons in beams and girders

Groups of monostrand tendons with individual monostrand
anchorage devices are often used in beams and girders.
Anchorage devices can be treated as closely spaced if their
center-to-center spacing does not exceed 1.5 times the width
of the anchorage device in the direction considered. If a
beam or girder has a single anchorage device or a single
group of closely spaced anchorage devices, the use of
simplified equations such as those given in R18.13.5 is
allowed, unless 18.13.5.2 governs. More complex conditions
can be designed using strut-and-tie models. Detailed
recommendations for use of such models are given in
References 18.26 and 18.29 as well as in R18.13.5.

R18.15 — Design of anchorage zones for
multistrand tendons

R18.15.1 — Local zone design

See R18.13.2.

R18.15.2 — Use of special anchorage devices

Skin reinforcement is reinforcement placed near the outer faces
in the anchorage zone to limit local crack width and spacing.
Reinforcement in the general zone for other actions (flexure,
shear, shrinkage, temperature, and similar) may be used in
satisfying the supplementary skin reinforcement requirement.
Determination of the supplementary skin reinforcement
depends on the anchorage device hardware used and frequently
cannot be determined until the shop-drawing stage.
18.15.3 — General-zone design

Design for general zones for multistrand tendons shall meet the requirements of 18.13.3 through 18.13.5.

18.16 — Corrosion protection for unbonded tendons

18.16.1 — Unbonded prestressing steel shall be encased with sheathing. The prestressing steel shall be completely coated and the sheathing around the prestressing steel filled with suitable material to inhibit corrosion.

18.16.2 — Sheathing shall be watertight and continuous over entire length to be unbonded.

18.16.3 — For applications in corrosive environments, the sheathing shall be connected to all stressing, intermediate and fixed anchorages in a watertight fashion.

18.16.4 — Unbonded single-strand tendons shall be protected against corrosion in accordance with ACI 423.7.

18.17 — Post-tensioning ducts

18.17.1 — Ducts for grouted tendons shall be mortar-tight and nonreactive with concrete, prestressing steel, grout, and corrosion inhibitor.

18.17.2 — Ducts for grouted single-wire, single-strand, or single-bar tendons shall have an inside diameter at least 1/4 in. larger than the prestressing steel diameter.

18.17.3 — Ducts for grouted multiple wire, multiple strand, or multiple bar tendons shall have an inside cross-sectional area at least two times the cross-sectional area of the prestressing steel.

18.17.4 — Ducts shall be maintained free of ponded water if members to be grouted are exposed to temperatures below freezing prior to grouting.

18.18 — Grout for bonded tendons

18.18.1 — Grout shall consist of portland cement and water; or portland cement, sand, and water.

R18.15 — Corrosion protection for unbonded tendons

R18.16.1 — Suitable material for corrosion protection of unbonded prestressing steel should have the properties identified in Section 5.1 of Reference 18.29.

R18.16.2 — Typically, sheathing is a continuous, seamless, high-density polyethylene material that is extruded directly onto the coated prestressing steel.

R18.16.4 — In the 1989 Code, corrosion protection requirements for unbonded single-strand tendons were added in accordance with the Post-Tensioning Institute’s “Specification for Unbonded Single Strand Tendons.” In the 2002 Code, the reference changed to ACI 423.6. In the 2008 Code, the reference was changed to ACI 423.7.

R18.17 — Post-tensioning ducts

R18.17.4 — Water in ducts may cause distress to the surrounding concrete upon freezing. When strands are present, ponded water in ducts should also be avoided. A corrosion inhibitor should be used to provide temporary corrosion protection if prestressing steel is exposed to prolonged periods of moisture in the ducts before grouting.

R18.18 — Grout for bonded tendons

Proper grout and grouting procedures are critical to post-tensioned construction. Grout provides bond between the prestressing steel and the duct, and provides corrosion protection to the prestressing steel.
18.18.2 — Materials for grout shall conform to 18.18.2.1 through 18.18.2.4.

18.18.2.1 — Portland cement shall conform to 3.2.

18.18.2.2 — Water shall conform to 3.4.

18.18.2.3 — Sand, if used, shall conform to ASTM C144 except that gradation shall be permitted to be modified as necessary to obtain satisfactory workability.

18.18.2.4 — Admixtures conforming to 3.6 and known to have no injurious effects on grout, steel, or concrete shall be permitted. Calcium chloride shall not be used.

18.18.3 — Selection of grout proportions

18.18.3.1 — Proportions of materials for grout shall be based on either (a) or (b):

(a) Results of tests on fresh and hardened grout prior to beginning grouting operations; or

(b) Prior documented experience with similar materials and equipment and under comparable field conditions.

18.18.3.2 — Cement used in the Work shall correspond to that on which selection of grout proportions was based.

18.18.3.3 — Water content shall be minimum necessary for proper pumping of grout; however, water-cement ratio shall not exceed 0.45 by weight.

18.18.3.4 — Water shall not be added to increase grout flowability that has been decreased by delayed use of the grout.

18.18.4 — Mixing and pumping grout

18.18.4.1 — Grout shall be mixed in equipment capable of continuous mechanical mixing and agitation that will produce uniform distribution of materials, passed through screens, and pumped in a manner that will completely fill the ducts.

R18.18.2 — The limitations on admixtures in 3.6 apply to grout. Substances known to be harmful to tendons, grout, or concrete are chlorides, fluorides, sulfites, and nitrates. Aluminum powder or other expansive admixtures, when approved, should produce an unconfined expansion of 5 to 10 percent. Neat cement grout is used in almost all building construction. Use of finely graded sand in the grout should only be considered with large ducts having large void areas.

R18.18.3 — Selection of grout proportions

Grout proportioned in accordance with these provisions will generally lead to 7-day compressive strength on standard 2 in. cubes in excess of 2500 psi and 28-day strengths of about 4000 psi. The handling and placing properties of grout are usually given more consideration than strength when designing grout mixtures.

R18.18.4 — Mixing and pumping grout

In an ambient temperature of 35 °F, grout with an initial minimum temperature of 60 °F may require as much as 5 days to reach 800 psi. A minimum grout temperature of 60 °F is suggested because it is consistent with the recommended minimum temperature for concrete placed at an ambient temperature.
CODE

18.18.4.2 — Temperature of members at time of grouting shall be above 35 °F and shall be maintained above 35 °F until field-cured 2 in. cubes of grout reach a minimum compressive strength of 800 psi.

18.18.4.3 — Grout temperatures shall not be above 90 °F during mixing and pumping.

18.19 — Protection for prestressing steel

Burning or welding operations in the vicinity of prestressing steel shall be performed so that prestressing steel is not subject to excessive temperatures, welding sparks, or ground currents.

18.20 — Application and measurement of prestressing force

18.20.1 — Prestressing force shall be determined by both of (a) and (b):

(a) Measurement of steel elongation. Required elongation shall be determined from average load-elongation curves for the prestressing steel used;

(b) Observation of jacking force on a calibrated gage or load cell or by use of a calibrated dynamometer.

Cause of any difference in force determination between (a) and (b) that exceeds 5 percent for pretensioned elements or 7 percent for post-tensioned construction shall be ascertained and corrected.

18.20.2 — Where the transfer of force from the bulkheads of pretensioning bed to the concrete is accomplished by flame cutting prestressing steel, cutting points and cutting sequence shall be predetermined to avoid undesired temporary stresses.

18.20.3 — Long lengths of exposed pretensioned strand shall be cut near the member to minimize shock to concrete.

COMMENTARY

temperature of 35 °F. Quickset grouts, when approved, may require shorter periods of protection, and the recommendations of the suppliers should be followed. Test cubes should be cured under temperature and moisture conditions as close as possible to those of the grout in the member. Grout temperatures in excess of 90 °F will lead to difficulties in pumping.

R18.20 — Application and measurement of prestressing force

R18.20.1 — Elongation measurements for prestressed elements should be in accordance with the procedures outlined in the Manual for Quality Control for Plants and Production Structural Precast Concrete Products, published by the Precast/Prestressed Concrete Institute.

Section 18.18.1 of the 1989 Code was revised to permit 7 percent tolerance in prestressing steel force determined by gauge pressure and elongation measurements for post-tensioned construction. Elongation measurements for post-tensioned construction are affected by several factors that are less significant, or that do not exist, for pretensioned elements. The friction along prestressing steel in post-tensioning applications may be affected to varying degrees by placing tolerances and small irregularities in tendon profile due to concrete placement. The friction coefficients between the prestressing steel and the duct are also subject to variation. The 5 percent tolerance that has appeared since the 1963 Code was proposed by Committee 423 in 1958, and primarily reflected experience with production of pretensioned concrete elements. Because the tendons for pretensioned elements are usually stressed in the air with minimal friction effects, the 5 percent tolerance for such elements was retained.
CODE

18.20.4 — Total loss of prestress due to unreplaced broken prestressing steel shall not exceed 2 percent of total prestress.

18.21 — Post-tensioning anchorages and couplers

18.21.1 — Anchorages and couplers for bonded and unbonded tendons shall develop at least 95 percent of the f_{pu} when tested in an unbonded condition, without exceeding anticipated set. For bonded tendons, anchorages and couplers shall be located so that 100 percent of f_{pu} shall be developed at critical sections after the prestressing steel is bonded in the member.

COMMENTARY

R18.20.4 — This provision applies to all prestressed concrete members. For cast-in-place post-tensioned slab systems, a member should be that portion considered as an element in the design, such as the joist and effective slab width in one-way joist systems, or the column strip or middle strip in two-way flat plate systems.

R18.21.1 — In the 1986 interim Code, the separate provisions for strength of unbonded and bonded tendon anchorages and couplers presented in 18.19.1 and 18.19.2 of the 1983 Code were combined into a single revised 18.19.1 covering anchorages and couplers for both unbonded and bonded tendons. Since the 1989 Code, the required strength of the tendon-anchorage or tendon-coupler assemblies for both unbonded and bonded tendons, when tested in an unbonded state, is based on 95 percent of the specified breaking strength of the prestressing steel in the test. The prestressing steel material should comply with the minimum provisions of the applicable ASTM specifications as outlined in 3.5.5. The specified strength of anchorages and couplers exceeds the maximum design strength of the prestressing steel by a substantial margin and, at the same time, recognizes the stress-riser effects associated with most available post-tensioning anchorages and couplers. Anchorage and coupler strength should be attained with a minimum amount of permanent deformation and successive set, recognizing that some deformation and set will occur when testing to failure. Tendon assemblies should conform to the 2 percent elongation requirements in ACI 30118.34 and industry recommendations.18.29 Anchorages and couplers for bonded tendons that develop less than 100 percent of the specified breaking strength of the prestressing steel should be used only where the bond transfer length between the anchorage or coupler and critical sections equals or exceeds that required to develop the prestressing steel strength. This bond length may be calculated by the results of tests of bond characteristics of untensioned prestressing strand,18.35 or by bond tests on other prestressing steel materials, as appropriate.

R18.21.2 — Couplers shall be placed in areas approved by the licensed design professional and enclosed in housing long enough to permit necessary movements.

R18.21.3 — For discussion on fatigue loading, see Reference 18.36.

For detailed recommendations on tests for static and cyclic loading conditions for tendons and anchorage fittings of unbonded tendons, see Section 4.1.3 of Reference 18.11, and Section 15.2.2 of Reference 18.34.
CODE

18.21.4 — Anchorages, couplers, and end fittings shall be permanently protected against corrosion.

18.22 — External post-tensioning

18.22.1 — Post-tensioning tendons shall be permitted to be external to any concrete section of a member. The strength and serviceability design methods of this Code shall be used in evaluating the effects of external tendon forces on the concrete structure.

18.22.2 — External tendons shall be considered as unbonded tendons when computing flexural strength unless provisions are made to effectively bond the external tendons to the concrete section along its entire length.

18.22.3 — External tendons shall be attached to the concrete member in a manner that maintains the desired eccentricity between the tendons and the concrete centroid throughout the full range of anticipated member deflection.

18.22.4 — External tendons and tendon anchorage regions shall be protected against corrosion, and the details of the protection method shall be indicated on the drawings or in the project specifications.

COMMENTARY

R18.21.4 — For recommendations regarding protection see Sections 4.2 and 4.3 of Reference 18.11, and Sections 3.4, 3.6, 5, 6, and 8.3 of Reference 18.29.

R18.22 — External post-tensioning

External attachment of tendons is a versatile method of providing additional strength, or improving serviceability, or both, in existing structures. It is well suited to repair or upgrade existing structures and permits a wide variety of tendon arrangements.

Additional information on external post-tensioning is given in Reference 18.37.

R18.22.3 — External tendons are often attached to the concrete member at various locations between anchorages (such as midspan, quarter points, or third points) for desired load balancing effects, for tendon alignment, or to address tendon vibration concerns. Consideration should be given to the effects caused by the tendon profile shifting in relationship to the concrete centroid as the member deforms under effects of post-tensioning and applied load.

R18.22.4 — Permanent corrosion protection can be achieved by a variety of methods. The corrosion protection provided should be suitable to the environment in which the tendons are located. Some conditions will require that the prestressing steel be protected by concrete cover or by cement grout in polyethylene or metal tubing; other conditions will permit the protection provided by coatings such as paint or grease. Corrosion protection methods should meet the fire protection requirements of the general building code, unless the installation of external post-tensioning is to only improve serviceability.
CHAPTER 19 — SHELLS AND FOLDED PLATE MEMBERS

CODE

19.1 — Scope and definitions

19.1.1 — Provisions of Chapter 19 shall apply to thin shell and folded plate concrete structures, including ribs and edge members.

19.1.2 — All provisions of this Code not specifically excluded, and not in conflict with provisions of Chapter 19, shall apply to thin-shell structures.

19.1.3 — Thin shells — Three-dimensional spatial structures made up of one or more curved slabs or folded plates whose thicknesses are small compared to their other dimensions. Thin shells are characterized by their three-dimensional load-carrying behavior, which is determined by the geometry of their forms, by the manner in which they are supported, and by the nature of the applied load.

19.1.4 — Folded plates — A class of shell structure formed by joining flat, thin slabs along their edges to create a three-dimensional spatial structure.

COMMENTARY

R19.1 — Scope and definitions

The Code and Commentary provide information on the design, analysis, and construction of concrete thin shells and folded plates. The process began in 1964 with the publication of a practice and commentary by ACI Committee 334, and continued with the inclusion of Chapter 19 in the 1971 Code. The 1982 revision of ACI 334.1R reflected additional experience in design, analysis, and construction and was influenced by the publication of the “Recommendations for Reinforced Concrete Shells and Folded Plates” of the International Association for Shell and Spatial Structures (IASS) in 1979.

Since Chapter 19 applies to concrete thin shells and folded plates of all shapes, extensive discussion of their design, analysis, and construction in the Commentary is not possible. Additional information can be obtained from the references. Performance of shells and folded plates requires attention to detail.

R19.1.1 — Discussion of the application of thin shells in structures such as cooling towers and circular prestressed concrete tanks may be found in the reports of ACI Committee 334 and ACI Committee 373.

R19.1.3 — Common types of thin shells are domes (surfaces of revolution), cylindrical shells, barrel vaults, conoids, elliptical paraboloids, hyperbolic paraboloids, and groined vaults.

R19.1.4 — Folded plates may be prismatic, nonprismatic, or faceted. The first two types consist generally of planar thin slabs joined along their longitudinal edges to form a beam-like structure spanning between supports. Faceted folded plates are made up of triangular or polygonal planar thin slabs joined along their edges to form three-dimensional spatial structures.
19.1.5 — Ribbed shells — Spatial structures with material placed primarily along certain preferred rib lines, with the area between the ribs filled with thin slabs or left open.

19.1.6 — Auxiliary members — Ribs or edge beams that serve to strengthen, stiffen, or support the shell; usually, auxiliary members act jointly with the shell.

19.1.7 — Elastic analysis — An analysis of deformations and internal forces based on equilibrium, compatibility of strains, and assumed elastic behavior, and representing to a suitable approximation the three-dimensional action of the shell together with its auxiliary members.

19.1.8 — Inelastic analysis — An analysis of deformations and internal forces based on equilibrium, nonlinear stress-strain relations for concrete and reinforcement, consideration of cracking and time-dependent effects, and compatibility of strains. The analysis shall represent to a suitable approximation three-dimensional action of the shell together with its auxiliary members.

19.1.9 — Experimental analysis — An analysis procedure based on the measurement of deformations or strains, or both, of the structure or its model; experimental analysis is based on either elastic or inelastic behavior.

CODE

R19.1.5 — Ribbed shells19.8,19.9 generally have been used for larger spans where the increased thickness of the curved slab alone becomes excessive or uneconomical. Ribbed shells are also used because of the construction techniques employed and to enhance the aesthetic impact of the completed structure.

R19.1.6 — Most thin shell structures require ribs or edge beams at their boundaries to carry the shell boundary forces, to assist in transmitting them to the supporting structure, and to accommodate the increased amount of reinforcement in these areas.

R19.1.7 — Elastic analysis of thin shells and folded plates can be performed using any method of structural analysis based on assumptions that provide suitable approximations to the three-dimensional behavior of the structure. The method should determine the internal forces and displacements needed in the design of the shell proper, the rib or edge members, and the supporting structure. Equilibrium of internal forces and external loads and compatibility of deformations should be satisfied.

Methods of elastic analysis based on classical shell theory, simplified mathematical or analytical models, or numerical solutions using finite element19.10 finite differences19.8 or numerical integration techniques19.8,19.11 are described in the cited references.

The choice of the method of analysis and the degree of accuracy required depends on certain critical factors. These include: the size of the structure, the geometry of the thin shell or folded plate, the manner in which the structure is supported, the nature of the applied load, and the extent of personal or documented experience regarding the reliability of the given method of analysis in predicting the behavior of the specific type of shell19.8 or folded plate19.7.

R19.1.8 — Inelastic analysis of thin shells and folded plates can be performed using a refined method of analysis based on the specific nonlinear material properties, nonlinear behavior due to the cracking of concrete, and time-dependent effects such as creep, shrinkage, temperature, and load history. These effects are incorporated in order to trace the response and crack propagation of a reinforced concrete shell through the elastic, inelastic, and ultimate ranges. Such analyses usually require incremental loading and iterative procedures to converge on solutions that satisfy both equilibrium and strain compatibility.19.12,19.13
CODE

19.2 — Analysis and design

19.2.1 — Elastic behavior shall be an accepted basis for determining internal forces and displacements of thin shells. This behavior shall be permitted to be established by computations based on an analysis of the uncracked concrete structure in which the material is assumed linearly elastic, homogeneous, and isotropic. Poisson's ratio of concrete shall be permitted to be taken equal to zero.

19.2.2 — Inelastic analyses shall be permitted to be used where it can be shown that such methods provide a safe basis for design.

19.2.3 — Equilibrium checks of internal resistances and external loads shall be made to ensure consistency of results.

19.2.4 — Experimental or numerical analysis procedures shall be permitted where it can be shown that such procedures provide a safe basis for design.

19.2.5 — Approximate methods of analysis shall be permitted where it can be shown that such methods provide a safe basis for design.

19.2.6 — In prestressed shells, the analysis shall also consider behavior under loads induced during prestressing, at cracking load, and at factored load. Where tendons are draped within a shell, design shall take into account force components on the shell resulting from the tendon profile not lying in one plane.

COMMENTARY

R19.2 — Analysis and design

R19.2.1 — For types of shell structures where experience, tests, and analyses have shown that the structure can sustain reasonable overloads without undergoing brittle failure, elastic analysis is an acceptable procedure. In such cases, it may be assumed that reinforced concrete is ideally elastic, homogeneous, and isotropic, having identical properties in all directions. An analysis should be performed for the shell considering service load conditions. The analysis of shells of unusual size, shape, or complexity should consider behavior through the elastic, cracking, and inelastic stages.

R19.2.2 — Several inelastic analysis procedures contain possible solution methods.19.12,19.13

R19.2.4 — Experimental analysis of elastic models19.14 has been used as a substitute for an analytical solution of a complex shell structure. Experimental analysis of reinforced microconcrete models through the elastic, cracking, inelastic, and ultimate stages should be considered for important shells of unusual size, shape, or complexity. For model analysis, only those portions of the structure that significantly affect the items under study need be simulated. Every attempt should be made to ensure that the experiments reveal the quantitative behavior of the prototype structure.

Wind tunnel tests of a scaled-down model do not necessarily provide usable results and should be conducted by a recognized expert in wind tunnel testing of structural models.

R19.2.5 — Solutions that include both membrane and bending effects and satisfy conditions of compatibility and equilibrium are encouraged. Approximate solutions that satisfy statics but not the compatibility of strains may be used only when extensive experience has proved that safe designs have resulted from their use. Such methods include beam-type analysis for barrel shells and folded plates having large ratios of span to either width or radius of curvature, simple membrane analysis for shells of revolution, and others in which the equations of equilibrium are satisfied, while the strain compatibility equations are not.

R19.2.6 — If the shell is prestressed, the analysis should include its strength at factored loads as well as its adequacy under service loads, under the load that causes cracking, and under loads induced during prestressing. Axial forces due to draped tendons may not lie in one plane, and due consideration should be given to the resulting force components. The effects of post-tensioning of shell-supporting members should be taken into account.
CODE

19.2.7 — The thickness of a shell and its reinforcement shall be proportioned for the required strength and serviceability, using either the strength design method of 8.1.1 or the design method of 8.1.2.

19.2.8 — Shell instability shall be investigated and shown by design to be precluded.

19.2.9 — Auxiliary members shall be designed according to the applicable provisions of the Code. It shall be permitted to assume that a portion of the shell equal to the flange width, as specified in 8.12, acts with the auxiliary member. In such portions of the shell, the reinforcement perpendicular to the auxiliary member shall be at least equal to that required for the flange of a T-beam by 8.12.5.

19.2.10 — Strength design of shell slabs for membrane and bending forces shall be based on the distribution of stresses and strains as determined from either an elastic or an inelastic analysis.

COMMENTARY

R19.2.7 — The thin shell’s thickness and reinforcement are required to be proportioned to satisfy the strength provisions of this Code, and to resist internal forces obtained from an analysis, an experimental model study, or a combination thereof. Reinforcement sufficient to minimize cracking under service load conditions should be provided. The thickness of the shell is often dictated by the required reinforcement and the construction constraints, by 19.2.8, or by the Code minimum thickness requirements.

R19.2.8 — Thin shells, like other structures that experience in-plane membrane compressive forces, are subject to buckling when the applied load reaches a critical value. Because of the surface-like geometry of shells, the problem of calculating buckling load is complex. If one of the principal membrane forces is tensile, the shell is less likely to buckle than if both principal membrane forces are compressive. The kinds of membrane forces that develop in a shell depend on its initial shape and the manner in which the shell is supported and loaded. In some types of shells, post-buckling behavior should be considered in determining safety against instability.

Investigation of thin shells for stability should consider the effect of: (1) anticipated deviation of the geometry of the shell surface as-built from the idealized geometry; (2) large deflections; (3) creep and shrinkage of concrete; (4) inelastic properties of materials; (5) cracking of concrete; (6) location, amount, and orientation of reinforcement; and (7) possible deformation of supporting elements.

Measures successfully used to improve resistance to buckling include the provision of two mats of reinforcement—one near each outer surface of the shell, a local increase of shell curvatures, the use of ribbed shells, and the use of concrete with high tensile strength and low creep.

A procedure for determining critical buckling loads of shells is given in the IASS recommendations. Some recommendations for buckling design of domes used in industrial applications are given in References 19.5 and 19.15.

R19.2.10 — The stresses and strains in the shell slab used for design are those determined by analysis (elastic or inelastic) multiplied by appropriate load factors. Because of detrimental effects of membrane cracking, the computed tensile strain in the reinforcement under factored loads should be limited.
CODE

19.2.11 — In a region where membrane cracking is predicted, the nominal compressive strength parallel to the cracks shall be taken as $0.4f'_c$.

19.3 — Design strength of materials

19.3.1 — Specified compressive strength of concrete f'_c at 28 days shall not be less than 3000 psi.

19.3.2 — Specified yield strength of nonprestressed reinforcement f_y shall not exceed 60,000 psi.

19.4 — Shell reinforcement

19.4.1 — Shell reinforcement shall be provided to resist tensile stresses from internal membrane forces, to resist tension from bending and twisting moments, to limit shrinkage and temperature crack width and spacing, and as reinforcement at shell boundaries, load attachments, and shell openings.

19.4.2 — Tensile reinforcement shall be provided in two or more directions and shall be proportioned such that its resistance in any direction equals or exceeds the component of internal forces in that direction.

Alternatively, reinforcement for the membrane forces in the slab shall be calculated as the reinforcement required to resist axial tensile forces plus the tensile force due to shear-friction required to transfer shear across any cross section of the membrane. The assumed coefficient of friction, μ, shall not exceed that specified in 11.6.4.3.

COMMENTARY

R19.2.11 — When principal tensile stress produces membrane cracking in the shell, experiments indicate the attainable compressive strength in the direction parallel to the cracks is reduced.19.16,19.17

R19.3 — Shell reinforcement

R19.3.1 — At any point in a shell, two different kinds of internal forces may occur simultaneously: those associated with membrane action, and those associated with bending of the shell. The membrane forces are assumed to act in the tangential plane midway between the surfaces of the shell, and are the two axial forces and the membrane shears. Flexural effects include bending moments, twisting moments, and the associated transverse shears. Limiting membrane crack width and spacing due to shrinkage, temperature, and service load conditions is a major design consideration.

R19.4.2 — The requirement of ensuring strength in all directions is based on safety considerations. Any method that ensures sufficient strength consistent with equilibrium is acceptable. The direction of the principal membrane tensile force at any point may vary depending on the direction, magnitudes, and combinations of the various applied loads.

The magnitude of the internal membrane forces, acting at any point due to a specific load, is generally calculated on the basis of an elastic theory in which the shell is assumed as uncracked. The computation of the required amount of reinforcement to resist the internal membrane forces has been traditionally based on the assumption that concrete does not resist tension. The associated deflections, and the possibility of cracking, should be investigated in the serviceability phase of the design. Achieving this may require a working stress design for steel selection.

Where reinforcement is not placed in the direction of the principal tensile forces and where cracks at the service load level are objectionable, the computation of reinforcement may have to be based on a more refined approach19.16,19.18,19.19 that considers the existence of cracks. In the cracked state, the concrete is assumed to be unable to resist either tension or shear. Thus, equilibrium is attained by equating tensile-resisting forces in reinforcement and compressive-resisting forces in concrete.

The alternative method to calculate orthogonal reinforcement is the shear-friction method. It is based on the assumption
19.4.3 — The area of shell reinforcement at any section as measured in two orthogonal directions shall not be less than the slab shrinkage or temperature reinforcement required by 7.12.

19.4.4 — Reinforcement for shear and bending moments about axes in the plane of the shell slab shall be calculated in accordance with Chapters 10, 11, and 13.

19.4.5 — The area of shell tension reinforcement shall be limited so that the reinforcement will yield before either crushing of concrete in compression or shell buckling can take place.

19.4.6 — In regions of high tension, membrane reinforcement shall, if practical, be placed in the general directions of the principal tensile membrane forces. Where this is not practical, it shall be permitted to place membrane reinforcement in two or more component directions.

19.4.7 — If the direction of reinforcement varies more than 10 degrees from the direction of principal tensile membrane force, the amount of reinforcement shall be reviewed in relation to cracking at service loads.

19.4.8 — Where the magnitude of the principal tensile membrane stress within the shell varies greatly over the area of the shell surface, reinforcement resisting the total tension shall be permitted to be concentrated in the regions of largest tensile stress where it can be shown that this provides a safe basis for design. However, the ratio of shell reinforcement in any portion of the tensile zone shall be not less than 0.0035 based on the overall thickness of the shell.

COMMENTARY

that shear integrity of a shell should be maintained at factored loads. It is not necessary to calculate principal stresses if the alternative approach is used.

R19.4.3 — Minimum membrane reinforcement corresponding to slab shrinkage and temperature reinforcement are to be provided in at least two approximately orthogonal directions even if the calculated membrane forces are compressive in one or more directions.

R19.4.5 — The requirement that the tensile reinforcement yields before the concrete crushes anywhere is consistent with 10.3.3. Such crushing can also occur in regions near supports and, for some shells, where the principal membrane forces are approximately equal and opposite in sign.

R19.4.6 — Generally, for all shells, and particularly in regions of substantial tension, the orientation of reinforcement should approximate the directions of the principal tensile membrane forces. However, in some structures it is not possible to detail the reinforcement to follow the stress trajectories. For such cases, orthogonal component reinforcement is allowed.

R19.4.7 — When the directions of reinforcement deviate significantly (more than 10 degrees) from the directions of the principal membrane forces, higher strains in the shell occur to develop the reinforcement. This might lead to the development of unacceptable wide cracks. The crack width should be estimated and limited if necessary.

Permissible crack widths for service loads under different environmental conditions are given in a report of ACI Committee 224.19,20 Crack width can be limited by an increase in the amount of reinforcement used, by reducing the stress at the service load level, by providing reinforcement in three or more directions in the plane of the shell, or by using closer spacing of smaller-diameter bars.

R19.4.8 — The practice of concentrating tensile reinforcement in the regions of maximum tensile stress has led to a number of successful and economical designs, primarily for long folded plates, long barrel vault shells, and for domes. The requirement of providing the minimum reinforcement in the remaining tensile zone is intended to limit crack width and spacing.
CODE

19.4.9 — Reinforcement required to resist shell bending moments shall be proportioned with due regard to the simultaneous action of membrane axial forces at the same location. Where shell reinforcement is required in only one face to resist bending moments, equal amounts shall be placed near both surfaces of the shell even though a reversal of bending moments is not indicated by the analysis.

19.4.10 — Shell reinforcement in any direction shall not be spaced farther apart than 18 in. nor farther apart than five times the shell thickness. Where the principal membrane tensile stress on the gross concrete area due to factored loads exceeds $4\phi / \sqrt{f'_{c}}$, reinforcement shall not be spaced farther apart than three times the shell thickness.

19.4.11 — Shell reinforcement at the junction of the shell and supporting members or edge members shall be anchored in or extended through such members in accordance with the requirements of Chapter 12, except that the minimum development length shall be $1.2 \ell_{d}$ but not less than 18 in.

19.4.12 — Splice lengths of shell reinforcement shall be governed by the provisions of Chapter 12, except that the minimum splice length of tension bars shall be 1.2 times the value required by Chapter 12 but not less than 18 in. The number of splices in principal tensile reinforcement shall be kept to a practical minimum. Where splices are necessary they shall be staggered at least ℓ_{d} with not more than one-third of the reinforcement spliced at any section.

19.5 — Construction

19.5.1 — When removal of formwork is based on a specific modulus of elasticity of concrete because of stability or deflection considerations, the value of the modulus of elasticity, E_{c}, used shall be determined from flexural tests of field-cured beam specimens. The number of test specimens, the dimensions of test beam specimens, and test procedures shall be specified by the licensed design professional.

19.5.2 — Contract documents shall specify the tolerances for the shape of the shell. If construction results in deviations from the shape greater than the specified tolerances, an analysis of the effect of the deviations shall be made and any required remedial actions shall be taken to ensure safe behavior.

COMMENTARY

R19.4.9 — The design method should ensure that the concrete sections, including consideration of the reinforcement, are capable of developing the internal forces required by the equations of equilibrium. The sign of bending moments may change rapidly from point to point of a shell. For this reason, reinforcement to resist bending, where required, is to be placed near both outer surfaces of the shell. In many cases, the thickness required to provide proper cover and spacing for the multiple layers of reinforcement may govern the design of the shell thickness.

R19.4.10 — The value of ϕ to be used is that prescribed in 9.3.2.1 for axial tension.

R19.4.11 and R19.4.12 — On curved shell surfaces it is difficult to control the alignment of precut reinforcement. This should be considered to avoid insufficient splice and development lengths. Sections 19.4.11 and 19.4.12 require extra reinforcement length to maintain the minimum lengths on curved surfaces.

R19.5 — Construction

R19.5.1 — When early removal of forms is necessary, the magnitude of the modulus of elasticity at the time of proposed form removal should be investigated to ensure safety of the shell with respect to buckling, and to restrict deflections. The value of the modulus of elasticity E_{c} should be obtained from a flexural test of field-cured specimens. It is not sufficient to determine the modulus from the formula in 8.5.1, even if the compressive strength of concrete is determined for the field-cured specimen.

R19.5.2 — In some types of shells, small local deviations from the theoretical geometry of the shell can cause relatively large changes in local stresses and in overall safety against instability. These changes can result in local cracking and yielding that may make the structure unsafe or can greatly affect the critical load, producing instability. The effect of such deviations should be evaluated and any necessary remedial actions should be taken. Attention is needed when using air-supported form systems.
Notes
CHAPTER 20 — STRENGTH EVALUATION OF EXISTING STRUCTURES

CODE

20.1 — Strength evaluation — General

20.1.1 — If there is doubt that a part or all of a structure meets the safety requirements of this Code, a strength evaluation shall be carried out as required by the licensed design professional or building official.

COMMENTARY

R20.1 — Strength evaluation — General

Chapter 20 does not cover load testing for the approval of new design or construction methods. (See 16.10 for recommendations on strength evaluation of precast concrete members.) Provisions of Chapter 20 may be used to evaluate whether a structure or a portion of a structure satisfies the safety requirements of this Code. A strength evaluation may be required if the materials are considered to be deficient in quality, if there is evidence indicating faulty construction, if a structure has deteriorated, if a building will be used for a new function, or if, for any reason, a structure or a portion of it does not appear to satisfy the requirements of the Code. In such cases, Chapter 20 provides guidance for investigating the safety of the structure.

If the safety concerns are related to an assembly of elements or an entire structure, it is not feasible to load test every element and section to the maximum. In such cases, it is appropriate that an investigation plan be developed to address the specific safety concerns. If a load test is described as part of the strength evaluation process, it is desirable for all parties involved to come to an agreement about the region to be loaded, the magnitude of the load, the load test procedure, and acceptance criteria before any load tests are conducted.

R20.1.2 — Strength considerations related to axial load, flexure, and combined axial load and flexure are well understood. There are reliable theories relating strength and short-term displacement to load in terms of dimensional and material data for the structure.

To determine the strength of the structure by analysis, calculations should be based on data gathered on the actual dimensions of the structure, properties of the materials in place, and all pertinent details. Requirements for data collection are in 20.2.

R20.1.3 — If the shear or bond strength of an element is critical in relation to the doubt expressed about safety, a test may be the most efficient solution to eliminate or confirm the doubt. A test may also be appropriate if it is not feasible to determine the material and dimensional properties required for analysis, even if the cause of the concern relates to flexure or axial load.

Wherever possible and appropriate, support the results of the load test by analysis.
CODE

20.1.4 — If the doubt about safety of a part or all of a structure involves deterioration, and if the observed response during the load test satisfies the acceptance criteria, the structure or part of the structure shall be permitted to remain in service for a specified time period. If deemed necessary by the licensed design professional, periodic reevaluations shall be conducted.

20.2 — Determination of required dimensions and material properties

R20.1.4 — For a deteriorating structure, the acceptance provided by the load test may not be assumed to be without limits in terms of time. In such cases, a periodic inspection program is useful. A program that involves physical tests and periodic inspection can justify a longer period in service. Another option for maintaining the structure in service, while the periodic inspection program continues, is to limit the live load to a level determined to be appropriate.

The length of the specified time period should be based on consideration of: (a) the nature of the problem; (b) environmental and load effects; (c) service history of the structure; and (d) scope of the periodic inspection program. At the end of a specified time period, further strength evaluation is required if the structure is to remain in service.

With the agreement of all concerned parties, procedures may be devised for periodic testing that do not necessarily conform to the loading and acceptance criteria specified in Chapter 20.

R20.2 — Determination of required dimensions and material properties

This section applies if it is decided to make an analytical evaluation (see 20.1.2).

R20.2.1 — Critical sections are where each type of stress calculated for the load in question reaches its maximum value.

R20.2.2 — For individual elements, amount, size, arrangement, and location should be determined at the critical sections for reinforcement or tendons, or both, designed to resist applied load. Nondestructive investigation methods are acceptable. In large structures, determination of these data for approximately 5 percent of the reinforcement or tendons in critical regions may suffice if these measurements confirm the data provided in the construction drawings.

R20.2.3 — ACI Committee 214 has developed two methods for determining \(f'_{c} \) from cores taken from an existing structure. These methods are described in ACI 214.4R\(^{20.1} \) and rely on statistical analysis techniques. The procedures described are only appropriate where the determination of an equivalent \(f'_{c} \) is necessary for the strength evaluation of an existing structure and should not be used to investigate low cylinder strength test results in new construction, which is considered in 5.6.5.

The number of core tests may depend on the size of the structure and the sensitivity of structural safety to concrete strength. In cases where the potential problem involves flexure only, investigation of concrete strength can be minimal for a lightly reinforced section (\(\rho f'_{y} f'_{c} \leq 0.15 \) for rectangular section).
CODE

20.2.4 — If required, reinforcement or prestressing steel strength shall be based on tensile tests of representative samples of the material in the structure in question.

20.2.5 — If the required dimensions and material properties are determined through measurements and testing, and if calculations can be made in accordance with 20.1.2, it shall be permitted to increase ϕ from those specified in 9.3, but ϕ shall not be more than:

- Tension-controlled sections, as defined in 10.3.4: $\phi = 1.0$
- Compression-controlled sections, as defined in 10.3.3:
 - Members with spiral reinforcement conforming to 10.9.3: $\phi = 0.9$
 - Other reinforced members: $\phi = 0.8$
 - Shear and/or torsion: $\phi = 0.8$
 - Bearing on concrete: $\phi = 0.8$

20.3 — Load test procedure

20.3.1 — Load arrangement

The number and arrangement of spans or panels loaded shall be selected to maximize the deflection and stresses in the critical regions of the structural elements of which strength is in doubt. More than one test load arrangement shall be used if a single arrangement will not simultaneously result in maximum values of the effects (such as deflection, rotation, or stress) necessary to demonstrate the adequacy of the structure.

20.3.2 — Load intensity

The total test load (including dead load already in place) shall not be less than the larger of (a), (b), and (c):

(a) $1.15D + 1.5L + 0.4(L_r \text{ or } S \text{ or } R)$
(b) $1.15D + 0.9L + 1.5(L_r \text{ or } S \text{ or } R)$
(c) $1.3D$

The load factor on the live load L in (b) shall be permitted to be reduced to 0.45 except for garages, areas occupied as places of public assembly, and all areas where L is greater than 100 lb/ft². It shall be permitted to reduce L in accordance with the provisions of the applicable general building code.

COMMENTARY

R20.2.4 — The number of tests required depends on the uniformity of the material and is best determined by the licensed design profession responsible for the evaluation.

R20.2.5 — Strength reduction factors given in 20.2.5 are larger than those specified in Chapter 9. These increased values are justified by the use of accurate field-obtained material properties, actual in-place dimensions, and well-understood methods of analysis.

The strength reduction factors in 20.2.5 were changed for the 2002 edition to be compatible with the load combinations and strength reduction factors of Chapter 9, which were revised at that time. For the 2008 edition, the strength reduction factor in 20.2.5 for members with spiral reinforcement was increased to correspond to an increase in this strength reduction factor in Chapter 9.

R20.3 — Load test procedure

R20.3.1—Load arrangement

It is important to apply the load at locations so that its effects on the suspected defect are a maximum and the probability of unloaded members sharing the applied load is a minimum. In cases where it is shown by analysis that adjoining unloaded elements will help carry some of the load, the load should be placed to develop effects consistent with the intent of the load factor.

R20.3.2 — Load intensity

The required load intensity follows previous load test practice. The live load L may be reduced as permitted by the general building code governing safety considerations for the structure. The test load should be increased to compensate for resistance provided by unloaded portions of the structure in questions. The increase in test load is determined from analysis of the loading conditions in relation to the selected pass/fail criterion for the test.

For the 2008 edition, the former test load intensity, $0.85(1.4D + 1.7L)$, was revised to be consistent with the load combinations in Chapter 9, which include rain and snow load in some combinations. These test loads are considered appropriate for designs using the load combinations and strength reduction factors of Chapter 9 or Appendix C.
20.3.3 — A load test shall not be made until that portion of the structure to be subjected to load is at least 56 days old. If the owner of the structure, the contractor, and all involved parties agree, it shall be permitted to make the test at an earlier age.

20.4 — Loading criteria

20.4.1 — The initial value for all applicable response measurements (such as deflection, rotation, strain, slip, crack widths) shall be obtained not more than 1 hour before application of the first load increment. Measurements shall be made at locations where maximum response is expected. Additional measurements shall be made if required.

20.4.2 — Test load shall be applied in not less than four approximately equal increments.

20.4.3 — Uniform test load shall be applied in a manner to ensure uniform distribution of the load transmitted to the structure or portion of the structure being tested. Arching of the applied load shall be avoided.

20.4.4 — A set of response measurements shall be made after each load increment is applied and after the total load has been applied on the structure for at least 24 hours.

20.4.5 — Total test load shall be removed immediately after all response measurements defined in 20.4.4 are made.

20.4.6 — A set of final response measurements shall be made 24 hours after the test load is removed.

20.5 — Acceptance criteria

20.5.1 — The portion of the structure tested shall show no evidence of failure. Spalling and crushing of compressed concrete shall be considered an indication of failure.

R20.4 — Loading criteria

R20.4.2 — Inspecting the structure after each load increment is advisable.

R20.4.3 — Arching refers to the tendency for the load to be transmitted nonuniformly to the flexural element being tested. For example, if a slab is loaded by a uniform arrangement of bricks with the bricks in contact, arching would result in reduction of the load on the slab near the midspan of the slab.

R20.5 — Acceptance criteria

R20.5.1 — A general acceptance criterion for the behavior of a structure under the test load is that it does not show evidence of failure. Evidence of failure includes cracking, spalling, or deflection of such magnitude and extent that the observed result is obviously excessive and incompatible with the safety requirements of the structure. No simple rules have been developed for application to all types of structures and conditions. If sufficient damage has occurred so that the structure is considered to have failed that test, retesting is not permitted because it is considered that damaged members should not be put into service even at a lower load rating.

Local spalling or flaking of the compressed concrete in flexural elements related to casting imperfections need not indicate overall structural distress. Crack widths are good indicators
20.5.2 — Measured deflections shall satisfy either Eq. (20-1) or (20-2):

\[
\Delta_1 \leq \frac{\ell_t^2}{20,000 h}
\]

(20-1)

\[
\Delta_r \leq \frac{\Delta_1}{4}
\]

(20-2)

If the measured maximum and residual deflections, \(\Delta_1\) and \(\Delta_r\), do not satisfy Eq. (20-1) or (20-2), it shall be permitted to repeat the load test.

The repeat test shall be conducted not earlier than 72 hours after removal of the first test load. The portion of the structure tested in the repeat test shall be considered acceptable if deflection recovery \(\Delta_r\) satisfies the condition:

\[
\Delta_r \leq \frac{\Delta_2}{5}
\]

(20-3)

where \(\Delta_2\) is the maximum deflection measured during the second test relative to the position of the structure at the beginning of the second test.

20.5.3 — Structural members tested shall not have cracks indicating the imminence of shear failure.

R20.5.2 — The deflection limits and the retest option follow past practice. If the structure shows no evidence of failure, recovery of deflection after removal of the test load is used to determine whether the structure is satisfactory. In the case of a very stiff structure, however, the errors in measurements under field conditions may be of the same order as the actual deflections and recovery. To avoid penalizing a satisfactory structure in such a case, recovery measurements are waived if the maximum deflection is less than \(\ell_t^2/(20,000 h)\). The residual deflection \(\Delta_r\) is the difference between the initial and final (after load removal) deflections for the load test or the repeat load test.

R20.5.3 — Forces are transmitted across a shear crack plane by a combination of aggregate interlock at the interface of the crack that is enhanced by clamping action of transverse stirrup reinforcing and by dowel action of stirrups crossing the crack. As crack lengths increase to approach a horizontal projected length equal to the depth of the member and concurrently widen to the extent that aggregate interlock cannot occur, and as transverse stirrups if present begin to yield or display loss of anchorage so as to threaten their integrity, the member is assumed to be approaching imminent shear failure.

R20.5.4 — The intent of 20.5.4 is to make the professionals in charge of the test pay attention to the structural implication of observed inclined cracks that may lead to brittle collapse in members without transverse reinforcement.
CODE

20.5.5 — In regions of anchorage and lap splices, the appearance along the line of reinforcement of a series of short inclined cracks or horizontal cracks shall be evaluated.

COMMENTARY

R20.5.5 — Cracking along the axis of the reinforcement in anchorage zones may be related to high stresses associated with the transfer of forces between the reinforcement and the concrete. These cracks may be indicators of pending brittle failure of the element if they are associated with the main reinforcement. It is important that their causes and consequences be evaluated.

20.6 — Provision for lower load rating

If the structure under investigation does not satisfy conditions or criteria of 20.1.2, 20.5.2, or 20.5.3, the structure shall be permitted for use at a lower load rating based on the results of the load test or analysis, if approved by the building official.

R20.6 — Provision for lower load rating

Except for load tested members that have failed under a test (see 20.5), the building official may permit the use of a structure or member at a lower load rating that is judged to be safe and appropriate on the basis of the test results.

20.7 — Safety

20.7.1 — Load tests shall be conducted in such a manner as to provide for safety of life and structure during the test.

20.7.2 — Safety measures shall not interfere with load test procedures or affect results.
CHAPTER 21 — EARTHQUAKE-RESISTANT STRUCTURES

In 2008, the provisions of Chapter 21 were revised and renumbered to present seismic requirements in order of increasing SDC; therefore, change bars are not shown.

CODE

21.1 — General requirements

21.1.1 — Scope

21.1.1.1 — Chapter 21 contains requirements for design and construction of reinforced concrete members of a structure for which the design forces, related to earthquake motions, have been determined on the basis of energy dissipation in the nonlinear range of response.

21.1.1.2 — All structures shall be assigned to a seismic design category (SDC) in accordance with 1.1.9.1.

21.1.1.3 — All members shall satisfy requirements of Chapters 1 to 19 and 22. Structures assigned to SDC B, C, D, E, or F also shall satisfy 21.1.1.4 through 21.1.1.8, as applicable.

21.1.1.4 — Structures assigned to SDC B shall satisfy 21.1.2.

21.1.1.5 — Structures assigned to SDC C shall satisfy 21.1.2 and 21.1.8.

21.1.1.7 — Structural systems designated as part of the seismic-force-resisting system shall be restricted to those designated by the legally adopted general building code of which this Code forms a part, or determined by other authority having jurisdiction in areas without a legally adopted building code. Except for SDC A, for which Chapter 21 does not apply, the following provisions shall be satisfied for each structural system designated as part of the seismic-force-resisting system, regardless of the SDC:

(a) Ordinary moment frames shall satisfy 21.2.

(b) Ordinary reinforced concrete structural walls need not satisfy any provisions in Chapter 21.

(c) Intermediate moment frames shall satisfy 21.3.

(d) Intermediate precast walls shall satisfy 21.4.

(e) Special moment frames shall satisfy 21.5 through 21.8.

(f) Special structural walls shall satisfy 21.9.

COMMENTARY

R21.1 — General requirements

R21.1.1 — Scope

Chapter 21 contains provisions considered to be the minimum requirements for a cast-in-place or precast concrete structure capable of sustaining a series of oscillations into the inelastic range of response without critical deterioration in strength. The integrity of the structure in the inelastic range of response should be maintained because the design earthquake forces defined in documents such as ASCE/SEI 7, the IBC, the UBC, and the NEHRP provisions are considered less than those corresponding to linear response at the anticipated earthquake intensity. As a properly detailed cast-in-place or precast concrete structure responds to strong ground motion, its effective stiffness decreases and its energy dissipation increases. These changes tend to reduce the response accelerations and lateral inertia forces relative to values that would occur were the structure to remain linearly elastic and lightly damped. Thus, the use of design forces representing earthquake effects such as those in ASCE/SEI 7 requires that the seismic-force-resisting system retain a substantial portion of its strength into the inelastic range under displacement reversals.

The provisions of Chapter 21 relate detailing requirements to type of structural framing and seismic design category (SDC). SDCs are adopted directly from ASCE/SEI 7, and relate to considerations of seismic hazard level, soil type, occupancy, and use. Before the 2008 Code, low, intermediate, and high seismic risk designations were used to delineate detailing requirements. For a qualitative comparison of SDCs and seismic risk designations, see Table R1.1.9.1. The assignment of a structure to a SDC is regulated by the legally adopted general building code of which this Code forms a part (see 1.1.9).

The design and detailing requirements should be compatible with the level of energy dissipation (or toughness) assumed in the computation of the design earthquake forces. The terms “ordinary,” “intermediate,” and “special” are specifically used to facilitate this compatibility. The degree of required toughness and, therefore, the level of required detailing, increases for structures progressing from ordinary through intermediate to special categories. It is essential that structures assigned to higher SDCs possess a higher degree of toughness. It is permitted, however, to design for higher toughness in the lower SDCs and take advantage of the lower design force levels.
(g) Special structural walls constructed using precast concrete shall satisfy 21.10.

All special moment frames and special structural walls shall also satisfy 21.1.3 through 21.1.7.

21.1.1.8 — A reinforced concrete structural system not satisfying the requirements of this chapter shall be permitted if it is demonstrated by experimental evidence and analysis that the proposed system will have strength and toughness equal to or exceeding those provided by a comparable monolithic reinforced concrete structure satisfying this chapter.

The provisions of Chapters 1 through 19 and 22 are considered to be adequate for structures assigned to SDC A (corresponding to lowest seismic hazard). For structures assigned to SDC B, additional requirements apply.

Structures assigned to SDC C may be subjected to moderately strong ground shaking. The designated seismic-force-resisting system typically comprises some combination of ordinary cast-in-place structural walls, intermediate precast structural walls, and intermediate moment frames. The legally adopted general building code of which this Code forms a part also may contain provisions for use of other seismic-force-resisting systems in SDC C. Section 21.1.1.7 defines requirements for whatever system is selected.

Structures assigned to SDC D, E, or F may be subjected to strong ground shaking. It is the intent of Committee 318 that the seismic-force-resisting system of structural concrete buildings assigned to SDC D, E, or F be provided by special moment frames, special structural walls, or a combination of the two. In addition to 21.1.2 through 21.1.8, these structures also are required to satisfy requirements for continuous inspection (1.3.5), diaphragms and trusses (21.11), foundations (21.12), and gravity-load-resisting elements that are not designated as part of the seismic-force-resisting system (21.13). These provisions have been developed to provide the structure with adequate toughness for the high demands expected for these SDCs.

The legally adopted general building code of which this Code forms a part may also permit the use of intermediate moment frames as part of dual systems for some buildings assigned to SDC D, E, or F. It is not the intention of Committee 318 to recommend the use of intermediate moment frames as part of moment-resisting frame or dual systems in SDC D, E, or F. The legally adopted general building code may also permit substantiated alternative or nonprescriptive designs or, with various supplementary provisions, the use of ordinary or intermediate systems for nonbuilding structures in the higher SDCs. These are not the typical applications around which this chapter is written, but wherever the term “ordinary” or “intermediate” moment frame is used in reference to reinforced concrete, 21.2 or 21.3 apply.

Table R21.1.1 summarizes the applicability of the provisions of Chapter 21 as they are typically applied where using minimum requirements in the various SDCs. Where special systems are used for structures in SDC B or C, it is not required to satisfy the requirements of 21.13, although it should be verified that members not designated as part of the seismic-force-resisting system will be stable under design displacements.

The proportioning and detailing requirements in Chapter 21 are based predominantly on field and laboratory experience with monolithic reinforced concrete building structures and
21.1.2 — Analysis and proportioning of structural members

21.1.2.1 — The interaction of all structural and nonstructural members that affect the linear and nonlinear response of the structure to earthquake motions shall be considered in the analysis.

21.1.2.2 — Rigid members assumed not to be a part of the seismic-force-resisting system shall be permitted provided their effect on the response of the precast concrete building structures designed and detailed to behave like monolithic building structures. Extrapolation of these requirements to other types of cast-in-place or precast concrete structures should be based on evidence provided by field experience, tests, or analysis. The acceptance criteria for moment frames given in ACI 374.1 can be used in conjunction with Chapter 21 to demonstrate that the strength and toughness of a proposed frame system equals or exceeds that provided by a comparable monolithic concrete system. ACI ITG-5.1 provides similar information for precast wall systems.

The toughness requirements in 21.1.1.8 refer to the concern for the structural integrity of the entire seismic-force-resisting system at lateral displacements anticipated for ground motions corresponding to the design earthquake. Depending on the energy-dissipation characteristics of the structural system used, such displacements may be larger than for a monolithic reinforced concrete structure.

R21.1.2 — Analysis and proportioning of structural members

It is assumed that the distribution of required strength to the various components of a seismic-force-resisting system will be guided by the analysis of a linearly elastic model of the system acted upon by the factored forces required by the legally adopted general building code. If nonlinear response history analyses are to be used, base motions should be selected after a detailed study of the site conditions and local seismic history.

<table>
<thead>
<tr>
<th>Component resisting earthquake effect, unless otherwise noted</th>
<th>Seismic Design Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A (None)</td>
</tr>
<tr>
<td></td>
<td>B (21.1.1.4)</td>
</tr>
<tr>
<td></td>
<td>C (21.1.1.5)</td>
</tr>
<tr>
<td></td>
<td>D, E, F (21.1.1.6)</td>
</tr>
<tr>
<td>Analysis and design requirements</td>
<td>21.1.2</td>
</tr>
<tr>
<td></td>
<td>21.1.2</td>
</tr>
<tr>
<td></td>
<td>21.1.2, 21.1.3</td>
</tr>
<tr>
<td>Materials</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>21.1.4 - 21.1.7</td>
</tr>
<tr>
<td>Frame members</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>21.5, 21.6, 21.7, 21.8</td>
</tr>
<tr>
<td>Structural walls and coupling beams</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>21.9</td>
</tr>
<tr>
<td>Precast structural walls</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>21.4, 21.10</td>
</tr>
<tr>
<td>Structural diaphragms and trusses</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>21.11</td>
</tr>
<tr>
<td>Foundations</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>21.12</td>
</tr>
<tr>
<td>Frame members not proportioned to resist forces induced by earthquake motions</td>
<td>None</td>
</tr>
<tr>
<td>Anchors</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>21.1.8</td>
</tr>
<tr>
<td></td>
<td>21.1.8</td>
</tr>
</tbody>
</table>

*In addition to requirements of Chapters 1 through 19, except as modified by Chapter 21. Section 22.10 also applies in SDC D, E, and F.
†As permitted by the legally adopted general building code of which this Code forms a part.
system is considered and accommodated in the structural design. Consequences of failure of structural and nonstructural members that are not a part of the seismic-force-resisting system shall be considered.

21.1.2.3 — Structural members extending below the base of structure that are required to transmit forces resulting from earthquake effects to the foundation shall comply with the requirements of Chapter 21 that are consistent with the seismic-force-resisting system above the base of structure.

Because the design basis earthquake admits nonlinear response, it is necessary to investigate the stability of the seismic-force-resisting system as well as its interaction with other structural and nonstructural members at displacements larger than those indicated by linear analysis. To handle this without having to resort to nonlinear response analysis, one option is to multiply by a factor of at least two the displacements from linear analysis by using the factored lateral forces, unless the legally adopted general building code specifies the factors to be used as in the IBC or the UBC. For lateral displacement calculations, assuming all the horizontal structural members to be fully cracked is likely to lead to better estimates of the possible drift than using uncracked stiffness for all members. The analysis assumptions described in 8.8 also may be used to estimate lateral deflections of reinforced concrete building systems.

The main objective of Chapter 21 is the safety of the structure. The intent of 21.1.2.1 and 21.1.2.2 is to draw attention to the influence of nonstructural members on structural response and to hazards from falling objects.

In selecting member sizes for earthquake-resistant structures, it is important to consider constructibility problems related to congestion of reinforcement. The design should be such that all reinforcement can be assembled and placed in the proper location and that concrete can be cast and consolidated properly. Use of upper limits of reinforcement ratios permitted is likely to lead to insurmountable construction problems, especially at frame joints.

21.1.3 — Strength reduction factors

Strength reduction factors shall be as given in 9.3.4.

21.1.4 — Concrete in special moment frames and special structural walls

21.1.4.1 — Requirements of 21.1.4 apply to special moment frames and special structural walls and coupling beams.

21.1.4.2 — Specified compressive strength of concrete, f'_c, shall be not less than 3000 psi.

21.1.4.3 — Specified compressive strength of lightweight concrete, f'_c, shall not exceed 5000 psi unless demonstrated by experimental evidence that structural members made with that lightweight concrete provide...
21.1.5 — Reinforcement in special moment frames and special structural walls

21.1.5.1 — Requirements of 21.1.5 apply to special moment frames and structural walls and coupling beams.

21.1.5.2 — Deformed reinforcement resisting earthquake-induced flexural and axial forces in frame members, structural walls, and coupling beams, shall comply with ASTM A706. ASTM A615 Grades 40 and 60 reinforcement shall be permitted in these members if:

(a) The actual yield strength based on mill tests does not exceed \(f_y \) by more than 18,000 psi; and

(b) The ratio of the actual tensile strength to the actual yield strength is not less than 1.25.

21.1.5.3 — Prestressing steel resisting earthquake-induced flexural and axial loads in frame members and in precast structural walls shall comply with ASTM A416 or A722.

21.1.5.4 — The value of \(f_{yt} \) used to compute the amount of confinement reinforcement shall not exceed 100,000 psi.

21.1.5.5 — The value of \(f_y \) or \(f_{yt} \) used in design of shear reinforcement shall conform to 11.4.2.

21.1.6 — Mechanical splices in special moment frames and special structural walls

21.1.6.1 — Mechanical splices shall be classified as either Type 1 or Type 2 mechanical splices, as follows:

(a) Type 1 mechanical splices shall conform to 12.14.3.2;

(b) Type 2 mechanical splices shall conform to 12.14.3.2 and shall develop the specified tensile strength of the spliced bar.
21.1.6.2 — Type 1 mechanical splices shall not be used within a distance equal to twice the member depth from the column or beam face for special moment frames or from sections where yielding of the reinforcement is likely to occur as a result of inelastic lateral displacements. Type 2 mechanical splices shall be permitted to be used at any location.

21.1.7 — Welded splices in special moment frames and special structural walls

21.1.7.1 — Welded splices in reinforcement resisting earthquake-induced forces shall conform to 12.14.3.4 and shall not be used within a distance equal to twice the member depth from the column or beam face for special moment frames or from sections where yielding of the reinforcement is likely to occur as a result of inelastic lateral displacements.

21.1.7.2 — Welding of stirrups, ties, inserts, or other similar elements to longitudinal reinforcement that is required by design shall not be permitted.

21.1.8 — Anchoring to concrete

Anchors resisting earthquake-induced forces in structures assigned to SDC C, D, E, or F shall conform to the requirements of D.3.3.

21.2 — Ordinary moment frames

21.2.1 — Scope

Requirements of 21.2 apply to ordinary moment frames forming part of the seismic-force-resisting system.

21.2.2 — Beams shall have at least two of the longitudinal bars continuous along both the top and bottom faces. These bars shall be developed at the face of support.

21.2.3 — Columns having clear height less than or equal to five times the dimension \(c_1 \) shall be designed for shear in accordance with 21.3.3.
21.3 — Intermediate moment frames

21.3.1 — Scope

Requirements of 21.3 apply to intermediate moment frames forming part of the seismic-force-resisting system.

21.3.2 — Reinforcement details in a frame member shall satisfy 21.3.4 if the factored axial compressive load, P_u, for the member does not exceed $A_g f'_c / 10$. If P_u is larger, frame reinforcement details shall satisfy 21.3.5. Where a two-way slab system without beams forms a part of the seismic-force-resisting system, reinforcement details in any span resisting moments caused by E shall satisfy 21.3.6.

21.3.3 — ϕV_n of beams and columns resisting earthquake effect, E, shall not be less than the smaller of (a) and (b):

(a) The sum of the shear associated with development of nominal moment strengths of the member at each restrained end of the clear span and the shear calculated for factored gravity loads;

(b) The maximum shear obtained from design load combinations that include E, with E assumed to be twice that prescribed by the legally adopted general building code for earthquake-resistant design.

21.3.4 — Beams

21.3.4.1 — The positive moment strength at the face of the joint shall be not less than one-third the negative moment strength provided at that face of the joint. Neither the negative nor the positive moment strength at any section along the length of the beam shall be less than one-fifth the maximum moment strength provided at the face of either joint.

21.3.4.2 — At both ends of the beam, hoops shall be provided over lengths not less than $2h$ measured from the face of the supporting member toward midspan. The first hoop shall be located not more than 2 in. from the face of the supporting member. Spacing of hoops shall not exceed the smallest of (a), (b), (c), and (d):

(a) $d/4$;

(b) Eight times the diameter of the smallest longitudinal bar enclosed;

(c) 24 times the diameter of the hoop bar;

(d) 12 in.

The objective of the requirements in 21.3.3 is to reduce the risk of failure in shear in beams and columns during an earthquake. Two options are provided to determine the factored shear force.

According to option (a) of 21.3.3, the factored shear force is determined from the nominal moment strength of the member and the gravity load on it. Examples for a beam and a column are illustrated in Fig. R21.3.3.
To determine the maximum beam shear, it is assumed that its nominal moment strengths ($\phi = 1.0$) are developed simultaneously at both ends of its clear span. As indicated in Fig. R21.3.3, the shear associated with this condition $[\frac{(M_{nl} + M_{nr})}{n}]$ is added algebraically to the shear due to the factored gravity loads to obtain the design shear for the beam. For this example, both the dead load w_D and the live load w_L have been assumed to be uniformly distributed.

Determination of the design shear for a column is also illustrated for a particular example in Fig. R21.3.3. The factored axial force, P_u, should be chosen to develop the largest moment strength of the column.

In all applications of option (a) of 21.3.3, shears are required to be calculated for moments, acting both clockwise and counterclockwise. Figure R21.3.3 demonstrates only one of the two conditions that are to be considered for every member. Option (b) bases V_u on the load combination including the earthquake effect, E, which should be doubled. For example, the load combination defined by Eq. (9-5) would be

$$U = 1.2D + 2.0E + 1.0L + 0.2S$$

where E is the value specified by the governing code.

Section 21.3.4 contains requirements for providing beams with a threshold level of toughness. Transverse reinforcement at the ends of the beam is required to be hoops. In most cases, stirrups required by 21.3.3 for design shear force will be more than those required by 21.3.4. Requirements of 21.3.5 serve the same purpose for columns.

Discontinuous structural walls and other stiff members can impose large axial forces on supporting columns during earthquakes. The required transverse reinforcement in 21.3.5.6 is to improve column toughness under anticipated demands. The factored axial compressive force related to earthquake effect should include the factor Ω_o if required by the legally adopted general building code of which this Code forms a part.

Section 21.3.6 applies to two-way slabs without beams, such as flat plates.

Using load combinations of Eq. (9-5) and (9-7) may result in moments requiring top and bottom reinforcement at the supports.

The moment M_{slab} refers, for a given design load combination with E acting in one horizontal direction, to that portion of the factored slab moment that is balanced by the supporting members at a joint. It is not necessarily equal to the total design moment at support for a load combination including
shall extend above and below the columns as required in 21.6.4.6(b).

21.3.6 — Two-way slabs without beams

21.3.6.1 — Factored slab moment at support including earthquake effects, E, shall be determined for load combinations given in Eq. (9-5) and (9-7). Reinforcement provided to resist M_{slab} shall be placed within the column strip defined in 13.2.1.

21.3.6.2 — Reinforcement placed within the effective width specified in 13.5.3.2 shall be proportioned to resist $\gamma_f M_{slab}$. Effective slab width for exterior and corner connections shall not extend beyond the column face a distance greater than c_t measured perpendicular to the slab span.

21.3.6.3 — Not less than one-half of the reinforcement in the column strip at support shall be placed within the effective slab width given in 13.5.3.2.

21.3.6.4 — Not less than one-quarter of the top reinforcement at the support in the column strip shall be continuous throughout the span.

21.3.6.5 — Continuous bottom reinforcement in the column strip shall be not less than one-third of the top reinforcement at the support in the column strip.

21.3.6.6 — Not less than one-half of all bottom middle strip reinforcement and all bottom column strip reinforcement at midspan shall be continuous and shall develop f_y at face of support as defined in 13.6.2.5.

21.3.6.7 — At discontinuous edges of the slab, all top and bottom reinforcement at support shall be developed at the face of support as defined in 13.6.2.5.

earthquake effect. In accordance with 13.5.3.2, only a fraction of the moment M_{slab} is assigned to the slab effective width. For edge and corner connections, flexural reinforcement perpendicular to the edge is not considered fully effective unless it is placed within the effective slab width. See Fig. 21.3.6.1.

Application of the provisions of 21.3.6 is illustrated in Fig. R21.3.6.2 and R21.3.6.3.

![Fig. R21.3.6.1—Effective width for reinforcement placement in edge and corner connections.](image-url)
21.3.6.8 — At the critical sections for columns defined in 11.11.1.2, two-way shear caused by factored gravity loads shall not exceed $0.4 \phi V_c$, where V_c shall be calculated as defined in 11.11.2.1 for nonprestressed slabs and in 11.11.2.2 for prestressed slabs. It shall be permitted to waive this requirement if the slab design satisfies requirements of 21.13.6.

R21.3.6.8 — The requirements apply to two-way slabs that are designated part of the seismic-force-resisting system. Slab-column connections in laboratory tests exhibited reduced lateral displacement ductility when the shear at the column connection exceeded the recommended limit. Slab-column connections also must satisfy shear and moment strength requirements of Chapters 11 and 13 under load combinations including earthquake effect.
21.4 — Intermediate precast structural walls

21.4.1 — Scope

Requirements of 21.4 apply to intermediate precast structural walls forming part of the seismic-force-resisting system.

21.4.2 — In connections between wall panels, or between wall panels and the foundation, yielding shall be restricted to steel elements or reinforcement.

21.4.3 — Elements of the connection that are not designed to yield shall develop at least 1.5\(S_y\).

21.5 — Flexural members of special moment frames

21.5.1 — Scope

Requirements of 21.5 apply to special moment frame members that form part of the seismic-force-resisting system and are proportioned primarily to resist flexure. These frame members shall also satisfy the conditions of 21.5.1.1 through 21.5.1.4.

21.5.1.1 — Factored axial compressive force on the member, \(P_u\), shall not exceed \(\frac{A_g f_c^′}{10}\).

21.5.1.2 — Clear span for member, \(l_n\), shall not be less than four times its effective depth.

21.5.1.3 — Width of member, \(b_w\), shall not be less than the smaller of 0.3\(h\) and 10 in.

21.5.1.4 — Width of member, \(b_w\), shall not exceed width of supporting member, \(c_2\), plus a distance on each side of supporting member equal to the smaller of (a) and (b):

(a) Width of supporting member, \(c_2\), and

(b) 0.75 times the overall dimension of supporting member, \(c_1\).

21.5.2 — Longitudinal reinforcement

R21.5 — Flexural members of special moment frames

R21.5.1 — Scope

This section refers to beams of special moment frames resisting lateral loads induced by earthquake motions. Any frame member subjected to a factored axial compressive force exceeding \(\frac{A_g f_c^′}{10}\) under any load combination is to be proportioned and detailed as described in 21.6.

Experimental evidence\(^{21.14}\) indicates that, under reversals of displacement into the nonlinear range, behavior of continuous members having length-to-depth ratios of less than 4 is significantly different from the behavior of relatively slender members. Design rules derived from experience with relatively slender members do not apply directly to members with length-to-depth ratios less than 4, especially with respect to shear strength.

Geometric constraints indicated in 21.5.1.3 and 21.5.1.4 were derived from practice and research\(^{21.8}\) on reinforced concrete frames resisting earthquake-induced forces. The limits in 21.5.1.4 recognize that the maximum effective beam width depends principally on the column dimensions rather than on the depth of the beam, as suggested in the 2005 and earlier versions of the Code. An example of maximum effective beam width is shown in Fig. R21.5.1.

R21.5.2 — Longitudinal reinforcement

Section 10.3.5 limits the net tensile strain, \(\varepsilon_t\), thereby indirectly limiting the tensile reinforcement ratio in a flexural member to a fraction of the amount that would produce balanced conditions. For a section subjected to bending only and loaded monotonically to yielding, this approach is feasible because the likelihood of compressive failure can be estimated reliably with the behavioral model assumed for determining the reinforcement ratio corresponding to balanced failure. The same behavioral model (because of
incorrect assumptions such as linear strain distribution, well-defined yield point for the steel, limiting compressive strain in the concrete of 0.003, and compressive stresses in the shell concrete) does not describe the conditions in a flexural member subjected to reversals of displacements well into the inelastic range. Thus, there is little rationale for continuing to refer to balanced conditions in earthquake-resistant design of reinforced concrete structures.

Fig. R21.5.1—Maximum effective width of wide beam and required transverse reinforcement.
21.5.2.1 — At any section of a flexural member, except as provided in 10.5.3, for top as well as for bottom reinforcement, the amount of reinforcement shall not be less than that given by Eq. (10-3) but not less than \(200 \frac{b_d}{f_y} \), and the reinforcement ratio, \(\rho \), shall not exceed 0.025. At least two bars shall be provided continuously at both top and bottom.

21.5.2.2 — Positive moment strength at joint face shall be not less than one-half the negative moment strength provided at that face of the joint. Neither the negative nor the positive moment strength at any section along member length shall be less than one-fourth the maximum moment strength provided at face of either joint.

21.5.2.3 — Lap splices of flexural reinforcement shall be permitted only if hoop or spiral reinforcement is provided over the lap length. Spacing of the transverse reinforcement enclosing the lap-spliced bars shall not exceed the smaller of \(d/4 \) and 4 in. Lap splices shall not be used:

(a) Within the joints;

(b) Within a distance of twice the member depth from the face of the joint; and

(c) Where analysis indicates flexural yielding is caused by inelastic lateral displacements of the frame.

21.5.2.4 — Mechanical splices shall conform to 21.1.6 and welded splices shall conform to 21.1.7.

21.5.2.5 — Prestressing, where used, shall satisfy (a) through (d), unless used in a special moment frame as permitted by 21.8.3:

(a) The average prestress, \(f_{pc} \), calculated for an area equal to the smallest cross-sectional dimension of the member multiplied by the perpendicular cross-sectional dimension shall not exceed the smaller of 500 psi and \(f'_c/10 \).

(b) Prestressing steel shall be unbonded in potential plastic hinge regions, and the calculated strains in prestressing steel under the design displacement shall be less than 1 percent.

(c) Prestressing steel shall not contribute to more than one-quarter of the positive or negative flexural strength at the critical section in a plastic hinge region and shall be anchored at or beyond the exterior face of the joint.

(d) Anchorages of the post-tensioning tendons resisting earthquake-induced forces shall be

R21.5.2.1 — The limiting reinforcement ratio of 0.025 is based primarily on considerations of steel congestion and, indirectly, on limiting shear stresses in beams of typical proportions. The requirement of at least two bars, top and bottom, refers again to construction rather than behavioral requirements.

R21.5.2.3 — Lap splices of reinforcement are prohibited at regions where flexural yielding is anticipated because such splices are not reliable under conditions of cyclic loading into the inelastic range. Transverse reinforcement for lap splices at any location is mandatory because of the likelihood of loss of shell concrete.

R21.5.2.5 — These provisions were developed, in part, based on observations of building performance in earthquakes. 21.15 For calculating the average prestress, the smallest cross-sectional dimension in a beam normally is the web dimension, and is not intended to refer to the flange thickness. In a potential plastic hinge region, the limitation on strain and the requirement for unbonded tendons are intended to prevent fracture of tendons under inelastic earthquake deformation. Calculation of the strain in the prestressing steel is required considering the anticipated inelastic mechanism of the structure. For prestressing steel unbonded along the full beam span, strains generally will be well below the specified limit. For prestressing steel with short unbonded length through or adjacent to the joint, the additional strain due to earthquake deformation is calculated as the product of the depth to the neutral axis and the sum of plastic hinge rotations at the joint, divided by the unbonded length.

The restrictions on the flexural strength provided by the tendons are based on the results of analytical and experimental studies. 21.16-21.18 Although satisfactory seismic performance can be obtained with greater amounts of
21.5.3 — Transverse reinforcement

21.5.3.1 — Hoops shall be provided in the following regions of frame members:

(a) Over a length equal to twice the member depth measured from the face of the supporting member toward midspan, at both ends of the flexural member;

(b) Over lengths equal to twice the member depth on both sides of a section where flexural yielding is likely to occur in connection with inelastic lateral displacements of the frame.

21.5.3.2 — The first hoop shall be located not more than 2 in. from the face of a supporting member. Spacing of the hoops shall not exceed the smallest of (a), (b), (c) and (d):

(a) \(\frac{d}{4} \);

(b) Eight times the diameter of the smallest longitudinal bars;

(c) 24 times the diameter of the hoop bars; and

(d) 12 in.

21.5.3.3 — Where hoops are required, longitudinal bars on the perimeter shall have lateral support conforming to 7.10.5.3.

21.5.3.4 — Where hoops are not required, stirrups with seismic hooks at both ends shall be spaced at a distance not more than \(\frac{d}{2} \) throughout the length of the member.

Fatigue testing for 50 cycles of loading between 40 and 80 percent of the specified tensile strength of the prestressing steel has been an industry practice of long standing.\(^{21.15,21.19}\) The 80 percent limit was increased to 85 percent to correspond to the 1 percent limit on the strain in prestressing steel. Testing over this range of stress is intended to conservatively simulate the effect of a severe earthquake. Additional details on testing procedures, but to different stress levels, are provided in Reference 21.19.
CODE

21.5.3.5 — Stirrups or ties required to resist shear shall be hoops over lengths of members in 21.5.3.1.

21.5.3.6 — Hoops in flexural members shall be permitted to be made up of two pieces of reinforcement: a stirrup having seismic hooks at both ends and closed by a crosstie. Consecutive crossties engaging the same longitudinal bar shall have their 90-degree hooks at opposite sides of the flexural member. If the longitudinal reinforcing bars secured by the crossties are confined by a slab on only one side of the flexural frame member, the 90-degree hooks of the crossties shall be placed on that side.

21.5.4 — Shear strength requirements

21.5.4.1 — Design forces

The design shear force, \(V_e \), shall be determined from consideration of the statical forces on the portion of the member between faces of the joints. It shall be assumed that moments of opposite sign corresponding to probable flexural moment strength, \(M_{pr} \), act at the joint faces and that the member is loaded with the factored tributary gravity load along its span.

21.5.4.2 — Transverse reinforcement

Transverse reinforcement over the lengths identified in 21.5.3.1 shall be proportioned to resist shear assuming \(V_c = 0 \) when both (a) and (b) occur:

(a) The earthquake-induced shear force calculated in accordance with 21.5.4.1 represents one-half or more of the maximum required shear strength within those lengths;

(b) The factored axial compressive force, \(P_u \), including earthquake effects is less than \(A_g f'c / 20 \).

COMMENTARY

Because spalling of the concrete shell is anticipated during strong motion, especially at and near regions of flexural yielding, all web reinforcement should be provided in the form of closed hoops as defined in 21.5.3.5.

R21.5.4 — Shear strength requirements

R21.5.4.1 — Design forces

In determining the equivalent lateral forces representing earthquake effects for the type of frames considered, it is assumed that frame members will dissipate energy in the nonlinear range of response. Unless a frame member possesses a strength that is on the order of 3 or 4 of the design forces, it should be assumed that it will yield in the event of a major earthquake. The design shear force should be a good approximation of the maximum shear that may develop in a member. Therefore, required shear strength for frame members is related to flexural strengths of the designed member rather than to factored shear forces indicated by lateral load analysis. The conditions described by 21.5.4.1 are illustrated in Fig. R21.5.4.

Because the actual yield strength of the longitudinal reinforcement may exceed the specified yield strength and because strain hardening of the reinforcement is likely to take place at a joint subjected to large rotations, required shear strengths are determined using a stress of at least \(1.25 f_y \) in the longitudinal reinforcement.

R21.5.4.2 — Transverse reinforcement

Experimental studies\(^{21.20,21.21}\) of reinforced concrete members subjected to cyclic loading have demonstrated that more shear reinforcement is required to ensure a flexural failure if the member is subjected to alternating nonlinear displacements than if the member is loaded in only one direction: the necessary increase of shear reinforcement being higher in the case of no axial load. This observation is reflected in the Code (see 21.5.4.2) by eliminating the term representing the contribution of concrete to shear strength. The added conservatism on shear is deemed necessary in locations where potential flexural hinging may occur. However, this stratagem, chosen for its relative simplicity, should not be interpreted to mean that no concrete is required to resist shear. On the contrary, it may be argued that the concrete core resists all the shear with the shear
Fig. R21.5.4—Design shears for beams and columns.
21.6 — Special moment frame members subjected to bending and axial load

21.6.1 — Scope

Requirements of this section apply to special moment frame members that form part of the seismic-force-resisting system and that resist a factored axial compressive force P_u under any load combination exceeding $A_f'f_c/10$. These frame members shall also satisfy the conditions of 21.6.1.1 and 21.6.1.2.

21.6.1.1 — The shortest cross-sectional dimension, measured on a straight line passing through the geometric centroid, shall not be less than 12 in.

21.6.1.2 — The ratio of the shortest cross-sectional dimension to the perpendicular dimension shall not be less than 0.4.

21.6.2 — Minimum flexural strength of columns

21.6.2.1 — Columns shall satisfy 21.6.2.2 or 21.6.2.3.

21.6.2.2 — The flexural strengths of the columns shall satisfy Eq. (21-1)

$$\Sigma M_{nc} \geq (6/5)\Sigma M_{nb}$$ (21-1)

ΣM_{nc} = sum of nominal flexural strengths of columns framing into the joint, evaluated at the faces of the joint. Column flexural strength shall be calculated for the factored axial force, consistent with the direction of the lateral forces considered, resulting in the lowest flexural strength.

ΣM_{nb} = sum of nominal flexural strengths of the beams framing into the joint, evaluated at the faces of the joint. In T-beam construction, where the slab is in tension under moments at the face of the joint, slab reinforcement within an effective slab width defined in 8.12 shall be assumed to contribute to M_{nb} if the slab reinforcement is developed at the critical section for flexure.

Flexural strengths shall be summed such that the column moments oppose the beam moments. Equation (21-1) shall be satisfied for beam moments acting in both directions in the vertical plane of the frame considered.

R21.6 — Special moment frame members subjected to bending and axial load

R21.6.1 — Scope

Section 21.6.1 is intended primarily for columns of special moment frames. Frame members, other than columns, that do not satisfy 21.5.1 are to be proportioned and detailed according to this section. These provisions apply to the frame member for all load combinations if the axial load exceeds $0.1A_f'f_c$ in any load combination.

The geometric constraints in 21.6.1.1 and 21.6.1.2 follow from previous practice.

R21.6.2 — Minimum flexural strength of columns

The intent of 21.6.2.2 is to reduce the likelihood of yielding in columns that are considered as part of the seismic-force-resisting system. If columns are not stronger than beams framing into a joint, there is likelihood of inelastic action. In the worst case of weak columns, flexural yielding can occur at both ends of all columns in a given story, resulting in a column failure mechanism that can lead to collapse.

In 21.6.2.2, the nominal strengths of the girders and columns are calculated at the joint faces, and those strengths are compared directly using Eq. (21-1). The 1995 Code required design strengths to be compared at the center of the joint, which typically produced similar results but with added computational effort.

When determining the nominal flexural strength of a girder section in negative bending (top in tension), longitudinal reinforcement contained within an effective flange width of a top slab that acts monolithically with the girder increases the girder strength. Research on beam-column subassemblies under lateral loading indicates that using the effective flange widths defined in 8.10 gives reasonable estimates of girder negative bending strengths of interior connections at interstory displacement levels approaching 2 percent of story height. This effective width is conservative where the slab terminates in a weak spandrel.
21.6.2.3 — If 21.6.2.2 is not satisfied at a joint, the lateral strength and stiffness of the columns framing into that joint shall be ignored when determining the calculated strength and stiffness of the structure. These columns shall conform to 21.13.

21.6.3 — Longitudinal reinforcement

21.6.3.1 — Area of longitudinal reinforcement, \(A_{st} \), shall not be less than 0.01\(A_g \) or more than 0.06\(A_g \).

21.6.3.2 — Mechanical splices shall conform to 21.1.6 and welded splices shall conform to 21.1.7. Lap splices shall be permitted only within the center half of the member length, shall be designed as tension lap splices, and shall be enclosed within transverse reinforcement conforming to 21.6.4.2 and 21.6.4.3.

21.6.4 — Transverse reinforcement

21.6.4.1 — Transverse reinforcement required in 21.6.4.2 through 21.6.4.4 shall be provided over a length \(l_o \) from each joint face and on both sides of any section where flexural yielding is likely to occur as a result of inelastic lateral displacements of the frame. Length \(l_o \) shall not be less than the largest of (a), (b), and (c):

(a) The depth of the member at the joint face or at the section where flexural yielding is likely to occur;

(b) One-sixth of the clear span of the member; and

(c) 18 in.

21.6.4.2 — Transverse reinforcement shall be provided by either single or overlapping spirals satisfying 7.10.4, circular hoops, or rectilinear hoops with or
without crossties. Crossties of the same or smaller bar size as the hoops shall be permitted. Each end of the crosstie shall engage a peripheral longitudinal reinforcing bar. Consecutive crossties shall be alternated end for end along the longitudinal reinforcement. Spacing of crossties or legs of rectilinear hoops, \(h_x \), within a cross section of the member shall not exceed 14 in. on center.

CODE

21.6.4.3 — Spacing of transverse reinforcement along the length \(l_o \) of the member shall not exceed the smallest of (a), (b), and (c):

(a) One-quarter of the minimum member dimension;

(b) Six times the diameter of the smallest longitudinal bar; and

(c) \(s_0 \), as defined by Eq. (21-2)

\[
 s_0 = 4 + \left(\frac{14 - h_x}{3} \right)
\]

(21-2)

The value of \(s_0 \) shall not exceed 6 in. and need not be taken less than 4 in.

21.6.4.4 — Amount of transverse reinforcement required in (a) or (b) shall be provided unless a larger amount is required by 21.6.5.

(a) The volumetric ratio of spiral or circular hoop reinforcement, \(\rho_s \), shall not be less than required by Eq. (21-3)

COMMENTARY

Consecutive crossties engaging the same longitudinal bar have their 90-degree hooks on opposite sides of column

The dimension \(x_i \) from centerline to centerline of tie legs is not to exceed 14 inches. The term \(h_x \) used in equation 21-2 is taken as the largest value of \(x_i \).

Fig. R21.6.4.2—Example of transverse reinforcement in columns.

shows an example of transverse reinforcement provided by one hoop and three crossties. Crossties with a 90-degree hook are not as effective as either crossties with 135-degree hooks or hoops in providing confinement. Tests show that if crosstie ends with 90-degree hooks are alternated, confinement will be sufficient.

R21.6.4.3 — The requirement that spacing not exceed one-quarter of the minimum member dimension is to obtain adequate concrete confinement. The requirement that spacing not exceed six bar diameters is intended to restrain longitudinal reinforcement buckling after spalling. The 4 in. spacing is for concrete confinement; 21.6.4.3 permits this limit to be relaxed to a maximum of 6 in. if the spacing of crossties or legs of overlapping hoops is less than 8 in.

R21.6.4.4 — The effect of helical (spiral) reinforcement and adequately configured rectilinear hoop reinforcement on strength and ductility of columns is well established. While analytical procedures exist for calculation of strength and ductility capacity of columns under axial and moment reversals, the axial load and deformation demands during earthquake loading are not known with sufficient
CODE

\[\rho_s = 0.12 \frac{f'_c}{f_{yt}} \]

(21-3)

and shall not be less than required by Eq. (10-5).

(b) The total cross-sectional area of rectangular hoop reinforcement, \(A_{sh} \), shall not be less than required by Eq. (21-4) and (21-5)

\[A_{sh} = 0.3 \frac{sb_c'f_c}{f_{yt}} \left[\frac{A_g}{A_{ch}} - 1 \right] \]

(21-4)

\[A_{sh} = 0.09 \frac{sb_c'f_c}{f_{yt}} \]

(21-5)

21.6.4.5 — Beyond the length \(l_o \) specified in 21.6.4.1, the column shall contain spiral or hoop reinforcement satisfying 7.10 with center-to-center spacing, \(s \), not exceeding the smaller of six times the diameter of the smallest longitudinal column bars and 6 in., unless a larger amount of transverse reinforcement is required by 21.6.3.2 or 21.6.5.

21.6.4.6 — Columns supporting reactions from discontinued stiff members, such as walls, shall satisfy (a) and (b):

(a) Transverse reinforcement as required in 21.6.4.2 through 21.6.4.4 shall be provided over their full height at all levels beneath the discontinuity if the factored axial compressive force in these members, related to earthquake effect, exceeds \(A_g f'_c / 10 \). Where design forces have been magnified to account for the overstrength of the vertical elements of the seismic-force-resisting system, the limit of \(A_g f'_c / 10 \) shall be increased to \(A_g f'_c / 4 \).

(b) The transverse reinforcement shall extend into the discontinued member at least \(l_d \) of the largest longitudinal column bar, where \(l_d \) is determined in accordance with 21.7.5. Where the lower end of the column terminates on a wall, the required transverse reinforcement shall extend into the wall at least \(l_d \) of the largest longitudinal column bar at the point of termination. Where the column terminates on a footing or mat, the required transverse reinforcement shall extend at least 12 in. into the footing or mat.

21.6.4.7 — If the concrete cover outside the confining transverse reinforcement specified in 21.6.4.1, 21.6.4.5, and 21.6.4.6 exceeds 4 in., additional accuracy to justify calculation of required transverse reinforcement as a function of design earthquake demands. Instead, Eq. (10-5) and (21-4) are required, with the intent that spalling of shell concrete will not result in a loss of axial load strength of the column. Equations (21-3) and (21-5) govern for large-diameter columns, and are intended to ensure adequate flexural curvature capacity in yielding regions.

Equations (21-4) and (21-5) are to be satisfied in both cross-sectional directions of the rectangular core. For each direction, \(b_c \) is the core dimension perpendicular to the tie legs that constitute \(A_{sh} \), as shown in Fig. R21.6.4.2.

Research results indicate that yield strengths higher than those specified in 11.4.2 can be used effectively as confinement reinforcement. \(f_{yt} = 100,000 \) psi is permitted in Eq. (21-3), (21-4), and (21-5) where ASTM A1035 is used as confinement reinforcement.

R21.6.4.5 — The provisions of 21.6.4.5 are intended to provide reasonable protection and ductility to the midheight of columns outside the length \(l_o \). Observations after earthquakes have shown significant damage to columns in this region, and the minimum ties or spirals required should provide a more uniform toughness of the column along its length.

R21.6.4.6 — Columns supporting reactions from discontinued stiff members, such as walls or trusses, may develop considerable inelastic response. Therefore, it is required that these columns have the specified reinforcement throughout their length. This covers all columns beneath the level at which the stiff member has been discontinued, unless the factored forces corresponding to earthquake effect are low. See R21.11.7.5 for discussion of the overstrength factor \(\Omega \) applied in some codes.

R21.6.4.7 — The unreinforced shell may spall as the column deforms to resist earthquake effects. Separation of portions of the shell from the core caused by local spalling
transverse reinforcement shall be provided. Concrete cover for additional transverse reinforcement shall not exceed 4 in. and spacing of additional transverse reinforcement shall not exceed 12 in.

21.6.5 — Shear strength requirements

21.6.5.1 — Design forces

The design shear force, \(V_e \), shall be determined from consideration of the maximum forces that can be generated at the faces of the joints at each end of the member. These joint forces shall be determined using the maximum probable moment strengths, \(M_{pr} \), at each end of the member associated with the range of factored axial loads, \(P_u \), acting on the member. The member shears need not exceed those determined from joint strengths based on \(M_{pr} \) of the transverse members framing into the joint. In no case shall \(V_e \) be less than the factored shear determined by analysis of the structure.

21.6.5.2 — Transverse reinforcement

Transverse reinforcement over the lengths \(l_o \), identified in 21.6.4.1, shall be proportioned to resist shear assuming \(V_c = 0 \) when both (a) and (b) occur:

(a) The earthquake-induced shear force, calculated in accordance with 21.6.5.1, represents one-half or more of the maximum required shear strength within \(l_o \);

(b) The factored axial compressive force, \(P_u \), including earthquake effects is less than \(A_g f_c / 20 \).

R21.6.5 — Shear strength requirements

R21.6.5.1 — Design forces

The procedures of 21.5.4.1 also apply to members subjected to axial loads (for example, columns). Above the ground floor, the moment at a joint may be limited by the flexural strength of the beams framing into the joint. Where beams frame into opposite sides of a joint, the combined strength may be the sum of the negative moment strength of the beam on one side of the joint and the positive moment strength of the beam on the other side of the joint. Moment strengths are to be determined using a strength reduction factor of 1.0 and reinforcing steel stress equal to at least \(1.25 f_y \). Distribution of the combined moment strength of the beams to the columns above and below the joint should be based on analysis. The value of \(M_{pr} \) in Fig. R21.5.4 may be computed from the flexural member strengths at the beam-column joints.

R21.7 — Joints of special moment frames

R21.7.2 — General requirements

Development of inelastic rotations at the faces of joints of reinforced concrete frames is associated with strains in the flexural reinforcement well in excess of the yield strain. Consequently, joint shear force generated by the flexural reinforcement is calculated for a stress of \(1.25 f_y \) in the reinforcement (see 21.7.2.1). A detailed explanation of the reasons for the possible development of stresses in excess of the yield strength in beam tensile reinforcement is provided in Reference 21.8.
tension according to 21.7.5 and in compression according to Chapter 12.

21.7.2.3 — Where longitudinal beam reinforcement extends through a beam-column joint, the column dimension parallel to the beam reinforcement shall not be less than 20 times the diameter of the largest longitudinal beam bar for normal weight concrete. For lightweight concrete, the dimension shall be not less than 26 times the bar diameter.

21.7.3 — Transverse reinforcement

21.7.3.1 — Joint transverse reinforcement shall satisfy either 21.6.4.4(a) or 21.6.4.4(b), and shall also satisfy 21.6.4.2, 21.6.4.3, and 21.6.4.7, except as permitted in 21.7.3.2.

21.7.3.2 — Where members frame into all four sides of the joint and where each member width is at least three-fourths the column width, the amount of reinforcement specified in 21.6.4.4(a) or 21.6.4.4(b) shall be permitted to be reduced by half, and the spacing required in 21.6.4.3 shall be permitted to be increased to 6 in. within the overall depth h of the shallowest framing member.

21.7.3.3 — Longitudinal beam reinforcement outside the column core shall be confined by transverse reinforcement passing through the column that satisfies spacing requirements of 21.5.3.2, and requirements of 21.5.3.3 and 21.5.3.6, if such confinement is not provided by a beam framing into the joint.

21.7.4 — Shear strength

21.7.4.1 — V_n of the joint shall not be taken as greater than the values specified below for normal weight concrete.

For joints confined on all four faces............ $20\sqrt{f'_c} A_j$
For joints confined on three faces or on two opposite faces $15\sqrt{f'_{c}} A_j$

For others ... $12\sqrt{f'_{c}} A_j$

A member that frames into a face is considered to provide confinement to the joint if at least three-quarters of the face of the joint is covered by the framing member. Extensions of beams at least one overall beam depth h beyond the joint face are permitted to be considered as confining members. Extensions of beams shall satisfy 21.5.1.3, 21.5.2.1, 21.5.3.2, 21.5.3.3, and 21.5.3.6. A joint is considered to be confined if such confining members frame into all faces of the joint.

A_j is the effective cross-sectional area within a joint computed from joint depth times effective joint width. Joint depth shall be the overall depth of the column, h. Effective joint width shall be the overall width of the column, except where a beam frames into a wider column, effective joint width shall not exceed the smaller of (a) and (b):

(a) Beam width plus joint depth

(b) Twice the smaller perpendicular distance from longitudinal axis of beam to column side.

21.7.4.2 — For lightweight concrete, the nominal shear strength of the joint shall not exceed three-quarters of the limits given in 21.7.4.1.

to joint (shear) reinforcement as implied by the expression developed by Joint ACI-ASCE Committee 326 $^{21.34}$ for beams, Committee 318 set the strength of the joint as a function of only the compressive strength of the concrete (see 21.7.4) and requires a minimum amount of transverse reinforcement in the joint (see 21.7.3). The effective area of joint A_j is illustrated in Fig. R21.7.4. In no case is A_j greater than the column cross-sectional area.

The three levels of shear strength required by 21.7.4.1 are based on the recommendation of ACI Committee 352 $^{21.8}$ Test data reviewed by the committee $^{21.35}$ indicate that the lower value given in 21.7.4.1 of the 1983 Code was conservative when applied to corner joints.

Cyclic loading tests of joints with extensions of beams with lengths at least equal to their depths have indicated similar joint shear strengths to those of joints with continuous beams. These findings suggest that extensions of beams, when properly dimensioned and reinforced with longitudinal and transverse bars, provide effective confinement to the joint faces, thus delaying joint strength deterioration at large deformations. $^{21.36}$

Fig. R21.7.4—Effective joint area.
21.7.5.1 — For bar sizes No. 3 through No. 11, the development length, ℓ_{dh}, for a bar with a standard 90-degree hook in normal weight concrete shall not be less than the largest of $8d_b$, 6 in., and the length required by Eq. (21-6)

$$\ell_{dh} = f_yd_b/(65\sqrt{f_c'})$$ \hspace{1cm} (21-6)

For lightweight concrete, ℓ_{dh} for a bar with a standard 90-degree hook shall not be less than the largest of $10d_b$, 7-1/2 in., and 1.25 times the length required by Eq. (21-6).

The 90-degree hook shall be located within the confined core of a column or of a boundary element.

21.7.5.2 — For bar sizes No. 3 through No. 11, ℓ_d, the development length in tension for a straight bar, shall not be less than the larger of (a) and (b):

(a) 2.5 times the length required by 21.7.5.1 if the depth of the concrete cast in one lift beneath the bar does not exceed 12 in.;

(b) 3.25 times the length required by 21.7.5.1 if the depth of the concrete cast in one lift beneath the bar exceeds 12 in.

21.7.5.3 — Straight bars terminated at a joint shall pass through the confined core of a column or of a boundary element. Any portion of ℓ_d not within the confined core shall be increased by a factor of 1.6.

21.7.5.4 — If epoxy-coated reinforcement is used, the development lengths in 21.7.5.1 through 21.7.5.3 shall be multiplied by applicable factors in 12.2.4 or 12.5.2.

Minimum development length in tension for deformed bars with standard hooks embedded in normal weight concrete is determined using Eq. (21-6), which is based on the requirements of 12.5. Because Chapter 21 stipulates that the hook is to be embedded in confined concrete, the coefficients 0.7 (for concrete cover) and 0.8 (for ties) have been incorporated in the constant used in Eq. (21-6). The development length that would be derived directly from 12.5 is increased to reflect the effect of load reversals.

The development length in tension of a deformed bar with a standard hook is defined as the distance, parallel to the bar, from the critical section (where the bar is to be developed) to a tangent drawn to the outside edge of the hook. The tangent is to be drawn perpendicular to the axis of the bar (see Fig. R12.5).

Factors such as the actual stress in the reinforcement being more than the yield stress and the effective development length not necessarily starting at the face of the joint were implicitly considered in the development of the expression for basic development length that has been used as the basis for Eq. (21-6).

For lightweight concrete, the length required by Eq. (21-6) is to be increased by 25 percent to compensate for variability of bond characteristics of reinforcing bars in various types of lightweight concrete.

Section 21.7.5.2 specifies the minimum development length in tension for straight bars as a multiple of the length indicated by 21.7.5.1. Section 21.7.5.2(b) refers to top bars.

If the required straight embedment length of a reinforcing bar extends beyond the confined volume of concrete (as defined in 21.5.3, 21.6.4, or 21.7.3), the required development length is increased on the premise that the limiting bond stress outside the confined region is less than that inside.

$$\ell_{dm} = 1.6(\ell_d - \ell_{dc}) + \ell_{dc}$$

or

$$\ell_{dm} = 1.6\ell_d - 0.6\ell_{dc}$$

where

ℓ_{dm} = required development length if bar is not entirely embedded in confined concrete;

ℓ_d = required development length in tension for straight bar embedded in confined concrete;

ℓ_{dc} = length of bar embedded in confined concrete.

Lack of reference to No. 14 and No. 18 bars in 21.7.5 is due to the paucity of information on anchorage of such bars subjected to load reversals simulating earthquake effects.
21.8 — Special moment frames constructed using precast concrete

21.8.1 — Scope

Requirements of 21.8 apply to special moment frames constructed using precast concrete forming part of the seismic-force-resisting system.

21.8.2 — Special moment frames with ductile connections constructed using precast concrete shall satisfy (a) and (b) and all requirements for special moment frames constructed with cast-in-place concrete:

(a) V_n for connections computed according to 11.6.4 shall not be less than $2V_e$, where V_e is calculated according to 21.5.4.1 or 21.6.5.1;

(b) Mechanical splices of beam reinforcement shall be located not closer than $h/2$ from the joint face and shall meet the requirements of 21.1.6.

21.8.3 — Special moment frames with strong connections constructed using precast concrete shall satisfy all requirements for special moment frames constructed with cast-in-place concrete, as well as (a), (b), (c), and (d).

(a) Provisions of 21.5.1.2 shall apply to segments between locations where flexural yielding is intended to occur due to design displacements;

(b) Design strength of the strong connection, ϕS_n, shall be not less than S_e;

(c) Primary longitudinal reinforcement shall be made continuous across connections and shall be developed outside both the strong connection and the plastic hinge region; and

(d) For column-to-column connections, ϕS_n shall not be less than $1.4S_e$. At column-to-column connections, ϕM_p shall be not less than $0.4M_{pr}$ for the column within the story height, and ϕV_n of the connection shall be not less than V_e determined by 21.6.5.1.

21.8.4 — Special moment frames constructed using precast concrete and not satisfying the requirements of 21.8.2 or 21.8.3 shall satisfy the requirements of ACI 374.1 and the requirements of (a) and (b):

(a) Details and materials used in the test specimens shall be representative of those used in the structure; and

(b) The design procedure used to proportion the test specimens shall define the mechanism by which the

R21.8 — Special moment frames constructed using precast concrete

The detailing provisions in 21.8.2 and 21.8.3 are intended to produce frames that respond to design displacements essentially like monolithic special moment frames.

Precast frame systems composed of concrete elements with ductile connections are expected to experience flexural yielding in connection regions. Reinforcement in ductile connections can be made continuous by using Type 2 mechanical splices or any other technique that provides development in tension or compression of at least 125 percent of the specified yield strength f_y of bars and the specified tensile strength of bars.$^{21.37-21.40}$ Requirements for mechanical splices are in addition to those in 21.1.6 and are intended to avoid strain concentrations over a short length of reinforcement adjacent to a splice device. Additional requirements for shear strength are provided in 21.8.2 to prevent sliding on connection faces. Precast frames composed of elements with ductile connections may be designed to promote yielding at locations not adjacent to the joints. Therefore, design shear, V_e, as computed according to 21.5.4.1 or 21.6.5.1, may be conservative.

Precast concrete frame systems composed of elements joined using strong connections are intended to experience flexural yielding outside the connections. Strong connections include the length of the coupler hardware as shown in Fig. R21.8.3. Capacity-design techniques are used in 21.8.3(b) to ensure the strong connection remains elastic following formation of plastic hinges. Additional column requirements are provided to avoid hinging and strength deterioration of column-to-column connections.

Strain concentrations have been observed to cause brittle fracture of reinforcing bars at the face of mechanical splices in laboratory tests of precast beam-column connections.$^{21.41}$ Locations of strong connections should be selected carefully or other measures should be taken, such as debonding of reinforcing bars in highly stressed regions, to avoid strain concentrations that can result in premature fracture of reinforcement.

R21.8.4 — Precast frame systems not satisfying the prescriptive requirements of Chapter 21 have been demonstrated in experimental studies to provide satisfactory seismic performance characteristics.$^{21.42,21.43}$ ACI 374.1 defines a protocol for establishing a design procedure, validated by analysis and laboratory tests, for such frames. The design procedure should identify the load path or mechanism by which the frame resists gravity and earthquake effects. The tests should be configured to test critical behaviors, and the measured quantities should establish upper-bound acceptance
Fig. R21.8.3—Strong connection examples.
frame resists gravity and earthquake effects, and shall establish acceptance values for sustaining that mechanism. Portions of the mechanism that deviate from Code requirements shall be contained in the test specimens and shall be tested to determine upper bounds for acceptance values.

ACI ITG-1.2 defines design requirements for one type of special precast concrete moment frame for use in accordance with 21.8.4.

R21.9.2 — Reinforcement

Minimum reinforcement requirements in 21.9.2.1 follow from preceding Codes. The uniform distribution requirement of the shear reinforcement is related to the intent to control the width of inclined cracks. The requirement for two layers of reinforcement in walls carrying substantial design shears in 21.9.2.2 is based on the observation that, under ordinary construction conditions, the probability of maintaining a single layer of reinforcement near the middle of the wall section is quite low. Furthermore, presence of reinforcement close to the surface tends to inhibit fragmentation of the concrete in the event of severe cracking during an earthquake.

R21.9.3 — Requirements are based on provisions in Chapter 12. Because actual forces in longitudinal reinforcement of structural walls may exceed calculated forces, reinforcement should be developed or spliced to reach the yield strength of the bar in tension. Requirements of 12.11, 12.12, and 12.13 address issues related to beams and do not apply to walls. At locations where yielding of longitudinal reinforcement is expected, a 1.25 multiplier is applied to account for the likelihood that the actual yield strength exceeds the specified yield strength of the bar, as well as the influence of strain hardening and cyclic load reversals. Where transverse reinforcement is used, development lengths for straight and hooked bars may be reduced as

\[f_c\]
reinforcement shall be 1.25 times the values calculated for \(f_y \) in tension.

(d) Mechanical splices of reinforcement shall conform to 21.1.6 and welded splices of reinforcement shall conform to 21.1.7.

21.9.3 — Design forces

\(V_u \) shall be obtained from the lateral load analysis in accordance with the factored load combinations.

21.9.4 — Shear strength

21.9.4.1 — \(V_n \) of structural walls shall not exceed

\[V_n = A_{cv}(\alpha_c \lambda \sqrt{\frac{f'_c}{f_y}} + \rho t f_y) \]

(21-7)

where the coefficient \(\alpha_c \) is 3.0 for \(h_w/l_w \leq 1.5 \), is 2.0 for \(h_w/l_w \geq 2.0 \), and varies linearly between 3.0 and 2.0 for \(h_w/l_w \) between 1.5 and 2.0.

21.9.4.2 — In 21.9.4.1, the value of ratio \(h_w/l_w \) used for determining \(V_n \) for segments of a wall shall be the larger of the ratios for the entire wall and the segment of wall considered.

21.9.4.3 — Walls shall have distributed shear reinforcement providing resistance in two orthogonal directions in the plane of the wall. If \(h_w/l_w \) does not exceed 2.0, reinforcement ratio \(\rho_t \) shall not be less than reinforcement ratio \(\rho_v \).

21.9.4.4 — For all wall piers sharing a common lateral force, \(V_n \) shall not be taken larger than \(8A_{cv} \sqrt{\frac{f'_c}{f_y}} \), where \(A_{cv} \) is the gross area of concrete bounded by web thickness and length of section. For any one of the individual wall piers, \(V_n \) shall not be taken larger than \(10A_{cw} \sqrt{\frac{f'_c}{f_y}} \), where \(A_{cw} \) is the area of concrete section of the individual pier considered.

21.9.4.5 — For horizontal wall segments and coupling beams, \(V_n \) shall not be taken larger than \(10A_{cw} \sqrt{\frac{f'_c}{f_y}} \), where \(A_{cw} \) is the area of concrete section of a horizontal wall segment or coupling beam.

COMMENTARY

Permitted in 12.2 and 12.5, respectively, because closely spaced transverse reinforcement improves the performance of splices and hooks subjected to repeated inelastic demands. 21.45

R21.9.3 — Design forces

Design shears for structural walls are obtained from lateral load analysis with the appropriate load factors. However, the possibility of yielding in components of such structures should be considered, as in the portion of a wall between two window openings, in which case the actual shear may be in excess of the shear indicated by lateral load analysis based on factored design forces.

R21.9.4 — Shear strength

Equation (21-7) recognizes the higher shear strength of walls with high shear-to-moment ratios. 21.14, 21.34, 21.46 The nominal shear strength is given in terms of the net area of the section resisting shear. For a rectangular section without openings, the term \(A_{cw} \) refers to the gross area of the cross section rather than to the product of the width and the effective depth. The definition of \(A_{cw} \) in Eq. (21-7) facilitates design calculations for walls with uniformly distributed reinforcement and walls with openings.

A wall segment refers to a part of a wall bounded by openings or by an opening and an edge. Traditionally, a vertical wall segment bounded by two window openings has been referred to as a pier. When designing an isolated wall or a vertical wall segment, \(\rho_v \) refers to horizontal reinforcement and \(\rho_t \) refers to vertical reinforcement.

The ratio \(h_w/l_w \) may refer to overall dimensions of a wall, or of a segment of the wall bounded by two openings, or an opening and an edge. The intent of 21.9.4.2 is to make certain that any segment of a wall is not assigned a unit strength larger than that for the entire wall. However, a wall segment with a ratio of \(h_w/l_w \) higher than that of the entire wall should be proportioned for the unit strength associated with the ratio \(h_w/l_w \) based on the dimensions for that segment.

To restrain the inclined cracks effectively, reinforcement included in \(\rho_t \) and \(\rho_v \) should be properly distributed along the length and height of the wall (see 21.9.4.3). Chord reinforcement provided near wall edges in concentrated amounts for resisting bending moment is not to be included in determining \(\rho_v \) and \(\rho_t \). Within practical limits, shear reinforcement distribution should be uniform and at a small spacing.

If the factored shear force at a given level in a structure is resisted by several walls or several piers of a perforated wall, the average unit shear strength assumed for the total available cross-sectional area is limited to \(8 \sqrt{f'_c} \) with the...
21.9.5 — Design for flexure and axial loads

21.9.5.1 — Structural walls and portions of such walls subject to combined flexural and axial loads shall be designed in accordance with 10.2 and 10.3 except that 10.3.6 and the nonlinear strain requirements of 10.2.2 shall not apply. Concrete and developed longitudinal reinforcement within effective flange widths, boundary elements, and the wall web shall be considered effective. The effects of openings shall be considered.

21.9.5.2 — Unless a more detailed analysis is performed, effective flange widths of flanged sections shall extend from the face of the web a distance equal to the smaller of one-half the distance to an adjacent wall web and 25 percent of the total wall height.

COMMENTARY

additional requirement that the unit shear strength assigned to any single pier does not exceed $10 \frac{f_c'}{c}$. The upper limit of strength to be assigned to any one member is imposed to limit the degree of redistribution of shear force.

“Horizontal wall segments” in 21.9.4.5 refers to wall sections between two vertically aligned openings (see Fig. R21.9.4.5). It is, in effect, a pier rotated through 90 degrees. A horizontal wall segment is also referred to as a coupling beam when the openings are aligned vertically over the building height. When designing a horizontal wall segment or coupling beam, ρ_t refers to vertical reinforcement and ρ_l refers to horizontal reinforcement.

R21.9.5 — Design for flexure and axial loads

R21.9.5.1 — Flexural strength of a wall or wall segment is determined according to procedures commonly used for columns. Strength should be determined considering the applied axial and lateral forces. Reinforcement concentrated in boundary elements and distributed in flanges and webs should be included in the strength computations based on a strain compatibility analysis. The foundation supporting the wall should be designed to develop the wall boundary and web forces. For walls with openings, the influence of the opening or openings on flexural and shear strengths is to be considered and a load path around the opening or openings should be verified. Capacity-design concepts and strut-and-tie models may be useful for this purpose.

R21.9.5.2 — Where wall sections intersect to form L-, T-, C-, or other cross-sectional shapes, the influence of the flange on the behavior of the wall should be considered by selecting appropriate flange widths. Tests show that effective flange width increases with increasing drift level and the effectiveness of a flange in compression differs from that for a flange in tension. The value used for the effective compression flange width has little impact on the strength and deformation capacity of the wall; therefore, to simplify design, a single value of effective flange width based on an estimate of the effective tension flange width is used in both tension and compression.

Fig. R21.9.4.5—Wall with openings.
21.9.6 — Boundary elements of special structural walls

21.9.6.1 — The need for special boundary elements at the edges of structural walls shall be evaluated in accordance with 21.9.6.2 or 21.9.6.3. The requirements of 21.9.6.4 and 21.9.6.5 also shall be satisfied.

21.9.6.2 — This section applies to walls or wall piers that are effectively continuous from the base of structure to top of wall and designed to have a single critical section for flexure and axial loads. Walls not satisfying these requirements shall be designed by 21.9.6.3.

(a) Compression zones shall be reinforced with special boundary elements where

\[
c \geq \frac{t_w}{600(\delta_u/h_w)}
\]

(21-8)

c in Eq. (21-8) corresponds to the largest neutral axis depth calculated for the factored axial force and nominal moment strength consistent with the design displacement \(\delta_u\). Ratio \(\delta_u/h_w\) in Eq. (21-8) shall not be taken less than 0.007;

(b) Where special boundary elements are required by 21.9.6.2(a), the special boundary element reinforcement shall extend vertically from the critical section a distance not less than the larger of \(t_w\) or \(M_u/4V_u\).

21.9.6.3 — Structural walls not designed to the provisions of 21.9.6.2 shall have special boundary elements at boundaries and edges around openings of structural walls where the maximum extreme fiber compressive stress, corresponding to load combinations including earthquake effects, \(E\), exceeds 0.2\(f'c\). The special boundary element shall be permitted to be discontinued where the calculated compressive stress is less than 0.15\(f'c\). Stresses shall be calculated for the factored forces using a linearly elastic model and gross section properties. For walls with flanges, an effective flange width as defined in 21.9.5.2 shall be used.

R21.9.6 — Boundary elements of special structural walls

R21.9.6.1 — Two design approaches for evaluating detailing requirements at wall boundaries are included in 21.9.6.1. Section 21.9.6.2 allows the use of displacement-based design of walls, in which the structural details are determined directly on the basis of the expected lateral displacements of the wall. The provisions of 21.9.6.3 are similar to those of the 1995 Code, and have been retained because they are conservative for assessing required transverse reinforcement at wall boundaries for many walls. Requirements of 21.9.6.4 and 21.9.6.5 apply to structural walls designed by either 21.9.6.2 or 21.9.6.3.

R21.9.6.2 — Section 21.9.6.2 is based on the assumption that inelastic response of the wall is dominated by flexural action at a critical, yielding section. The wall should be proportioned so that the critical section occurs where intended.

Equation (21-8) follows from a displacement-based approach.\(^{21,49,21,50}\) The approach assumes that special boundary elements are required to confine the concrete where the strain at the extreme compression fiber of the wall exceeds a critical value when the wall is displaced to the design displacement. The height of the special boundary element is intended to extend at least over the length where the compression strain exceeds the critical value. The height of the special boundary element is based on upper bound estimates of plastic hinge length and extends beyond the zone over which concrete spalling is likely to occur. The lower limit of 0.007 on the quantity \(\delta_u/h_w\) requires moderate wall deformation capacity for stiff buildings.

The neutral axis depth \(c\) in Eq. (21-8) is the depth calculated according to 10.2, except the nonlinear strain requirements of 10.2.2 need not apply, corresponding to development of nominal flexural strength of the wall when displaced in the same direction as \(\delta_u\). The axial load is the factored axial load that is consistent with the design load combination that produces the design displacement \(\delta_u\).

R21.9.6.3 — By this procedure, the wall is considered to be acted on by gravity loads and the maximum shear and moment induced by earthquake in a given direction. Under this loading, the compressed boundary at the critical section resists the tributary gravity load plus the compressive resultant associated with the bending moment.

Recognizing that this loading condition may be repeated many times during the strong motion, the concrete is to be confined where the calculated compressive stresses exceed a nominal critical value equal to 0.2\(f'c\). The stress is to be calculated for the factored forces on the section assuming linear response of the gross concrete section. The compressive stress of 0.2\(f'c\) is used as an index value and does not
21.9.6.4 — Where special boundary elements are required by 21.9.6.2 or 21.9.6.3, (a) through (e) shall be satisfied:

(a) The boundary element shall extend horizontally from the extreme compression fiber a distance not less than the larger of $c - 0.1c_w$ and $c/2$, where c is the largest neutral axis depth calculated for the factored axial force and nominal moment strength consistent with δ_u;

(b) In flanged sections, the boundary element shall include the effective flange width in compression and shall extend at least 12 in. into the web;

(c) The boundary element transverse reinforcement shall satisfy the requirements of 21.6.4.2 through 21.6.4.4, except Eq. (21-4) need not be satisfied and the transverse reinforcement spacing limit of 21.6.4.3(a) shall be one-third of the least dimension of the boundary element;

(d) The boundary element transverse reinforcement at the wall base shall extend into the support at least l_d, according to 21.9.2.3, of the largest longitudinal reinforcement in the special boundary element unless the special boundary element terminates on a footing or mat, where special boundary element transverse reinforcement shall extend at least 12 in. into the footing or mat;

(e) Horizontal reinforcement in the wall web shall be anchored to develop f_y within the confined core of the boundary element.

21.9.6.5 — Where special boundary elements are not required by 21.9.6.2 or 21.9.6.3, (a) and (b) shall be satisfied:

(a) If the longitudinal reinforcement ratio at the wall boundary is greater than $400/f_y$, boundary transverse reinforcement shall satisfy 21.6.4.2 and 21.9.6.4(a). The maximum longitudinal spacing of transverse reinforcement in the boundary shall not exceed 8 in.;

(b) Except when V_u in the plane of the wall is less than $A_{cu}f_y$, horizontal reinforcement terminating at the edges of structural walls without boundary elements shall have a standard hook engaging the edge reinforcement or the edge reinforcement shall be enclosed in U-stirrups having the same size and spacing as, and spliced to, the horizontal reinforcement.

R21.9.6.4 — The value of $c/2$ in 21.9.6.4(a) is to provide a minimum length of the special boundary element. Where flanges are heavily stressed in compression, the web-to-flange interface is likely to be heavily stressed and may sustain local crushing failure unless special boundary element reinforcement extends into the web. Equation (21-4) does not apply to walls.

Because horizontal reinforcement is likely to act as web reinforcement in walls requiring boundary elements, it should be fully anchored in boundary elements that act as flanges (21.9.6.4). Achievement of this anchorage is difficult when large transverse cracks occur in the boundary elements. Therefore, standard 90-degree hooks or mechanical anchorage schemes are recommended instead of straight bar development.

Tests21.51 show that adequate performance can be achieved using spacing larger than permitted by 21.6.4.3(a).

R21.9.6.5 — Cyclic load reversals may lead to buckling of boundary longitudinal reinforcement even in cases where the demands on the boundary of the wall do not require special boundary elements. For walls with moderate amounts of boundary longitudinal reinforcement, ties are required to inhibit buckling. The longitudinal reinforcement ratio is intended to include only the reinforcement at the wall boundary as indicated in Fig. R21.9.6.5. A larger spacing of ties relative to 21.9.6.4(c) is allowed due to the lower deformation demands on the walls.

The addition of hooks or U-stirrups at the ends of horizontal wall reinforcement provides anchorage so that the reinforcement will be effective in resisting shear forces. It will also tend to inhibit the buckling of the vertical edge reinforcement. In walls with low in-plane shear, the development of horizontal reinforcement is not necessary.
21.9.7 — Coupling beams

21.9.7.1 — Coupling beams with \(\frac{l_n}{h} \geq 4\) shall satisfy the requirements of 21.5. The provisions of 21.5.1.3 and 21.5.1.4 need not be satisfied if it can be shown by analysis that the beam has adequate lateral stability.

21.9.7.2 — Coupling beams with \(\frac{l_n}{h} < 2\) and with \(V_u\) exceeding \(4\lambda f'_c A_{cw}\) shall be reinforced with two intersecting groups of diagonally placed bars symmetrical about the midspan, unless it can be shown that loss of stiffness and strength of the coupling beams will not impair the vertical load-carrying ability of the structure, the egress from the structure, or the integrity of nonstructural components and their connections to the structure.

21.9.7.3 — Coupling beams not governed by 21.9.7.1 or 21.9.7.2 shall be permitted to be reinforced either with two intersecting groups of diagonally placed bars symmetrical about the midspan or according to 21.5.2 through 21.5.4.

21.9.7.4 — Coupling beams reinforced with two intersecting groups of diagonally placed bars symmetrical about the midspan shall satisfy (a), (b), and either (c) or (d). Requirements of 11.7 shall not apply.

(a) \(V_n\) shall be determined by

\[
V_n = 2A_{vd}f_sp\sin\alpha \leq 10\sqrt{f'_c} A_{cw} \quad (21-9)
\]

R21.9.7 — Coupling beams

Coupling beams connecting structural walls can provide stiffness and energy dissipation. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Deep coupling beams may be controlled by shear and may be susceptible to strength and stiffness deterioration under earthquake loading. Test results have shown that confined diagonal reinforcement provides adequate resistance in deep coupling beams.

Experiments show that diagonally oriented reinforcement is effective only if the bars are placed with a large inclination. Therefore, diagonally reinforced coupling beams are restricted to beams having aspect ratio \(l_n/h < 4\). The 2008 edition of this Code was changed to clarify that coupling beams of intermediate aspect ratio can be reinforced according to 21.5.2 through 21.5.4.

Diagonal bars should be placed approximately symmetrically in the beam cross section, in two or more layers. The diagonally placed bars are intended to provide the entire shear and corresponding moment strength of the beam; designs deriving their moment strength from combinations of diagonal and longitudinal bars are not covered by these provisions.

Two confinement options are described. According to 21.9.7.4(c), each diagonal element consists of a cage of longitudinal and transverse reinforcement as shown in Fig. R21.9.7(a). Each cage contains at least four diagonal bars and confines a concrete core. The requirement on side dimensions of the cage and its core is to provide adequate...
where α is the angle between the diagonal bars and the longitudinal axis of the coupling beam.

(b) Each group of diagonal bars shall consist of a minimum of four bars provided in two or more layers. The diagonal bars shall be embedded into the wall toughness and stability to the cross section when the bars are loaded beyond yielding. The minimum dimensions and required reinforcement clearances may control the wall width. Revisions were made in the 2008 Code to relax spacing of transverse reinforcement confining the diagonal bars, to clarify that confinement is required at the intersection.

Note: Consecutive cross ties engaging the same longitudinal bar have their 90-degree hooks on opposite sides of beam.
CODE

not less than 1.25 times the development length for f_y in tension.

(c) Each group of diagonal bars shall be enclosed by transverse reinforcement having out-to-out dimensions not smaller than $b_w/2$ in the direction parallel to b_w and $b_w/5$ along the other sides, where b_w is the web width of the coupling beam. The transverse reinforcement shall satisfy 21.6.4.2 and 21.6.4.4, shall have spacing measured parallel to the diagonal bars satisfying 21.6.4.3(c) and not exceeding six times the diameter of the diagonal bars, and shall have spacing of crossties or legs of hoops measured perpendicular to the diagonal bars not exceeding 14 in. For the purpose of computing A_g for use in Eq. (10-5) and (21-4), the concrete cover as required in 7.7 shall be assumed on all four sides of each group of diagonal bars. The transverse reinforcement, or its alternatively configured transverse reinforcement satisfying the spacing and volume ratio requirements of the transverse reinforcement along the diagonals, shall continue through the intersection of the diagonal bars. Additional longitudinal and transverse reinforcement shall be distributed around the beam perimeter with total area in each direction not less than 0.002$b_w s$ and spacing not exceeding 12 in.

(d) Transverse reinforcement shall be provided for the entire beam cross section satisfying 21.6.4.2, 21.6.4.4, and 21.6.4.7, with longitudinal spacing not exceeding the smaller of 6 in. and six times the diameter of the diagonal bars, and with spacing of crossties or legs of hoops both vertically and horizontally in the plane of the beam cross section not exceeding 8 in. Each crosstie and each hoop leg shall engage a longitudinal bar of equal or larger diameter. It shall be permitted to configure hoops as specified in 21.5.3.6.

21.9.8 — Construction joints

All construction joints in structural walls shall conform to 6.4 and contact surfaces shall be roughened as in 11.6.9.

21.9.9 — Discontinuous walls

Columns supporting discontinuous structural walls shall be reinforced in accordance with 21.6.4.6.

21.10 — Special structural walls

R21.10 — Special structural walls

constructed using precast concrete

21.10.1 — Scope

Requirements of 21.10 apply to special structural walls constructed using precast concrete forming part of the seismic-force-resisting system.

COMMENTARY

of the diagonals, and to simplify design of the longitudinal and transverse reinforcement around the beam perimeter; beams with these new details are expected to perform acceptably.

Section 21.9.7.4(d) describes a second option for confinement of the diagonals introduced in the 2008 Code (Fig. R21.9.7(b)). This second option is to confine the entire beam cross section instead of confining the individual diagonals. This option can considerably simplify field placement of hoops, which can otherwise be especially challenging where diagonal bars intersect each other or enter the wall boundary.

When coupling beams are not used as part of the lateral-force-resisting system, the requirements for diagonal reinforcement may be waived.

Test results demonstrate that beams reinforced as described in Section 21.9.7 have adequate ductility at shear forces exceeding $10 f'_c b_w d$. Consequently, the use of a limit of $10 f'_c A_{cw}$ provides an acceptable upper limit.
CODE

21.10.2 — Special structural walls constructed using precast concrete shall satisfy all requirements of 21.9 in addition to 21.4.2 and 21.4.3.

21.10.3 — Special structural walls constructed using precast concrete and unbonded post-tensioning tendons and not satisfying the requirements of 21.10.2 are permitted provided they satisfy the requirements of ACI ITG-5.1.

COMMENTARY

R21.10.3 — Experimental and analytical studies21.54-21.56 have demonstrated that some types of precast structural walls post-tensioned with unbonded tendons, and not satisfying the prescriptive requirements of Chapter 21, provide satisfactory seismic performance characteristics. ACI ITG-5.1 defines a protocol for establishing a design procedure, validated by analysis and laboratory tests, for such walls, with or without coupling beams.

R21.11 — Structural diaphragms and trusses

21.11.1 — Scope

Floor and roof slabs acting as structural diaphragms to transmit forces induced by earthquake ground motions in structures assigned to SDC D, E, or F shall be designed in accordance with this section. This section also applies to collector elements and trusses forming part of the seismic-force-resisting system.

21.11.2 — Design forces

The earthquake design forces for structural diaphragms shall be obtained from the legally adopted general building code using the applicable provisions and load combinations.

R21.11.2 — Design forces

In the general building codes, earthquake design forces for floor and roof diaphragms typically are not computed directly during the lateral-force analysis that provides story forces and story shears. Instead, diaphragm design forces at each level are computed by a formula that amplifies the story forces recognizing dynamic effects and includes minimum and maximum limits. These forces are used with the governing load combinations to design diaphragms for shear and moment.

For collector elements, general building codes in use in the U.S. specify load combinations that amplify earthquake forces by a factor Ω_f. The forces amplified by Ω_f are also used for local diaphragm shear force resulting from the transfer of collector forces, and for local diaphragm flexural moments resulting from any eccentricity of collector forces. The specific requirements for earthquake design forces for diaphragms and collectors depend on which general building code is used. The requirements may also vary according to the SDC.

For most concrete buildings subjected to inelastic earthquake demands, it is desirable to limit inelastic behavior of floor and roof diaphragms under the imposed earthquake
CODE

21.11.3 — Seismic load path

21.11.3.1 — All diaphragms and their connections shall be proportioned and detailed to provide for a complete transfer of forces to collector elements and to the vertical elements of the seismic-force-resisting system.

21.11.3.2 — Elements of a structural diaphragm system that are subjected primarily to axial forces and used to transfer diaphragm shear or flexural forces around openings or other discontinuities, shall comply with the requirements for collectors in 21.11.7.5 and 21.11.7.6.

COMMENTARY

forces and deformations. It is preferable for inelastic behavior to occur only in the intended locations of the vertical earthquake-force-resisting system that are detailed for ductile response, such as in the beam plastic hinges of special moment frames, or in flexural plastic hinging at the base of structural walls or in coupling beams. For buildings without long diaphragm spans between lateral-force-resisting elements, elastic diaphragm behavior is typically not difficult to achieve. For buildings where diaphragms could reach their flexural or shear strength before yielding occurs in the vertical seismic systems, designers should consider providing increased diaphragm strength.

R21.11.3 — Seismic load path

R21.11.3.2 — Section 21.11.3.2 applies to strut-like elements that often are present around openings, diaphragm edges, or other discontinuities in diaphragms. Figure R21.11.3.2 shows an example. Such elements can be subjected to earthquake axial forces in combination with bending and shear from earthquake or gravity loads.

Fig. R21.11.3.2—Example of diaphragm subject to the requirements of 21.11.3.2 and showing an element having confinement as required by 21.11.7.5.
21.11.4 — Cast-in-place composite-topping slab diaphragms

A composite-topping slab cast in place on a precast floor or roof shall be permitted to be used as a structural diaphragm, provided the topping slab is reinforced and the surface of the previously hardened concrete on which the topping slab is placed is clean, free of laitance, and intentionally roughened.

21.11.5 — Cast-in-place topping slab diaphragms

A cast-in-place noncomposite topping on a precast floor or roof shall be permitted to serve as a structural diaphragm, provided the cast-in-place topping acting alone is proportioned and detailed to resist the design earthquake forces.

21.11.6 — Minimum thickness of diaphragms

Concrete slabs and composite topping slabs serving as structural diaphragms used to transmit earthquake forces shall not be less than 2 in. thick. Topping slabs placed over precast floor or roof elements, acting as structural diaphragms and not relying on composite action with the precast elements to resist the design earthquake forces, shall have thickness not less than 2-1/2 in.

21.11.7 — Reinforcement

21.11.7.1 — The minimum reinforcement ratio for structural diaphragms shall be in conformance with 7.12. Except for post-tensioned slabs, reinforcement spacing each way in floor or roof systems shall not exceed 18 in. Where welded wire reinforcement is used as the distributed reinforcement to resist shear in topping slabs placed over precast floor and roof elements, the wires parallel to the span of the precast elements shall be spaced not less than 10 in. on center. Reinforcement provided for shear strength shall be continuous and shall be distributed uniformly across the shear plane.

R21.11.4 — Cast-in-place composite-topping slab diaphragms

A bonded topping slab is required so that the floor or roof system can provide restraint against slab buckling. Reinforcement is required to ensure the continuity of the shear transfer across precast joints. The connection requirements are introduced to promote a complete system with necessary shear transfers.

R21.11.5 — Cast-in-place topping slab diaphragms

Composite action between the topping slab and the precast floor elements is not required, provided that the topping slab is designed to resist the design seismic forces.

R21.11.6 — Minimum thickness of diaphragms

The minimum thickness of concrete diaphragms reflects current practice in joist and waffle systems and composite topping slabs on precast floor and roof systems. Thicker slabs are required when the topping slab does not act compositely with the precast system to resist the design seismic forces.

R21.11.7 — Reinforcement

R21.11.7.1 — Minimum reinforcement ratios for diaphragms correspond to the required amount of temperature and shrinkage reinforcement (7.12). The maximum spacing for web reinforcement is intended to control the width of inclined cracks. Minimum average prestress requirements (7.12.3) are considered to be adequate to limit the crack widths in post-tensioned floor systems; therefore, the maximum spacing requirements do not apply to these systems.

The minimum spacing requirement for welded wire reinforcement in topping slabs on precast floor systems (see 21.11.7.1) is to avoid fracture of the distributed reinforcement during an earthquake. Cracks in the topping slab open immediately above the boundary between the flanges of adjacent precast members, and the wires crossing these cracks are restrained by the transverse wires. Therefore, all the deformation associated with cracking should be accommodated in a distance not greater than the spacing of the transverse wires. A minimum spacing of 10 in. for the transverse wires is required in 21.11.7.1 to reduce the likelihood of fracture of the wires crossing the critical cracks during a design earthquake. The minimum spacing requirements do not apply to diaphragms reinforced with individual bars, because strains are distributed over a longer length.
21.11.7.2 — Bonded tendons used as reinforcement to resist collector forces or diaphragm shear or flexural tension shall be proportioned such that the stress due to design earthquake forces does not exceed 60,000 psi. Precompression from unbonded tendons shall be permitted to resist diaphragm design forces if a seismic load path is provided.

21.11.7.3 — All reinforcement used to resist collector forces, diaphragm shear, or flexural tension shall be developed or spliced for f_y in tension.

21.11.7.4 — Type 2 splices are required where mechanical splices are used to transfer forces between the diaphragm and the vertical elements of the seismic-force-resisting system.

21.11.7.5 — Collector elements with compressive stresses exceeding $0.2f'_c$ at any section shall have transverse reinforcement satisfying 21.9.6.4(c) over the length of the element. The specified transverse reinforcement is permitted to be discontinued at a section where the calculated compressive stress is less than $0.15f'_c$.

Where design forces have been amplified to account for the overstrength of the vertical elements of the seismic-force-resisting system, the limit of $0.2f'_c$ shall be increased to $0.5f'_c$, and the limit of $0.15f'_c$ shall be increased to $0.4f'_c$.

21.11.7.6 — Longitudinal reinforcement for collector elements at splices and anchorage zones shall have either:

(a) A minimum center-to-center spacing of three longitudinal bar diameters, but not less than 1-1/2 in., and a minimum concrete clear cover of two and one-half longitudinal bar diameters, but not less than 2 in.; or

(b) Transverse reinforcement as required by 11.4.6.3, except as required in 21.11.7.5.

R21.11.7.3 — Bar development and lap splices are designed according to requirements of Chapter 12 for reinforcement in tension. Reductions in development or splice length for calculated stresses less than f_y are not permitted, as indicated in 12.2.5.

R21.11.7.5 — In documents such as the NEHRP provisions, ASCE/SEI 7, the International Building Code, and the Uniform Building Code, collector elements of diaphragms are designed for forces amplified by a factor, Ω_o, to account for the overstrength in the vertical elements of the seismic-force-resisting systems. The amplification factor Ω_o ranges between 2 and 3 for most concrete structures, depending on the document selected and on the type of seismic system. In some documents, the factor can be calculated based on the maximum forces that can be developed by the elements of the vertical seismic-force-resisting system.

Compressive stress calculated for the factored forces on a linearly elastic model based on gross section of the structural diaphragm is used as an index value to determine whether confining reinforcement is required. A calculated compressive stress of $0.2f'_c$ in a member, or $0.5f'_c$ for forces amplified by Ω_o, is assumed to indicate that integrity of the entire structure depends on the ability of that member to resist substantial compressive force under severe cyclic loading. Therefore, transverse reinforcement is required in such members to provide confinement for the concrete and the reinforcement.

R21.11.7.6 — Section 21.11.7.6 is intended to reduce the possibility of bar buckling and provide adequate bar development conditions in the vicinity of splices and anchorage zones.
21.11.8 — Flexural strength

Diaphragms and portions of diaphragms shall be designed for flexure in accordance with 10.2 and 10.3 except that the nonlinear distribution of strain requirements of 10.2.2 for deep beams need not apply. The effects of openings shall be considered.

Flexural strength for diaphragms is calculated using the same assumptions as for walls, columns, or beams. The design of diaphragms for flexure and other actions uses the applicable load combinations of 9.2 to consider earthquake forces acting concurrently with gravity or other loads.

The influence of slab openings on flexural and shear strength is to be considered, including evaluating the potential critical sections created by the openings. Strut-and-tie models are potentially useful for designing diaphragms with openings.

Earlier design practice assumed design moments for structural diaphragms were resisted entirely by chord forces acting at opposite edges of the diaphragm. This idealization was implicit in earlier versions of the Code, but has been replaced by an approach in which all longitudinal reinforcement, within the limits of 21.11.7, is assumed to contribute to the flexural strength of the diaphragm. This change reduces the required area of longitudinal reinforcement concentrated near the edge of the diaphragm, but should not be interpreted as a requirement to eliminate all boundary reinforcement.

R21.11.9 — Shear strength

The shear strength requirements for diaphragms are similar to those for slender structural walls and are based on the shear provisions for beams. The term A_{cv} refers to the gross area of the diaphragm, but may not exceed the thickness times the width of the diaphragm. This corresponds to the gross area of the effective deep beam that forms the diaphragm. Distributed slab reinforcement, ρ_t, used to calculate shear strength of a diaphragm in Eq. (21-10) is positioned perpendicular to the diaphragm flexural reinforcement.

In addition to satisfying the provisions in 21.11.9.1 and 21.11.9.2, cast-in-place topping slab diaphragms must also satisfy 21.11.9.3 and 21.11.9.4. Cast-in-place topping slabs on a precast floor or roof system tend to have shrinkage cracks that are aligned with the joints between adjacent precast members. Therefore, the additional shear strength requirements for topping slab diaphragms in 21.11.9.3 are based on a shear friction model, and the assumed crack plane corresponds to joints in the precast system along the direction of the applied shear, as shown in Fig. R11.6.4. The coefficient of friction, μ, in the shear friction model is taken equal to 1.0 for normalweight concrete due to the presence of these shrinkage cracks.

Both distributed and boundary reinforcement in the topping slab may be considered as shear friction reinforcement, A_{sf}.
to joints in the precast system and coefficient of friction, μ, is 1.0λ, where λ is given in 11.6.4.3. At least one-half of A_{nf} shall be uniformly distributed along the length of the potential shear plane. Area of distributed reinforcement in topping slab shall satisfy 7.12.2.1 in each direction.

21.11.9.4 — Above joints between precast elements in noncomposite and composite cast-in-place topping slab diaphragms, V_n shall not exceed the limits in 11.6.5 where A_c is computed using the thickness of the topping slab only.

21.11.10 — Construction joints

All construction joints in diaphragms shall conform to 6.4 and contact surfaces shall be roughened as in 11.6.9.

21.11.11 — Structural trusses

21.11.11.1 — Structural truss elements with compressive stresses exceeding $0.2f'_c$ at any section shall have transverse reinforcement, as given in 21.6.4.2 through 21.6.4.4 and 21.6.4.7, over the length of the element.

21.11.11.2 — All continuous reinforcement in structural truss elements shall be developed or spliced for f_y in tension.

21.12 — Foundations

21.12.1 — Scope

21.12.1.1 — Foundations resisting earthquake-induced forces or transferring earthquake-induced forces between structure and ground in structures assigned to SDC D, E, or F shall comply with 21.12 and other applicable Code provisions.

21.12.1.2 — The provisions in this section for piles, drilled piers, caissons, and slabs-on-ground shall supplement other applicable Code design and construction criteria. See 1.1.6 and 1.1.7.

21.12.2 — Footings, foundation mats, and pile caps

21.12.2.1 — Longitudinal reinforcement of columns and structural walls resisting forces induced by earthquake effects shall extend into the footing, mat, or pile cap, and shall be fully developed for tension at the interface.

21.12.2.2 — Columns designed assuming fixed-end conditions at the foundation shall comply with 21.12.2.1

R21.12 — Foundations

R21.12.1 — Scope

Requirements for foundations supporting buildings assigned to SDC D, E, or F were added to the 1999 Code. They represent a consensus of a minimum level of good practice in designing and detailing concrete foundations including piles, drilled piers, and caissons. It is desirable that inelastic response in strong ground shaking occurs above the foundations, as repairs to foundations can be extremely difficult and expensive.

R21.12.2 — Footings, foundation mats, and pile caps

R21.12.2.2 — Tests have demonstrated that flexural members terminating in a footing, slab, or beam (a T-joint)
and, if hooks are required, longitudinal reinforcement resisting flexure shall have 90-degree hooks near the bottom of the foundation with the free end of the bars oriented toward the center of the column.

21.12.2.3 — Columns or boundary elements of special structural walls that have an edge within one-half the footing depth from an edge of the footing shall have transverse reinforcement in accordance with 21.6.4.2 through 21.6.4.4 provided below the top of the footing. This reinforcement shall extend into the footing, mat, or pile cap and be developed for f_y in tension.

21.12.2.4 — Where earthquake effects create uplift forces in boundary elements of special structural walls or columns, flexural reinforcement shall be provided in the top of the footing, mat, or pile cap to resist actions resulting from the design load combinations, and shall not be less than required by 10.5.

21.12.2.5 — See 22.10 for use of structural plain concrete in footings and basement walls.

21.12.3 — Grade beams and slabs-on-ground

21.12.3.1 — Grade beams designed to act as horizontal ties between pile caps or footings shall have continuous longitudinal reinforcement that shall be developed within or beyond the supported column or anchored within the pile cap or footing at all discontinuities.

21.12.3.2 — Grade beams designed to act as horizontal ties between pile caps or footings shall be proportioned such that the smallest cross-sectional dimension shall be equal to or greater than the clear spacing between connected columns divided by 20, but need not be greater than 18 in. Closed ties shall be provided at a spacing not to exceed the lesser of one-half the smallest orthogonal cross-sectional dimension and 12 in.

21.12.3.3 — Grade beams and beams that are part of a mat foundation subjected to flexure from columns that are part of the seismic-force-resisting system shall conform to 21.5.

21.12.3.4 — Slabs-on-ground that resist seismic forces from walls or columns that are part of the seismic-force-resisting system shall be designed as structural diaphragms in accordance with 21.11. The design drawings shall clearly state that the slab-on-ground is a structural diaphragm and part of the seismic-force-resisting system.

should have their hooks turned inward toward the axis of the member for the joint to be able to resist the flexure in the member forming the stem of the T.

R21.12.2.3 — Columns or boundary members supported close to the edge of the foundation, as often occurs near property lines, should be detailed to prevent an edge failure of the footing, pile cap, or mat.

R21.12.2.4 — The purpose of 21.12.2.4 is to emphasize that top reinforcement should be provided as well as other required reinforcement.

R21.12.2.5 — Committee 318 recommends that foundation or basement walls be reinforced in buildings assigned to SDC D, E, or F.

R21.12.3 — Grade beams and slabs-on-ground

For seismic conditions, slabs-on-ground (soil-supported slabs) are often part of the lateral-force-resisting system and should be designed in accordance with this Code as well as other appropriate standards or guidelines. See 1.1.7.

R21.12.3.2 — Grade beams between pile caps or footings can be separate beams beneath the slab-on-ground or can be a thickened portion of the slab-on-ground. The cross-sectional limitation and minimum tie requirements provide reasonable proportions.

R21.12.3.3 — Grade beams resisting seismic flexural stresses from column moments should have reinforcement details similar to the beams of the frame above the foundation.

R21.12.3.4 — Slabs-on-ground often act as a diaphragm to hold the building together at the ground level and minimize the effects of out-of-phase ground motion that may occur over the footprint of the building. In these cases, the slab-on-ground should be adequately reinforced and detailed. The design drawings should clearly state that these slabs-on-ground are structural members so as to prohibit sawcutting of the slab.
21.12.4 — Piles, piers, and caissons

21.12.4.2 — Piles, piers, or caissons resisting tension loads shall have continuous longitudinal reinforcement over the length resisting design tension forces. The longitudinal reinforcement shall be detailed to transfer tension forces within the pile cap to supported structural members.

21.12.4.3 — Where tension forces induced by earthquake effects are transferred between pile cap or mat foundation and precast pile by reinforcing bars grouted or post-installed in the top of the pile, the grouting system shall have been demonstrated by test to develop at least $1.25 \sigma_y$ of the bar.

21.12.4.4 — Piles, piers, or caissons shall have transverse reinforcement in accordance with 21.6.4.2 through 21.6.4.4 at locations (a) and (b):

(a) At the top of the member for at least 5 times the member cross-sectional dimension, but not less than 6 ft below the bottom of the pile cap;

(b) For the portion of piles in soil that is not capable of providing lateral support, or in air and water, along the entire unsupported length plus the length required in 21.12.4.4(a).

21.12.4.5 — For precast concrete driven piles, the length of transverse reinforcement provided shall be sufficient to account for potential variations in the elevation in pile tips.

21.12.4.6 — Concrete piles, piers, or caissons in foundations supporting one- and two-story stud bearing wall construction are exempt from the transverse reinforcement requirements of 21.12.4.4 and 21.12.4.5.

21.12.4.7 — Pile caps incorporating batter piles shall be designed to resist the full compressive strength of the batter piles acting as short columns. The slenderness effects of batter piles shall be considered for the portion of the piles in soil that is not capable of providing lateral support, or in air or water.

R21.12.4 — Piles, piers, and caissons

Adequate performance of piles and caissons for seismic loadings requires that these provisions be met in addition to other applicable standards or guidelines. See R1.1.6.

R21.12.4.2 — A load path is necessary at pile caps to transfer tension forces from the reinforcing bars in the column or boundary member through the pile cap to the reinforcement of the pile or caisson.

R21.12.4.3 — Grouted dowels in a blockout in the top of a precast concrete pile need to be developed, and testing is a practical means of demonstrating strength. Alternatively, reinforcing bars can be cast in the upper portion of the pile, exposed by chipping of concrete and mechanically spliced or welded to an extension.

R21.12.4.4 — During earthquakes, piles can be subjected to extremely high flexural demands at points of discontinuity, especially just below the pile cap and near the base of a soft or loose soil deposit. The Code requirement for confinement reinforcement at the top of the pile is based on numerous failures observed at this location in earthquakes. Transverse reinforcement is required in this region to provide ductile performance. Possible inelastic action in the pile at abrupt changes in soil deposits should also be considered, such as changes from soft to firm or loose to dense soil layers. Where precast piles are to be used, the potential for the pile tip to be driven to an elevation different than that specified in the drawings needs to be considered when detailing the pile. If the pile reaches refusal at a shallower depth, a longer length of pile will need to be cut off. If this possibility is not foreseen, the length of transverse reinforcement required by 21.12.4.4 may not be available after the excess pile length is cut off.

R21.12.4.5 — For precast concrete driven piles, the length of transverse reinforcement provided shall be sufficient to account for potential variations in the elevation in pile tips.

R21.12.4.6 — Concrete piles, piers, or caissons in foundations supporting one- and two-story stud bearing wall construction are exempt from the transverse reinforcement requirements of 21.12.4.4 and 21.12.4.5.

R21.12.4.7 — Pile caps incorporating batter piles shall be designed to resist the full compressive strength of the batter piles acting as short columns. The slenderness effects of batter piles shall be considered for the portion of the piles in soil that is not capable of providing lateral support, or in air or water.

Extensive structural damage has often been observed at the junction of batter piles and the buildings. The pile cap and surrounding structure should be designed for the potentially large forces that can be developed in batter piles.
21.13 — Members not designated as part of the seismic-force-resisting system

21.13.1 — Scope

Requirements of 21.13 apply to frame members not designated as part of the seismic-force-resisting system in structures assigned to SDC D, E, and F.

21.13.2 — Frame members assumed not to contribute to lateral resistance, except two-way slabs without beams, shall be detailed according to 21.13.3 or 21.13.4 depending on the magnitude of moments induced in those members when subjected to the design displacement δ_u. If effects of δ_u are not explicitly checked, it shall be permitted to apply the requirements of 21.13.4. For two-way slabs without beams, slab-column connections shall meet the requirements of 21.13.6.

21.13.3 — Where the induced moments and shears under design displacements, δ_u, combined with the factored gravity moments and shears do not exceed the design moment and shear strength of the frame member, the conditions of 21.13.3.1, 21.13.3.2, and 21.13.3.3 shall be satisfied. The gravity load combinations of $(1.2D + 1.0L + 0.2S)$ or $0.9D$, whichever is critical, shall be used. The load factor on the live load, L, shall be permitted to be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where L is greater than 100 lb/ft².

21.13.3.1 — Members with factored gravity axial forces not exceeding $Ag_{fc}/10$ shall satisfy 21.5.2.1. Stirrups shall be spaced not more than $d/2$ throughout the length of the member.

21.13.3.2 — Members with factored gravity axial forces exceeding $Ag_{fc}/10$ shall satisfy 21.6.3.1, 21.6.4.2, and 21.6.5. The maximum longitudinal spacing of ties shall be s_o for the full member length. Spacing s_o shall not exceed the smaller of six diameters of the smallest longitudinal bar enclosed and 6 in.

21.13.3.3 — Members with factored gravity axial forces exceeding $0.35P_o$ shall satisfy 21.13.3.2 and 21.6.4.7. The amount of transverse reinforcement provided shall be one-half of that required by 21.6.4.4 but shall not be spaced greater than s_o for the full member length.

21.13.4 — If the induced moment or shear under design displacements, δ_u, exceeds ϕM_o or ϕV_o of the frame member, or if induced moments are not calculated, the conditions of 21.13.4.1, 21.13.4.2, and 21.13.4.3 shall be satisfied.
CODE

21.13.4.2 — Members with factored gravity axial forces not exceeding $A_g f' c / 10$ shall satisfy 21.5.2.1 and 21.5.4. Stirrups shall be spaced at not more than $d/2$ throughout the length of the member.

21.13.4.3 — Members with factored gravity axial forces exceeding $A_g f' c / 10$ shall satisfy 21.6.3, 21.6.4, 21.6.5, and 21.7.3.1.

21.13.5 — Precast concrete frame members assumed not to contribute to lateral resistance, including their connections, shall satisfy (a), (b), and (c), in addition to 21.13.2 through 21.13.4:

(a) Ties specified in 21.13.3.2 shall be provided over the entire column height, including the depth of the beams;

(b) Structural integrity reinforcement, as specified in 16.5, shall be provided; and

(c) Bearing length at support of a beam shall be at least 2 in. longer than determined from calculations using bearing strength values from 10.14.

21.13.6 — For slab-column connections of two-way slabs without beams, slab shear reinforcement satisfying the requirements of 11.11.3 and 11.11.5 and providing V_s not less than $3.5 \sqrt{f' c} b_o d$ shall extend at least four times the slab thickness from the face of the support, unless either (a) or (b) is satisfied:

(a) The requirements of 11.11.7 using the design shear V_{ug} and the induced moment transferred between the slab and column under the design displacement;

(b) The design story drift ratio does not exceed the larger of 0.005 and $[0.035 - 0.05(V_{ug} / V_c)]$.

Design story drift ratio shall be taken as the larger of the design story drift ratios of the adjacent stories above and below the slab-column connection. V_c is defined in 11.11.2. V_{ug} is the factored shear force on the slab critical section for two-way action, calculated for the load combination $1.2D + 1.0L + 0.2S$.

The load factor on the live load, L, shall be permitted to be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where L is greater than 100 lb/ft².

R21.13.5 — Damage to some buildings with precast concrete gravity systems during the 1994 Northridge earthquake was attributed to several factors addressed in 21.13.5. Columns should contain ties over their entire height, frame members not proportioned to resist earthquake forces should be tied together, and longer bearing lengths should be used to maintain integrity of the gravity system during shaking. The 2 in. increase in bearing length is based on an assumed 4 percent story drift ratio and 50 in. beam depth, and is considered to be conservative for the ground motions expected for structures assigned to SDC D, E, or F. In addition to the provisions of 21.13.5, precast frame members assumed not to contribute to lateral resistance should also satisfy 21.13.2 through 21.13.4, as applicable.

R21.13.6 — Provisions for shear reinforcement at slab-column connections were added in 2005 to reduce the likelihood of slab punching shear failure. The shear reinforcement is required unless either 21.13.6(a) or (b) is satisfied.

Section 21.13.6(a) requires calculation of shear stress due to the factored shear force and induced moment according to 11.11.7.2. The induced moment is the moment that is calculated to occur at the slab-column connection when subjected to the design displacement. Section 13.5.1.2 and the accompanying Commentary provide guidance on selection of the stiffness of the slab-column connection for the purpose of this calculation.

Section 21.13.6(b) does not require the calculation of induced moments, and is based on research that identifies the likelihood of punching shear failure considering the story drift ratio and shear due to gravity loads. Figure R21.13.6 illustrates the requirement. The requirement can be satisfied by adding slab shear reinforcement, increasing slab thickness, changing the design to reduce the design story drift ratio, or a combination of these.

If column capitals, drop panels, shear caps, or other changes in slab thickness are used, the requirements of 21.13.6 are evaluated at all potential critical sections, as required by 11.11.1.2.
Fig. R21.13.6—Illustration of the criterion of 21.13.6(b).
Notes
CHAPTER 22 — STRUCTURAL PLAIN CONCRETE

CODE

22.1 — Scope

22.1.1 — This chapter provides minimum requirements for design and construction of structural plain concrete members (cast-in-place or precast).

22.1.2 — Unless in conflict with the provisions of Chapter 22, the following provisions of this Code shall apply to structural plain concrete members: Sections 1.1 through 7.5, 7.6.1, 7.6.2, 7.6.4, 7.7, 9.1.3, 9.2, 9.3.5, Chapter 20, 21.12.2.5, C.9.2, C.9.3.5, and Appendix D.

22.1.3 — For unusual structures, such as arches, underground utility structures, gravity walls, and shielding walls, provisions of this chapter shall govern where applicable.

COMMENTARY

R22.1 — Scope

Before the 1995 Code, requirements for plain concrete were set forth in “Building Code Requirements for Structural Plain Concrete (ACI 318.1-89) (Revised 1992).” Requirements for plain concrete are now in this Code (see 2.2 for definition of plain concrete). Limitations are provided in 22.1.2 to clarify the scope and applicability of this chapter. See 1.1.4 for requirements for residential construction within the scope of ACI 332.

R22.1.2 — Sections of the Code do not apply to the design of structural plain concrete for the following specific reasons:

Sections 7.6 and 7.8 through 7.13 — These sections contain requirements intended for reinforced concrete members and, with the exception of 7.6.1, 7.6.2, and 7.6.4, are not applicable to structural plain concrete members, for which strength is determined only by member size and concrete strength, and not by reinforcement (see 22.5). Concrete cover requirements of 7.7 apply to structural plain concrete members if reinforcement is provided.

Chapters 8 through 19 — These chapters of the Code contain general and specific design requirements for reinforced and prestressed concrete members, including walls and foundations, which are not applicable to structural plain concrete, except for 9.1.3, 9.2, and 9.3.5 where applicable load factors and strength reduction factors for structural plain concrete are specified.

Chapter 21 — This chapter contains seismic design requirements for reinforced concrete members and is not applicable to structural plain concrete except in the sections of the chapter where structural plain concrete is specifically addressed.

Appendixes A and B — Appendixes A and B are intended for reinforced concrete members and are not applicable to structural plain concrete.
22.2 — Limitations

22.2.1 — Use of structural plain concrete shall be limited to (a), (b), or (c):

(a) Members that are continuously supported by soil or supported by other structural members capable of providing continuous vertical support;

(b) Members for which arch action provides compression under all conditions of loading;

(c) Walls and pedestals. See 22.6 and 22.8.

The use of structural plain concrete columns shall not be permitted.

22.2.2 — This chapter shall not govern design and installation of cast-in-place concrete piles and piers embedded in ground.

22.2.3 — Minimum specified strength

Specified compressive strength of structural plain concrete shall not be less than the larger of that given in 1.1.1 and that required for durability in Chapter 4.

22.3 — Joints

22.3.1 — Contraction or isolation joints shall be provided to divide structural plain concrete members into flexurally discontinuous elements. The size of each element shall be chosen to limit stress caused by restraint to movements from creep, shrinkage, and temperature effects.

22.3.2 — In determining the number and location of contraction or isolation joints, consideration shall be given to: influence of climatic conditions; selection and
CODE

proportioning of materials; mixing, placing, and curing of concrete; degree of restraint to movement; stresses due to loads to which an element is subject; and construction techniques.

22.4 — Design method

22.4.1 — Factored loads and forces shall be in combinations as in 9.2.

22.4.2 — Where required strength exceeds design strength, reinforcement shall be provided and the member designed as a reinforced concrete member in accordance with appropriate design requirements of this Code.

22.4.3 — Strength design of structural plain concrete members for flexure and axial loads shall be based on a linear stress-strain relationship in both tension and compression.

22.4.4 — Tensile strength of concrete shall be permitted to be considered in design of plain concrete members when provisions of 22.3 have been followed.

22.4.5 — No strength shall be assigned to steel reinforcement that may be present.

22.4.6 — Tension shall not be transmitted through outside edges, construction joints, contraction joints, or isolation joints of an individual plain concrete element. No flexural continuity due to tension shall be assumed between adjacent structural plain concrete elements.

22.4.7 — When computing strength in flexure, combined flexure and axial load, and shear, the entire cross section of a member shall be considered in design, except for concrete cast against soil where overall thickness h shall be taken as 2 in. less than actual thickness.

22.5 — Strength design

22.5.1 — Design of cross sections subject to flexure shall be based on

$$\phi M_n \geq M_u$$ \hspace{1cm} (22-1)

COMMENTARY

considered sufficient for contraction joints to be effective. The jointing should be such that no axial tension or flexural tension can be developed across a joint after cracking, if applicable—a condition referred to as flexural discontinuity. Where random cracking due to creep, shrinkage, and temperature effects will not affect the structural integrity, and is otherwise acceptable, such as transverse cracks in a continuous wall footing, transverse contraction, or isolation joints are not necessary.

R22.4 — Design method

Plain concrete members are proportioned for adequate strength using factored loads and forces. When the design strength is exceeded, the section should be increased or the specified strength of concrete increased, or both, or the member designed as a reinforced concrete member in accordance with the Code. An increase in concrete section may have a detrimental effect; stress due to load will decrease but stresses due to creep, shrinkage, and temperature effects may increase.

R22.4.3 — Flexural tension may be considered in design of plain concrete members to sustain loads, provided the computed stress does not exceed the permissible stress, and construction, contraction, or isolation joints are provided to relieve the resulting tensile stresses due to restraint of creep, temperature, and shrinkage effects.

R22.4.7 — The reduced overall thickness h for concrete cast against earth is to allow for unevenness of excavation and for some contamination of the concrete adjacent to the soil.

R22.5 — Strength design
CODE

\[M_n = 5\lambda f'_c S_m \]
(22-2)

if tension controls, and

\[M_n = 0.85\lambda f'_c S_m \]
(22-3)

if compression controls, where \(S_m \) is the corresponding elastic section modulus.

22.5.2 — Design of cross sections subject to compression shall be based on

\[\phi P_n \geq P_u \]
(22-4)

where \(P_n \) is computed by

\[P_n = 0.60f'_c \left[1 - \left(\frac{\lambda}{32h} \right)^2 \right] A_1 \]
(22-5)

and \(A_1 \) is the loaded area.

22.5.3 — Members subject to combined flexure and axial load in compression shall be proportioned such that on the compression face:

\[\frac{P_u}{\phi P_n} + \frac{M_u}{\phi M_n} \leq 1 \]
(22-6)

and on the tension face

\[\frac{M_u}{S_m} - \frac{P_u}{A_g} \leq 5\lambda f'_c \]
(22-7)

22.5.4 — Design of rectangular cross sections subject to shear shall be based on

\[\phi V_n \geq V_u \]
(22-8)

where \(V_n \) is computed by

\[V_n = \frac{4}{3}\lambda f'_c b_w h \]
(22-9)

for beam action and by

\[V_n = \left[\frac{4}{3} + \frac{8}{3\beta} \right] \lambda f'_c b_o h \]
(22-10)

for two-way action, but not greater than \(2.66\lambda f'_c b_o h \).

COMMENTARY

R22.5.2 — Equation (22-5) is presented to reflect the general range of braced and restrained end conditions encountered in structural plain concrete elements. The effective length factor was omitted as a modifier of \(\ell_c \), the vertical distance between supports, because this is conservative for walls with assumed pin supports that are required to be braced against lateral translation as in 22.6.6.4.

R22.5.3 — Plain concrete members subject to combined flexure and axial compressive load are proportioned such that on the compression face

\[\frac{P_u}{0.60\phi f'_c \left[1 - \left(\frac{\lambda}{32h} \right)^2 \right] A_1} + \frac{M_u}{0.85\phi f'_c S_m} \leq 1 \]

and that on the tension face

\[\left(\text{Calculated bending stress} \right) - \left(\text{Calculated axial stress} \right) \leq 5\lambda f'_c \]

R22.5.4 — Proportions of plain concrete members usually are controlled by tensile strength rather than shear strength. Shear stress (as a substitute for principal tensile stress) rarely will control. However, because it is difficult to foresee all possible conditions where shear may have to be investigated (such as shear keys), Committee 318 maintains the investigation of this basic stress condition.

The shear requirements for plain concrete assume an uncracked section. Shear failure in plain concrete will be a diagonal tension failure, occurring when the principal tensile stress near the centroidal axis becomes equal to the tensile strength of the concrete. Since the major portion of the principal tensile stress comes from the shear, the Code safeguards against tensile failure by limiting the permissible shear at the centroidal axis as calculated from the equation for a section of homogeneous material:
In Eq. (22-10), \(\beta \) corresponds to ratio of long side to short side of concentrated load or reaction area.

\[
v = \frac{VQ}{Ib}
\]

where \(v \) and \(V \) are the shear stress and shear force, respectively, at the section considered; \(Q \) is the statical moment of the area outside the section being considered about centroidal axis of the gross section; \(I \) is the moment of inertia of the gross section; and \(b \) is the width where shear stress is being computed.

22.5.5 — Design of bearing areas subject to compression shall be based on

\[
\phi B_n \geq B_u \quad (22-11)
\]

where \(B_u \) is factored bearing load and \(B_n \) is nominal bearing strength of loaded area \(A_1 \) calculated by

\[
B_n = 0.85f'_c A_1 \quad (22-12)
\]

except where the supporting surface is wider on all sides than the loaded area, then \(B_n \) shall be multiplied by \(\sqrt{A_2/A_1} \) but not more than 2.

22.5.6 — Lightweight concrete

22.5.6.1 — Modification factor \(\lambda \) for lightweight concrete in this Chapter shall be in accordance with 8.6.1 unless specifically noted otherwise.

22.6 — Walls

22.6.1 — Structural plain concrete walls shall be continuously supported by soil, footings, foundation walls, grade beams, or other structural members capable of providing continuous vertical support.

22.6.2 — Structural plain concrete walls shall be designed for vertical, lateral, and other loads to which they are subjected.

22.6.3 — Structural plain concrete walls shall be designed for an eccentricity corresponding to the maximum moment that can accompany the axial load but not less than \(0.10h \). If the resultant of all factored loads is located within the middle third of the overall wall thickness, the design shall be in accordance with 22.5.3 or 22.6.5. Otherwise, walls shall be designed in accordance with 22.5.3.

22.6.4 — Design for shear shall be in accordance with 22.5.4.

R22.6 — Walls

Plain concrete walls are commonly used for basement wall construction for residential and light commercial buildings in low or nonseismic areas. Although the Code imposes no absolute maximum height limitation on the use of plain concrete walls, experience with use of plain concrete in relatively minor structures should not be extrapolated to using plain concrete walls in multistory construction and other major structures where differential settlement, wind, earthquake, or other unforeseen loading conditions require the walls to possess some ductility and ability to maintain their integrity when cracked. For such conditions, ACI Committee 318 strongly encourages the use of walls designed in accordance with Chapter 14.

The provisions for plain concrete walls are applicable only for walls laterally supported in such a manner as to prohibit relative lateral displacement at top and bottom of individual wall elements (see 22.6.6.4). The Code does not cover walls without horizontal support to prohibit relative displacement at top and bottom of wall elements. Such laterally unsupported walls are to be designed as reinforced concrete members in accordance with the Code.
22.6.5 — Empirical design method

22.6.5.1 — Structural plain concrete walls of solid rectangular cross section shall be permitted to be designed by Eq. (22-13) if the resultant of all factored loads is located within the middle-third of the overall thickness of wall.

22.6.5.2 — Design of walls subject to axial loads in compression shall be based on

\[\phi P_n \geq P_u \] (22-13)

where \(P_u \) is factored axial force and \(P_n \) is nominal axial strength calculated by

\[P_n = 0.45 f'_c A_g \left[1 - \left(\frac{f'_c}{32h} \right)^2 \right] \] (22-14)

22.6.6 — Limitations

22.6.6.1 — Unless demonstrated by a detailed analysis, horizontal length of wall to be considered effective for each vertical concentrated load shall not exceed center-to-center distance between loads, nor width of bearing plus four times the wall thickness.

22.6.6.2 — Except as provided in 22.6.6.3, thickness of bearing walls shall be not less than 1/24 the unsupported height or length, whichever is shorter, nor less than 5-1/2 in.

22.6.6.3 — Thickness of exterior basement walls and foundation walls shall be not less than 7-1/2 in.

22.6.6.4 — Walls shall be braced against lateral translation. See 22.3 and 22.4.7.

22.6.6.5 — Not less than two No. 5 bars shall be provided around all window and door openings. Such bars shall extend at least 24 in. beyond the corners of openings.

22.7 — Footings

22.7.1 — Structural plain concrete footings shall be designed for factored loads and induced reactions in accordance with appropriate design requirements of this Code and as provided in 22.7.2 through 22.7.8.

22.7.2 — Base area of footing shall be determined from unfactored forces and moments transmitted by footing to soil and permissible soil pressure selected through principles of soil mechanics.

R22.6.5 — Empirical design method

When the resultant load falls within the middle-third of the wall thickness (kern of wall section), plain concrete walls may be designed using the simplified Eq. (22-14). Eccentric loads and lateral forces are used to determine the total eccentricity of the factored axial force \(P_u \). If the eccentricity does not exceed \(h/6 \), Eq. (22-14) may be applied, and design performed considering \(P_u \) as a concentric load. The factored axial load \(P_u \) should not exceed the design axial strength \(\phi P_n \). Equation (22-14) reflects the range of braced and restrained end conditions encountered in wall design. The limitations of 22.6.6 apply whether the wall is proportioned by 22.5.3 or by the empirical method of 22.6.5.
CODE

22.7.3 — Plain concrete shall not be used for footings on piles.

22.7.4 — Thickness of structural plain concrete footings shall be not less than 8 in. See 22.4.7.

22.7.5 — Maximum factored moment shall be computed at (a), (b), and (c):

(a) At the face of the column, pedestal, or wall, for footing supporting a concrete column, pedestal, or wall;

(b) Halfway between center and face of the wall, for footing supporting a masonry wall;

(c) Halfway between face of column and edge of steel base plate, for footing supporting a column with steel base plate.

22.7.6 — Shear in plain concrete footings

22.7.6.1 — V_u shall be computed in accordance with 22.7.6.2, with location of critical section measured from face of column, pedestal, or wall for footing supporting a column, pedestal, or wall. For footing supporting a column with steel base plates, the critical section shall be measured at location defined in 22.7.5(c).

22.7.6.2 — ϕV_n of structural plain concrete footings in the vicinity of concentrated loads or reactions shall be governed by the more severe of two conditions:

(a) Beam action for footing, with a critical section extending in a plane across the entire footing width and located at a distance h from face of concentrated load or reaction area. For this condition, the footing shall be designed in accordance with Eq. (22-9);

(b) Two-way action for footing, with a critical section perpendicular to plane of footing and located so that its perimeter b_o is a minimum, but need not approach closer than $h/2$ to perimeter of concentrated load or reaction area. For this condition, the footing shall be designed in accordance with Eq. (22-10).

22.7.7 — Circular or regular polygon-shaped concrete columns or pedestals shall be permitted to be treated as square members with the same area for location of critical sections for moment and shear.

COMMENTARY

R22.7.4 — Thickness of plain concrete footings will be controlled by flexural strength (extreme fiber stress in tension not greater than $5\phi R_c \sqrt{f_c}$) rather than shear strength for the usual proportions of plain concrete footings. Shear rarely will control (see R22.5.4). For footings cast against soil, overall thickness h used for strength computations is specified in 22.4.7.
CODE

22.7.8 — Factored bearing load, \(B_u \), on concrete at contact surface between supporting and supported member shall not exceed design bearing strength, \(\phi B_n \), for either surface as given in 22.5.5.

22.8 — Pedestals

22.8.1 — Plain concrete pedestals shall be designed for vertical, lateral, and other loads to which they are subjected.

22.8.2 — Ratio of unsupported height to average least lateral dimension of plain concrete pedestals shall not exceed 3.

22.8.3 — Maximum factored axial load, \(P_u \), applied to plain concrete pedestals shall not exceed design bearing strength, \(\phi B_n \), given in 22.5.5.

22.9 — Precast members

22.9.1 — Design of precast plain concrete members shall consider all loading conditions from initial fabrication to completion of the structure, including form removal, storage, transportation, and erection.

22.9.2 — Limitations of 22.2 apply to precast members of plain concrete not only to the final condition but also during fabrication, transportation, and erection.

22.9.3 — Precast members shall be connected securely to transfer all lateral forces into a structural system capable of resisting such forces.

22.9.4 — Precast members shall be adequately braced and supported during erection to ensure proper alignment and structural integrity until permanent connections are completed.

22.10 — Plain concrete in earthquake-resisting structures

22.10.1 — Structures assigned to Seismic Design Category D, E, or F shall not have foundation elements of structural plain concrete, except as follows:

(a) For detached one- and two-family dwellings three stories or less in height and constructed with stud bearing walls, plain concrete footings without longitudinal reinforcement supporting walls and isolated plain concrete footings supporting columns or pedestals are permitted;

(b) For all other structures, plain concrete footings supporting cast-in-place reinforced concrete or

COMMENTARY

R22.8 — Pedestals

The height-thickness limitation for plain concrete pedestals does not apply for portions of pedestals embedded in soil capable of providing lateral restraint.

R22.9 — Precast members

Precast structural plain concrete members are subject to all limitations and provisions for cast-in-place concrete contained in this chapter.

The approach to contraction or isolation joints is expected to be somewhat different than for cast-in-place concrete since the major portion of shrinkage stresses takes place prior to erection. To ensure stability, precast members should be connected to other members. The connection should transfer no tension.
reinforced masonry walls are permitted provided the footings are reinforced longitudinally with not less than two continuous reinforcing bars. Bars shall not be smaller than No. 4 and shall have a total area of not less than 0.002 times the gross cross-sectional area of the footing. Continuity of reinforcement shall be provided at corners and intersections;

(c) For detached one- and two-family dwellings three stories or less in height and constructed with stud bearing walls, plain concrete foundations or basement walls are permitted provided the wall is not less than 7-1/2 in. thick and retains no more than 4 ft of unbalanced fill.
Notes
APPENDIX A — STRUT-AND-TIE MODELS

CODE

A.1 — Definitions

B-region — A portion of a member in which the plane sections assumption of flexure theory from 10.2.2 can be applied.

Discontinuity — An abrupt change in geometry or loading.

COMMENTARY

RA.1 — Definitions

B-region — In general, any portion of a member outside of a D-region is a B-region.

Discontinuity — A discontinuity in the stress distribution occurs at a change in the geometry of a structural element or at a concentrated load or reaction. St. Venant’s principle indicates that the stresses due to axial load and bending approach a linear distribution at a distance approximately equal to the overall height of the member, h, away from the discontinuity. For this reason, discontinuities are assumed to extend a distance h from the section where the load or change in geometry occurs. Figure RA.1.1(a) shows typical geometric discontinuities, and Fig. RA.1.1(b) shows combined geometrical and loading discontinuities.

Fig. RA.1.1—D-regions and discontinuities.
CODE

D-region — The portion of a member within a distance, \(h \), from a force discontinuity or a geometric discontinuity.

COMMENTARY

D-region — The shaded regions in Fig. RA.1.1(a) and (b) show typical D-regions.\(^A.1\) The plane sections assumption of 10.2.2 is not applicable in such regions.

Each shear span of the beam in Fig. RA.1.2(a) is a D-region. If two D-regions overlap or meet as shown in Fig. RA.1.2(b), they can be considered as a single D-region for design purposes. The maximum length-to-depth ratio of such a D-region would be approximately 2. Thus, the smallest angle between the strut and the tie in a D-region is \(\arctan \frac{1}{2} = 26.5 \) degrees, rounded to 25 degrees.

If there is a B-region between the D-regions in a shear span, as shown in Fig. RA.1.2(c), the strength of the shear span is governed by the strength of the B-region if the B- and D-regions have similar geometry and reinforcement.\(^A.2\) This is because the shear strength of a B-region is less than the shear strength of a comparable D-region. Shear spans

Fig. RA.1.2—Description of deep and slender beams.
Deep beam — See 10.7.1 and 11.7.1.

Nodal zone — The volume of concrete around a node that is assumed to transfer strut-and-tie forces through the node.

A hydrostatic nodal zone has loaded faces perpendicular to the axes of the struts and ties acting on the node and has equal stresses on the loaded faces. Figure RA.1.4(a) shows a C-C-C nodal zone. If the stresses on the face of the nodal zone are the same in all three struts, the ratios of the lengths of the sides of the nodal zone, \(\frac{w_1}{w_2} : \frac{w_2}{w_3} \) are in the same proportions as the three forces \(C_1 : C_2 : C_3 \). The faces of a hydrostatic nodal zone are perpendicular to the axes of the struts and ties acting on the nodal zone.

These nodal zones are called hydrostatic nodal zones because the in-plane stresses are the same in all directions. Strictly speaking, this terminology is incorrect because the in-plane stresses are not equal to the out-of-plane stresses.

A C-C-T nodal zone can be represented as a hydrostatic nodal zone if the tie is assumed to extend through the node to be anchored by a plate on the far side of the node, as shown in Fig. RA.1.4(b), provided that the size of the plate results in bearing stresses that are equal to the stresses in the struts. The bearing plate on the left side of Fig. RA.1.4(b) is used to represent an actual tie anchorage. The tie force can be anchored by a plate, or through development of straight or hooked bars, as shown in Fig. RA.1.4(c).

The shaded areas in Fig. RA.1.5(a) and (b) are extended nodal zones. An extended nodal zone is that portion of a member bounded by the intersection of the effective strut width, \(w_s \), and the effective tie width, \(w_t \) (see RA.4.2).

Fig. RA.1.3—Description of strut-and-tie model.
Fig. RA.1.4—Hydrostatic nodes.

(a) Geometry

(b) Tension force anchored by a plate

(c) Tension force anchored by bond
In the nodal zone shown in Fig. RA.1.6(a), the reaction R equilibrates the vertical components of the forces C_1 and C_2. Frequently, calculations are easier if the reaction R is divided into R_1, which equilibrates the vertical component of C_1 and R_2, which equilibrates the vertical component of the force C_2, as shown in Fig. RA.1.6(b).

Fig. RA.1.5—Extended nodal zone showing the effect of the distribution of the force.
Node — The point in a joint in a strut-and-tie model where the axes of the struts, ties, and concentrated forces acting on the joint intersect.

Node — For equilibrium, at least three forces should act on a node in a strut-and-tie model, as shown in Fig. RA.1.7. Nodes are classified according to the signs of these forces. A C-C-C node resists three compressive forces, a C-C-T node resists two compressive forces and one tensile force, and so on.

CODE

Strut — A compression member in a strut-and-tie model. A strut represents the resultant of a parallel or a fan-shaped compression field.

Bottle-shaped strut — A strut that is wider at midlength than at its ends.

COMMENTARY

Strut — In design, struts are usually idealized as prismatic compression members, as shown by the straight line outlines of the struts in Fig. RA.1.2 and RA.1.3. If the effective compression strength \(f_{ce} \) differs at the two ends of a strut, due either to different nodal zone strengths at the two ends, or to different bearing lengths, the strut is idealized as a uniformly tapered compression member.

Bottle-shaped struts — A bottle-shaped strut is a strut located in a part of a member where the width of the compressed concrete at midlength of the strut can spread laterally.\(^{A1,A3}\) The curved dashed outlines of the struts in Fig. RA.1.3 and the curved solid outlines in Fig. RA.1.8 approximate the boundaries of bottle-shaped struts. A split cylinder test is an example of a bottle-shaped strut. The internal lateral spread of the applied compression force in such a test leads to a transverse tension that splits the specimen.

To simplify design, bottle-shaped struts are idealized either as prismatic or as uniformly tapered, and crack-control reinforcement from \(A.3.3 \) is provided to resist the transverse tension. The amount of confining transverse reinforcement can be computed using the strut-and-tie model shown in Fig. RA.1.8(b) with the struts that represent the spread of the compression force acting at a slope of 1:2 to the axis of the applied compressive force. Alternatively for \(f_{c}' \) not exceeding 6000 psi, Eq. (A-4) can be used. The cross-sectional area \(A_c \) of a bottle-shaped strut is taken as the smaller of the cross-sectional areas at the two ends of the strut. See Fig. RA.1.8(a).

![Fig. RA.1.8—Bottle-shaped strut: (a) cracking of a bottle-shaped strut; and (b) strut-and-tie model of a bottle-shaped strut.](image-url)
CODE

Strut-and-tie model — A truss model of a structural member, or of a D-region in such a member, made up of struts and ties connected at nodes, capable of transferring the factored loads to the supports or to adjacent B-regions.

Tie — A tension member in a strut-and-tie model.

COMMENTARY

Strut-and-tie model — The components of a strut-and-tie model of a single-span deep beam loaded with a concentrated load are identified in Fig. RA.1.3. The cross-sectional dimensions of a strut or tie are designated as thickness and width, both perpendicular to the axis of the strut or tie. Thickness is perpendicular to the plane of the truss model, and width is in the plane of the truss model.

Tie — A tie consists of reinforcement or prestressing steel plus a portion of the surrounding concrete that is concentric with the axis of the tie. The surrounding concrete is included to define the zone in which the forces in the struts and ties are to be anchored. The concrete in a tie is not used to resist the axial force in the tie. Although not considered in design, the surrounding concrete will reduce the elongations of the tie, especially at service loads.

A.2 — Strut-and-tie model design procedure

A.2.1 — It shall be permitted to design structural concrete members, or D-regions in such members, by modeling the member or region as an idealized truss. The truss model shall contain struts, ties, and nodes as defined in A.1. The truss model shall be capable of transferring all factored loads to the supports or adjacent B-regions.

A.2.2 — The strut-and-tie model shall be in equilibrium with the applied loads and the reactions.

A.2.3 — In determining the geometry of the truss, the dimensions of the struts, ties, and nodal zones shall be taken into account.

RA.2 — Strut-and-tie model design procedure

RA.2.1 — The truss model described in A.2.1 is referred to as a strut-and-tie model. Details of the use of strut-and-tie models are given in References A.1 through A.7. The design of a D-region includes the following four steps:

1. Define and isolate each D-region;
2. Compute resultant forces on each D-region boundary;
3. Select a truss model to transfer the resultant forces across the D-region. The axes of the struts and ties, respectively, are chosen to approximately coincide with the axes of the compression and tension fields. The forces in the struts and ties are computed.
4. The effective widths of the struts and nodal zones are determined considering the forces from Step 3 and the effective concrete strengths defined in A.3.2 and A.5.2, and reinforcement is provided for the ties considering the steel strengths defined in A.4.1. The reinforcement should be anchored in the nodal zones.

Strut-and-tie models represent strength limit states and Code requirements for serviceability should be satisfied. Deflections of deep beams or similar members can be estimated using an elastic analysis to analyze the strut-and-tie model. In addition, the crack widths in a tie can be controlled using 10.6.4, assuming the tie is encased in a prism of concrete corresponding to the area of tie from RA.4.2.

RA.2.3 — The struts, ties, and nodal zones making up the strut-and-tie model all have finite widths that should be taken into account in selecting the dimensions of the truss. Figure RA.2.3(a) shows a node and the corresponding nodal zone. The vertical and horizontal forces equilibrate the force in the inclined strut. If the stresses are equal in all three struts, a hydrostatic nodal zone can be used and the widths of the struts will be in proportion to the forces in the struts.
If more than three forces act on a nodal zone in a two-dimensional structure, as shown in Fig. RA.2.3(b), it is generally necessary to resolve some of the forces to end up with three intersecting forces. The strut forces acting on Faces A-E and C-E in Fig. RA.2.3(b) can be replaced with one force acting on Face A-C. This force passes through the node at D.

Alternatively, the strut-and-tie model could be analyzed assuming all the strut forces acted through the node at D, as shown in Fig. RA.2.3(c). In this case, the forces in the two struts on the right side of Node D can be resolved into a single force acting through Point D, as shown in Fig. RA.2.3(d).

If the width of the support in the direction perpendicular to the member is less than the width of the member, transverse reinforcement may be required to restrain vertical splitting in the plane of the node. This can be modeled using a transverse strut-and-tie model.

A.2.4 — Ties shall be permitted to cross struts. Struts shall cross or overlap only at nodes.

A.2.5 — The angle, θ, between the axes of any strut and any tie entering a single node shall not be taken as less than 25 degrees.

RA.2.5 — The angle between the axes of struts and ties acting on a node should be large enough to mitigate cracking and to avoid incompatibilities due to shortening of the struts and lengthening of the ties occurring in almost the same directions. This limitation on the angle prevents modeling the shear spans in slender beams using struts inclined at less than 25 degrees from the longitudinal steel. See Reference A.6.
RA.2.6 — Factored loads are applied to the strut-and-tie model, and the forces in all the struts, ties, and nodal zones are computed. If several loading cases exist, each should be investigated. The strut-and-tie model, or models, are analyzed for the loading cases and, for a given strut, tie, or nodal zone, F_u is the largest force in that element for all loading cases.

A.2.6 — Design of struts, ties, and nodal zones shall be based on

$$\phi F_n \geq F_u$$

(A-1)

where F_u is the factored force acting in a strut, in a tie, or on one face of a nodal zone; F_n is the nominal strength of the strut, tie, or nodal zone; and ϕ is specified in 9.3.2.6.

A.3 — Strength of struts

A.3.1 — The nominal compressive strength of a strut without longitudinal reinforcement, F_{ns}, shall be taken as the smaller value of

$$F_{ns} = f_{ce}A_{cs}$$

(A-2)

at the two ends of the strut, where A_{cs} is the cross-sectional area at one end of the strut, and f_{ce} is the smaller of (a) and (b):

(a) the effective compressive strength of the concrete in the strut given in A.3.2;

(b) the effective compressive strength of the concrete in the nodal zone given in A.5.2.

A.3.2 — The effective compressive strength of the concrete, f_{ce}, in a strut shall be taken as

$$f_{ce} = 0.85\beta_s f'_c$$

(A-3)

A.3.2.1 — For a strut of uniform cross-sectional area over its length

$$\beta_s = 1.0$$

A.3.2.2 — For struts located such that the width of the midsection of the strut is larger than the width at the nodes (bottle-shaped struts):

(a) With reinforcement satisfying A.3.3

$$\beta_s = 0.75$$

(b) Without reinforcement satisfying A.3.3

$$\beta_s = 0.60\lambda$$

where the value of λ is defined in 8.6.1.

A.3.2.3 — For struts in tension members, or the tension flanges of members

$$\beta_s = 0.40$$

RA.3 — Strength of struts

RA.3.1 — The width of strut w_s used to compute A_{cs} is the smaller dimension perpendicular to the axis of the strut at the ends of the strut. This strut width is illustrated in Fig. RA.1.4(a) and Fig. RA.1.5(a) and (b). In two-dimensional structures, such as deep beams, the thickness of the struts may be taken as the width of the member.

RA.3.2 — The strength coefficient, $0.85f'_c$, in Eq. (A-3) represents the effective concrete strength under sustained compression, similar to that used in Eq. (10-1) and (10-2).

RA.3.2.1 — The value of β_s in A.3.2.1 applies to a strut equivalent to the rectangular stress block in a compression zone in a beam or column.

RA.3.2.2 — The value of β_s in A.3.2.2 applies to bottle-shaped struts as shown in Fig. RA.1.3. The internal lateral spread of the compression forces can lead to splitting parallel to the axis of the strut near the ends of the strut, as shown in Fig. RA.1.8. Reinforcement placed to resist the splitting force restrains crack width, allows the strut to resist more axial load, and permits some redistribution of force.

The value of β_s in A.3.2.2(b) includes the correction factor, λ, for lightweight concrete because the strength of a strut without transverse reinforcement is assumed to be limited to less than the load at which longitudinal cracking develops.

RA.3.2.3 — The value of β_s in A.3.2.3 applies, for example, to compression struts in a strut-and-tie model used to design the longitudinal and transverse reinforcement of the tension flanges of beams, box girders, and walls. The low value of β_s reflects that these struts need to transfer compression across cracks in a tension zone.
A.3.2.4 — For all other cases................. \(\beta_s = 0.60 \lambda \)

A.3.3 — If the value of \(\beta_s \) specified in A.3.2.2(a) is used, the axis of the strut shall be crossed by reinforcement proportioned to resist the transverse tensile force resulting from the compression force spreading in the strut. It shall be permitted to assume the compressive force in the strut spreads at a slope of 2 longitudinal to 1 transverse to the axis of the strut.

A.3.3.1 — For \(f'_c \) not greater than 6000 psi, the requirement of A.3.3 shall be permitted to be satisfied by the axis of the strut being crossed by layers of reinforcement that satisfy Eq. (A-4)

\[
\sum \frac{A_{si}}{b_s s_i} \sin \alpha_i \geq 0.003 \quad (A-4)
\]

where \(A_{si} \) is the total area of surface reinforcement at spacing \(s_i \) in the \(i \)-th layer of reinforcement crossing a strut at an angle \(\alpha_i \) to the axis of the strut.

RA.3.3 — The reinforcement required by A.3.3 is related to the tension force in the concrete due to the spreading of the strut, as shown in the strut-and-tie model in Fig. RA.1.8(b). Section RA.3.3 allows the use of local strut-and-tie models to compute the amount of transverse reinforcement needed in a given strut. The compressive forces in the strut may be assumed to spread at a 2:1 slope, as shown in Fig. RA.1.8(b).

Figure RA.3.3 shows two layers of reinforcement crossing a cracked strut. If the crack opens without shear slip along the crack, bars in layer \(i \) in the figure will cause a stress perpendicular to the strut of

\[
\frac{A_{si} f'_{si}}{b_s s_i} \sin \alpha_i
\]
A.3.3.2 — The reinforcement required in A.3.3 shall be placed in either two orthogonal directions at angles α_1 and α_2 to the axis of the strut, or in one direction at an angle α to the axis of the strut. If the reinforcement is in only one direction, α shall not be less than 40 degrees.

A.3.4 — If documented by tests and analyses, it shall be permitted to use an increased effective compressive strength of a strut due to confining reinforcement.

A.3.5 — The use of compression reinforcement shall be permitted to increase the strength of a strut. Compression reinforcement shall be properly anchored, parallel to the axis of the strut, located within the strut, and enclosed in ties or spirals satisfying 7.10. In such cases, the nominal strength of a longitudinally reinforced strut is

$$F_{ns} = f_{ce} A_{cs} + A_s' f_s'$$

where the subscript i takes on the values of 1 and 2 for the vertical and horizontal bars, respectively, as shown in Fig. RA.3.3. Equation (A-4) is written in terms of a reinforcement ratio rather than a stress to simplify the calculation.

Often, the confinement reinforcement given in A.3.3 is difficult to place in three-dimensional structures such as pile caps. If this reinforcement is not provided, the value of f_{ce} given in A.3.2.2(b) is used.

RA.3.3.2 — In a corbel with a shear span-to-depth ratio less than 1.0, the confinement reinforcement required to satisfy A.3.3 is usually provided in the form of horizontal stirrups crossing the inclined compression strut, as shown in Fig. R11.8.2.

RA.3.4 — The design of tendon anchorage zones for prestressed concrete sometimes uses confinement to enhance the compressive strength of the struts in the local zone. Confinement of struts is discussed in References A.4 and A.8.

RA.3.5 — The strength added by the reinforcement is given by the last term in Eq. (A-5). The stress f_s' in the reinforcement in a strut at nominal strength can be obtained from the strains in the strut when the strut crushes. For Grade 40 or 60 reinforcement, f_s' can be taken as f_y.
A.4 — Strength of ties

A.4.1 — The nominal strength of a tie, F_{nt}, shall be taken as

$$F_{nt} = A_{ts}f_y + A_{tp}(f_{se} + \Delta f_p)$$ \quad (A-6)$$

where ($f_{se} + \Delta f_p$) shall not exceed f_{py}, and A_{tp} is zero for nonprestressed members.

In Eq. (A–6), it shall be permitted to take Δf_p equal to 60,000 psi for bonded prestressed reinforcement, or 10,000 psi for unbonded prestressed reinforcement. Other values of Δf_p shall be permitted when justified by analysis.

A.4.2 — The axis of the reinforcement in a tie shall coincide with the axis of the tie in the strut-and-tie model.

A.4.3 — Tie reinforcement shall be anchored by mechanical devices, post-tensioning anchorage devices, standard hooks, or straight bar development as required by A.4.3.1 through A.4.3.4.

A.4.3.1 — Nodal zones shall develop the difference between the tie force on one side of the node and the tie force on the other side.

A.4.3.2 — At nodal zones anchoring one tie, the tie force shall be developed at the point where the centroid of the reinforcement in a tie leaves the extended nodal zone and enters the span.

A.4.3.3 — At nodal zones anchoring two or more ties, the tie force in each direction shall be developed at the point where the centroid of the reinforcement in the tie leaves the extended nodal zone.

RA.4.2 — The effective tie width assumed in design w_t can vary between the following limits, depending on the distribution of the tie reinforcement:

(a) If the bars in the tie are in one layer, the effective tie width can be taken as the diameter of the bars in the tie plus twice the cover to the surface of the bars, as shown in Fig. RA.1.5(a); and

(b) A practical upper limit of the tie width can be taken as the width corresponding to the width in a hydrostatic nodal zone, calculated as

$$w_{t,\text{max}} = F_{nt} / (f_{ce}b_s)$$

where f_{ce} is computed for the nodal zone in accordance with A.5.2. If the tie width exceeds the value from (a), the tie reinforcement should be distributed approximately uniformly over the width and thickness of the tie, as shown in Fig. RA.1.5(b).

RA.4.3 — Anchorage of ties often requires special attention in nodal zones of corbels or in nodal zones adjacent to exterior supports of deep beams. The reinforcement in a tie should be anchored before it leaves the extended nodal zone at the point defined by the intersection of the centroid of the bars in the tie and the extensions of the outlines of either the strut or the bearing area. This length is l_{anc}. In Fig. RA.1.5(a) and (b), this occurs where the outline of the extended nodal zone is crossed by the centroid of the reinforcement in the tie. Some of the anchorage may be achieved by extending the reinforcement through the nodal zone, as shown in Fig. RA.1.4(c), and developing it beyond the nodal zone. If the tie is anchored using 90-degree hooks, the hooks should be confined within the reinforcement extending into the beam from the supporting member to avoid cracking along the outside of the hooks in the support region.
In deep beams, hairpin bars spliced with the tie reinforcement can be used to anchor the tension tie forces at exterior supports, provided the beam width is large enough to accommodate such bars.

Figure RA.4.3 shows two ties anchored at a nodal zone. Development is required where the centroid of the tie crosses the outline of the extended nodal zone.

The development length of the tie reinforcement can be reduced through hooks, mechanical devices, additional confinement, or by splicing it with several layers of smaller bars.

A.5 — Strength of nodal zones

A.5.1 — The nominal compression strength of a nodal zone, F_{nn}, shall be

$$ F_{nn} = f_{ce} A_{nz} \quad (A-7) $$

where f_{ce} is the effective compressive strength of the concrete in the nodal zone as given in A.5.2, and A_{nz} is the smaller of (a) and (b):

(a) The area of the face of the nodal zone on which F_u acts, taken perpendicular to the line of action of F_u;

(b) The area of a section through the nodal zone, taken perpendicular to the line of action of the resultant force on the section.

Assuming the principal stresses in the struts and ties act parallel to the axes of the struts and ties, the stresses on faces perpendicular to these axes are principal stresses, and A5.1(a) is used. If, as shown in Fig. RA.1.5(b), the face of a nodal zone is not perpendicular to the axis of the strut, there will be both shear stresses and normal stresses on the face of the nodal zone. Typically, these stresses are replaced by the normal (principal compression) stress acting on the cross-sectional area A_c of the strut, taken perpendicular to the axis of the strut as given in A.5.1(a).

In some cases, A.5.1(b) requires that the stresses be checked on a section through a subdivided nodal zone. The stresses are checked on the least area section which is perpendicular...
to a resultant force in the nodal zone. In Fig. RA.1.6(b), the vertical face which divide the nodal zone into two parts is stressed by the resultant force acting along A-B. The design of the nodal zone is governed by the critical section from A.5.1(a) or A.5.1(b), whichever gives the highest stress.

RA.5.2 — The nodes in two-dimensional members, such as deep beams, can be classified as C-C-C if all the members intersecting at the node are in compression; as C-C-T nodes if one of the members acting on the node is in tension; and so on, as shown in Fig. RA.1.7. The effective compressive strength of the nodal zone is given by Eq. (A-8), as modified by A.5.2.1 through A.5.2.3 apply to C-C-C nodes, C-C-T nodes, and C-T-T or T-T-T nodes, respectively.

The β_n values reflect the increasing degree of disruption of the nodal zones due to the incompatibility of tension strains in the ties and compression strains in the struts. The stress on any face of the nodal zone or on any section through the nodal zone should not exceed the value given by Eq. (A-8), as modified by A.5.2.1 through A.5.2.3.

A.5.2 — Unless confining reinforcement is provided within the nodal zone and its effect is supported by tests and analysis, the calculated effective compressive stress, f_{ce}, on a face of a nodal zone due to the strut-and-tie forces shall not exceed the value given by

$$f_{ce} = 0.85 \beta_n f'_c$$ \hspace{1cm} (A-8)

where the value of β_n is given in A.5.2.1 through A.5.2.3.

A.5.2.1 — In nodal zones bounded by struts or bearing areas, or both....................... $\beta_n = 1.0$;

A.5.2.2 — In nodal zones anchoring one tie.. $\beta_n = 0.80$;

or

A.5.2.3 — In nodal zones anchoring two or more ties .. $\beta_n = 0.60$.

A.5.3 — In a three-dimensional strut-and-tie model, the area of each face of a nodal zone shall not be less than that given in A.5.1, and the shape of each face of the nodal zones shall be similar to the shape of the projection of the end of the struts onto the corresponding faces of the nodal zones.

RA.5.3 — This description of the shape and orientation of the faces of the nodal zones is introduced to simplify the calculations of the geometry of a three-dimensional strut-and-tie model.
Notes
APPENDIX B — ALTERNATIVE PROVISIONS FOR REINFORCED AND PRESTRESSED CONCRETE FLEXURAL AND COMPRESSION MEMBERS

CODE

B.1 — Scope

Design for flexure and axial load by provisions of Appendix B shall be permitted. When Appendix B is used in design, B.8.4, B.8.4.1, B.8.4.2, and B.8.4.3 shall replace the corresponding numbered sections in Chapter 8; B.10.3.3 shall replace 10.3.3, 10.3.4, and 10.3.5, except 10.3.5.1 shall remain; B.18.1.3, B.18.8.1, B.18.8.2, and B.18.8.3 shall replace the corresponding numbered sections in Chapter 18; B.18.10.4, B.18.10.4.1, B.18.10.4.2, and B.18.10.4.3 shall replace 18.10.4, 18.10.4.1, and 18.10.4.2. If any section in this appendix is used, all sections in this appendix shall be substituted in the body of the Code, and all other sections in the body of the Code shall be applicable.

B.8.4 — Redistribution of moments in continuous nonprestressed flexural members

For criteria on moment redistribution for prestressed concrete members, see B.18.10.4.

B.8.4.1 — Except where approximate values for moments are used, it shall be permitted to decrease factored moments calculated by elastic theory at sections of maximum negative or maximum positive moment and in any span of continuous flexural members for any assumed loading arrangement by not more than

$$20 \left(1 - \frac{\rho - \rho^{'}}{\rho_b}\right) \text{ percent}$$

B.8.4.2 — Redistribution of moments shall be made only when the section at which moment is reduced is so designed that \(\rho\) or \(\rho - \rho^{'}\) is not greater than \(0.50\rho_b\), where

$$\rho_b = \frac{0.85 \beta_1 f_c^{'}}{f_y} \left(\frac{87,000}{87,000 + f_y}\right)$$

B.8.4.3 — The reduced moment shall be used for calculating redistributed moments at all other sections within the spans. Static equilibrium shall be maintained after redistribution of moments at each loading arrangement.

COMMENTARY

RB.1 — Scope

Reinforcement limits, strength reduction factors \(\phi\), and moment redistribution in Appendix B differ from those in the main body of the Code. Appendix B contains the reinforcement limits, strength reduction factors \(\phi\), and moment redistribution used in the Code for many years. Designs using the provisions of Appendix B satisfy the Code, and are equally acceptable.

When this appendix is used, the corresponding Commentary sections apply. The load factors and strength reduction factors of either Chapter 9 or Appendix C are applicable.

RB.8.4 — Redistribution of moments in continuous nonprestressed flexural members

Moment redistribution is dependent on adequate ductility in plastic hinge regions. These plastic hinge regions develop at sections of maximum positive or negative moment and cause a shift in the elastic moment diagram. The usual results are reduction in the values of maximum negative moments in the support regions and an increase in the values of positive moments between supports from those computed by elastic analysis. However, because negative moments are determined for one loading arrangement and positive moments for another (see 13.7.6 for an exception), economies in reinforcement can sometimes be realized by reducing maximum elastic positive moments and increasing negative moments, thus narrowing the envelope of maximum negative and positive moments at any section in the span. The plastic hinges permit the utilization of the full capacity of more cross sections of a flexural member at ultimate loads.

Before 2008, the Code addressed moment redistribution by permitting an increase or decrease of factored negative moments above or below elastically calculated values, within specified limits. A decrease in negative moment strength implies inelastic behavior in the negative moment region at the support. By increasing the negative moment strength, the positive moments can be reduced but the result is that inelastic behavior will occur in the positive moment region of the member and the percentage change in the positive moment section could be much larger than the 20 percent permitted for negative moment sections. \(^{B.1}\) The 2008 change places the same percentage limitations on both positive and negative moments.
B.10.3 — General principles and requirements

B.10.3.3 — For flexural members and members subject to combined flexure and compressive axial load where \(\phi P_n \) is less than the smaller of \(0.10f' c A_g \) and \(\phi P_b \), the ratio of reinforcement, \(\rho \), provided shall not exceed 0.75 of the ratio \(\rho_b \) that would produce balanced strain conditions for the section under flexure without axial load. For members with compression reinforcement, the portion of \(\rho_b \) equalized by compression reinforcement need not be reduced by the 0.75 factor.

RB.10.3 — General principles and requirements

RB.10.3.3 — The maximum amount of tension reinforcement in flexural members is limited to ensure a level of ductile behavior.

The nominal flexural strength of a section is reached when the strain in the extreme compression fiber reaches the limiting strain in the concrete. At ultimate strain of the concrete, the strain in the tension reinforcement could just reach the strain at first yield, be less than the yield strain (elastic), or exceed the yield strain (inelastic). The steel strain that exists at limiting concrete strain depends on the relative proportion of steel to concrete and material strengths \(f' c \) and \(f_y \).
If $\rho (f_y / f'_c)$ is sufficiently low, the strain in the tension steel will greatly exceed the yield strain when the concrete strain reaches its limiting value, with large deflection and ample warning of impending failure (ductile failure condition). With a larger $\rho (f_y / f'_c)$, the strain in the tension steel may not reach the yield strain when the concrete strain reaches its limiting value, with consequent small deflection and little warning of impending failure (brittle failure condition). For design it is considered more conservative to restrict the nominal strength condition so that a ductile failure mode can be expected.

Unless unusual amounts of ductility are required, the $0.75 \rho_b$ limitation will provide ductile behavior for most designs. One condition where greater ductile behavior is required is in design for redistribution of moments in continuous members and frames. Section B.8.4 permits negative moment redistribution. Since moment redistribution is dependent on adequate ductility in hinge regions, the amount of tension reinforcement in hinging regions is limited to $0.5 \rho_b$.

For ductile behavior of beams with compression reinforcement, only that portion of the total tension steel balanced by compression in the concrete need be limited; that portion of the total tension steel where force is balanced by compression reinforcement need not be limited by the 0.75 factor.

RB.18.1 — Scope

RB.18.1.3 — Some sections of the Code are excluded from use in the design of prestressed concrete for specific reasons. The following discussion provides an explanation for such exclusions:

Section 6.4.4 — Tendons of continuous post-tensioned beams and slabs are usually stressed at a point along the span where the tendon profile is at or near the centroid of the concrete cross section. Therefore, interior construction joints are usually located within the end thirds of the span, rather than the middle third of the span as required by 6.4.4. Construction joints located as described in continuous post-tensioned beams and slabs have a long history of satisfactory performance. Thus, 6.4.4 is excluded from application to prestressed concrete.

Section 7.6.5 — Section 7.6.5 is excluded from application to prestressed concrete since the requirements for bonded reinforcement and unbonded tendons for cast-in-place members are provided in 18.9 and 18.12, respectively.

Section B.8.4 — Moment redistribution for prestressed concrete is provided in B.8.4.

Sections 8.12.2, 8.12.3, and 8.12.4 — The empirical provisions of 8.12.2, 8.12.3, and 8.12.4 for T-beams were developed for conventionally reinforced concrete and, if applied to
prestressed concrete, would exclude many standard prestressed products in satisfactory use today. Hence, proof by experience permits variations.

By excluding 8.12.2, 8.12.3, and 8.12.4, no special requirements for prestressed concrete T-beams appear in the Code. Instead, the determination of an effective width of flange is left to the experience and judgment of the licensed design professional. Where possible, the flange widths in 8.12.2, 8.12.3, and 8.12.4 should be used unless experience has proven that variations are safe and satisfactory. It is not necessarily conservative in elastic analysis and design considerations to use the maximum flange width as permitted in 8.12.2.

Sections 8.12.1 and 8.12.5 provide general requirements for T-beams that are also applicable to prestressed concrete units. The spacing limitations for slab reinforcement are based on flange thickness, which for tapered flanges can be taken as the average thickness.

Section 8.13 — The empirical limits established for conventionally reinforced concrete joist floors are based on successful past performance of joist construction using “standard” joist forming systems. See R8.13. For prestressed joist construction, experience and judgment should be used. The provisions of 8.13 may be used as a guide.

Sections B.10.3.3, 10.5, 10.9.1, and 10.9.2 — For prestressed concrete, the limitations on reinforcement given in B.10.3.3, 10.5, 10.9.1, and 10.9.2 are replaced by those in B.18.8, 18.9, and 18.11.2.

Section 10.6 — When originally prepared, the provisions of 10.6 for distribution of flexural reinforcement were not intended for prestressed concrete members. The behavior of a prestressed member is considerably different from that of a nonprestressed member. Experience and judgment should be used for proper distribution of reinforcement in a prestressed member.

Chapter 13 — The design of prestressed concrete slabs requires recognition of secondary moments induced by the undulating profile of the prestressing tendons. Also, volume changes due to the prestressing force can create additional loads on the structure that are not adequately covered in Chapter 13. Because of these unique properties associated with prestressing, many of the design procedures of Chapter 13 are not appropriate for prestressed concrete structures and are replaced by the provisions of 18.12.

Sections 14.5 and 14.6 — The requirements for wall design in 14.5 and 14.6 are largely empirical, utilizing considerations not intended to apply to prestressed concrete.
CODE

B.18.8 — Limits for reinforcement of flexural members

B.18.8.1 — Ratio of prestressed and nonprestressed reinforcement used for computation of moment strength of a member, except as provided in B.18.8.2, shall be such that \(\omega_p, [\omega_p + (d/dp)(\omega - \omega')] \), or \([\omega_{pw} + (d/dp)(\omega_w - \omega'_w)] \) is not greater than 0.36\(\beta_1 \), except as permitted in B.18.8.2.

Ratio \(\omega_p \) is computed as \(\rho f_{ps}/f'_c \). Ratios \(\omega_w \) and \(\omega_{pw} \) are computed as \(\omega \) and \(\omega_p \), respectively, except that when computing \(\rho \) and \(\rho_p \), \(b_w \) shall be used in place of \(b \) and the area of reinforcement or prestressing steel required to develop the compressive strength of the web only shall be used in place of \(A_s \) or \(A_{ps} \). Ratio \(\omega'_w \) is computed as \(\omega' \), except that when computing \(\rho' \), \(b_w \) shall be used in place of \(b \).

B.18.8.2 — When a reinforcement ratio exceeds the limit specified in B.18.8.1 is provided, design moment strength shall not exceed the moment strength based on the compression portion of the moment couple.

B.18.8.3 — Total amount of prestressed and nonprestressed reinforcement shall be adequate to develop a factored load at least 1.2 times the cracking load computed on the basis of the modulus of rupture \(f_r \) in 9.5.2.3. This provision shall be permitted to be waived for:

(a) two-way, unbonded post-tensioned slabs; and

(b) flexural members with shear and flexural strength at least twice that required by 9.2.

COMMENTARY

RB.18.8 — Limits for reinforcement of flexural members

RB.18.8.1 — The terms \(\omega_p, [\omega_p + (d/dp)(\omega - \omega')] \) and \([\omega_{pw} + (d/dp)(\omega_w - \omega'_w)] \) are each equal to 0.85\(a/d_p \), where \(a \) is the depth of the equivalent rectangular stress block for the section under consideration, as defined in 10.2.7.1. Use of this relationship can simplify the calculations necessary to check compliance with RB.18.8.1.

RB.18.8.2 — Design moment strength of over-reinforced sections may be computed using strength equations similar to those for nonprestressed concrete members. The 1983 Code provided strength equations for rectangular and flanged sections.

RB.18.8.3 — This provision is a precaution against abrupt flexural failure developing immediately after cracking. A flexural member designed according to Code provisions requires considerable additional load beyond cracking to reach its flexural strength. This additional load should result in considerable deflection that would warn when the member nominal strength is being approached. If the flexural strength is reached shortly after cracking, the warning deflection would not occur.

Due to the very limited extent of initial cracking in the negative moment region near columns of two-way flat plates, deflection under load does not reflect any abrupt change in stiffness as the modulus of rupture of concrete is reached.

Only at load levels beyond the factored loads is the additional cracking extensive enough to cause an abrupt change in the deflection under load. Tests have shown that it is not possible to rupture (or even yield) unbonded post-tensioning tendons in two-way slabs before a punching shear failure. The use of unbonded tendons in combination with the minimum bonded reinforcement requirements of 18.9.3 and 18.9.4 has been shown to ensure post-cracking ductility and that a brittle failure mode will not develop at first cracking.
B.18.10 — Statically indeterminate structures

B.18.10.1 — Frames and continuous construction of prestressed concrete shall be designed for satisfactory performance at service load conditions and for adequate strength.

B.18.10.2 — Performance at service load conditions shall be determined by elastic analysis, considering reactions, moments, shears, and axial forces produced by prestressing, creep, shrinkage, temperature change, axial deformation, restraint of attached structural elements, and foundation settlement.

B.18.10.3 — Moments to be used to compute required strength shall be the sum of the moments due to reactions induced by prestressing (with a load factor of 1.0) and the moments due to factored loads. Adjustment of the sum of these moments shall be permitted as allowed in B.18.10.4.

RB.18.10 — Statically indeterminate structures

RB.18.10.1 — Where bonded reinforcement is provided at supports in accordance with 18.9, negative or positive moments calculated by elastic theory for any assumed loading, arrangement shall be permitted to be increased or decreased by not more than

\[
20 \left[1 - \frac{\omega_p + \frac{d}{d_p} (\omega - \omega')}{{0.36\beta_1}} \right] \text{ percent}
\]

RB.18.10.2 — Redistribution of moments shall be made only when the section at which moment is

As member strength is approached, inelastic behavior at some sections can result in a redistribution of moments in prestressed concrete beams and slabs. Recognition of this behavior can be advantageous in design under certain circumstances. A rigorous design method for moment redistribution is complex. However, recognition of moment redistribution can be accomplished by permitting a reasonable adjustment of the sum of the elastically calculated factored gravity load moments and the unfactored secondary moments due to prestress. The amount of adjustment should be kept within predetermined safety limits.

The amount of redistribution allowed depends on the ability of the critical sections to deform inelastically by a sufficient
reduced is so designed that ω_{p}, $[\omega_{p} + (d/dp)(\omega - \omega')]$ or $[\omega_{pw} + (d/dp)(\omega_{w} - \omega_{w}')$, whichever is applicable, is not greater than $0.24\beta_{1}$.

B.18.10.4.3 — The reduced moment shall be used for calculating redistributed moments at all other sections within the spans. Static equilibrium shall be maintained after redistribution of moments for each loading arrangement.

The terms ω_{p}, $[\omega_{p} + (d/dp)(\omega - \omega')]$, and $[\omega_{pw} + (d/dp)(\omega_{w} - \omega_{w}')$ appear in B.18.10.4.1 and B.18.10.4.3 and are each equal to $0.85a/d_{p}$, where a is the depth of the equivalent rectangular stress distribution for the section under consideration, as defined in 10.2.7.1. Use of this relationship can simplify the calculations necessary to determine the amount of moment redistribution permitted by B.18.10.4.1 and to check compliance with the limitation on flexural reinforcement contained in B.18.10.4.3.

For the moment redistribution principles of B.18.10.4 to be applicable to beams and slabs with unbonded tendons, it is necessary that such beams and slabs contain sufficient bonded reinforcement to ensure that they act as flexural members after cracking and not as a series of tied arches. The minimum bonded reinforcement requirements of 18.9 serve this purpose.
APPENDIX C — ALTERNATIVE LOAD AND STRENGTH REDUCTION FACTORS

CODE

C.9.1 — Scope

Structural concrete shall be permitted to be designed using the load combinations and strength reduction factors of Appendix C. When Appendix C is used in design, C.9.2.1 through C.9.2.7 shall replace 9.2.1 through 9.2.5 and C.9.3.1 through C.9.3.5 shall replace 9.3.1 through 9.3.5.

C.9.2 — Required strength

C.9.2.1 — Required strength U to resist dead load D and live load L shall not be less than

\[U = 1.4D + 1.7L \]

(C.9-1)

C.9.2.2 — For structures that also resist W, wind load, or E, the load effects of earthquake, U shall not be less than the larger of Eq. (C.9-1), (C.9-2), and (C.9-3)

\[U = 0.75(1.4D + 1.7L) + (1.6W \text{ or } 1.0E) \]

(C.9-2)

and

\[U = 0.9D + (1.6W \text{ or } 1.0E) \]

(C.9-3)

Where W has not been reduced by a directionality factor, it shall be permitted to use $1.3W$ in place of $1.6W$ in Eq. (C.9-2) and (C.9-3). Where E is based on service-level seismic forces, $1.4E$ shall be used in place of $1.0E$ in Eq. (C.9-2) and (C.9-3).

C.9.2.3 — For structures that resist H, loads due to weight and pressure of soil, water in soil, or other related materials, U shall not be less than the larger of Eq. (C.9-1) and (C.9-4):

\[U = 1.4D + 1.7L + 1.7H \]

(C.9-4)

In Eq. (C.9-4), where D or L reduce the effect of H, $0.9D$ shall be substituted for $1.4D$, and zero value of L shall be used to determine the greatest required strength U.

COMMENTARY

RC.9.1 — General

RC.9.1.1 — In the 2002 Code, the load and strength reduction factors formerly in Chapter 9 were revised and moved to this appendix. They have evolved since the early 1960s and are considered to be reliable for concrete construction.

RC.9.2 — Required strength

The wind load equation in ASCE 7-98 and IBC 2000C1 includes a factor for wind directionality that is equal to 0.85 for buildings. The corresponding load factor for wind in the load combination equations was increased accordingly ($1.3/0.85 = 1.53$, rounded up to 1.6). The Code allows use of the previous wind load factor of 1.3 when the design wind load is obtained from other sources that do not include the wind directionality factor.

Model building codes and design load references have converted earthquake forces to strength level, and reduced the earthquake load factor to 1.0 (ASCE 7-93C2; BOCA/NBC 93C3; SBC 94C4; UBC 97C5; and IBC 2000C1). The Code requires use of the previous load factor for earthquake loads, approximately 1.4, when service-level earthquake forces from earlier editions of these references are used.

RC.9.2.3 — If effects H caused by earth pressure, groundwater pressure, or pressure caused by granular materials are included in design, the required strength equations become

\[U = 1.4D + 1.7L + 1.7H \]

and where D or L reduce the effect of H

\[U = 0.9D + 1.7H \]

but for any combination of $D, L, \text{ or } H$

\[U = 1.4D + 1.7L \]
CODE

C.9.2.4 — For structures that resist F, load due to weight and pressure of fluids with well-defined densities, the load factor for F shall be 1.4, and F shall be added to all loading combinations that include L.

C.9.2.5 — If resistance to impact effects is taken into account in design, such effects shall be included with L.

C.9.2.6 — Where structural effects of differential settlement, creep, shrinkage, expansion of shrinkage-compensating concrete, or temperature change, T, are significant, U shall not be less than the larger of Eq. (C.9-5) and (C.9-6)

\[
U = 0.75(1.4D + 1.4T + 1.7L) \quad (C.9-5)
\]

\[
U = 1.4(D + T) \quad (C.9-6)
\]

Estimations of differential settlement, creep, shrinkage, expansion of shrinkage-compensating concrete, or temperature change shall be based on realistic assessment of such effects occurring in service.

C.9.2.7 — For post-tensioned anchorage zone design, a load factor of 1.2 shall be applied to the maximum prestressing steel jacking force.

COMMENTARY

RC.9.2.4 — This section addresses the need to consider loading due to weight of liquid or liquid pressure. It specifies a load factor for such loadings with well-defined densities and controllable maximum heights equivalent to that used for dead load. Such reduced factors would not be appropriate where there is considerable uncertainty of pressures, as with groundwater pressures, or uncertainty as to the possible maximum liquid depth, as in ponding of water. See R8.2.

For well-defined fluid pressures, the required strength equations become

\[
U = 1.4D + 1.7L + 1.4F
\]

and where D or L reduce the effect of F

\[
U = 0.9D + 1.4F
\]

but for any combination of D, L, or F

\[
U = 1.4D + 1.7L
\]

RC.9.2.5 — If the live load is applied rapidly, as may be the case for parking structures, loading docks, warehouse floors, elevator shafts, etc., impact effects should be considered. In all equations, substitute $(L + \text{impact})$ for L when impact must be considered.

RC.9.2.6 — The effects of differential settlement, creep, shrinkage, temperature, and shrinkage-compensating concrete should be considered. The term “realistic assessment” is used to indicate that the most probable values, rather than the upper bound values, of the variables should be used.

Equation (C.9-6) is to prevent a design for load

\[
U = 0.75 (1.4D + 1.4T + 1.7L)
\]

to approach

\[
U = 1.05(D + T)
\]

when live load is negligible.

RC.9.2.7 — The load factor of 1.2 applied to the maximum prestressing steel jacking force results in a design load of 113 percent of the specified yield strength of prestressing steel but not more than 96 percent of the nominal ultimate strength of the tendon. This compares well with a maximum attainable jacking force, which is limited by the anchor efficiency factor.
C.9.3 — Design strength

C.9.3.1 — Design strength provided by a member, its connections to other members, and its cross sections, in terms of flexure, axial load, shear, and torsion, shall be taken as the nominal strength calculated in accordance with the requirements and assumptions of this Code, multiplied by the ϕ factors in C.9.3.2, C.9.3.4, and C.9.3.5.

C.9.3.2 — Strength reduction factor ϕ shall be as follows:

C.9.3.2.1 — Tension-controlled sections, as defined in 10.3.4 (See also C.9.3.2.7) .. 0.90

C.9.3.2.2 — Compression-controlled sections, as defined in 10.3.3:

(a) Members with spiral reinforcement conforming to 10.9.3 ... 0.75

(b) Other reinforced members 0.70

For sections in which the net tensile strain in the extreme tension steel at nominal strength, ε_t, is between the limits for compression-controlled and tension-controlled sections, ϕ shall be permitted to be linearly increased from that for compression-controlled sections to 0.90 as ε_t increases from the compression-controlled strain limit to 0.005.

Alternatively, when Appendix B is used, for members in which f_y does not exceed 60,000 psi, with symmetric reinforcement, and with $(d - d')/h$ not less than 0.70, ϕ shall be permitted to be increased linearly to 0.90 as ϕP_n decreases from $0.10f'_c A_g$ to zero. For other reinforced members, ϕ shall be permitted to be increased linearly to 0.90 as ϕP_n decreases from $0.10f'_c A_g$ or ϕP_b, whichever is smaller, to zero.

RC.9.3.2.1 — In applying C.9.3.2.1 and C.9.3.2.2, the axial tensions and compressions to be considered are those caused by external forces. Effects of prestressing forces are not included.

RC.9.3.2.2 — Before the 2002 edition, the Code gave the magnitude of the ϕ-factor for cases of axial load or flexure, or both, in terms of the type of loading. For these cases, the ϕ-factor is now determined by the strain conditions at a cross section, at nominal strength.

A lower ϕ-factor is used for compression-controlled sections than is used for tension-controlled sections because compression-controlled sections have less ductility, are more sensitive to variations in concrete strength, and generally occur in members that support larger loaded areas than members with tension-controlled sections. Members with spiral reinforcement are assigned a higher ϕ than tied columns since they have greater ductility or toughness.

For sections subjected to axial load with flexure, design strengths are determined by multiplying both P_n and M_n by the appropriate single value of ϕ. Compression-controlled and tension-controlled sections are defined in 10.3.3 and 10.3.4 as those that have net tensile strain in the extreme tension steel at nominal strength less than or equal to the compression-controlled strain limit, and equal to or greater than 0.005, respectively. For sections with net tensile strain ε_t in the extreme tension steel at nominal strength between the above limits, the value of ϕ may be determined by linear interpolation, as shown in Fig. RC.9.3.2. The concept of net tensile strain ε_t is discussed in R10.3.3.
C.9.3.2.3 — Shear and torsion................................. 0.85

C.9.3.2.4 — Bearing on concrete (except for post-tensioned anchorage zones and strut-and-tie models) ... 0.70

C.9.3.2.5 — Post-tensioned anchorage zones...... 0.85

C.9.3.2.6 — Strut-and-tie models (Appendix A), and struts, ties, nodal zones, and bearing areas in such models... 0.85

RC.9.3.2.5 — The ϕ-factor of 0.85 reflects the wide scatter of results of experimental anchorage zone studies. Since 18.13.4.2 limits the nominal compressive strength of unconfined concrete in the general zone to $0.7f'_{ci}$, the effective design strength for unconfined concrete is $0.85 \times 0.7f'_{ci} \approx 0.6f'_{ci}$.
C.9.3.2.7 — Flexure sections without axial load in pretensioned members where strand embedment is less than the development length as provided in 12.9.1.1.................................0.85

C.9.3.3 — Development lengths specified in Chapter 12 do not require a ϕ-factor.

C.9.3.4 — For structures that rely on intermediate precast structural walls in Seismic Design Category D, E, or F, special moment frames, or special structural walls to resist E, ϕ shall be modified as given in (a) through (c):

(a) For any structural member that is designed to resist E, ϕ for shear shall be 0.60 if the nominal shear strength of the member is less than the shear corresponding to the development of the nominal flexural strength of the member. The nominal flexural strength shall be determined considering the most critical factored axial loads and including E;

(b) For diaphragms, ϕ for shear shall not exceed the minimum ϕ for shear used for the vertical components of the primary lateral-force-resisting system;

(c) For joints and diagonally reinforced coupling beams, ϕ for shear shall be 0.85.

C.9.3.5 — In Chapter 22, ϕ shall be 0.65 for flexure, compression, shear, and bearing of structural plain concrete.

RC.9.3.2.7 — If a critical section occurs in a region where strand is not fully developed, failure may be by bond slip. Such a failure resembles a brittle shear failure; hence the requirement for a reduced ϕ.

RC.9.3.4 — Section C.9.3.4(a) refers to brittle members, such as low-rise walls or portions of walls between openings, or diaphragms that are impractical to reinforce to raise their nominal shear strength above nominal flexural strength for the pertinent loading conditions.

Short structural walls were the primary vertical elements of the lateral-force-resisting system in many of the parking structures that sustained damage during the 1994 Northridge earthquake. Section C.9.3.4(b) requires the shear strength reduction factor for diaphragms to be 0.60 if the shear strength reduction factor for the walls is 0.60.

RC.9.3.5 — The strength reduction factor ϕ for structural plain concrete design is the same for all strength conditions. Since both flexural tension strength and shear strength for plain concrete depend on the tensile strength characteristics of the concrete, with no reserve strength or ductility possible due to the absence of reinforcement, equal strength reduction factors for both bending and shear are considered appropriate.
APPENDIX D — ANCHORING TO CONCRETE

CODE

D.1 — Definitions

Anchor — A steel element either cast into concrete or post-installed into a hardened concrete member and used to transmit applied loads, including headed bolts, hooked bolts (J- or L-bolt), headed studs, expansion anchors, or undercut anchors.

Anchor group — A number of anchors of approximately equal effective embedment depth with each anchor spaced at least $3h_{ef}$ from one or more adjacent anchors when subjected to tension, or $3c_{at}$ from one or more adjacent anchors when subjected to shear. Only those anchors susceptible to the particular failure mode under investigation shall be included in the group.

Anchor pullout strength — The strength corresponding to the anchoring device or a major component of the device sliding out from the concrete without breaking out a substantial portion of the surrounding concrete.

Anchor reinforcement — Reinforcement used to transfer the full design load from the anchors into the structural member. See D.5.2.9 or D.6.2.9.

Attachment — The structural assembly, external to the surface of the concrete, that transmits loads to or receives loads from the anchor.

Brittle steel element — An element with a tensile test elongation of less than 14 percent, or reduction in area of less than 30 percent, or both.

Cast-in anchor — A headed bolt, headed stud, or hooked bolt installed before placing concrete.

Concrete breakout strength — The strength corresponding to a volume of concrete surrounding the anchor or group of anchors separating from the member.

Concrete pryout strength — The strength corresponding to formation of a concrete spall behind short, stiff anchors displaced in the direction opposite to the applied shear force.

Distance sleeve — A sleeve that encases the center part of an undercut anchor, a torque-controlled expansion anchor, or a displacement-controlled expansion anchor, but does not expand.

COMMENTARY

RD.1 — Definitions

Anchor group — For all potential failure modes (steel, concrete breakout, pullout, side-face blowout, and pryout), only those anchors susceptible to a particular failure mode should be considered when evaluating the strength associated with that failure mode.

Anchor reinforcement — Anchor reinforcement is designed and detailed specifically for the purpose of transferring anchor loads from the anchors into the structural member. Hairpins are generally used for this purpose (see RD.5.2.9 and RD.6.2.9); however, other configurations that can be shown to effectively transfer the anchor load are acceptable.

Brittle steel element and ductile steel element — The 14 percent elongation should be measured over the gauge length specified in the appropriate ASTM standard for the steel.
CODE

Ductile steel element — An element with a tensile test elongation of at least 14 percent and reduction in area of at least 30 percent. A steel element meeting the requirements of ASTM A307 shall be considered ductile.

Edge distance — The distance from the edge of the concrete surface to the center of the nearest anchor.

Effective embedment depth — The overall depth through which the anchor transfers force to or from the surrounding concrete. The effective embedment depth will normally be the depth of the concrete failure surface in tension applications. For cast-in headed anchor bolts and headed studs, the effective embedment depth is measured from the bearing contact surface of the head.

Expansion anchor — A post-installed anchor, inserted into hardened concrete that transfers loads to or from the concrete by direct bearing or friction or both. Expansion anchors may be torque-controlled, where the expansion is achieved by a torque acting on the screw or bolt; or displacement-controlled, where the expansion is achieved by impact forces acting on a sleeve or plug and the expansion is controlled by the length of travel of the sleeve or plug.

Expansion sleeve — The outer part of an expansion anchor that is forced outward by the center part, either by applied torque or impact, to bear against the sides of the predrilled hole.

Five percent fractile — A statistical term meaning 90 percent confidence that there is 95 percent probability of the actual strength exceeding the nominal strength.

Headed stud — A steel anchor conforming to the requirements of AWS D1.1 and affixed to a plate or similar steel attachment by the stud arc welding process before casting.

COMMENTARY

Effective embedment depth — Effective embedment depths for a variety of anchor types are shown in Fig. RD.1.

Five percent fractile — The determination of the coefficient $K_{0.05}$ associated with the 5 percent fractile, $\bar{x} - K_{0.05}s$, depends on the number of tests, n, used to compute the sample mean, \bar{x}, and sample standard deviation, s. Values of $K_{0.05}$ range, for example, from 1.645 for $n = \infty$, to 2.010 for $n = 40$, and 2.568 for $n = 10$. With this definition of the 5 percent fractile, the nominal strength in D.4.2 is the same as the characteristic strength in ACI 355.2.

Fig. RD.1—Types of anchors.
CODE

Hooked bolt — A cast-in anchor anchored mainly by bearing of the 90-degree bend (L-bolt) or 180-degree bend (J-bolt) against the concrete, at its embedded end, and having a minimum e_h of $3d_{eb}$.

Post-installed anchor — An anchor installed in hardened concrete. Expansion anchors and undercut anchors are examples of post-installed anchors.

Projected area — The area on the free surface of the concrete member that is used to represent the larger base of the assumed rectilinear failure surface.

Side-face blowout strength — The strength of anchors with deeper embedment but thinner side cover corresponding to concrete spalling on the side face around the embedded head while no major breakout occurs at the top concrete surface.

Specialty insert — Predesigned and prefabricated cast-in anchors specifically designed for attachment of bolted or slotted connections. Specialty inserts are often used for handling, transportation, and erection, but are also used for anchoring structural elements. Specialty inserts are not within the scope of this appendix.

Supplementary reinforcement — Reinforcement that acts to restrain the potential concrete breakout but is not designed to transfer the full design load from the anchors into the structural member.

Undercut anchor — A post-installed anchor that develops its tensile strength from the mechanical inter-lock provided by undercutting of the concrete at the embedded end of the anchor. The undercutting is achieved with a special drill before installing the anchor or alternatively by the anchor itself during its installation.

D.2 — Scope

D.2.1 — This appendix provides design requirements for anchors in concrete used to transmit structural loads by means of tension, shear, or a combination of tension and shear between: (a) connected structural elements; or (b) safety-related attachments and structural elements. Safety levels specified are intended for in-service conditions, rather than for short-term handling and construction conditions.

COMMENTARY

Supplementary reinforcement — Supplementary reinforcement has a configuration and placement similar to anchor reinforcement but is not specifically designed to transfer loads from the anchors into the structural member. Stirrups, as used for shear reinforcement, may fall into this category.

RD.2 — Scope

RD.2.1 — Appendix D is restricted in scope to structural anchors that transmit structural loads related to strength, stability, or life safety. Two types of applications are envisioned. The first is connections between structural elements where the failure of an anchor or an anchor group could result in loss of equilibrium or stability of any portion of the structure. The second is where safety-related attachments that are not part of the structure (such as sprinkler systems, heavy suspended pipes, or barrier rails) are attached to structural elements. The levels of safety defined by the combinations of load factors and ϕ-factors are appropriate for structural applications. Other standards may require more stringent safety levels during temporary handling.
D.2.2 — This appendix applies to both cast-in anchors and post-installed anchors. Specialty inserts, through-bolts, multiple anchors connected to a single steel plate at the embedded end of the anchors, adhesive or grouted anchors, and direct anchors such as powder or pneumatic actuated nails or bolts, are not included. Reinforcement used as part of the embedment shall be designed in accordance with other parts of this Code.

D.2.3 — Headed studs and headed bolts having a geometry that has been demonstrated to result in a pullout strength in uncracked concrete equal or exceeding $1.4N_p$ (where N_p is given by Eq. (D-15)) are included. Hooked bolts that have a geometry that has been demonstrated to result in a pullout strength without the benefit of friction in uncracked concrete equal or exceeding $1.4N_p$ (where N_p is given by Eq. (D-16)) are included. Post-installed anchors that meet the assessment requirements of ACI 355.2 are included. The suitability of the post-installed anchor for use in concrete shall have been demonstrated by the ACI 355.2 prequalification tests.

D.2.4 — Load applications that are predominantly high cycle fatigue or impact loads are not covered by this appendix.

D.3 — General requirements

D.3.1 — Anchors and anchor groups shall be designed for critical effects of factored loads as determined by elastic analysis. Plastic analysis approaches are permitted where nominal strength is controlled by ductile steel elements, provided that deformational compatibility is taken into account.

D.3.2 — The design strength of anchors shall equal or exceed the largest required strength calculated from the applicable load combinations in 9.2 or C.9.2.

D.3.3 — When anchor design includes earthquake forces for structures assigned to Seismic Design Category C, D, E, or F, the additional requirements of D.3.3.1 through D.3.3.6 shall apply.

D.3.3.1 — When the strength of an anchor group is governed by breakage of the concrete, the behavior is brittle and there is limited redistribution of the forces between the highly stressed and less stressed anchors. In this case, the theory of elasticity is required to be used assuming the attachment that distributes loads to the anchors is sufficiently stiff. The forces in the anchors are considered to be proportional to the external load and its distance from the neutral axis of the anchor group.

If anchor strength is governed by ductile yielding of the anchor steel, significant redistribution of anchor forces can occur. In this case, an analysis based on the theory of elasticity will be conservative. References D.4 to D.6 discuss nonlinear analysis, using theory of plasticity, for the determination of the capacities of ductile anchor groups.

D.3.3.2 — The exclusion from the scope of load applications producing high cycle fatigue or extremely short duration impact (such as blast or shock wave) are not meant to exclude seismic load effects. D.3.3 presents additional requirements for design when seismic loads are included.

RD.2.2 — The wide variety of shapes and configurations of specialty inserts makes it difficult to prescribe generalized tests and design equations for many insert types. Hence, they have been excluded from the scope of Appendix D. Adhesive anchors are widely used and can perform adequately. At this time, however, such anchors are outside the scope of this appendix.

RD.2.3 — Typical cast-in headed studs and headed bolts with geometries consistent with ANSI/ASME B1.1, B18.2.1, B18.2.2 and B18.2.6 have been tested and proven to behave predictably, so calculated pullout values are acceptable. Post-installed anchors do not have predictable pullout capacities, and therefore are required to be tested. For a post-installed anchor to be used in conjunction with the requirements of this appendix, the results of the ACI 355.2 tests have to indicate that pullout failures exhibit an acceptable load-displacement characteristic or that pullout failures are precluded by another failure mode.

RD.2.4 — The exclusion from the scope of load applications producing high cycle fatigue or extremely short duration impact (such as blast or shock wave) are not meant to exclude seismic load effects. D.3.3 presents additional requirements for design when seismic loads are included.

RD.3 — General requirements

RD.3.1 — When the strength of an anchor group is governed by breakage of the concrete, the behavior is brittle and there is limited redistribution of the forces between the highly stressed and less stressed anchors. In this case, the theory of elasticity is required to be used assuming the attachment that distributes loads to the anchors is sufficiently stiff. The forces in the anchors are considered to be proportional to the external load and its distance from the neutral axis of the anchor group.

If anchor strength is governed by ductile yielding of the anchor steel, significant redistribution of anchor forces can occur. In this case, an analysis based on the theory of elasticity will be conservative. References D.4 to D.6 discuss nonlinear analysis, using theory of plasticity, for the determination of the capacities of ductile anchor groups.
D.3.3.1 — The provisions of Appendix D do not apply to the design of anchors in plastic hinge zones of concrete structures under earthquake forces.

D.3.3.2 — Post-installed structural anchors shall be qualified for use in cracked concrete and shall have passed the Simulated Seismic Tests in accordance with ACI 355.2. Pullout strength \(N_p \) and steel strength of the anchor in shear \(V_{sa} \) shall be based on the results of the ACI 355.2 Simulated Seismic Tests.

D.3.3.3 — The anchor design strength associated with concrete failure modes shall be taken as \(0.75 \phi N_{n} \) and \(0.75 \phi V_{n} \), where \(\phi \) is given in D.4.4 or D.4.5, and \(N_{n} \) and \(V_{n} \) are determined in accordance with D.5.2, D.5.3, D.5.4, D.6.2, and D.6.3, assuming the concrete is cracked unless it can be demonstrated that the concrete remains uncracked.

D.3.3.4 — Anchors shall be designed to be governed by the steel strength of a ductile steel element as determined in accordance with D.5.1 and D.6.1, unless either D.3.3.5 or D.3.3.6 is satisfied.

D.3.3.5 — Instead of D.3.3.4, the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a force level corresponding to anchor forces no greater than the design strength of anchors specified in D.3.3.3.

D.3.3.6 — The anchor strength associated with concrete failure modes is to account for increased damage states in the concrete resulting from seismic actions. Because seismic design generally assumes that all or portions of the structure are loaded beyond yield, it is likely that the concrete is cracked throughout for the purpose of determining the anchor strength unless it can be demonstrated that the concrete remains uncracked.

RD.3.3.1 — Section 3.1 of ACI 355.2 specifically states that the seismic test procedures do not simulate the behavior of anchors in plastic hinge zones. The possible higher level of cracking and spalling in plastic hinge zones are beyond the damage states for which Appendix D is applicable.

RD.3.3.2 — Anchors that are not suitable for use in cracked concrete should not be used to resist seismic loads.

RD.3.3.3 — The anchor strength associated with concrete failure modes is to account for increased damage states in the concrete resulting from seismic actions. Because seismic design generally assumes that all or portions of the structure are loaded beyond yield, it is likely that the concrete is cracked throughout for the purpose of determining the anchor strength unless it can be demonstrated that the concrete remains uncracked.

RD.3.3.4 — Ductile steel anchor elements are required to satisfy the requirements of D.1, Ductile Steel Element. For anchors loaded with a combination of tension and shear, the strength in all loading directions must be controlled by the steel strength of the ductile steel anchor element.
D.3.3.6 — As an alternative to D.3.3.4 and D.3.3.5, it shall be permitted to take the design strength of the anchors as 0.4 times the design strength determined in accordance with D.3.3.3. For the anchors of stud bearing walls, it shall be permitted to take the design strength of the anchors as 0.5 times the design strength determined in accordance with D.3.3.3.

D.3.4 — Modification factor λ for lightweight concrete in this appendix shall be in accordance with 8.6.1 unless specifically noted otherwise.

D.3.5 — The values of f'_c used for calculation purposes in this appendix shall not exceed 10,000 psi for cast-in anchors, and 8000 psi for post-installed anchors. Testing is required for post-installed anchors when used in concrete with f'_c greater than 8000 psi.

RD.3.3.6 — As a matter of good practice, a ductile failure mode in accordance with D.3.3.4 or D.3.3.5 should be provided for in the design of the anchor or the load should be transferred to anchor reinforcement in the concrete. Where this is not possible due to geometric or material constraints, D.3.3.6 permits the design of anchors for non-ductile failure modes at a reduced permissible strength to minimize the possibility of a brittle failure. The attachment of light frame stud walls typically involves multiple anchors that allow for load redistribution. This justifies the use of a less conservative factor for this case.

D.4 — General requirements for strength of anchors

D.4.1 — Strength design of anchors shall be based either on computation using design models that satisfy the requirements of D.4.2, or on test evaluation using the 5 percent fractile of test results for the following:

(a) Steel strength of anchor in tension (D.5.1);
(b) Steel strength of anchor in shear (D.6.1);
(c) Concrete breakout strength of anchor in tension (D.5.2);
(d) Concrete breakout strength of anchor in shear (D.6.2);
(e) Pullout strength of anchor in tension (D.5.3);
(f) Concrete side-face blowout strength of anchor in tension (D.5.4); and
(g) Concrete pryout strength of anchor in shear (D.6.3).

RD.3.5 — A limited number of tests of cast-in-place and post-installed anchors in high-strength concrete indicated that the design procedures contained in this appendix become unconservative, particularly for cast-in anchors in concrete with compressive strengths in the range of 11,000 to 12,000 psi. Until further tests are available, an upper limit on f'_c of 10,000 psi has been imposed in the design of cast-in-place anchors. This is consistent with Chapters 11 and 12. The companion ACI 355.2 does not require testing of post-installed anchors in concrete with f'_c greater than 8000 psi because some post-installed anchors may have difficulty expanding in very high-strength concretes. Because of this, f'_c is limited to 8000 psi in the design of post-installed anchors unless testing is performed.

RD.4 — General requirements for strength of anchors

RD.4.1 — This section provides requirements for establishing the strength of anchors to concrete. The various types of steel and concrete failure modes for anchors are shown in Fig. RD.4.1(a) and RD.4.1(b). Comprehensive discussions of anchor failure modes are included in References D.8 to D.10. Any model that complies with the requirements of D.4.2 and D.4.3 can be used to establish the concrete-related strengths. For anchors such as headed bolts, headed studs, and post-installed anchors, the concrete breakout design methods of D.5.2 and D.6.2 are acceptable. The anchor strength is also dependent on the pullout strength of D.5.3, the side-face blowout strength of D.5.4, and the minimum spacings and edge distances of D.8. The design of anchors for tension recognizes that the strength of anchors is sensitive to appropriate installation; installation requirements are included in D.9. Some post-installed anchors are less sensitive to installation errors and tolerances. This is reflected in varied ϕ-factors based on the assessment criteria of ACI 355.2.

Test procedures can also be used to determine the single-anchor breakout strength in tension and in shear. The test
In addition, anchors shall satisfy the required edge distances, spacings, and thicknesses to preclude splitting failure, as required in D.8.

D.4.1.1 — For the design of anchors, except as required in D.3.3,

\[\phi N_n \geq N_{ua} \] \hspace{1cm} (D-1)

\[\phi V_n \geq V_{ua} \] \hspace{1cm} (D-2)

D.4.1.2 — In Eq. (D-1) and (D-2), \(\phi N_n \) and \(\phi V_n \) are the lowest design strengths determined from all appropriate failure modes. \(\phi N_n \) is the lowest design strength in tension of an anchor or group of anchors as determined from consideration of \(\phi N_{sa}, \phi N_{pn} \) or \(\phi N_{sb}, \phi N_{sb}, \phi N_{sbg} \) and either \(\phi N_{cb}, \phi N_{cb}, \phi N_{cpg} \). \(\phi V_n \) is the lowest design strength in shear of an anchor or a group of anchors as determined from consideration of: \(\phi V_{sa}, \phi V_{sa}, \phi V_{cb}, \phi V_{cb}, \phi V_{cbg}, \phi V_{cbg} \) and either \(\phi V_{cp}, \phi V_{cp}, \phi V_{cpg} \).

Results, however, are required to be evaluated on a basis statistically equivalent to that used to select the values for the concrete breakout method “considered to satisfy” provisions of D.4.2. The basic strength cannot be taken greater than the 5 percent fractile. The number of tests has to be sufficient for statistical validity and should be considered in the determination of the 5 percent fractile.
CODE

D.4.1.3 — When both N_{ua} and V_{ua} are present, interaction effects shall be considered in accordance with D.4.3.

D.4.2 — The nominal strength for any anchor or group of anchors shall be based on design models that result in predictions of strength in substantial agreement with results of comprehensive tests. The materials used in the tests shall be compatible with the materials used in the structure. The nominal strength shall be based on the 5 percent fractile of the basic individual anchor strength. For nominal strengths related to concrete strength, modifications for size effects, the number of anchors, the effects of close spacing of anchors, proximity to edges, depth of the concrete member, eccentric loadings of anchor groups, and presence or absence of cracking shall be taken into account. Limits on edge distances and anchor spacing in the design models shall be consistent with the tests that verified the model.

D.4.2.1 — The effect of reinforcement provided to restrain the concrete breakout shall be permitted to be included in the design models used to satisfy D.4.2. Where anchor reinforcement is provided in accordance with D.5.2.9 and D.6.2.9, calculation of the concrete breakout strength in accordance with D.5.2 and D.6.2 is not required.

D.4.2.2 — For anchors with diameters not exceeding 2 in., and tensile embedments not exceeding 25 in. in depth, the concrete breakout strength requirements shall be considered satisfied by the design procedure of D.5.2 and D.6.2.

COMMENTARY

RD.4.2 and RD.4.3 — D.4.2 and D.4.3 establish the performance factors for which anchor design models are required to be verified. Many possible design approaches exist and the user is always permitted to “design by test” using D.4.2 as long as sufficient data are available to verify the model.

RD.4.2.1 — The addition of reinforcement in the direction of the load to restrain concrete breakout can greatly enhance the strength and deformation capacity of the anchor connection. Such enhancement is practical with cast-in anchors such as those used in precast sections.

References D.8, D.11, D.12, D.13, and D.14 provide information regarding the effect of reinforcement on the behavior of anchors. The effect of reinforcement is not included in the ACI 355.2 anchor acceptance tests or in the concrete breakout calculation method of D.5.2 and D.6.2. The beneficial effect of supplementary reinforcement is recognized by the Condition A ϕ-factors in D.4.4 and D.4.5. Anchor reinforcement may be provided instead of calculating breakout strength using the provisions of Chapter 12 in conjunction with D.5.2.9 and D.6.2.9.

The breakout strength of an unreinforced connection can be taken as an indication of the load at which significant cracking will occur. Such cracking can represent a serviceability problem if not controlled. (See RD.6.2.1.)

RD.4.2.2 — The method for concrete breakout design included as “considered to satisfy” D.4.2 was developed from the Concrete Capacity Design (CCD) Method, which was an adaptation of the Method κ and is considered to be accurate, relatively easy to apply, and capable of extension to irregular layouts. The CCD Method predicts the strength of an anchor or group of anchors by using a basic equation for tension, or for shear for a single anchor in cracked concrete, and multiplied by factors that account for the number of anchors, edge distance, spacing, eccentricity, and absence of cracking. The limitations on anchor size and embedment length are based on the current range of test data.

The breakout strength calculations are based on a model suggested in the κ Method. It is consistent with a breakout prism angle of approximately 35 degrees [Fig. RD.4.2.2(a) and (b)].
CODE

D.4.3 — Resistance to combined tensile and shear loads shall be considered in design using an interaction expression that results in computation of strength in substantial agreement with results of comprehensive tests. This requirement shall be considered satisfied by D.7.

D.4.4 — Strength reduction factor ϕ for anchors in concrete shall be as follows when the load combinations of 9.2 are used:

a) Anchor governed by strength of a ductile steel element
 i) Tension loads 0.75
 ii) Shear loads 0.65

b) Anchor governed by strength of a brittle steel element
 i) Tension loads 0.65
 ii) Shear loads 0.60

COMMENTARY

RD.4.4 — The ϕ-factors for steel strength are based on using f_{uta} to determine the nominal strength of the anchor (see D.5.1 and D.6.1) rather than f_{ya} as used in the design of reinforced concrete members. Although the ϕ-factors for use with f_{uta} appear low, they result in a level of safety consistent with the use of higher ϕ-factors applied to f_{ya}. The smaller ϕ-factors for shear than for tension do not reflect basic material differences but rather account for the possibility of a non-uniform distribution of shear in connections with multiple anchors. It is acceptable to have a ductile failure of a steel element in the attachment if the attachment is designed so that it will undergo ductile yielding at a load level corresponding to anchor forces no greater than the minimum design strength of the anchors specified in D.3.3. (See D.3.3.5.)
c) Anchor governed by concrete breakout, side-face blowout, pullout, or pryout strength

<table>
<thead>
<tr>
<th>Condition A</th>
<th>Condition B</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Shear loads</td>
<td>0.75</td>
</tr>
<tr>
<td>ii) Tension loads</td>
<td>Cast-in headed studs, headed bolts, or hooked bolts</td>
</tr>
<tr>
<td>Post-installed anchors</td>
<td>with category as determined from ACI 355.2</td>
</tr>
</tbody>
</table>

Category 1
(Low sensitivity to installation and high reliability)

0.75 | 0.65

Category 2
(Medium sensitivity to installation and medium reliability)

0.65 | 0.55

Category 3
(High sensitivity to installation and lower reliability)

0.55 | 0.45

Condition A applies where supplementary reinforcement is present except for pullout and pryout strengths.

Condition B applies where supplementary reinforcement is not present, and for pullout or pryout strength.

D.4.5 — Strength reduction factor \(\phi \) for anchors in concrete shall be as follows when the load combinations referenced in Appendix C are used:

a) Anchor governed by strength of a ductile steel element

i) Tension loads 0.80

ii) Shear loads 0.75

b) Anchor governed by strength of a brittle steel element

i) Tension loads 0.70

ii) Shear loads 0.65

COMMENTARY

For anchors governed by the more brittle concrete breakout or blowout failure, two conditions are recognized. If supplementary reinforcement is present (Condition A), greater deformation capacity is provided than in the case where such supplementary reinforcement is not present (Condition B). An explicit design of supplementary reinforcement is not required. However, the arrangement of supplementary reinforcement should generally conform to that of the anchor reinforcement shown in Fig. RD.5.2.9 and RD.6.2.9(b). Full development is not required.

The strength reduction factors for anchor reinforcement are given in D.5.2.9 and D.6.2.9. Further discussion of strength reduction factors is presented in RD.4.5.

The ACI 355.2 tests for sensitivity to installation procedures determine the category appropriate for a particular anchoring device. In the ACI 355.2 tests, the effects of variability in anchor torque during installation, tolerance on drilled hole size, energy level used in setting anchors, and for anchors approved for use in cracked concrete, increased crack widths are considered. The three categories of acceptable post-installed anchors are:

Category 1 — low sensitivity to installation and high reliability;

Category 2 — medium sensitivity to installation and medium reliability; and

Category 3 — high sensitivity to installation and lower reliability.

The capacities of anchors under shear loads are not as sensitive to installation errors and tolerances. Therefore, for shear calculations of all anchors, \(\phi = 0.75 \) for Condition A and \(\phi = 0.70 \) for Condition B.

RD.4.5 — As noted in R9.1, the 2002 Code incorporated the load factors of SEI/ASCE 7-02 and the corresponding strength reduction factors provided in the 1999 Appendix C into 9.2 and 9.3, except that the factor for flexure has been increased. Developmental studies for the \(\phi \)-factors to be used for Appendix D were based on the 1999 9.2 and 9.3 load and strength reduction factors. The resulting \(\phi \)-factors are presented in D.4.5 for use with the load factors of Appendix C, starting with the 2002 Code. The \(\phi \)-factors for use with the load factors of the 1999 Appendix C were determined in a manner consistent with the other \(\phi \)-factors of the 1999 Appendix C. These \(\phi \)-factors are presented in D.4.4 for use with the load factors of 9.2, starting with the 2002 Code. Since developmental studies for \(\phi \)-factors to be used with Appendix D, for brittle concrete failure modes, were performed for the load and strength reduction factors now given in Appendix C, the discussion of the selection of these \(\phi \)-factors appears in this section.
CODE

c) Anchor governed by concrete breakout, side-face blowout, pullout, or pryout strength

<table>
<thead>
<tr>
<th>Condition A</th>
<th>Condition B</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Shear loads</td>
<td>0.85</td>
</tr>
<tr>
<td>ii) Tension loads</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Cast-in headed studs, headed bolts, or hooked bolts

Post-installed anchors with category as determined from ACI 355.2

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>0.75</td>
<td>0.65</td>
</tr>
</tbody>
</table>

(Low sensitivity to installation and high reliability)

(Medium sensitivity to installation and medium reliability)

(High sensitivity to installation and lower reliability)

Condition A applies where supplementary reinforcement is present except for pullout and pryout strengths.

Condition B applies where supplementary reinforcement is not present, and for pullout and pryout strengths.

D.5 — Design requirements for tensile loading

D.5.1 — Steel strength of anchor in tension

D.5.1.1 — The nominal strength of an anchor in tension as governed by the steel, N_{sa}, shall be evaluated by calculations based on the properties of the anchor material and the physical dimensions of the anchor.

D.5.1.2 — The nominal strength of a single anchor or group of anchors in tension, N_{sa}, shall not exceed

$$N_{sa} = nA_{se,N}f_{uta}$$ (D-3)

where n is the number of anchors in the group, $A_{se,N}$ is the effective cross-sectional area of a single anchor in tension, $in.^2$, and f_{uta} shall not be taken greater than the smaller of $1.9f_{ya}$ and 125,000 psi.

COMMENTARY

Even though the ϕ-factor for structural plain concrete in Appendix C is 0.65, the basic factor for brittle concrete failures ($\phi = 0.75$) was chosen based on results of probabilistic studies\(^{D.17}\) that indicated the use of $\phi = 0.65$ with mean values of concrete-controlled failures produced adequate safety levels. Because the nominal resistance expressions used in this appendix and in the test requirements are based on the 5 percent fractiles, the $\phi = 0.65$ value would be overly conservative. Comparison with other design procedures and probabilistic studies\(^{D.17}\) indicated that the choice of $\phi = 0.75$ was justified. Applications with supplementary reinforcement (Condition A) provide more deformation capacity, permitting the ϕ-factors to be increased. The value of $\phi = 0.85$ is compatible with the level of safety for shear failures in concrete beams, and has been recommended in the PCI Design Handbook\(^{D.18}\) and by ACI 349.\(^{D.13}\)

RD.5 — Design requirements for tensile loading

RD.5.1 — Steel strength of anchor in tension

RD.5.1.2 — The nominal strength of anchors in tension is best represented as a function of f_{uta}, rather than f_{ya}, because the large majority of anchor materials do not exhibit a well-defined yield point. The American Institute of Steel Construction (AISC) has based tension strength of anchors on $A_{se,N}f_{uta}$ since the 1986 edition of their specifications. The use of Eq. (D-3) with 9.2 load factors and the ϕ-factors of D.4.4 give design strengths consistent with the AISC Load and Resistance Factor Design Specifications.\(^{D.19}\)
D.5.2 — Concrete breakout strength of anchor in tension

D.5.2.1 — The nominal concrete breakout strength, \(N_{cb} \) or \(N_{cbg} \), of a single anchor or group of anchors in tension shall not exceed

\[
N_{cb} = \frac{A_{Nc}}{A_{Nco}} \psi_{ec,N} N_{c} \psi_{c,N} N_{cp} N_{b} \quad \text{(D-4)}
\]

(b) For a group of anchors

\[
N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \psi_{ec,N} N_{c} \psi_{ed,N} N_{c} \psi_{c,N} N_{cp} N_{b} \quad \text{(D-5)}
\]

Factors \(\psi_{ec,N} \), \(\psi_{ed,N} \), \(\psi_{c,N} \), and \(\psi_{cp,N} \) are defined in D.5.2.4, D.5.2.5, D.5.2.6, and D.5.2.7, respectively.

\(A_{Nc} \) is the projected concrete failure area of a single anchor or group of anchors that shall be approximated as the base of the rectilinear geometrical figure that results from projecting the failure surface outward \(1.5h_{ef} \) from the centerlines of the anchor, or in the case of a group of anchors, from a line through a row of adjacent anchors. \(A_{Nc} \) shall not exceed \(nA_{Nco} \), where \(n \) is the number of tensioned anchors in the group. \(A_{Nco} \) is the projected concrete failure area of a

COMMENTARY

The limitation of \(1.9f_{ya} \) on \(f_{uta} \) is to ensure that, under service load conditions, the anchor does not exceed \(f_{ya} \). The limit on \(f_{uta} \) of \(1.9f_{ya} \) was determined by converting the LRFD provisions to corresponding service level conditions. For Section 9.2, the average load factor of 1.4 (from \(1.2D + 1.7L \)) divided by the highest \(\phi \)-factor (0.75 for tension) results in a limit of \(f_{uta} \) of 1.40/0.75 = 1.87. For Appendix C, the average load factor of 1.55 (from \(1.4D + 1.7L \)), divided by the highest \(\phi \)-factor (0.80 for tension), results in a limit of \(f_{uta} \) of 1.55/0.8 = 1.94. For consistent results, the serviceability limitation of \(f_{uta} \) was taken as \(1.9f_{ya} \). If the ratio of \(f_{uta} \) to \(f_{ya} \) exceeds this value, the anchoring may be subjected to service loads above \(f_{ya} \) under service loads. Although not a concern for standard structural steel anchors (maximum value of \(f_{uta} \) is 1.6 for ASTM A307), the limitation is applicable to some stainless steels.

The effective cross-sectional area of an anchor should be provided by the manufacturer of expansion anchors with reduced cross-sectional area for the expansion mechanism. For threaded bolts, ANSI/ASME B1.1D.1 defines \(A_{se,N} \) as

\[
A_{se,N} = \frac{\pi}{4} \left(d_a - \frac{0.9743}{n_t} \right)^2
\]

where \(n_t \) is the number of threads per in.

RD.5.2 — Concrete breakout strength of anchor in tension

RD.5.2.1 — The effects of multiple anchors, spacing of anchors, and edge distance on the nominal concrete breakout strength in tension are included by applying the modification factors \(A_{Nc}/A_{Nco} \) and \(\psi_{ed,N} \) in Eq. (D-4) and (D-5).

Figure RD.5.2.1(a) shows \(A_{Nco} \) and the development of Eq. (D-6). \(A_{Nco} \) is the maximum projected area for a single anchor. Figure RD.5.2.1(b) shows examples of the projected areas for various single-anchor and multiple-anchor arrangements. Because \(A_{Nc} \) is the total projected area for a group of anchors, and \(A_{Nco} \) is the area for a single anchor, there is no need to include \(n \), the number of anchors, in Eq. (D-4) or (D-5). If anchor groups are positioned in such a way that their projected areas overlap, the value of \(A_{Nc} \) is required to be reduced accordingly.
RD.5.2.2 — The basic equation for anchor strength was derived assuming a concrete failure prism with an angle of about 35 degrees, considering fracture mechanics concepts.

The values of k_c in Eq. (D-7) were determined from a large database of test results in uncracked concrete assuming a concrete failure prism with an angle of about 35 degrees, considering fracture mechanics concepts. Higher k_c values for post-installed anchors may be permitted, provided they have

\[
N_b = k_c \lambda f_c' h_{ef}^{1.5} \tag{D-7}
\]

where $k_c = 24$ for cast-in anchors; and $k_c = 17$ for post-installed anchors.

Fig. RD.5.2.1 — (a) Calculation of $A_{N_{co}}$ and (b) calculation of $A_{N_{c}}$ for single anchors and groups of anchors.
The value of k_c for post-installed anchors shall be permitted to be increased above 17 based on ACI 355.2 product-specific tests, but shall in no case exceed 24.

Alternatively, for cast-in headed studs and headed bolts with $11 \text{ in.} \leq h_{ef} \leq 25 \text{ in.}$, N_b shall not exceed

$$N_b = 16 \lambda \sqrt{f'_c} h_{ef}^{5/3} \quad (D-8)$$

D.5.2.3 — Where anchors are located less than $1.5h_{ef}$ from three or more edges, the value of h_{ef} used in Eq. (D-4) through (D-11) shall be the greater of $c_{a,max}/1.5$ and one-third of the maximum spacing between anchors within the group.

RD.5.2.3 — For anchors located less than $1.5h_{ef}$ from three or more edges, the tensile breakout strength computed by the CCD Method, which is the basis for Eq. (D-4) to (D-11), gives overly conservative results. This occurs because the ordinary definitions of A_{Nc}/A_{Nit} do not correctly reflect the edge effects. This problem is corrected by limiting the value of h_{ef} used in Eq. (D-4) through (D-11) to $c_{a,max}/1.5$, where $c_{a,max}$ is the largest of the influencing edge distances that are less than or equal to the actual $1.5h_{ef}$. In no case should $c_{a,max}/1.5$ be taken less than one-third of the maximum spacing between anchors within the group. The limit on h_{ef} of at least one-third of the maximum spacing between anchors within the group prevents the use of a calculated strength based on individual breakout prisms for a group anchor configuration.

This approach is illustrated in Fig. RD.5.2.3. In this example, the proposed limit on the value of h_{ef} to be used in the computations where $h_{ef} = c_{a,max}/1.5$, results in $h_{ef} =$
D.5.2.4 — The modification factor for anchor groups loaded eccentrically in tension, $\psi_{ec,N}$, shall be computed as

$$\psi_{ec,N} = \frac{1}{1 + \frac{2e'_N}{3h_{ef}}} \quad (D-9)$$

but $\psi_{ec,N}$ shall not be taken greater than 1.0.

If the loading on an anchor group is such that only some anchors are in tension, only those anchors that are in tension shall be considered when determining the eccentricity e'_N for use in Eq. (D-9) and for the calculation of N_{cbg} in Eq. (D-5).

In the case where eccentric loading exists about two axes, the modification factor, $\psi_{ec,N}$, shall be computed for each axis individually and the product of these factors used as $\psi_{ec,N}$ in Eq. (D-5).

D.5.2.5 — The modification factor for edge effects for single anchors or anchor groups loaded in tension, $\psi_{ed,N}$, shall be computed as

$$\begin{align*}
\text{If } c_{a,min} &\geq 1.5h_{ef} \\
\text{then } \psi_{ed,N} &= 1.0 \\
\text{If } c_{a,min} &< 1.5h_{ef} \\
\text{then } \psi_{ed,N} &= 0.7 + 0.3 \frac{c_{a,min}}{1.5h_{ef}}
\end{align*} \quad (D-10)$$

D.5.2.6 — For anchors located in a region of a concrete member where analysis indicates no cracking at service load levels, the following modification factor shall be permitted:

$$\begin{align*}
D.5.2.4 — Figure RD.5.2.4(a) shows a group of anchors that are all in tension but the resultant force is eccentric with respect to the centroid of the anchor group. Groups of anchors can also be loaded in such a way that only some of the anchors are in tension (Fig. RD.5.2.4(b)). In this case, only the anchors in tension are to be considered in the determination of e'_N. The anchor loading has to be determined as the resultant anchor tension at an eccentricity with respect to the center of gravity of the anchors in tension.

RD.5.2.5 — If anchors are located close to an edge so that there is not enough space for a complete breakout prism to develop, the strength of the anchor is further reduced beyond that reflected in A_{Ne}/A_{Nco}. If the smallest side cover distance is greater than or equal to $1.5h_{ef}$, a complete prism can form and there is no reduction ($\psi_{ed,N} = 1$). If the side cover is less than $1.5h_{ef}$, the factor $\psi_{ed,N}$ is required to adjust for the edge effect.

RD.5.2.6 — Post-installed and cast-in anchors that have not met the requirements for use in cracked concrete according to ACI 355.2 should be used in uncracked regions only. The analysis for the determination of crack formation...
CODE

ψ_{c,N} = 1.25 for cast-in anchors; and

ψ_{c,N} = 1.4 for post-installed anchors, where the value of \(k_c \) used in Eq. (D-7) is 17.

Where the value of \(k_c \) used in Eq. (D-7) is taken from the ACI 355.2 product evaluation report for post-installed anchors qualified for use in both cracked and uncracked concrete, the values of \(k_c \) and \(\psi_{c,N} \) shall be based on the ACI 355.2 product evaluation report.

Where the value of \(k_c \) used in Eq. (D-7) is taken from the ACI 355.2 product evaluation report for post-installed anchors qualified for use in uncracked concrete, \(\psi_{c,N} \) shall be taken as 1.0.

When analysis indicates cracking at service load levels, \(\psi_{c,N} \) shall be taken as 1.0 for both cast-in anchors and post-installed anchors. Post-installed anchors shall be qualified for use in cracked concrete in accordance with ACI 355.2. The cracking in the concrete shall be controlled by flexural reinforcement distributed in accordance with 10.6.4, or equivalent crack control shall be provided by confining reinforcement.

COMMENTARY

The anchor qualification tests of ACI 355.2 require that anchors in cracked concrete zones perform well in a crack that is 0.012 in. wide. If wider cracks are expected, confining reinforcement to control the crack width to about 0.012 in. should be provided.

The concrete breakout strengths given by Eq. (D-7) and (D-8) assume cracked concrete (that is, \(\psi_{c,N} = 1.0 \)) with \(\psi_{c,N}k_c = 24 \) for cast-in-place, and 17 for post-installed (cast-in 40 percent higher). When the uncracked concrete \(\psi_{c,N} \) factors are applied (1.25 for cast-in, and 1.4 for post-installed), the results are \(\psi_{c,N}k_c \) factors of 30 for cast-in and 24 for post-
installed (25 percent higher for cast-in). This agrees with field observations and tests that show cast-in anchor strength exceeds that of post-installed for both cracked and uncracked concrete.

RD.5.2.7 — The design provisions in D.5 are based on the assumption that the basic concrete breakout strength can be achieved if the minimum edge distance, \(c_{a,min} \), equals \(1.5 \) \(h_{ef} \). However, test results\(^D.22\) indicate that many torque-controlled and displacement-controlled expansion anchors and some undercut anchors require minimum edge distances exceeding \(1.5h_{ef} \) to achieve the basic concrete breakout strength when tested in uncracked concrete without supplementary reinforcement to control splitting. When a tension load is applied, the resulting tensile stresses at the embedded end of the anchor are added to the tensile stresses induced due to anchor installation, and splitting failure may occur before reaching the concrete breakout strength defined in D.5.2.1. To account for this potential splitting mode of failure, the basic concrete breakout strength is reduced by a factor \(\psi_{cp,N} \) if \(c_{a,min} \) is less than the critical edge distance \(c_{ac} \). If supplementary reinforcement to control splitting is present or if the anchors are located in a region where analysis indicates cracking of the concrete at service loads, then the reduction factor \(\psi_{cp,N} \) is taken as 1.0.

The presence of supplementary reinforcement to control splitting does not affect the selection of Condition A or B in D.4.4 or D.4.5.

D.5.2.7 — The modification factor for post-installed anchors designed for uncracked concrete in accordance with D.5.2.6 without supplementary reinforcement to control splitting, \(\psi_{cp,N} \), shall be computed as follows using the critical distance \(c_{ac} \) as defined in D.8.6.

\[
\begin{align*}
\text{If } c_{a,min} &\geq c_{ac} \\
&
\text{then } \psi_{cp,N} = 1.0 \quad \text{(D-12)} \\
\text{If } c_{a,min} &< c_{ac} \\
&
\text{then } \psi_{cp,N} = \frac{c_{a,min}}{c_{ac}} \quad \text{(D-13)} \\
\text{but } \psi_{cp,N} \text{ determined from Eq. (D-13) shall not be taken less than } \frac{1.5h_{ef}}{c_{ac}}, \text{ where the critical distance } c_{ac} \text{ is defined in D.8.6.}
\end{align*}
\]

For all other cases, including cast-in anchors, \(\psi_{cp,N} \) shall be taken as 1.0.

D.5.2.9 — Where an additional plate or washer is added at the head of the anchor, it shall be permitted to calculate the projected area of the failure surface by projecting the failure surface outward \(1.5h_{ef} \) from the effective perimeter of the plate or washer. The effective perimeter shall not exceed the value at a section projected outward more than the thickness of the washer or plate from the outer edge of the head of the anchor.

RD.5.2.9 — For conditions where the factored tensile force exceeds the concrete breakout strength of the anchor(s) or where the breakout strength is not evaluated, the nominal strength can be that of anchor reinforcement properly anchored as illustrated in Fig. RD.5.2.9. Care needs to be taken in the selection and positioning of the anchor reinforcement. The anchor reinforcement should consist of stirrups, ties, or hairpins placed as close as practicable to the anchor. Only reinforcement spaced less than \(0.5h_{ef} \) from the anchor centerline should be included as anchor reinforcement. The research\(^D.14\) on which these provisions is based was limited to anchor reinforcement with maximum diameter similar to a No. 5 bar. It is beneficial for the anchor reinforcement to enclose the surface reinforcement. In sizing the anchor reinforcement, use of a 0.75 strength reduction factor \(\phi \) is recommended as is used for
D.5.3 — Pullout strength of anchor in tension

D.5.3.1 — The nominal pullout strength of a single anchor in tension, N_{pn}, shall not exceed

$$N_{pn} = \psi_{c,P}N_p$$ \hspace{1cm} (D-14)

where $\psi_{c,P}$ is defined in D.5.3.6.

D.5.3.2 — For post-installed expansion and undercut anchors, the values of N_p shall be based on the 5 percent fractile of results of tests performed and evaluated according to ACI 355.2. It is not permissible strut-and-tie models. If the alternate load factors of Appendix C are used, the corresponding strength reduction factor of 0.85 for strut-and-tie models should be used. As a practical matter, use of anchor reinforcement is generally limited to cast-in-place anchors.

RD.5.3 — Pullout strength of anchor in tension

RD.5.3.2 — The pullout strength equations given in D.5.3.4 and D.5.3.5 are only applicable to cast-in headed and hooked anchors. They are not applicable to expansion and undercut anchors that use various mechanisms.
to calculate the pullout strength in tension for such anchors.

D.5.3.3 — For single cast-in headed studs and headed bolts, it shall be permitted to evaluate the pullout strength in tension using D.5.3.4. For single J- or L-bolts, it shall be permitted to evaluate the pullout strength in tension using D.5.3.5. Alternatively, it shall be permitted to use values of N_p based on the 5 percent fractile of tests performed and evaluated in the same manner as the ACI 355.2 procedures but without the benefit of friction.

D.5.3.4 — The pullout strength in tension of a single headed stud or headed bolt, N_p, for use in Eq. (D-14), shall not exceed

$$N_p = 8A_{brg}f'_c$$ \hspace{1cm} (D-15)

D.5.3.5 — The pullout strength in tension of a single hooked bolt, N_p, for use in Eq. (D-14) shall not exceed

$$N_p = 0.9f'_c e_h d_a$$ \hspace{1cm} (D-16)

where $3d_a \leq e_h \leq 4.5d_a$.

D.5.3.6 — For an anchor located in a region of a concrete member where analysis indicates no cracking at service load levels, the following modification factor shall be permitted

$$\psi_{c,P} = 1.4$$

Where analysis indicates cracking at service load levels, $\psi_{c,P}$ shall be taken as 1.0.

D.5.4 — Concrete side-face blowout strength of a headed anchor in tension

D.5.4.1 — For a single headed anchor with deep embedment close to an edge ($h_{ef} > 2.5c_1$), the nominal side-face blowout strength, N_{sb}, shall not exceed

$$N_{sb} = (160c_{a1} \sqrt{A_{brg}})^\lambda \sqrt{f'_c}$$ \hspace{1cm} (D-17)

If c_{a2} for the single headed anchor is less than $3c_{a1}$, the value of N_{sb} shall be multiplied by the factor $(1 + c_{a2}/c_{a1})/4$ where $1.0 \leq c_{a2}/c_{a1} \leq 3.0$. for end anchorage unless the validity of the pullout strength equations are verified by tests.

RD.5.3.3 — The pullout strength in tension of headed studs or headed bolts can be increased by providing confining reinforcement, such as closely spaced spirals, throughout the head region. This increase can be demonstrated by tests.

RD.5.3.4 — The value computed from Eq. (D-15) corresponds to the load at which crushing of the concrete occurs due to bearing of the anchor head. It is not the load required to pull the anchor completely out of the concrete, so the equation contains no term relating to embedment depth. Local crushing of the concrete greatly reduces the stiffness of the connection, and generally will be the beginning of a pullout failure.

RD.5.3.5 — Equation (D-16) for hooked bolts was developed by Lutz based on the results of Reference D.23. Reliance is placed on the bearing component only, neglecting any frictional component because crushing inside the hook will greatly reduce the stiffness of the connection, and generally will be the beginning of pullout failure. The limits on e_h are based on the range of variables used in the three tests programs reported in Reference D.23.

RD.5.4 — Concrete side-face blowout strength of a headed anchor in tension

The design requirements for side-face blowout are based on the recommendations of Reference D.24. These requirements are applicable to headed anchors that usually are cast-in anchors. Splitting during installation rather than side-face blowout generally governs post-installed anchors, and is evaluated by the ACI 355.2 requirements.

CODE

D.5.4.2 — For multiple headed anchors with deep embedment close to an edge \(h_{ef} > 2.5c_{a1} \) and anchor spacing less than \(6c_{a1} \), the nominal strength of those anchors susceptible to a side-face blowout failure \(N_{\text{sbg}} \) shall not exceed

\[
N_{\text{sbg}} = \left(1 + \frac{s}{6c_{a1}} \right) N_s \tag{D-18}
\]

where \(s \) is the distance between the outer anchors along the edge, and \(N_s \) is obtained from Eq. (D-17) without modification for a perpendicular edge distance.

D.6 — Design requirements for shear loading

D.6.1 — Steel strength of anchor in shear

D.6.1.1 — The nominal strength of an anchor in shear as governed by steel, \(V_{sa} \), shall be evaluated by calculations based on the properties of the anchor material and the physical dimensions of the anchor.

D.6.1.2 — The nominal strength of a single anchor or group of anchors in shear, \(V_{sa} \), shall not exceed (a) through (c):

(a) For cast-in headed stud anchor

\[
V_{sa} = nA_{se,V}f_{uta} \tag{D-19}
\]

where \(n \) is the number of anchors in the group, \(A_{se,V} \) is the effective cross-sectional area of a single anchor in shear, in.\(^2\), and \(f_{uta} \) shall not be taken greater than the smaller of \(1.9f_{ya} \) and 125,000 psi.

(b) For cast-in headed bolt and hooked bolt anchors and for post-installed anchors where sleeves do not extend through the shear plane

\[
V_{sa} = n0.6A_{se,V}f_{uta} \tag{D-20}
\]

where \(n \) is the number of anchors in the group, \(A_{se,V} \) is the effective cross-sectional area of a single anchor in shear, in.\(^2\), and \(f_{uta} \) shall not be taken greater than the smaller of \(1.9f_{ya} \) and 125,000 psi.

(c) For post-installed anchors where sleeves extend through the shear plane, \(V_{sa} \) shall be based on the results of tests performed and evaluated according to ACI 355.2. Alternatively, Eq. (D-20) shall be permitted to be used.

D.6.1.3 — Where anchors are used with built-up grout pads, the nominal strengths of D.6.1.2 shall be multiplied by a 0.80 factor.

COMMENTARY

RD.5.4.2 — In determining nominal side-face blowout strength for multiple headed anchors, only those anchors close to an edge \(h_{ef} > 2.5c_{a1} \) that are loaded in tension should be considered. Their strength should be compared to the proportion of the tensile load applied to those anchors.

RD.6 — Design requirements for shear loading

RD.6.1 — Steel strength of anchor in shear

RD.6.1.2 — The nominal shear strength of anchors is best represented as a function of \(f_{uta} \) rather than \(f_{ya} \) because the large majority of anchor materials do not exhibit a well-defined yield point. Welded studs develop a higher steel shear strength than headed anchors due to the fixity provided by the weld between the studs and the base plate. The use of Eq. (D-19) and (D-20) with 9.2 load factors and the \(\phi \)-factors of D.4.4 give design strengths consistent with the AISC Load and Resistance Factor Design Specifications. D.19

The limitation of \(1.9f_{ya} \) on \(f_{uta} \) is to ensure that, under service load conditions, the anchor stress does not exceed \(f_{ya} \). The limit on \(f_{uta} \) of \(1.9f_{ya} \) was determined by converting the LRFD provisions to corresponding service level conditions as discussed in RD.5.1.2.

The effective cross-sectional area of an anchor should be provided by the manufacturer of expansion anchors with reduced cross-sectional area for the expansion mechanism. For threaded bolts, ANSI/ASME B1.1D.1 defines \(A_{se,V} \) as

\[
A_{se,V} = \frac{\pi}{4} \left(d_a - \frac{0.9743}{n_t} \right)^2
\]

where \(n_t \) is the number of threads per in.
CODE

D.6.2 — Concrete breakout strength of anchor in shear

D.6.2.1 — The nominal concrete breakout strength, V_{cb} or V_{cbg}, in shear of a single anchor or group of anchors shall not exceed:

(a) For shear force perpendicular to the edge on a single anchor

$$V_{cb} = \frac{A_{Vc}}{A_{Vco}} \psi_{ed}, \psi_c, \psi_{h}, V_b$$ \hspace{1cm} (D-21)

(b) For shear force perpendicular to the edge on a group of anchors

$$V_{cbg} = \frac{A_{Vc}}{A_{Vco}} \psi_{ec}, \psi_{ed}, \psi_c, \psi_{h}, V_b$$ \hspace{1cm} (D-22)

(c) For shear force parallel to an edge, V_{cb} or V_{cbg} shall be permitted to be twice the value of the shear force determined from Eq. (D-21) or (D-22), respectively, with the shear force assumed to act perpendicular to the edge and with $\psi_{ed, V}$ taken equal to 1.0.

(d) For anchors located at a corner, the limiting nominal concrete breakout strength shall be determined for each edge, and the minimum value shall be used.

Factors $\psi_{ec, V}$, $\psi_{ed, V}$, ψ_c, ψ, and $\psi_{h, V}$ are defined in D.6.2.5, D.6.2.6, D.6.2.7, and D.6.2.8, respectively. V_b is the basic concrete breakout strength value for a single anchor. A_{Vc} is the projected area of the failure surface on the side of the concrete member at its edge for a single anchor or a group of anchors. It shall be permitted to evaluate A_{Vc} as the base of a truncated half pyramid projected on the side face of the member where the top of the half pyramid is given by the axis of the anchor row selected as critical. The value of c_{a1} shall be taken as the distance from the edge to this axis. A_{Vc} shall not exceed nA_{Vco}, where n is the number of anchors in the group.

A_{Vco} is the projected area for a single anchor in a deep member with a distance from edges equal or greater than 1.5c_{a1} in the direction perpendicular to the shear force. It shall be permitted to evaluate A_{Vco} as the base of a half pyramid with a side length parallel to the edge of 3c_{a1} and a depth of 1.5c_{a1}

$$A_{Vco} = 4.5(c_{a1})^2$$ \hspace{1cm} (D-23)

COMMENTARY

RD.6.2 — Concrete breakout strength of anchor in shear

RD.6.2.1 — The shear strength equations were developed from the CCD Method. They assume a breakout cone angle of approximately 35 degrees (see Fig. RD.4.2.2(b)), and consider fracture mechanics theory. The effects of multiple anchors, spacing of anchors, edge distance, and thickness of the concrete member on nominal concrete breakout strength in shear are included by applying the reduction factor of A_{Vc}/A_{Vco} in Eq. (D-21) and (D-22), and $\psi_{ec, V}$ in Eq. (D-22). For anchors far from the edge, D.6.2 usually will not govern. For these cases, D.6.1 and D.6.3 often govern.

Figure RD.6.2.1(a) shows A_{Vco} and the development of Eq. (D-23). A_{Vco} is the maximum projected area for a single anchor that approximates the surface area of the full breakout prism or cone for an anchor unaffected by edge distance, spacing, or depth of member. Figure RD.6.2.1(b) shows examples of the projected areas for various single-anchor and multiple-anchor arrangements. A_{Vc} approximates the full surface area of the breakout cone for the particular arrangement of anchors. Because A_{Vc} is the total projected area for a group of anchors, and A_{Vco} is the area for a single anchor, there is no need to include the number of anchors in the equation.

When using Eq. (D-22) for anchor groups loaded in shear, both assumptions for load distribution illustrated in examples on the right side of Fig. RD.6.2.1(b) should be considered because the anchors nearest the edge could fail first or the whole group could fail as a unit with the failure surface originating from the anchors farthest from the edge. If the anchors are welded to a common plane, when the anchor nearest the front edge begins to form a failure cone, shear load would be transferred to the stiffer and stronger rear anchor. For this reason, anchors welded to a common plate do not need to consider the failure mode shown in the upper right figure of Fig. RD.6.2.1(b). The PCI Design Handbook approach suggests in Section 6.5.2.2 that the strength of the anchors away from the edge be considered. Because this is a reasonable approach, assuming that the anchors are spaced far enough apart so that the shear failure surfaces do not intersect, D.6.2 allows such a procedure. If the failure surfaces do not intersect, as would generally occur if the anchor spacing s is equal to or greater than 1.5c_{a1}, then after formation of the near-edge failure surface, the higher strength of the farther anchor would resist most of the load. As shown in the bottom right example in Fig. RD.6.2.1(b), it would be appropriate to consider the shear strength to be provided entirely by this anchor with its much larger resisting failure surface. No contribution of the anchor near the edge is then considered. Checking the near-edge anchor condition is advisable to preclude undesirable cracking at service load conditions. Further discussion of design for multiple anchors is given in Reference D.8.
Where anchors are located at varying distances from the edge and the anchors are welded to the attachment so as to distribute the force to all anchors, it shall be permitted to evaluate the strength based on the distance to the farthest row of anchors from the edge. In this case, it shall be permitted to base the value of the anchor load on the distance to the farthest row of anchors from the edge.

For the case of anchors near a corner subjected to a shear force with components normal to each edge, a satisfactory solution is to check independently the connection for each component of the shear force. Other specialized cases, such as the shear resistance of anchor groups where all anchors do not have the same edge distance, are treated in Reference D.11.
CODE

\(c_{a1} \) on the distance from the edge to the axis of the farthest anchor row that is selected as critical, and all of the shear shall be assumed to be carried by this critical anchor row alone.

D.6.2.2 — The basic concrete breakout strength in shear of a single anchor in cracked concrete, \(V_b \), shall not exceed

\[
V_b = \left(\frac{\ell_e}{d_a} \right)^{0.2} d_a \lambda \sqrt{f'_c} c_{a1}^{1.5} \tag{D-24}
\]

where \(\ell_e \) is the load-bearing length of the anchor for shear:

- \(\ell_e = h_{ef} \) for anchors with a constant stiffness over the full length of embedded section, such as headed studs and post-installed anchors with one tubular shell over full length of the embedment depth,
- \(\ell_e = 2d_a \) for torque-controlled expansion anchors with a distance sleeve separated from expansion sleeve and
- \(\ell_e \leq 8d_a \) in all cases.

D.6.2.3 — For cast-in headed studs, headed bolts, or hooked bolts that are continuously welded to steel attachments having a minimum thickness equal to the greater of 3/8 in. and half of the anchor diameter, the basic concrete breakout strength in shear of a single anchor in cracked concrete, \(V_b \), shall not exceed

\[
V_b = \left(8 \frac{\ell_e}{d_a} \right)^{0.2} d_a \lambda \sqrt{f'_c} c_{a1}^{1.5} \tag{D-25}
\]

where \(\ell_e \) is defined in D.6.2.2.

provided that:

(a) for groups of anchors, the strength is determined based on the strength of the row of anchors farthest from the edge;
(b) anchor spacing, \(s \), is not less than 2.5 in.; and
(c) reinforcement is provided at the corners if \(c_{a2} \leq 1.5h_{ef} \).

COMMENTARY

The detailed provisions of D.6.2.1(a) apply to the case of shear force directed toward an edge. When the shear force is directed away from the edge, the strength will usually be governed by D.6.1 or D.6.3.

The case of shear force parallel to an edge is shown in Fig. RD.6.2.1(c). A special case can arise with shear force parallel to the edge near a corner. In the example of a single anchor near a corner (see Fig. RD.6.2.1(d)), the provisions for shear force applied perpendicular to the edge should be checked in addition to the provisions for shear force applied parallel to the edge.

RD.6.2.2 — Like the concrete breakout tensile strength, the concrete breakout shear strength does not increase with the failure surface, which is proportional to \((c_{a1})^2 \). Instead, the strength increases proportionally to \((c_{a1})^{1.5} \) due to size effect. The strength is also influenced by the anchor stiffness and the anchor diameter.D.9-D.11,D.16

The constant, 7, in the shear strength equation was determined from test data reported in Reference D.9 at the 5 percent fractile adjusted for cracking.

RD.6.2.3 — For the case of cast-in headed bolts continuously welded to an attachment, test dataD.25 show that somewhat higher shear strength exists, possibly due to the stiff welding connection clamping the bolt more effectively than an attachment with an anchor gap. Because of this, the basic shear value for such anchors is increased. Limits are imposed to ensure sufficient rigidity. The design of supplementary reinforcement is discussed in References D.8, D.11, and D.12.
Where anchors are influenced by three or more edges, the value of c_{a1} used in Eq. (D-23) through (D-29) shall not exceed the greatest of: $c_{a2}/1.5$, $h_a/1.5$ and one-third of the maximum spacing between anchors within the group:

$$c_{a1}' = \max(7/1.5, 8/1.5, 9/3) = 5.33 \text{ in.}$$

Therefore, use $c_{a1}' = 5.33$ in Eq. (D-21) to (D-28) including the calculation of A_{ac}:

$$A_{ac} = (5 + 9 + 7)(1.5 \times 5.33) = 168 \text{ in}^2.$$

Point A shows the intersection of the assumed failure surface for limiting c_{a1} with the concrete surface.

Fig. RD.6.2.4—Shear when anchors are influenced by three or more edges.

D.6.2.4 — Where anchors are influenced by three or more edges, the value of c_{a1} used in Eq. (D-23) through (D-29) shall not exceed the greatest of: $c_{a2}/1.5$ in either direction, $h_a/1.5$; and one-third of the maximum spacing between anchors within the group.

RD.6.2.4 — For anchors influenced by three or more edges where any edge distance is less than $1.5c_{a1}$, the shear breakout strength computed by the basic CCD Method, which is the basis for Eq. (D-21) through (D-29), gives safe but overly conservative results. These cases were studied for the κ Method$^{D.16}$ and the problem was pointed out by Lutz.$^{D.21}$ Similarly, the approach used for tensile breakouts in D.5.2.3, strength is correctly evaluated if the value of c_{a1} used in Eq. (D-21) to (D-29) is limited to the maximum of $c_{a2}/1.5$ in each direction, $h_a/1.5$, and one-third of the maximum spacing between anchors within the group. The limit on c_{a1} of at least one-third of the maximum spacing between anchors within the group prevents the use of a calculated strength based on individual breakout prisms for a group anchor configuration.

This approach is illustrated in Fig. RD.6.2.4. In this example, the limit on the value of c_{a1} is the largest of $c_{a2}/1.5$ in either direction, $h_a/1.5$, and one-third the maximum spacing between anchors for anchor groups results in $c_{a1}' = 5.33$ in. For this example, this would be the proper value to be used for c_{a1} in computing V_{cb} or V_{cbg}, even if the actual edge distance that the shear is directed toward is larger. The requirement of D.6.2.4 may be visualized by moving the actual concrete breakout surface originating at the actual c_{a1} toward the surface of the concrete in the direction of the applied shear load. The value of c_{a1} used in Eq. (D-21) to
D.6.2.5 — The modification factor for anchor groups loaded eccentrically in shear, $\psi_{ec,V}$, shall be computed as

$$
\psi_{ec,V} = \frac{1}{1 + \frac{2e_V'}{3c_{a1}}} \quad (D-26)
$$

but $\psi_{ec,V}$ shall not be taken greater than 1.0.

If the loading on an anchor group is such that only some anchors are loaded in shear in the same direction, only those anchors that are loaded in shear in the same direction shall be considered when determining the eccentricity of e_V' for use in Eq. (D-26) and for the calculation of V_{cbg} in Eq. (D-22).

D.6.2.6 — The modification factor for edge effect for a single anchor or group of anchors loaded in shear, $\psi_{ed,V}$, shall be computed as

If $c_{a2} \geq 1.5c_{a1}$

then $\psi_{ed,V} = 1.0 \quad (D-27)$

If $c_{a2} < 1.5c_{a1}$

then $\psi_{ed,V} = 0.7 + 0.3 \frac{c_{a2}}{1.5c_{a1}} \quad (D-28)$

(D-29) is determined when either: (a) the outer boundaries of the failure surface first intersect a free edge; or (b) the intersection of the breakout surface between anchors within the group first intersects the surface of the concrete. For the example shown in Fig. RD.6.2.4, Point “A” shows the intersection of the assumed failure surface for limiting c_{a1} with the concrete surface.

RD.6.2.5 — This section provides a modification factor for an eccentric shear force toward an edge on a group of anchors. If the shear force originates above the plane of the concrete surface, the shear should first be resolved as a shear in the plane of the concrete surface, with a moment that may or may not also cause tension in the anchors, depending on the normal force. Figure RD.6.2.5 defines the term e_V' for calculating the $\psi_{ec,V}$ modification factor that accounts for the fact that more shear is applied to one anchor than others, tending to split the concrete near an edge.

Fig. RD.6.2.5 — Definition of e_V' for a group of anchors.
D.6.2.7 — For anchors located in a region of a concrete member where analysis indicates no cracking at service loads, the following modification factor shall be permitted:

$$\psi_{c,V} = 1.4$$

For anchors located in a region of a concrete member where analysis indicates cracking at service load levels, the following modification factors shall be permitted:

$$\psi_{c,V} = 1.0$$

for anchors in cracked concrete with no supplementary reinforcement or edge reinforcement smaller than a No. 4 bar;

$$\psi_{c,V} = 1.2$$

for anchors in cracked concrete with reinforcement of a No. 4 bar or greater between the anchor and the edge; and

$$\psi_{c,V} = 1.4$$

for anchors in cracked concrete with reinforcement of a No. 4 bar or greater between the anchor and the edge, and with the reinforcement enclosed within stirrups spaced at not more than 4 in.

D.6.2.8 — The modification factor for anchors located in a concrete member where $h_a < 1.5 c_{a1}$. $\psi_{h,V}$ shall be computed as

$$\psi_{h,V} = \sqrt{\frac{1.5 c_{a1}}{h_a}}$$

but $\psi_{h,V}$ shall not be taken less than 1.0.

D.6.2.9 — Where anchor reinforcement is either developed in accordance with Chapter 12 on both sides of the breakout surface, or encloses the anchor and is developed beyond the breakout surface, the design strength of the anchor reinforcement shall be permitted to be used instead of the concrete breakout strength in determining ϕV_n. A strength reduction factor of 0.75 shall be used in the design of the anchor reinforcement.

RD.6.2.7 — Torque-controlled and displacement-controlled expansion anchors are permitted in cracked concrete under pure shear loadings.

RD.6.2.8 — For anchors located in a concrete member where $h_a < 1.5 c_{a1}$, testsD.8,D.14 have shown that the concrete breakout strength in shear is not directly proportional to the member thickness h_a. The factor $\psi_{h,V}$ accounts for this effect.

RD.6.2.9 — For conditions where the factored shear force exceeds the concrete breakout strength of the anchor(s) in shear, or where the breakout strength is not evaluated, the nominal strength can be that of anchor reinforcement properly anchored as shown in Fig. RD.6.2.9(a) and (b). To ensure yielding of the anchor reinforcement, the enclosing anchor reinforcement in Fig. RD.6.2.9(a) should be in contact with the anchor and placed as close as practicable to the concrete surface. The researchD.14 on which the provisions for enclosing reinforcement (see Fig. RD.6.2.9(a)) are based was limited to anchor reinforcement with maximum diameter similar to a No. 5 bar. The larger bend radii associated with larger bar diameters may significantly reduce the effectiveness of the anchor reinforcement, and therefore anchor reinforcement with a diameter larger than No. 6 is not recommended.

The reinforcement could also consist of stirrups and ties (as well as hairpins) enclosing the edge reinforcement embedded in the breakout cone and placed as close to the anchors as practicable (see Fig. RD.6.2.9(b)). Only reinforcement spaced less than the lesser of $0.5 c_{a1}$ and $0.3 c_{a2}$...
Fig. RD.6.2.9(a)—Hairpin anchor reinforcement for shear.

Fig. RD.6.2.9(b)—Edge reinforcement and anchor reinforcement for shear.
CODE

D.6.3 — Concrete pryout strength of anchor in shear

D.6.3.1 — The nominal pryout strength, \(V_{cp} \) or \(V_{cpg} \) shall not exceed:

(a) For a single anchor

\[
V_{cp} = k_{cp} N_{cb} \quad \text{(D-30)}
\]

(b) For a group of anchors

\[
V_{cpg} = k_{cp} N_{cbg} \quad \text{(D-31)}
\]

where

\[
k_{cp} = \begin{cases}
1.0 & \text{for } h_{ef} < 2.5 \text{ in.}; \\
2.0 & \text{for } h_{ef} \geq 2.5 \text{ in.}
\end{cases}
\]

\(N_{cb} \) and \(N_{cbg} \) shall be determined from Eq. (D-4) and (D-5), respectively.

D.7 — Interaction of tensile and shear forces

Unless determined in accordance with D.4.3, anchors or groups of anchors that are subjected to both shear and axial loads shall be designed to satisfy the requirements of D.7.1 through D.7.3. The value of \(\phi N_n \) shall be as required in D.4.1.2. The value of \(\phi V_n \) shall be as defined in D.4.1.2.

D.7.1 — If \(V_{ua} \leq 0.2 \phi V_n \), then full strength in tension shall be permitted: \(\phi N_n \geq N_{ua} \).

D.7.2 — If \(N_{ua} \leq 0.2 \phi N_n \), then full strength in shear shall be permitted: \(\phi V_n \geq V_{ua} \).

COMMENTARY

from the anchor centerline should be included as anchor reinforcement. In this case, the anchor reinforcement must be developed on both sides of the breakout surface. For equilibrium reasons, an edge reinforcement must be present. The research on which these provisions are based was limited to anchor reinforcement with maximum diameter similar to a No. 6 bar.

Because the anchor reinforcement is placed below where the shear is applied (see Fig. RD.6.2.9(b)), the force in the anchor reinforcement will be larger than the shear force. In sizing the anchor reinforcement, use of a 0.75 strength reduction factor \(\phi \) is recommended as used for shear and for strut-and-tie models. If the alternate load factors of Appendix C are used, the corresponding strength reduction factor of 0.85 for shear and strut-and-tie models should be used. As a practical matter, the use of anchor reinforcement is generally limited to cast-in-place anchors.

RD.6.3 — Concrete pryout strength of anchor in shear

Reference D.9 indicates that the pryout shear resistance can be approximated as one to two times the anchor tensile resistance with the lower value appropriate for \(h_{ef} \) less than 2.5 in.

RD.7 — Interaction of tensile and shear forces

The shear-tension interaction expression has traditionally been expressed as

\[
\left(\frac{N_{ua}}{N_n} \right)^\varsigma + \left(\frac{V_{ua}}{V_n} \right)^\varsigma \leq 1.0
\]

where \(\varsigma \) varies from 1 to 2. The current trilinear recommendation is a simplification of the expression where \(\varsigma = 5/3 \) (Fig. RD.7). The limits were chosen to eliminate the requirement for computation of interaction effects where very small values of the second force are present. Any other interaction expression that is verified by test data, however, can be used to satisfy D.4.3.
D.7.3 — If \(V_{ua} > 0.2\phi V_n \) and \(N_{ua} > 0.2\phi N_n \), then
\[
\frac{N_{ua}}{\phi N_n} + \frac{V_{ua}}{\phi V_n} \leq 1.2
\]
(D-32)

RD.8 — Required edge distances, spacings, and thicknesses to preclude splitting failure

The minimum spacings, edge distances, and thicknesses are very dependent on the anchor characteristics. Installation forces and torques in post-installed anchors can cause splitting of the surrounding concrete. Such splitting also can be produced in subsequent torquing during connection of attachments to anchors including cast-in anchors. The primary source of values for minimum spacings, edge distances, and thicknesses of post-installed anchors should be the product-specific tests of ACI 355.2. In some cases, however, specific products are not known in the design stage. Approximate values are provided for use in design.

RD.8.2 — Because the edge cover over a deep embedment close to the edge can have a significant effect on the side-face blowout strength of D.5.4, in addition to the normal concrete cover requirements, it may be advantageous to use larger cover to increase the side-face blowout strength.

RD.8.3 — Drilling holes for post-installed anchors can cause microcracking. The requirement for a minimum edge distance twice the maximum aggregate size is to minimize the effects of such microcracking.

D.8 — Required edge distances, spacings, and thicknesses to preclude splitting failure

Minimum spacings and edge distances for anchors and minimum thicknesses of members shall conform to D.8.1 through D.8.6, unless supplementary reinforcement is provided to control splitting. Lesser values from product-specific tests performed in accordance with ACI 355.2 shall be permitted.

D.8.1 — Unless determined in accordance with D.8.4, minimum center-to-center spacing of anchors shall be \(4d_a\) for untorqued cast-in anchors, and \(6d_a\) for torqued cast-in anchors and post-installed anchors.

D.8.2 — Unless determined in accordance with D.8.4, minimum edge distances for cast-in headed anchors that will not be torqued shall be based on specified cover requirements for reinforcement in 7.7. For cast-in headed anchors that will be torqued, the minimum edge distances shall be \(6d_a\).

D.8.3 — Unless determined in accordance with D.8.4, minimum edge distances for post-installed anchors shall be based on the greater of specified cover requirements for reinforcement in 7.7, or minimum edge distance requirements for the products as determined by tests in accordance with ACI 355.2, and shall not be less than 2.0 times the maximum aggregate size. In the absence of product-specific ACI 355.2 test information, the minimum edge distance shall be taken as not less than:

- Undercut anchors \(6d_a\)
CODE

Torque-controlled anchors............................... $8d_a$
Displacement-controlled anchors....................... $10d_a$

D.8.4 — For anchors where installation does not produce a splitting force and that will remain untorqued, if the edge distance or spacing is less than those specified in D.8.1 to D.8.3, calculations shall be performed by substituting for d_a a smaller value d'_a that meets the requirements of D.8.1 to D.8.3. Calculated forces applied to the anchor shall be limited to the values corresponding to an anchor having a diameter of d'_a.

D.8.5 — The value of h_{ef} for an expansion or undercut post-installed anchor shall not exceed the greater of $2/3$ of the member thickness and the member thickness minus 4 in.

RD.8.4 — In some cases, it may be desirable to use a larger-diameter anchor than the requirements on D.8.1 to D.8.3 permit. In these cases, it is permissible to use a larger-diameter anchor provided the design strength of the anchor is based on a smaller assumed anchor diameter, d'_a.

RD.8.5 — This minimum thickness requirement is not applicable to through-bolts because they are outside the scope of Appendix D. In addition, splitting failures are caused by the load transfer between the bolt and the concrete. Because through-bolts transfer their load differently than cast-in or expansion and undercut anchors, they would not be subject to the same member thickness requirements. Post-installed anchors should not be embedded deeper than $2/3$ of the member thickness.

RD.8.6 — The critical edge distance c_{ac} is determined by the corner test in ACI 355.2. Research has indicated that the corner-test requirements are not met with $c_{ac,min} = 1.5h_{ef}$ for many expansion anchors and some undercut anchors because installation of these types of anchors introduces splitting tensile stresses in the concrete that are increased during load application, potentially resulting in a premature splitting failure. To permit the design of these types of anchors when product-specific information is not available, conservative default values for c_{ac} are provided.

RD.9 — Installation of anchors

D.9.1 — Anchors shall be installed in accordance with the project drawings and project specifications.

D.9.2 — Project drawings and project specifications shall specify use of anchors with a minimum edge distance as assumed in design.

D.9 — Installation of anchors

D.9.1 — Anchors shall be installed in accordance with the project drawings and project specifications.
APPENDIX E — STEEL REINFORCEMENT INFORMATION

As an aid to users of the ACI Building Code, information on sizes, areas, and weights of various steel reinforcement is presented.

ASTM STANDARD REINFORCING BARS

<table>
<thead>
<tr>
<th>Bar size, no.</th>
<th>Nominal diameter, in.</th>
<th>Nominal area, in.²</th>
<th>Nominal weight, lb/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.375</td>
<td>0.11</td>
<td>0.376</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
<td>0.20</td>
<td>0.668</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>0.31</td>
<td>1.043</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
<td>0.44</td>
<td>1.502</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
<td>0.60</td>
<td>2.044</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
<td>0.79</td>
<td>2.670</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
<td>1.00</td>
<td>3.400</td>
</tr>
<tr>
<td>10</td>
<td>1.270</td>
<td>1.27</td>
<td>4.300</td>
</tr>
<tr>
<td>11</td>
<td>1.410</td>
<td>1.56</td>
<td>5.313</td>
</tr>
<tr>
<td>14</td>
<td>1.693</td>
<td>2.25</td>
<td>7.650</td>
</tr>
<tr>
<td>18</td>
<td>2.257</td>
<td>4.00</td>
<td>13.600</td>
</tr>
</tbody>
</table>

ASTM STANDARD PRESTRESSING TENDONS

<table>
<thead>
<tr>
<th>Type*</th>
<th>Nominal diameter, in.</th>
<th>Nominal area, in.²</th>
<th>Nominal weight, lb/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven-wire strand (Grade 250)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/16 (0.313)</td>
<td>0.058</td>
<td>0.197</td>
<td></td>
</tr>
<tr>
<td>3/8 (0.375)</td>
<td>0.080</td>
<td>0.272</td>
<td></td>
</tr>
<tr>
<td>7/16 (0.438)</td>
<td>0.108</td>
<td>0.367</td>
<td></td>
</tr>
<tr>
<td>1/2 (0.500)</td>
<td>0.144</td>
<td>0.490</td>
<td></td>
</tr>
<tr>
<td>Prestressing wire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/16 (0.438)</td>
<td>0.115</td>
<td>0.390</td>
<td></td>
</tr>
<tr>
<td>1/2 (0.500)</td>
<td>0.153</td>
<td>0.520</td>
<td></td>
</tr>
<tr>
<td>3/8 (0.375)</td>
<td>0.085</td>
<td>0.290</td>
<td></td>
</tr>
<tr>
<td>1/2 (0.500)</td>
<td>0.144</td>
<td>0.490</td>
<td></td>
</tr>
<tr>
<td>Prestressing bars (plain)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.192</td>
<td>0.029</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td>0.196</td>
<td>0.030</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>Prestressing bars (deformed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>0.049</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td>0.276</td>
<td>0.060</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>0.44</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>0.60</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.78</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>1-1/8</td>
<td>0.99</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.23</td>
<td>4.17</td>
<td></td>
</tr>
<tr>
<td>1-3/8</td>
<td>1.48</td>
<td>5.05</td>
<td></td>
</tr>
<tr>
<td>Prestressing bars (deformed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>0.28</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>0.42</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.85</td>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.25</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>1-3/8</td>
<td>1.58</td>
<td>5.56</td>
<td></td>
</tr>
</tbody>
</table>

*Availability of some tendon sizes should be investigated in advance.
WRI STANDARD WIRE REINFORCEMENT*

<table>
<thead>
<tr>
<th>W & D size</th>
<th>Nominal diameter, in.</th>
<th>Nominal area, in.²</th>
<th>Nominal weight, lb/ft</th>
<th>Area, in.²/ft of width for various spacings</th>
<th>Center-to-center spacing, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>W31</td>
<td>D31</td>
<td>0.628</td>
<td>0.310</td>
<td>1.054</td>
<td>1.86</td>
</tr>
<tr>
<td>W30</td>
<td>D30</td>
<td>0.618</td>
<td>0.300</td>
<td>1.020</td>
<td>1.80</td>
</tr>
<tr>
<td>W28</td>
<td>D28</td>
<td>0.597</td>
<td>0.280</td>
<td>0.952</td>
<td>1.68</td>
</tr>
<tr>
<td>W26</td>
<td>D26</td>
<td>0.575</td>
<td>0.260</td>
<td>0.934</td>
<td>1.56</td>
</tr>
<tr>
<td>W24</td>
<td>D24</td>
<td>0.553</td>
<td>0.240</td>
<td>0.816</td>
<td>1.44</td>
</tr>
<tr>
<td>W22</td>
<td>D22</td>
<td>0.529</td>
<td>0.220</td>
<td>0.748</td>
<td>1.32</td>
</tr>
<tr>
<td>W20</td>
<td>D20</td>
<td>0.504</td>
<td>0.200</td>
<td>0.680</td>
<td>1.20</td>
</tr>
<tr>
<td>W18</td>
<td>D18</td>
<td>0.478</td>
<td>0.180</td>
<td>0.612</td>
<td>1.08</td>
</tr>
<tr>
<td>W16</td>
<td>D16</td>
<td>0.451</td>
<td>0.160</td>
<td>0.544</td>
<td>0.96</td>
</tr>
<tr>
<td>W14</td>
<td>D14</td>
<td>0.422</td>
<td>0.140</td>
<td>0.476</td>
<td>0.84</td>
</tr>
<tr>
<td>W12</td>
<td>D12</td>
<td>0.390</td>
<td>0.120</td>
<td>0.408</td>
<td>0.72</td>
</tr>
<tr>
<td>W11</td>
<td>D11</td>
<td>0.374</td>
<td>0.110</td>
<td>0.374</td>
<td>0.66</td>
</tr>
<tr>
<td>W10.5</td>
<td></td>
<td>0.366</td>
<td>0.105</td>
<td>0.357</td>
<td>0.63</td>
</tr>
<tr>
<td>W10</td>
<td>D10</td>
<td>0.356</td>
<td>0.100</td>
<td>0.340</td>
<td>0.60</td>
</tr>
<tr>
<td>W9.5</td>
<td></td>
<td>0.348</td>
<td>0.095</td>
<td>0.323</td>
<td>0.57</td>
</tr>
<tr>
<td>W9</td>
<td>D9</td>
<td>0.338</td>
<td>0.090</td>
<td>0.306</td>
<td>0.54</td>
</tr>
<tr>
<td>W8.5</td>
<td></td>
<td>0.329</td>
<td>0.085</td>
<td>0.289</td>
<td>0.51</td>
</tr>
<tr>
<td>W8</td>
<td>D8</td>
<td>0.319</td>
<td>0.080</td>
<td>0.272</td>
<td>0.48</td>
</tr>
<tr>
<td>W7.5</td>
<td></td>
<td>0.309</td>
<td>0.075</td>
<td>0.255</td>
<td>0.45</td>
</tr>
<tr>
<td>W7</td>
<td>D7</td>
<td>0.298</td>
<td>0.070</td>
<td>0.238</td>
<td>0.42</td>
</tr>
<tr>
<td>W6.5</td>
<td></td>
<td>0.288</td>
<td>0.065</td>
<td>0.221</td>
<td>0.39</td>
</tr>
<tr>
<td>W6</td>
<td>D6</td>
<td>0.276</td>
<td>0.060</td>
<td>0.204</td>
<td>0.36</td>
</tr>
<tr>
<td>W5.5</td>
<td></td>
<td>0.264</td>
<td>0.055</td>
<td>0.187</td>
<td>0.33</td>
</tr>
<tr>
<td>W5</td>
<td>D5</td>
<td>0.252</td>
<td>0.050</td>
<td>0.170</td>
<td>0.30</td>
</tr>
<tr>
<td>W4.5</td>
<td></td>
<td>0.240</td>
<td>0.045</td>
<td>0.153</td>
<td>0.27</td>
</tr>
<tr>
<td>W4</td>
<td>D4</td>
<td>0.225</td>
<td>0.040</td>
<td>0.136</td>
<td>0.24</td>
</tr>
<tr>
<td>W3.5</td>
<td></td>
<td>0.211</td>
<td>0.035</td>
<td>0.119</td>
<td>0.21</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td>0.195</td>
<td>0.030</td>
<td>0.102</td>
<td>0.18</td>
</tr>
<tr>
<td>W2.9</td>
<td></td>
<td>0.192</td>
<td>0.029</td>
<td>0.098</td>
<td>0.174</td>
</tr>
<tr>
<td>W2.5</td>
<td></td>
<td>0.178</td>
<td>0.025</td>
<td>0.085</td>
<td>0.15</td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>0.159</td>
<td>0.020</td>
<td>0.068</td>
<td>0.12</td>
</tr>
<tr>
<td>W1.4</td>
<td></td>
<td>0.135</td>
<td>0.014</td>
<td>0.049</td>
<td>0.084</td>
</tr>
</tbody>
</table>

COMMENTARY REFERENCES

References, Chapter 1

1.1. ACI Committee 332, “Requirements for Residential Concrete Construction (ACI 332-04) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2004, 26 pp.

1.4. ACI Committee 349, “Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349-06) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2006, 153 pp.

1.6. ACI Committee 543, “Design, Manufacture, and Installation of Concrete Piles (ACI 543R-00) (Reapproved 2005),” American Concrete Institute, Farmington Hills, MI, 2000, 49 pp.

1.9. ACI Committee 360, “Design of Slabs-on Ground (ACI 360R-06),” American Concrete Institute, Farmington Hills, MI, 2006, 74 pp.

1.21. ACI Committee 350, “Code Requirements for Environmental Engineering Concrete Structures (ACI 350-06) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2006, 486 pp.

1.22. ACI Committee 311, “Guide for Concrete Inspection (ACI 311.4R-05),” American Concrete Institute, Farmington Hills, MI, 2005, 13 pp.

References, Chapter 3

3.1. ACI Committee 214, “Evaluation of Strength Test Results of Concrete (ACI 214R-02),” American Concrete Institute, Farmington Hills, MI, 2002, 20 pp.

3.2 ACI Committee 440, “Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars (ACI 440.1R-06),” American Concrete Institute, Farmington Hills, MI, 44 pp.

3.3 ACI Committee 440, “Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening of Concrete Structures (ACI 440.2R-02),” American Concrete Institute, Farmington Hills, MI, 45 pp.

References, Chapter 4

4.2. ACI Committee 233, “Slag Cement in Concrete and Mortar (ACI 233R-03),” American Concrete Institute, Farmington Hills, MI, 2003, 19 pp.

4.3. ACI Committee 233, “Guide for the Use of Silica Fume in Concrete (ACI 234R-06),” American Concrete Institute, Farmington Hills, MI, 2006, 63 pp.

4.6. ACI Committee 201, “Guide to Durable Concrete (ACI 201.2R-01),” American Concrete Institute, Farmington Hills, MI, 2001, 41 pp.

4.7. ACI Committee 222, “Protection of Metals in Concrete Against Corrosion (ACI 222R-01),” American Concrete Institute, Farmington Hills, MI, 2001, 41 pp.

4.8. ACI Committee 222, “Provisional Standard Test Method for Water-Soluble Chloride Available for Corrosion of Embedded Steel in Mortar and Concrete Using the Soxhlet Extractor (ACI 222.1-96),” American Concrete Institute, Farmington Hills, MI, 3 pp.

References, Chapter 5

5.5. ACI Committee 214, “Evaluation of Strength Test Results of Concrete (ACI 214R-02),” American Concrete Institute, Farmington Hills, MI, 2002, 20 pp.

5.13. ACI Committee 304, “Guide for Measuring, Mixing, Transporting, and Placing Concrete (ACI 304R-00),” American Concrete Institute, Farmington Hills, MI, 2000, 41 pp.

5.15. ACI Committee 309, “Guide for Consolidation of Concrete (ACI 309R-05),” American Concrete Institute, Farmington Hills, MI, 2005, 36 pp.

References, Chapter 6

References, Chapter 7

7.6. ACI Committee 117, “Specifications for Tolerances for Concrete Construction and Materials and Commentary (ACI 117-06),” American Concrete Institute, Farmington Hills, MI, 70 pp.

References, Chapter 8

8.3. Bondy, K. B., “Moment Redistribution—Principles and Prac-

References, Chapter 9

References, Chapter 10

10.16. Frosch, R. J., “Another Look at Cracking and Crack Control in Reinforced Concrete,” ACI Structural Journal, V. 96, No. 3, May-June 1999, pp. 437-442.

References, Chapter 11

11.3. Joint ACI-ASCE Committee 326 (now 426), “Shear and

11.5. Schlaich, J.; Schafer, K.; and Jennewein, M., “Toward a Consistent Design of Structural Concrete;” Journal of the Prestressed Concrete Institute, V. 32, No. 3, May-June 1987, pp. 74-150.

11.17. ACI Committee 318, “Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-03),” SP-10, American Concrete Institute, Farmington Hills, MI, 1965, pp. 78-84.

11.33. Hsu, T. T. C., “Torsion of Structural Concrete—Behavior of Reinforced Concrete Rectangular Members,” Torsion of Structural

11.42. Klein, G. J., “Design of Spandrel Beams,” *PCI Specially Funded Research Project* No. 5, Precast/Prestressed Concrete Institute, Chicago, IL, 1986.

11.46. Mattock, A. H., “Shear Transfer in Concrete Having Reinforcement at an Angle to the Shear Plane,” *Shear in Reinforced Concrete*, SP-42, American Concrete Institute, Farmington Hills, MI, 1974, pp. 17-42.

11.71. Hanson, N. W., and Hanson, J. M., “Shear and Moment Transfer between Concrete Slabs and Columns,” Journal, PCA Research and Development Laboratories, V. 10, No. 1, Jan. 1968, pp. 2-16.

References, Chapter 12

References, Chapter 13

13.15. Joint ACI-ASCE Committee 352, “Recommendations for Design of Slab-Column Connections in Monolithic Reinforced
Concrete Structures (ACI 352.1R-89) (Reapproved 2004), American Concrete Institute, Farmington Hills, MI, 1989, 26 pp.

References, Chapter 14

References, Chapter 15

References, Chapter 16

16.1. Industrialization in Concrete Building Construction, SP-48, American Concrete Institute, Farmington Hills, MI, 1975, 240 pp.

16.2. Waddell, J. J., “Precast Concrete: Handling and Erection,” Monograph No. 8, American Concrete Institute, Farmington Hills, MI, 1974, 146 pp.

16.11. Tolerance Manual for Precast and Prestressed Concrete Construction, MNL-135-00, Precast/Prestressed Concrete Institute, Chicago, IL, 2000, 181 pp.

16.20. “Design of Concrete Structures for Buildings,” CAN3-A23.3-M84, and “Precast Concrete Materials and Construction,” CAN3-A23.4-M84, Canadian Standards Association, Rexdale, ON, Canada.

References, Chapter 17

References, Chapter 18

18.11. Joint ACI-ASCE Committee 423, “Recommendations for Concrete Members Prestressed with Unbonded Tendons (ACI 423.3R-05),” American Concrete Institute, Farmington Hills, MI, 2005, 25 pp.

18.34. ACI Committee 301, “Specifications for Structural Concrete (ACI 301-05),” American Concrete Institute, Farmington Hills, MI, 2005, 49 pp.

References, Chapter 19

19.15. Concrete Shell Buckling, SP-67, American Concrete Institute, Farmington Hills, MI, 1981, 234 pp.

19.20. ACI Committee 224, “Control of Cracking in Concrete Structures (ACI 224R-01),” American Concrete Institute, Farmington Hills, MI, 2001, 46 pp.

References, Chapter 20

20.1. ACI Committee 214, “Guide for Obtaining Cores and Interpreting Compressive Strength Results (ACI 214.4R-03),” American Concrete Institute, Farmington Hills, MI, 2003, 16 pp.

References, Chapter 21

21.15. Joint ACI-ASCE Committee 423, “Recommendations for Concrete Members Prestressed with Unbonded Tendons (ACI 423.3R-05),” American Concrete Institute, Farmington Hills, MI, 2005, 21 pp.

Column Joints for Seismic Resistance, SP-123, American Concrete Institute, Farmington Hills, MI, 1991, pp. 465-492.

21.44. ACI Innovation Task Group 1, “Special Hybrid Moment Frames Composed of Discretely Jointed Precast and Post-Tensioned Concrete Members (ITG-1.2-03) and Commentary (ITG-1.2R-03),” American Concrete Institute, Farmington Hills, MI, 2003.

References, Appendix A

References, Appendix B

References, Appendix C

References, Appendix D

D.11. “Fastenings to Concrete and Masonry Structures, State of the

D.13. ACI Committee 349, “Code Requirements for Nuclear Safety Related Concrete Structures (ACI 349-01),” American Concrete Institute, Farmington Hills, MI, 2001, 134 pp.

INDEX

Acceptance of concrete, 5.6
Admixtures, 3.6
- Air-entraining, 3.6.2
- Definition, 2.2
- Water-reducing, 3.6.1
Aggregates, 3.3
- Definition, 2.2
- Lightweight—Definition, 2.2
- Nominal maximum size, 3.3.2
Air-entraining admixtures, 3.6.2
Alternative load and strength reduction factors, Appendix C
Alternative provisions for reinforced and prestressed concrete, Appendix B
- Flexural and compression members, B.1
- General principles and requirements, B.10.3
- Limits for reinforcement of flexural members, B.10.3, B.18.8
- Redistribution of moments in continuous nonprestressed flexural members, B.8.4
- Redistribution of moments in continuous prestressed flexural members, B.18.10.4
Aluminum embedments, 6.3.2
American Welding Society—See AWS
Analysis methods, 8.3
Anchor
- Attachment—Definition, D.1
- Brittle steel element—Definition, D.1
- Cast-in—Definition, D.1
- Concrete breakout strength—Definition, D.1
- Concrete pryout strength—Definition, D.1
- Definition—D.1
- Distance sleeve—Definition, D.1
- Ductile steel element—Definition, D.1
- Edge distance—Definition, D.1
- Effective embedment depth—Definition, D.1
- Expansion—Definition, D.1
- Expansion sleeve—Definition, D.1
- Group—Definition, D.1
- Headed stud—Definition, D.1
- Hooked bolt—Definition, D.1
- Post-installed—Definition, D.1
- Projected area—Definition, D.1
- Pullout strength—Definition, D.1
- Reinforcement—Definition, D.1
- Side-face blowout strength—Definition, D.1
- Specialty insert—Definition, D.1
- Supplementary reinforcement—Definition, D.1
- Undercut—Definition, D.1
Anchor to concrete
- Design requirements for shear loading, D.6
- Design requirements for tensile loading, D.5
- General requirements, D.3
- General requirements for strength of anchors, D.4
- Installation of anchors, D.9
- Interaction of tensile and shear forces, D.7
- Required edge distance spacing and thickness to preclude splitting failure, D.8
- Scope, D.2
Anchorage device
- Basic monostrand—Definition, 2.2
- Basic multistrand—Definition, 2.2
- Definition, 2.2
- Special—Definition, 2.2
Anchorage—Mechanical and headed—Development, 12.6
Anchorage zones
- Definition, 2.2
- Post-tensioned tendon, 18.13, 18.14, 18.15
- Prestressed tendon, 18.13
- Design for monostrand or single 5/8-in. diameter bar tendons, 18.14
- Design for multistrand tendons, 18.15
Anchorage—Post-tensioning, 18.21
ASCE (American Society of Civil Engineers) standard cited in this code, 3.8.3
ASTM standards cited in this code, 3.8.1
AWS (American Welding Society) standards cited in this code, 3.8.2, 3.8.7
Axial strength
- Design assumptions, 10.2
- General principles and requirements, 10.3
Axially loaded members—Supporting slab system, 10.11
B-region
- Definition, A.1
Base of structure
- Definition, 2.2
Beam
- Deflections—Minimum thickness, 9.5
- Distribution of flexural reinforcement, 10.6
- Grade—Walls—Design, 14.7
Bearing strength, 10.14
Bending, 7.3
Bends—Minimum diameters—Reinforcement, 7.2
Bonded reinforcement—Minimum—Prestressed concrete, 18.9
Bonded tendon
- Definition, 2.2
Boundary elements
- Definition, 2.2
Brackets—Shear provision, 11.8
Building official
- Definition, 2.2
Bundled bars
- Development, 12.4
- Spacing limits, 7.6.6
Calculations, 1.2.2
Cementitious materials, 3.2
- Definition, 2.2
Chloride—Admixtures, 3.6.4
Cold weather concreting, 5.12
Collector elements
- Definition, 2.2
Column loads—Transmission through floor system, 10.12
Columns
- Definition, 2.2
- Design, 8.10
- Equivalent—Slab design, 13.7
- Moment transfer, 11.10
- Reinforcement details, 7.8
- Splice requirements, 12.17
- Steel cores, 7.8.2

Composite compression members—Axial strength, 10.13

Composite construction—Deflections, 9.5.5

Composite flexural members, 17.1, 17.2
- Definition, 2.2
- Horizontal shear strength, 17.5
- Shoring, 17.3
- Ties for horizontal shear, 17.6
- Vertical shear strength, 17.4

Compression-controlled section
- Definition, 2.2, 9.3.2

Compression-controlled strain limit
- Definition, 2.2

Compression members
- Design dimensions, 10.8
- Effective length, 10.10.6
- Limits for reinforcement, 10.9
- Prestressed concrete, 18.11
- Slenderness effects, 10.10

Computer programs, 1.2.2

Concrete
- All-lightweight—Definition, 2.2
- Conveying, 5.9
- Curing, 5.11
- Definition, 2.2
- Depositing, 5.10
- Evaluation and acceptance, 5.6
- Lightweight, Definition, 2.2
- Minimum strength, 1.1.1, 5.1.1, 19.3.1, 21.1.4.2, 22.2.3
- Mixing, 5.8
- Normalweight—Definition, 2.2
- Proportioning, 5.2, 5.3, 5.4
- Sand-lightweight—(Definition, 2.2), 8.6.1, 11.8.3.2.2

Conduits, embedded, 6.3

Connections
- Ductile—Definition, 2.2
- Reinforcement, 7.9
- Strong—Definition, 2.2

Construction joints, 6.4

Continuous construction—Prestressed concrete, 18.10

Contraction joint
- Definition, 2.2

Conveying concrete, 5.9

Corbels—Shear provisions, 11.8

Corrosion
- Protection of reinforcement, Chapter 4
- Protection of unbonded prestressing tendons, 18.16

Couplers—Post-tensioning, 18.21

Creep—Required strength, 9.2.3

Crosstie—Definition, 2.2

Curing, 5.11
- Accelerated, 5.11.3

Curvature friction, 18.6.2
- Definition, 2.2

Cylinders—Testing, 5.6

D-region
- Definition, A.1

Dead load—See Load, dead

Deep beams, 10.7
- Special provisions for shear, 11.7

Definitions, 2.2, 19.1, A.1, D.1

Deflection
- Composite construction, 9.5.5
- Control, 9.5
- Maximum, 9.5
- Nonprestressed concrete construction, 9.5.2, 9.5.3
- Prestressed concrete construction, 9.5.4

Deformed bars, 12.2, 12.3
- Compression—Splices, 12.16
- Headed—Definition, 2.2
- Tension—Splices, 12.15

Deformed reinforcement
- Definition, 2.2

Depositing concrete, 5.10

Design displacement
- Definition, 2.2

Design load combination
- Definition, 2.2
- Factored loads, 9.2.1, C.9.2

Design methods, 8.1
- Structural plain concrete, 22.4

Design story drift ratio
- Definition, 2.2

Design strength, 9.3
- Reinforcement, 9.4
- See also Strength, design

Development
- Bundled bars, 12.4
- Deformed bars and deformed wire in compression, 12.3
- Deformed bars and deformed wire in tension, 12.2
- Flexural reinforcement, general, 12.10
- Footing reinforcement, 15.6
- Headed bars, 12.6
- Hooks, 12.5
- Mechanical anchorages, 12.6.4
- Negative moment reinforcement, 12.12
- Positive moment reinforcement, 12.11
- Prestressing strand, 12.9
- Reinforcement, general, 12.1
- Splices, deformed bars and deformed wire in tension, 12.15
- Splices, deformed bars in compression, 12.16
- Splices, general, 12.14
- Splices, mechanical, 12.14.3
- Splices, requirements for columns, 12.17
- Web reinforcement, 12.13
- Welded deformed wire reinforcement in tension, 12.7
- Welded plain wire reinforcement in tension, 12.8

Development length
- Definition, 2.2

Direct design method—Slabs, 13.6

Discontinuity
- Definition, A.1

Drawings, 1.2

Drop panel—Two-way slab reinforcement, 13.2.5, 13.3.7
- Definition, 2.2
- Shear cap, 13.2.6

Ducts
- Definition, 2.2
- Post-tensioning, 18.17
Earth pressure, 9.2.1
Earthquake loads, 8.2.3, 9.2.1
Effective depth of section (d) - Definition, 2.2
Effective prestress - Definition, 2.2
Embedment length - Definition, 2.2
Embedments, 6.3
Equivalent frame method—Slabs, 13.7
Evaluation and acceptance of concrete, 5.6
Expansive cement, 3.2.1
Exposure
- Cover requirements, 7.7
- Durability requirements, Chapter 4
Extreme tension steel - Definition, 2.2
Factored load—See Load, factored
Field-cured specimens—Tests, 5.6.4
Flexural members—Limits for reinforcement, 10.5, 18.8, B18.8
Flexural reinforcement
- Development, general, 12.10
- Principles and requirements, 10.3
Floor finish, separate, 8.14
Floors—Transmission of column loads, 10.12
Fly ash, 3.2.1
Footings, Chapter 15
- Combined, 15.10
- Loads and reactions, 15.2
- Minimum depth, 15.7
- Moments, 15.4
- Reinforcement development, 15.6
- Shear, 11.11, 15.5
- Sloped or stepped, 15.9
- Structural plain concrete, 22.7
- Supporting circular or polygon columns, 15.3
- Transfer of force at base of column or pedestal, 15.8
Formwork
- Design of, 6.1
- Prestressed concrete, 6.1.6
- Removal, 6.2
Foundations, seismic, 21.12
Frames—Prestressed concrete, 18.10
Grade beam—Walls—Design, 14.7
Grout—Bonded tendons, 18.18
Haunches—Effect on stiffness, 8.7
Hooks
- Development, 12.5
- Seismic—Definition, 2.2
- Standard, 7.1
Hoop - Definition, 2.2
Hot weather concreting, 5.13
Impact, 9.2
Inspection, 1.3
Isolated beams, 8.12.4
Isolation joint
- Definition, 2.2
Jacking force
- Definition, 2.2
Joints
- Definition, 2.2
- Structural plain concrete, 22.3
Joist construction, 8.13
Lap splices—Development of reinforcement, 12.14, 12.15, 12.16, 12.17, 12.18, 12.19
Lateral reinforcement
- Compression members, 7.10
- Flexural members, 7.11
Lateral supports—maximum spacing, 10.4
Licensed design professional
- Definition, 2.2
Lightweight aggregate, 3.3
Lightweight concrete, 8.6
- Splitting tensile strength, 5.1
Liquid pressure, lateral, 9.2
Live load—See Load, live
Load
- Dead—Definition, 2.2
- Factored, (Definition, 2.2), 9.2, C.9.2
- Live—Arrangement, 8.11
- Live—Definition, 2.2
- Service, (Definition, 2.2), 8.2.2
Load tests, 20.3
- Loading criteria, 20.4
Loading, 8.2
Loss of prestress, 18.6
Low-strength concrete, 5.6.5
Materials storage, 3.7
Materials, tests, 3.1
Mats—Combined footing, 15.10
Mechanical splices, 12.14
Minimum reinforcement—Flexural members, 10.5
Mixing and placing equipment, 5.7
Mixing concrete, 5.8
Mixture proportioning, 5.2, 5.3, 5.4
Model analysis—shells, 1.2.2, 19.2
Modulus of elasticity, 8.5
- Definition, 2.2
Moment frame
- Definition, 2.2
- Intermediate—Definition, 2.2
- Ordinary—Definition, 2.2
- Special—Definition, 2.2
Moment magnification, 10.10.5
- Nonsway frames, 10.10.6
- Sway frames, 10.10.7
Moment magnification—Slenderness effects—Compression members, 10.10
Moment transfer—Columns, 11.10
Moments
- Approximate design, 8.3
- Footings, 15.4
- Moment redistribution, 8.4, 18.10
- Negative—Reinforcement—Development, 12.12
- Positive—Reinforcement—Development, 12.11
- Slab design, 13.6
Net tensile strain
- Definition, 2.2

Nodal zone
- Definition, A.1

Node
- Definition, A.1

Nominal strength—See Strength, nominal

Nonsway frames—Magnified moments, 10.10.6
- Notation, 2.1

Offset bars—Reinforcement details for columns, 7.8

Openings
- Slab, 11.11.6
- Two-way slab, 13.4
- Wall, 14.3.7

Pedestal
- Definition, 2.2
- Structural plain concrete, 22.8

Piles and piers, 1.1.6

Pipes
- Embedded, 6.3
- Steel reinforcement, 3.5.7

Placing concrete and reinforcement
- Preparation of equipment and place of deposit, 5.7
- Rate—Formwork, 6.1
- Reinforcement, 7.5

Placing equipment, 5.7

Plain concrete
- Definition, 2.2
- Earthquake-resisting structures, 22.10
- Structural, Chapter 22

Plain reinforcement
- Definition, 2.2

Plastic hinge region
- Definition, 2.2

Post-tensioning
- Anchorage and couplers, 18.21
- Definition, 2.2
- Ducts, 18.17
- External, 18.22

Pozzolans, 3.2.1, 4.3.1, 4.4.2

Precast concrete, Chapter 16
- Bearing design, 16.6
- Definition, 2.2
- Design, 16.4
- Distribution of forces, 16.3
- Handling, 16.9
- Strength evaluation, 16.10
- Structural integrity, 16.5

Precast members—Structural plain concrete, 22.9

Precompressed tensile zone
- Definition, 2.2

Prestressed concrete, Chapter 18
- Application of prestressing force, 18.20
- Compression members, 18.11
- Corrosion protection for unbonded tendons, 18.16
- Definition, 2.2
- Deflection, 9.5
- Design assumptions, 18.3
- Flexural members—Limits of reinforcement, 18.8
- Flexural strength, 18.7
- Frames and continuous construction, 18.10
- Grout for bonded tendons, 18.18
- Loss of prestress, 18.6
- Measurement of prestressing force, 18.20
- Minimum bonded reinforcement, 18.9
- Permissible stresses in prestressing steel, 18.5
- Post-tensioning anchorages and couplers, 18.21
- Post-tensioning ducts, 18.17
- Protection for prestressing steel, 18.19
- Protection for unbonded tendons, 18.16
- Serviceability requirements—Flexural members, 18.4
- Shear, 11.3
- Slab systems, 18.12
- Statically indeterminate structures, 18.10
- Tendon anchorage zones, 18.13
- Torsion, 11.5

Prestressing steel, 3.5.6
- Definition, 2.2
- Surface conditions, 7.4

Prestressing strand—Development, 12.9

Pretensioning
- Definition, 2.2

Quality of concrete, 5.1

Radius of gyration—Compression members—
Slenderness effects, 10.10

Reinforced concrete
- Definition, 2.2

Reinforcement
- Bending of, 7.3
- Bundled bars—Development, 12.4
- Bundled bars—Spacing limits, 7.6.6
- Columns—Splice requirements, 12.17
- Concrete protection for reinforcement, 7.7
- Connections, 7.9
- Corrosion protection for unbonded prestressing tendons, 18.16
- Cover, 7.7
- Definition, 2.2
- Deformed, 3.5.3
- Deformed—Compression—Splices, 12.16
- Deformed—Development in compression, 12.3
- Deformed—Development in tension, 12.2
- Deformed—Tension—Splices, 12.15
- Design strength, 9.4
- Details for columns, 7.8
- Development—general, 12.1
- Flexural—Development—general, 12.10
- Flexural—Distribution in beams and one-way slabs, 10.6
- Footings—Development, 15.6
- Headed shear stud—Definition, 2.2
- Hooks—Development in tension, 12.5
- Lateral for compression members, 7.10
- Lateral for flexural members, 7.11
- Limits in compression members, 10.9
- Limits in prestressed flexural members, 18.8
- Mats, 3.5.3.4
- Mechanical anchorage—Development, 12.6
- Minimum—Flexural members, 10.5
- Minimum bend diameter, 7.2
- Minimum bonded—Prestressed concrete, 18.9
- Negative moment—Development, 12.12
- Placing, 7.5
- Plain, 3.5.4
- Plain—Definition, 2.2
- Positive moment—Development, 12.11
- Prestressing strand—Development, 12.9
- Prestressing steel, 3.5.6
- Prestressing steel—Protection, 18.19
- Shear—Minimum, 11.4.6
- Shear—Requirements, 11.4
- Shells, 19.4
- Shrinkage, 7.12
- Slab, 13.3
- Spacing limits, 7.6
- Splices—general, 12.14
- Steel pipe, 3.5.7
- Structural integrity, 7.13, 13.3.8.5, 16.5, 18.12.6, 18.12.7
- Structural steel, 3.5.7
- Surface conditions, 7.4
- Temperature, 7.12
- Tubing, 3.5.7
- Two-way slabs, 13.3
- Web—Development, 12.13
- Welded deformed wire reinforcement—Development in tension, 12.7
- Welded plain wire reinforcement—Development in tension, 12.8
- Welded plain wire reinforcement in tension—Splices, 12.19
- Welding, 3.5.2, 7.5.4

Required strength—See Strength, required

Reshores
- Definition, 2.2
- Formwork—Removal, 6.2

Retempered concrete, 5.10.4

Safety—Strength evaluation, 20.7
Sampling, 5.6
Scope of code, 1.1
Seismic design
- Definitions, 2.2
- Flexural members of special moment frames, 21.5
- General requirements, 21.1
- Joints of special moment frames, 21.7
- Special moment frame members, 21.6
- Structural walls and coupling beams, 21.9

Seismic-force-resisting system
- Definition, 2.2

Seismic hook
- Definition, 2.2

Service loads—See Load, service
Settlement—Required strength, 9.2.3
Shear
- Brackets, 11.8
- Cap—Definition, 2.2
- Corbels, 11.8
- Deep beams, 11.7
- Footings, 11.11, 15.5
- Horizontal—Ties—Composite flexural members, 17.6
- Slabs, 11.11, 13.6.8
- Walls, 11.9

Shear-friction, 11.6
Shear strength, 11.1

Concrete—Nonprestressed members, 11.2
Concrete—Prestressed members, 11.3
Horizontal—Composite flexural members, 17.5
Lightweight concrete, 11.6.4.3, 11.8.3.2.2
Vertical—Composite flexural members, 17.4

Sheathing
- Definition, 2.2

Shells
- Construction, 19.5
- Definitions, 19.1
- Reinforcement, 19.4
- Strength of materials, 19.3

Shored construction, 9.5.5.1

Shores
- Definition, 2.2

Shoring—Formwork—Removal, 6.2
Shrinkage—Required strength, 9.2.3

Shrinkage reinforcement, 7.12
Slab support—Axially loaded members, 10.11
Slab systems—Prestressed concrete, 18.12

Slabs
- Moment transfer to columns, 11.10
- One-way—Deflections—Minimum thickness, 9.5
- One-way—Distribution of flexural reinforcement, 10.6
- Shear provisions, 11.11
- Two-way—Design procedures, 13.5
- Two-way—Direct design method, 13.6
- Two-way—Equivalent frame method, 13.7
- Two-way—General, 13.2
- Two-way—Openings, 13.4
- Two-way—Reinforcement, 13.3

Slender walls—Alternative design, 14.8

Slenderness effects
- Compression members, 10.10
- Evaluation, 10.10
- Nonlinear second-order analysis, 10.10.3

Spacing limits—Reinforcement, 7.6
Span length, 8.9
Special boundary element
- Definitions, 2.2

Special structures, 1.1.5
Special systems of design or construction, 1.4
Specified compressive strength of concrete (f'_c)
- Definitions, 2.2

Specified concrete cover
- Definitions, 2.2

Spirals, 7.10.4

Splices, general, 12.14
- Columns, 12.17
- Deformed bars and deformed wire in tension, 12.15
- End bearing in compression, 12.16.4
- Lap, 12.14.2, 12.15, 12.16, 12.17, 12.18, 12.19
- Plain wire reinforcement splice in tension, 12.19
- Seismic, 21.16, 21.1.7
- Welded deformed wire reinforcement splice in tension, 12.18

Splitting tensile strength (f_{ct})
- Definitions, 2.2

Standards cited in this Code, 3.8
Standard-cured specimens—Tests, 5.6.3
Steam curing, 5.11.3
Steel reinforcement, 3.5, Appendix E
Stiffness, 8.7, 8.8
Stirrup
 - Definition, 2.2
 - Development, 12.13
 - Shear reinforcement requirements, 11.4
Storage—Materials, 3.7
Strength, design, 9.1, 9.3
 - Definition, 2.2
 - Reinforcement, 9.4
 - Structural plain concrete, 22.5
Strength evaluation, 16.10, 20.1
 - Acceptance criteria, 20.5
 - Analytical evaluation, 20.1
 - Load criteria, 20.4
 - Load tests, 20.3
 - Lower load rating, 20.6
 - Safety, 20.7
Strength, nominal
 - Definitions, 2.2
Strength reduction, 5.5
Strength reduction factor, 9.3
 - Alternative reduction factor, C.9.3
 - Anchors, D.4.4, D.4.5
 - Brackets, 11.8
 - Corbels, 11.8
 - Evaluation, 20.2.5
Strength, required, 9.2
 - Definition, 2.2
Strength—Reduced required, 5.5
Strain—Reinforcement, 10.2
Stress
 - Definition, 2.2
 - Permissible—Prestressed steel, 18.5
 - Reinforcement, 10.2
 - Serviceability requirements—Prestressed flexural members, 18.4
Structural concrete
 - Definitions, 2.2
Structural diaphragms
 - Definition, 2.2
 - Trusses, 21.11
Structural integrity
 - Requirements, 7.13, 13.3.8.5, 16.5, 18.12.6, 18.12.7
Structural plain concrete
 - Design method, 22.4
 - Footings, 22.7
 - Joints, 22.3
 - Limitations, 22.2
 - Pedestals, 22.8
 - Precast members, 22.9
 - Strength design, 22.5
 - Walls, 22.6
Structural steel—Reinforcement, 3.5.7
Structural steel core—Concrete encased, 10.13.6
Structural truss
 - Definitions, 2.2
Structural wall
 - Definitions, 2.2
 - Intermediate precast—Definition, 2.2
 - Ordinary reinforced concrete—Definition, 2.2
 - Ordinary structural plain concrete—Definition, 2.2
 - Special—Definition, 2.2
Strut
 - Bottle-shaped—Definition, A.1
 - Definition, A.1
Strut-and-tie models
 - Definition, A.1
 - Design procedures, A.2
 - Strength of nodal zones, A.5
 - Strength of struts, A.3
 - Strength of ties, A.4
Sulfate exposure, Chapter 4
Supplemental reinforcement, D.4.4, D.4.5, D.5.2.7, D.6.2.7
 - Definition, D.1
Sway frames—Magnified moments, 10.10.7
T-beams, 8.12
 - Flanges in tension—Tension reinforcement, 10.6.6
Temperature reinforcement, 7.12
Tendon
 - Anchorage zones, 18.13
 - Definition, 2.2
Tensile strength—Concrete, 10.2.5
Tension-controlled section
 - Definition, 2.2
Testing for acceptance of concrete, 5.6
Tests, materials, 3.1
Thickness, minimum—Deflection—Nonprestressed beams or one-way slabs, 9.5.2
Thin shells
 - Definition, 19.1.3
Ties, 7.10.5
 - Definition, 2.2, A.1
 - Horizontal shear—Composite flexural members, 17.6
 - Steel core encased in concrete, 10.13.6
Tolerances—Placing reinforcement, 7.5
Torsion
 - Design, 11.5
Torsion reinforcement requirements, 11.5
Torsional members—Slab design, 13.7.5
Torsional moment strength, 11.5
Transfer
 - Definition, 2.2
Transfer length
 - Definition, 2.2
Tubing—Reinforcement, 3.5.7.2
Two-way construction—Deflections, 9.5
Unbonded tendon
 - Definition, 2.2
Unshored construction, 9.5.5.2
Wall
 - Definition, 2.2
 - Empirical design, 14.5
 - General, 14.2
 - Grade beams—Design, 14.7
 - Precast, 16.4
 - Provisions for, 11.9
 - Shear, 11.9 (not provisions for)
 - Structural plain concrete, 22.6
Walls—Structural
 - Definition, 2.2
 - Intermediate precast wall, 21.4
-Ordinary plain concrete, 22.6
-Special precast, 21.10
-Special reinforced, 21.1.1.7, 21.9

Water, 3.4
Water-cementitious material ratio, 4.1.1
Water-reducing admixtures, 3.6.1
Web reinforcement—Development, 12.13
Welded splices—Tension—Reinforcement, 12.15, 12.16, 12.17
Welded wire reinforcement, 3.5.3
 -Bends, 7.2
 -Definition, 2.2
 -Deformed—Development, 12.7
 -Deformed—Tension splices, 12.18
 -Placing, 7.5.3
 -Plain—Tension development, 12.8
 -Plain—Tension splices, 12.19

Wind loads, 8.2.3
Wobble friction, 18.6.2.2
 -Definition, 2.2

Work
 -Definition, 2.2

Yield strength
 -Definition, 2.2
As ACI begins its second century of advancing concrete knowledge, its original chartered purpose remains “to provide a comradeship in finding the best ways to do concrete work of all kinds and in spreading knowledge.” In keeping with this purpose, ACI supports the following activities:

- Technical committees that produce consensus reports, guides, specifications, and codes.
- Spring and fall conventions to facilitate the work of its committees.
- Educational seminars that disseminate reliable information on concrete.
- Certification programs for personnel employed within the concrete industry.
- Student programs such as scholarships, internships, and competitions.
- Sponsoring and co-sponsoring international conferences and symposia.
- Formal coordination with several international concrete related societies.
- Periodicals: the *ACI Structural Journal* and the *ACI Materials Journal*, and *Concrete International*.

Benefits of membership include a subscription to *Concrete International* and to an ACI Journal. ACI members receive discounts of up to 40% on all ACI products and services, including documents, seminars and convention registration fees.

As a member of ACI, you join thousands of practitioners and professionals worldwide who share a commitment to maintain the highest industry standards for concrete technology, construction, and practices. In addition, ACI chapters provide opportunities for interaction of professionals and practitioners at a local level.

American Concrete Institute

38800 Country Club Drive
Farmington Hills, MI 48331
U.S.A.

Phone: 248-848-3700
Fax: 248-848-3701

www.concrete.org
The AMERICAN CONCRETE INSTITUTE

was founded in 1904 as a nonprofit membership organization dedicated to public service and representing the user interest in the field of concrete. ACI gathers and distributes information on the improvement of design, construction and maintenance of concrete products and structures. The work of ACI is conducted by individual ACI members and through volunteer committees composed of both members and non-members.

The committees, as well as ACI as a whole, operate under a consensus format, which assures all participants the right to have their views considered. Committee activities include the development of building codes and specifications; analysis of research and development results; presentation of construction and repair techniques; and education.

Individuals interested in the activities of ACI are encouraged to become a member. There are no educational or employment requirements. ACI’s membership is composed of engineers, architects, scientists, contractors, educators, and representatives from a variety of companies and organizations.

Members are encouraged to participate in committee activities that relate to their specific areas of interest. For more information, contact ACI.

www.concrete.org
NOTES ON

ACI 318-08
BUILDING CODE REQUIREMENTS
FOR STRUCTURAL CONCRETE

with Design Applications

Edited by: Mahmoud E. Kamara
Lawrence C. Novak
Basile G. Rabbat

Portland Cement Association
5420 Old Orchard Road
Skokie, Illinois 60077-1083
847.966.6200 Fax 847.966.9781
www.cement.org

An organization of cement companies to improve and extend the uses of portland cement and concrete through market development, engineering, research, education, and public affairs work.
Preface

The first edition of this reference manual was developed to aid users in applying the provisions of the 1971 edition of “Building Code Requirements for Reinforced Concrete (ACI 318-71).” The second through fifth editions updated the material in conformity with provisions of the 1977 code edition, the 1980 code supplement, and the 1983 and 1989 code editions, respectively. The sixth through ninth editions addressed the 1995, 1999, 2002, and 2005 editions of “Building Code Requirements for Structural Concrete (ACI 318-95), (ACI 318-99), (ACI 318-02) and (ACI 318-05).” Through nine editions, much of the initial material has been revised to better emphasize the subject matter, and new chapters added to assist the designer in proper application of the ACI 318 design provisions.

This tenth edition reflects the contents of “Building Code Requirements for Structural Concrete (ACI 318-08).” The text and design examples have been revised to reflect, where possible, comments received from users of the “Notes” who suggested improvements in wording, identified errors, and recommended items for inclusion or deletion.

The primary purpose for publishing this manual is to assist the engineer and architect in the proper application of the ACI 318-08 design standard. The emphasis is placed on “how-to-use” the code. For complete background information on the development of the code provisions, the reader is referred to the “Commentary on Building Code Requirements for Structural Concrete (ACI 318R-08)” which, starting with the 1989 edition, has been published together with the code itself under the same cover.

This manual is also a valuable aid to educators, contractors, materials and products manufacturers, building code authorities, inspectors, and others involved in the design, construction, and regulation of concrete structures.

Although every attempt has been made to impart editorial consistency to the thirty-four chapters, some inconsistencies probably still remain. A few typographical and other errors are probably also to be found. PCA would be grateful to any reader who would bring such errors and inconsistencies to our attention. Other suggestions for improvement are also most sincerely welcome.

Basile G. Rabbat
Engineered Structures Department
Acknowledgments

The following Portland Cement Association staff members have contributed to update of this document:

Attila Beres Mahmoud E. Kamara Joseph J. Messersmith, Jr
Lawrence C. Novak Basile G. Rabbat Stephen V. Skalko
Jerry M. Spiker Amy Reineke Trygestad

The following consultants assisted with update of the 2008 edition:

Kenneth B. Bondy, Consulting Structural Engineer, West Hills, CA, updated Part 26, Prestressed Slab Systems.
Daniel A. Antoniak, StructurePoint helped generate graphs from StructurePoint concrete design software.

Dale McFarlane of PCA staff played a crucial role in the production of this publication. He was responsible for the word processing, layout and formatting of this large and complex manuscript. His assistance is very much appreciated.

Finally, sincere gratitude must be expressed to the authors and contributors of various parts of the first through ninth editions of the “Notes.” Their initial work is carried over into this edition, although their names are no longer separately identified with the various parts. Robert F. Mast, BERGER/ABAM, Federal Way, WA, updated Parts 5, 6, 7, 8, 24, and 25, of the 2002 edition, all pertaining to application of the Unified Design Provisions.

Basile G. Rabbat
<table>
<thead>
<tr>
<th>Parts</th>
<th>Author(s)</th>
<th>Reviewers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>James J. Messersmith</td>
<td>Stephen V. Skalko</td>
</tr>
<tr>
<td>2</td>
<td>James J. Messersmith</td>
<td>Stephen V. Skalko</td>
</tr>
<tr>
<td>3</td>
<td>Stephen V. Skalko</td>
<td>James J. Messersmith</td>
</tr>
<tr>
<td>4</td>
<td>Jerry M. Spiker</td>
<td>Lawrence C. Novak, Mahmoud E. Kamara</td>
</tr>
<tr>
<td>5</td>
<td>Mahmoud E. Kamara</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>6</td>
<td>Mahmoud E. Kamara</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>7</td>
<td>Lawrence C. Novak</td>
<td>Mahmoud E. Kamara</td>
</tr>
<tr>
<td>8</td>
<td>Amy Reineke Trygestad</td>
<td>Basile G. Rabbat</td>
</tr>
<tr>
<td>9</td>
<td>Amy Reineke Trygestad</td>
<td>Basile G. Rabbat</td>
</tr>
<tr>
<td>10</td>
<td>Amy Reineke Trygestad</td>
<td>Basile G. Rabbat</td>
</tr>
<tr>
<td>11</td>
<td>Mahmoud E. Kamara</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>12</td>
<td>Lawrence C. Novak</td>
<td>Basile G. Rabbat</td>
</tr>
<tr>
<td>13</td>
<td>Basile G. Rabbat</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>14</td>
<td>Lawrence C. Novak</td>
<td>Basile G. Rabbat</td>
</tr>
<tr>
<td>15</td>
<td>Lawrence C. Novak</td>
<td>Basile G. Rabbat</td>
</tr>
<tr>
<td>16</td>
<td>Mahmoud E. Kamara</td>
<td>Amy Reineke Trygestad</td>
</tr>
<tr>
<td>17</td>
<td>Attila Beres</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>18</td>
<td>Mahmoud E. Kamara</td>
<td>Amy Reineke Trygestad</td>
</tr>
<tr>
<td>19</td>
<td>Mahmoud E. Kamara</td>
<td>Amy Reineke Trygestad</td>
</tr>
<tr>
<td>20</td>
<td>Mahmoud E. Kamara</td>
<td>Amy Reineke Trygestad</td>
</tr>
<tr>
<td>21</td>
<td>Lawrence C. Novak</td>
<td>Mahmoud E. Kamara</td>
</tr>
<tr>
<td>22</td>
<td>Amy Reineke Trygestad</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>23</td>
<td>Mahmoud E. Kamara</td>
<td>Attila Beres</td>
</tr>
<tr>
<td>24</td>
<td>Mahmoud E. Kamara</td>
<td>Attila Beres</td>
</tr>
<tr>
<td>25</td>
<td>Mahmoud E. Kamara</td>
<td>Attila Beres</td>
</tr>
<tr>
<td>26</td>
<td>Kenneth B. Bondy</td>
<td>Amy Reineke Trygestad, Basile G. Rabbat</td>
</tr>
<tr>
<td>27</td>
<td>Basile G. Rabbat</td>
<td>Mahmoud E. Kamara</td>
</tr>
<tr>
<td>28</td>
<td>Lawrence C. Novak</td>
<td>Basile G. Rabbat</td>
</tr>
<tr>
<td>29</td>
<td>David A. Fanella</td>
<td>Attila Beres, Lawrence C. Novak</td>
</tr>
<tr>
<td>30</td>
<td>James J. Messersmith</td>
<td>Stephen V. Skalko, Basile G. Rabbat</td>
</tr>
<tr>
<td>31</td>
<td>Mahmoud E. Kamara</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>32</td>
<td>Mahmoud E. Kamara</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>33</td>
<td>Mahmoud E. Kamara</td>
<td>Lawrence C. Novak</td>
</tr>
<tr>
<td>34</td>
<td>Ronald A. Cook, Basile G. Rabbat</td>
<td>Lawrence C. Novak</td>
</tr>
</tbody>
</table>
Direct all correspondence to:
Basile G. Rabbat
Portland Cement Association
5420 Old Orchard Road
Skokie, IL 60077-1083
Tel: (847) 972-9062
Fax: (847) 972-9063
Email: brabbat@cement.org
Contents

1 General Requirements ... 1-1
UPDATE FOR THE ’08 CODE .. 1-1
BACKGROUND .. 1-1
1.1 SCOPE .. 1-1
 1.1.4 One- and Two-Family Dwellings 1-7
 1.1.7 Soil-Supported Slabs ... 1-7
 1.1.9 Provisions for Earthquake Resistance 1-8
 1.1.10 Tanks and Reservoirs ... 1-9
1.2 DRAWINGS AND SPECIFICATIONS 1-9
 1.2.1 Items Required to be Shown... 1-10
1.3 INSPECTION ... 1-10
 1.3.4 Records of Inspection ... 1-11
 1.3.5 Special Inspections .. 1-11
REFERENCES .. 1-12

2 Materials, Concrete Quality .. 2-1
CHAPTER 3—MATERIALS ... 2-1
UPDATE FOR THE ’08 CODE .. 2-1
3.1 TESTS OF MATERIALS ... 2-1
3.2 CEMENTITIOUS MATERIALS .. 2-1
3.3 AGGREGATES ... 2-3
3.4 WATER ... 2-3
3.5 STEEL REINFORCEMENT ... 2-3
 3.5.2 Welding of Reinforcement ... 2-3
 3.5.3 Deformed Reinforcement ... 2-4
CHAPTER 4—DURABILITY REQUIREMENTS 2-8
UPDATE FOR THE ’08 CODE .. 2-8
GENERAL CONSIDERATIONS ... 2-8
4.1 GENERAL ... 2-8
4.2 EXPOSURE CATEGORIES AND CLASSES 2-9
4.3 REQUIREMENTS FOR CONCRETE MIXTURES 2-9
4.4 ADDITIONAL REQUIREMENTS FOR FREEZING-AND-THAWING EXPOSURE ... 2-9
 4.4.1 Air-Entrained Concrete .. 2-9
 4.4.2 Concrete Exposed to Deicing Chemicals 2-10
CHAPTER 5—CONCRETE QUALITY, MIXING, AND PLACING 2-14
UPDATE FOR THE ’08 CODE .. 2-14
5.1.1 Concrete Proportions for Strength 2-14
5.1.3 Test Age for Strength of Concrete 2-14
5.1.6 Steel Fiber-Reinforced Concrete 2-14
5.2 SELECTION OF CONCRETE PROPORTIONS 2-15
5.3 PROPORTIONING ON THE BASIS OF FIELD EXPERIENCE
 AND TRIAL MIXTURES OR BOTH ... 2-15
 5.3.1 Sample Standard Deviation .. 2-15
 5.3.2 Required Average Strength .. 2-18
 5.3.3 Documentation of Average Compressive Strength 2-19
Design Methods and Strength Requirements 5-1

8.1 DESIGN METHODS ... 5-1
 8.1.1 Strength Design Method ... 5-2
 8.1.2 Unified Design Provisions ... 5-3

9.1 STRENGTH AND SERVICEABILITY—GENERAL 5-3
 9.1.1 Strength Requirements .. 5-3
GENERAL CONSIDERATIONS – BIAXIAL LOADING ... 7-10
BIAXIAL INTERACTION STRENGTH .. 7-10
FAILURE SURFACES .. 7-10
A. Bresler Reciprocal Load Method ... 7-12
B. Bresler Load Contour Method ... 7-13
C. PCA Load Contour Method ... 7-15
MANUAL DESIGN PROCEDURE .. 7-21
REFERENCES ... 7-21
Example 7.1—Design of Rectangular Beam with Tension Reinforcement Only ... 7-23
Example 7.2—Design of One-Way Solid Slab .. 7-27
Example 7.3—Design of Rectangular Beam with Compression Reinforcement ... 7-29
Example 7.4—Design of Flanged Section with Tension Reinforcement Only ... 7-33
Example 7.5—Design of Flanged Section with Tension Reinforcement Only ... 7-35
Example 7.6—Design of One-Way Joist ... 7-38
Example 7.7—Design of Continuous Beams ... 7-43
Example 7.8—Design of a Square Column for Biaxial Loading 7-46

8 Redistribution of Factored Maximum Moments in Continuous Flexural Members 8-1
UPDATE FOR THE ‘08 CODE .. 8-1
BACKGROUND ... 8-1
8.4 REDISTRIBUTION OF NEGATIVE MOMENTS IN CONTINUOUS
 FLEXURAL MEMBERS ... 8-1
REFERENCE ... 8-4
Example 8.1—Moment Redistribution .. 8-5
Example 8.2—Moment Redistribution .. 8-9

9 Distribution of Flexural Reinforcement .. 9-1
UPDATE FOR THE ‘08 CODE .. 9-1
GENERAL CONSIDERATIONS .. 9-1
10.6 BEAMS AND ONE-WAY SLABS .. 9-1
 10.6.4 Distribution of Tension Reinforcement ... 9-1
 10.6.5 Corrosive Environments. .. 9-3
 10.6.6 Distribution of Tension Reinforcement in Flanges of T-Beams 9-3
 10.6.7 Crack Control Reinforcement in Deep Flexural Members 9-4
13.3 TWO-WAY SLABS .. 9-5
REFERENCES ... 9-5
Example 9.1—Distribution of Reinforcement for Effective Crack Control 9-6
Example 9.2—Distribution of Flexural Reinforcement in Deep Flexural Member with Flanges 9-7

10 Deflections ... 10-1
UPDATE FOR THE ‘08 CODE .. 10-1
GENERAL CONSIDERATIONS .. 10-1
9.5 CONTROL OF DEFLECTIONS .. 10-1
 ACI 318 Method .. 10-6
 Alternate Method .. 10-7
 9.5.3 Two-Way Construction (Nonprestressed) 10-10
 9.5.4 Prestressed Concrete Construction ... 10-16
 9.5.5 Composite Construction ... 10-17
REFERENCES ... 10-20
11 Design for Slenderness Effects ... 11-1
 UPDATE FOR THE '08 CODE ... 11-1
 BACKGROUND ... 11-1
 SWAY VERSUS NONSWAY COLUMNS ... 11-3
 CONSIDERATION OF SLENDERNESS EFFECTS 11-3
 10.10 SLENDERNESS EFFECTS IN COMPRESSION MEMBERS 11-5
 10.10.1 Consideration of Slenderness Effects 11-5
 SECOND-ORDER ANALYSIS ... 11-10
 10.10.3 Nonlinear Second-order Analysis ... 11-10
 10.10.4 Elastic Second-order Analysis .. 11-10
 10.10.5 MOMENT MAGNIFICATION PROCEDURE 11-11
 10.10.6 Moment Magnification—Nonway Frames 11-11
 10.10.7 Moment Magnification—Sway Frames 11-13
 SUMMARY OF DESIGN EQUATIONS ... 11-14
 REFERENCES ... 11-18
 Example 11.1—Slenderness Effects for Columns in a Non-sway Frame ... 11-19
 Example 11.2—Slenderness Effects for Columns in a Sway Frame 11-31

12 Shear ... 12-1
 UPDATE FOR THE '08 CODE ... 12-1
 BACKGROUND ... 12-1
 11.1 SHEAR STRENGTH ... 12-1
 11.1.2 Limit on $\sqrt{V_c}$... 12-2
 11.1.3 Computation of Maximum Factored Shear Force 12-3
 8.6 LIGHTWEIGHT CONCRETE ... 12-4
 11.2 SHEAR STRENGTH PROVIDED BY CONCRETE FOR
 NONPRESTRESSED MEMBERS .. 12-4
 11.4 SHEAR STRENGTH PROVIDED BY SHEAR REINFORCEMENT 12-6
 11.4.1 Types of Shear Reinforcement ... 12-6
 11.4.4 Anchorage Details for Shear Reinforcement 12-6
 11.4.5 Spacing Limits for Shear Reinforcement 12-7
 11.4.6 Minimum Shear Reinforcement ... 12-7
 11.4.7 Design of Shear Reinforcement ... 12-7
 Design Procedure for Shear Reinforcement .. 12-8
 CHAPTER 17—COMPOSITE CONCRETE FLEXURAL MEMBERS 12-10
 17.4 VERTICAL SHEAR STRENGTH ... 12-10
 17.5 HORIZONTAL SHEAR STRENGTH .. 12-10
 17.6 TIES FOR HORIZONTAL SHEAR .. 12-11
 REFERENCES ... 12-12
 Example 12.1—Design for Shear - Members Subject to Shear and Flexure Only . 12-13
 Example 12.2—Design for Shear - with Axial Tension 12-16
13 Torsion ... 13-1
 UPDATE FOR THE ’08 CODE ... 13-1
 BACKGROUND ... 13-1
 11.5.1 Threshold Torsion ... 13-4
 11.5.2 Equilibrium and Compatibility - Factored Torsional Moment Tu 13-5
 11.5.3 Torsional Moment Strength 13-6
 11.5.4 Details of Torsional Reinforcement 13-7
 11.5.5 Minimum Torsion Reinforcement 13-8
 11.5.6 Spacing of Torsion Reinforcement 13-8
 11.5.7 Alternative Design for Torsion 13-8
 ZIA-HSU ALTERNATIVE DESIGN PROCEDURE FOR TORSION 13-8
 REFERENCES.. 13-11
 Example 13.1—Precast Spandrel Beam Design for Combined Shear and Torsion . 13-12

14 Shear Friction .. 14-1
 UPDATE FOR THE ’08 CODE ... 14-1
 BACKGROUND ... 14-1
 11.6 SHEAR-FRICTION ... 14-1
 11.6.1 Applications .. 14-2
 11.6.3 Shear-Transfer Design Methods 14-2
 11.6.4 Shear-Friction Design Method 14-2
 11.6.5 Maximum Shear-Transfer Strength 14-5
 11.6.7 Normal Forces .. 14-5
 11.6.8 — 11.6.10 Additional Requirements 14-6
 DESIGN EXAMPLES ... 14-6
 Example 14.1—Shear-Friction Design 14-7
 Example 14.2—Shear-Friction Design (Inclined Shear Plane) 14-9

15 Brackets, Corbels and Beam Ledges. 15-1
 UPDATE FOR ’08 CODE ... 15-1
 GENERAL CONSIDERATIONS ... 15-1
 11.8 PROVISIONS FOR BRACKET AND CORBELS 15-1
 BEAM LEDGES ... 15-3
 11.8.6 Development and Anchorage of Reinforcement 15-7
 REFERENCES ... 15-9
 Example 15.1—Corbel Design ... 15-10
 Example 15.2—Corbel Design ... Using Lightweight Concrete and Modified
 Shear-Friction Method ... 15-13
 Example 15.3—Beam Ledge Design 15-17

16 Shear in Slabs ... 16-1
 UPDATE FOR THE ’08 CODE ... 16-1
 11.11 SPECIAL PROVISIONS FOR SLABS AND FOOTINGS 16-1
17 Strut-And-Tie Models ... 17-1
 UPDATE FOR THE ’08 CODE ... 17-1
 BACKGROUND ... 17-1
 A.1 DEFINITIONS ... 17-1
 A.2 STRUT-AND-TIE MODEL DESIGN PROCEDURE 17-5
 A.3 STRENGTH OF STRUTS ... 17-5
 A.4 STRENGTH OF TIES ... 17-7
 A.5 STRENGTH OF NODAL ZONES .. 17-8
 REFERENCES .. 17-9
 Example 17.1—Design of Deep Flexural Member by the
 Strut-and-Tie Model .. 17-10
 Example 17.2—Design of Column Corbel 17-17
 Example 17.3—Design of Continuous Member 17-20

18 Two-Way Slab Systems ... 18-1
 UPDATE FOR THE ’08 CODE ... 18-1
 13.1 BACKGROUND ... 18-1
 13.1.4 Deflection Control—Minimum Slab Thickness 18-2
 13.2 DEFINITIONS ... 18-4
 13.2.1 Design Strip .. 18-4
 13.2.4 Effective Beam Section ... 18-4
 13.3 SLAB REINFORCEMENT ... 18-5
 13.4 OPENINGS IN SLAB SYSTEMS ... 18-6
 13.5 DESIGN PROCEDURES ... 18-6
 13.5.4 Shear in Two-Way Slab Systems 18-8
 13.5.3 Transfer of Moment in Slab-Column Connections 18-10
 SEQUEL .. 18-11

19 Two-Way Slabs — Direct Design Method 19-1
 BACKGROUND ... 19-1
 PRELIMINARY DESIGN ... 19-1
 13.6.1 Limitations ... 19-2
 13.6.2 Total Factored Static Moment for a Span 19-2
 13.6.3 Negative and Positive Factored Moments 19-5
 13.6.4 Factored Moments in Column Strips 19-6
20 Two-Way Slabs — Equivalent Frame Method 20-1
UPDATE FOR THE ‘08 CODE ... 20-1
BACKGROUND ... 20-1
PRELIMINARY DESIGN .. 20-1
 13.7.2 Equivalent Frame ... 20-1
 13.7.3 Slab-Beams .. 20-2
 13.7.4 Columns ... 20-5
 13.7.5 Torsional Members .. 20-5
 Equivalent Columns (R13.7.4) ... 20-8
 13.7.6 Arrangement of Live Load 20-9
 13.7.7 Factored Moments ... 20-10
Appendix 20A DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS .. 20-13
Example 20.1—Two-Way Slab Without Beams Analyzed by Equivalent Frame Method ... 20-20
Example 20.2—Two-Way Slab with Beams Analyzed by Equivalent Frame Method ... 20-32

21 Walls ... 21-1
UPDATE FOR THE ‘08 CODE ... 21-1
14.1 BACKGROUND .. 21-1
14.2 GENERAL .. 21-1
14.3 MINIMUM WALL REINFORCEMENT 21-2
14.4 WALLS DESIGNED AS COMPRESSION MEMBERS 21-3
14.5 EMPIRICAL DESIGN METHOD .. 21-4
14.8 ALTERNATE DESIGN OF SLENDERS WALLS 21-6
11.9 SPECIAL SHEAR PROVISIONS FOR WALLS 21-9
DESIGN SUMMARY .. 21-9
REFERENCES ... 21-11
Example 21.1—Design of Tilt-up Wall Panel by Chapter 10 (14.4) 21-12
Example 21.2—Design of Bearing Wall by Empirical Design Method (14.5) ... 21-17
Example 21.3—Design of Precast Panel by the Alternate Design Method (14.8) ... 21-19
Example 21.4—Shear Design of Wall 21-27

22 Footings .. 22-1
UPDATE FOR THE ‘08 CODE ... 22-1
GENERAL CONSIDERATIONS ... 22-1
15.2 LOADS AND REACTIONS ... 22-1
15.4 MOMENT IN FOOTINGS ... 22-2
15.5 SHEAR IN FOOTINGS ... 22-3
15.8 TRANSFER OF FORCE AT BASE OF COLUMN, WALL, OR REINFORCED PEDESTAL ... 22-5
PLAIN CONCRETE PEDESTALS AND FOOTINGS 22-6
REFERENCE ... 22-6
Example 22.1—Design for Base Area of Footing 22-7
25 Prestressed Concrete Shear ... 25-1
UPDATE FOR THE ’08 CODE ... 25-1
BACKGROUND .. 25-1
Web Shear ... 25-1
Flexure - Shear in Prestressed Concrete .. 25-2
11.1 SHEAR STRENGTH FOR PRESTRESSED MEMBERS 25-5
11.1.2 Concrete Strength .. 25-5
11.1.3 Location for Computing Maximum Factored Shear 25-5
11.3 SHEAR STRENGTH PROVIDED BY CONCRETE FOR PRESTRESSED MEMBERS .. 25-6
11.3.1 NOTATION ... 25-6
11.3.2 Simplified Method .. 25-6
11.3.3 Detailed Method ... 25-7
11.3.4, 11.3.5 Special Considerations for Pretensioned Members 25-9
11.4 SHEAR STRENGTH PROVIDED BY SHEAR REINFORCEMENT FOR PRESTRESSED MEMBERS .. 25-9
REFERENCE ... 25-9
Example 25.1—Design for Shear (11.4.1) ... 25-10
Example 25.2—Shear Design Using Fig. 25-4 25-15
Example 25.3—Design for Shear (11.4.2) ... 25-18

26 Prestressed Slab Systems ... 26-1
UPDATE FOR THE ’08 CODE ... 26-1
INTRODUCTION .. 26-1
11.11.2 Shear Strength ... 26-1
11.11.7 Shear Strength with Moment Transfer 26-2
18.3.3 Permissible Flexural Tensile Stresses 26-2
18.4.2 Permissible Flexural Compressive Stresses 26-2
18.7.2 fps for Unbonded Tendons ... 26-3
18.12 SLAB SYSTEMS ... 26-3
REFERENCES ... 26-5
Example 26.1—Two-Way Prestressed Slab System 26-6

27 Shells and Folded Plate Members .. 27-1
INTRODUCTION .. 27-1
GENERAL CONSIDERATIONS ... 27-1
19.2 ANALYSIS AND DESIGN ... 27-2
19.2.6 Prestressed Shells .. 27-2
19.2.7 Design Method ... 27-2
19.4 SHELL REINFORCEMENT ... 27-2
19.4.6 Membrane Reinforcement ... 27-2
19.4.8 Concentration of Reinforcement ... 27-3
28 Strength Evaluation of Existing Structures

UPDATE FOR THE ‘08 CODE
INTRODUCTION
20.1 STRENGTH EVALUATION - GENERAL
20.2 DETERMINATION OF REQUIRED DIMENSIONS AND MATERIAL PROPERTIES
20.3 LOAD TEST PROCEDURE
20.4 LOADING CRITERIA
20.5 ACCEPTANCE CRITERIA
20.6 PROVISION FOR LOWER LOAD RATING
20.7 SAFETY
REFERENCES

29 Earthquake-Resistant Structures

UPDATE FOR THE ‘08 CODE
BACKGROUND
GENERAL CONSIDERATIONS
21.1 GENERAL REQUIREMENTS
21.1.1 Scope
21.1.2 Analysis and Proportioning of Structural Members
21.1.3 Strength Reduction Factors
21.1.4, 21.1.5 Limitations on Materials
21.1.6 Mechanical Splices in Special Moment Frames and Special Structural Walls
21.1.7 Welded Splices in Special Moment Frames and Special Structural Walls
21.1.8 Anchoring to Concrete
21.2 Ordinary Moment Frames
21.3 INTERMEDIATE MOMENT FRAMES
21.4 INTERMEDIATE PRECAST STRUCTURAL WALLS
21.5 FLEXURAL MEMBERS OF SPECIAL MOMENT FRAMES
21.5.1 Scope
21.5.2 Longitudinal Reinforcement
21.5.3 Transverse Reinforcement
21.5.4 Shear Strength Requirements
21.6 SPECIAL MOMENT FRAME MEMBERS SUBJECTED TO BENDING AND AXIAL LOAD
21.6.1 Scope
21.6.2 Minimum Flexural Strength of Columns
21.6.3 Longitudinal Reinforcement
21.6.4 Transverse Reinforcement
21.6.5 Shear Strength Requirements
21.7 JOINTS OF SPECIAL MOMENT FRAMES
21.7.3 Transverse Reinforcement
21.7.4 Shear Strength
21.7.5 Development Length of Bars in Tension
21.8 SPECIAL MOMENT FRAMES CONSTRUCTED USING PRECAST CONCRETE
21.8.2 Special Moment Frames with Ductile Connections
21.8.3 Special Moment Frames with Strong Connections
REFERENCES
D.5.4 Concrete Side-Face Blowout Strength of Headed Anchor in Tension 34-12
D.6 DESIGN REQUIREMENTS FOR SHEAR LOADING ... 34-12
 D.6.1 Steel Strength of Anchor in Shear ... 34-12
 D.6.2 Concrete Breakout Strength of Anchor in Shear 34-13
 D.6.3 Concrete Pryout Strength of Anchor in Shear .. 34-13
D.7 INTERACTION OF TENSILE AND SHEAR FORCES .. 34-14
D.8 REQUIRED EDGE DISTANCES, SPACING, AND THICKNESSES TO PRECLUDE
 SPLITTING FAILURE ... 34-14
D.9 INSTALLATION OF ANCHORS .. 34-14
NOTES FOR TENSION TABLES 34-5A, B AND C .. 34-15
NOTES FOR SHEAR TABLES 34-6A, B AND C ... 34-16
Example 34.1—Single Headed Bolt in Tension Away from Edges 34-31
Example 34.2—Group of Headed Studs in Tension Near an Edge 34-36
Example 34.3—Group of Headed Studs in Tension Near an Edge with Eccentricity 34-41
Example 34.4—Single Headed Bolt in Shear Near an Edge 34-45
Example 34.5—Single Headed Bolt in Tension and Shear Near an Edge 34-53
Example 34.6—Group of L-Bolts in Tension and Shear Near Two Edges 34-59
Example 34.7—Group of Headed Bolts in Moment and Shear Near an Edge in a Region of
 Moderate or High Seismic Risk .. 34-69
Example 34.8—Group of Headed Bolts in Tension Near an Edge in Structures Assigned to
 Seismic Design Category C, D, E, or F ... 34-80
Example 34.9—Single Post-Installed Anchor in Tension and Shear Away from Edges 34-85
UPDATE FOR THE ‘08 CODE

Three definitions have been added to the ’08 code and a fourth definition has been revised; all of which need to be mentioned here since the three new terms are used in the code. The new defined terms are contract documents, seismic design category, and work.

Contract documents are “documents, including the project drawings and project specifications, covering the required work.” Note that this definition includes “work” which is also a newly defined term.

Seismic design category is “a classification assigned to a structure based on its occupancy category and the severity of the design earthquake ground motion at the site, as defined by the legally adopted general building code.” This definition is part of a comprehensive change made throughout the ’08 code to change from the previous terminologies of addressing different levels of seismic risk to the terminology currently used in the International Building Code (IBC), NFPA 5000, ASCE 7, and NEHRP Provisions. See additional discussion on this topic in the section on 1.1.9.

Work is “the entire construction or separately identifiable parts thereof that are required to be furnished under the contract documents.”

In the ’08 code, the former term “registered design professional” has been changed to **licensed design professional** which is now defined as “an individual who is licensed to practice structural design as defined by the statutory requirements of the professional licensing laws of the state or jurisdiction in which the project is to be constructed and who is in responsible charge of the structural design; in other documents, also referred to as registered design professional.” As the definition indicates, some building codes, including the IBC and NFPA 5000, refer to this individual as the registered design professional.

BACKGROUND

A significant renaming of the ACI 318 standard took place with the 1995 edition; in the document title, “Reinforced Concrete,” was changed to “Structural Concrete” in recognition of the then new Chapter 22 - Structural Plain Concrete. Prior to the ‘95 code, design and construction requirements for structural members of plain concrete were contained in a separate companion document to ACI 318, designated ACI 318.1. The requirements for structural plain concrete of the former ACI 318.1 code are now incorporated in Chapter 22.

1.1* SCOPE

As the name implies, Building Code Requirements for Structural Concrete (ACI 318-08) is meant to be adopted by reference in a general building code, to regulate the design and construction of buildings and structures of concrete. Section 1.1.1 emphasizes the intent and format of the ACI 318 document and its status as part of a

Section numbers correspond to those of ACI 318-08.
legally adopted general building code. The ACI 318 code has no legal status unless adopted by a state or local jurisdiction having power to regulate building design and construction through a legally appointed building official. It is also recognized that when the ACI code is made part of a legally adopted general building code, that general building code may modify some provisions of ACI 318 to reflect local conditions and requirements. For areas where there is no general building code, there is no law to make ACI 318 the “code.” In such cases, the ACI code defines minimum acceptable standards of design and construction practice, even though it has no legal status.

A provision in 1.1.1, new to ACI 318-02 and unchanged in ACI 318-08 requires that the minimum specified compressive strength of concrete be not less than 2500 psi. This provision is also included in 5.1.1. While the commentary does not explain why this provision was added, it was most likely included because an identical requirement was in The BOCA National Building Code (NBC), and Standard Building Code (SBC) for several editions, and it was also included in the 2000 International Building Code (IBC) and remains in the 2006 IBC.

Also new to 1.1.1 of ACI 318-02 and unchanged in ACI 318-08 is a statement that “No maximum value of f'_c shall apply unless restricted by a specific Code provision.” The impetus for adding this was the fact that some local jurisdictions, most notably in southern California, were in effect, if not formally, imposing maximum limits on strength of concrete used in structures in regions of high seismic risk (UBC Seismic Zone 3 or 4). Committee 318 felt that it was advisable to add the statement to make it known to regulators that possible need for limitations on concrete strength are considered when new code provisions are introduced, and unless concrete strength is specifically limited by other provisions of ACI 318, no maximum upper limit on strength is deemed necessary. The Committee has been making adjustments in the standard on an ongoing basis to account for sometimes differing properties of high-strength concrete.

In the past, most jurisdictions in the United States adopted one of the three following model building codes, now referred to as legacy codes, to regulate building design and construction. The BOCA National Building Code (NBC)\(^1\)-\(^1\), published by the Building Officials and Code Administrators International, was used primarily in the northeastern states; the Standard Building Code (SBC)\(^1\)-\(^2\), published by the Southern Building Code Congress International, was used primarily in the southeastern states; and the Uniform Building Code (UBC)\(^1\)-\(^3\), published by the International Conference of Building Officials, was used mainly in the central and western United States. All three of these model codes used the ACI 318 standard to regulate design and construction of structural elements of concrete in buildings or other structures. The BOCA National Building Code and the Standard Building Code adopted ACI 318 primarily by reference, incorporating only the construction requirements (Chapter 3 through 7) of ACI 318 directly within Chapter 19 of their documents. The Uniform Building Code reprinted ACI 318 in its entirety in Chapter 19. It is essential that designers of concrete buildings in jurisdictions still regulated by the UBC refer to Chapter 19, as some ACI 318 provisions were modified and some provisions were added to reflect, in most cases, more stringent seismic design requirements. To clearly distinguish where the UBC differed from ACI 318, the differing portions of UBC Chapter 19 were printed in italics.

Many states and local jurisdictions that formerly adopted one of the three legacy codes, have adopted the International Building Code (IBC), developed by the International Code Council. The 2000 edition (first edition) of the IBC\(^1\)-\(^4\) adopted ACI 318-99 by reference, and the 2003 edition of the IBC\(^1\)-\(^5\) adopted ACI 318-02 by reference. In the 2000 and 2003 editions of the IBC, portions of Chapters 3–7 of ACI 318 were included in IBC Sections 1903–1907. The 2006 edition of the IBC\(^1\)-\(^6\) adopted ACI 318-05; however, the text from Chapters 3–7 of ACI 318 that had been incorporated in previous editions of the IBC was removed and replaced with references to the ACI code. A few modifications have been made to ACI 318 provisions within IBC Section 1903–1907 and these are indicated by the text printed in italics. Additional modifications to provisions in other Chapters of ACI 318 are contained in IBC Section 1908. Many of these were necessary to coordinate ACI 318 provisions for seismic design (Chapter 21) with the IBC’s seismic design provisions.

As this book goes to press, it is anticipated that the 2009 edition of the IBC will adopt ACI 318-08 by reference. IBC Section 1908 will continue to contain modifications to the provisions of ACI 318, most of which are related to seismic design issues.
In the fall of 2002, the National Fire Protection Association (NFPA) issued the first edition (2003) of its *Building Construction and Safety Code NFPA 5000*\(^1\) which adopted ACI 318-02 by reference. While there were no modifications to ACI 318 within the first edition of NFPA 5000, it adopted the modifications to ACI 318 contained in Section A.9.9 of ASCE 7-02\(^1\). The 2006 edition of NFPA 5000\(^1\) adopted ACI 318-05 by reference and the modifications to ACI 318 in Section 14.2.2 of ASCE 7-05, including supplement No. 1\(^1\), were also adopted by reference.

As this book goes to press, the 2009 edition of NFPA 5000 is nearing completion and it is anticipated that it will adopt ACI 318-08 by reference. Since the latest edition of ASCE 7 continues to be 2005, it will be the loading standard referenced in the 2009 edition of NFPA 5000. This has the potential to cause confusion among code users because ASCE 7-05 adopts ACI 318-05 and makes modifications to ACI 318-05 in Section 14.2.2. To resolve any potential problems, Section 41.5.1 of NFPA 5000 will contain modifications to ACI 318-08 that will be used in lieu of the modifications in Section 14.2.2 of ASCE 7-05. The modifications to ACI 318-08 that will be in the 2009 edition of NFPA 5000 are essentially identical to those that will be in the 2009 IBC. Only a few jurisdictions scattered throughout the country have adopted NFPA 5000 and it appears that it will not be able to supplant the IBC as the model code of choice. However, NFPA continues to update and promote the code because it is being used on some very large projects throughout the remainder of the world.

Whichever building code governs the design, be it a model code or locally developed code, the prudent designer should always refer to the governing code to determine the edition of ACI 318 that is adopted and if there are any modifications to it.

Seismic Design Practice — Earthquake design requirements in two of the three legacy codes were based on the 1991 edition of the *NEHRP (National Earthquake Hazards Reduction Program) Recommended Provisions for the Development of Seismic Regulations for New Buildings*.\(^1\) The BOCA National Building Code (NBC) and the Standard Building Code (SBC) incorporated the NEHRP recommended provisions into the codes, with relatively few modifications. The *Uniform Building Code* (UBC), which traditionally followed the lead of the Structural Engineers Association of California (SEAOC), had its seismic provisions based on the *Recommended Lateral Force Requirements and Commentary*\(^1\) (the SEAOC “Blue Book”) published by the Seismology Committee of SEAOC. The *SEAOC Blue Book* in its 1996 and 1999 editions, adopted many of the features of the 1994 NEHRP provisions.\(^1\)

The designer should be aware that there were important differences in design methodologies between the UBC and the NBC and SBC for earthquake design. Even with the different design methodologies, it is important to note that a building designed under the NBC or SBC earthquake design criteria and the UBC criteria provided a similar level of safety and that the two sets of provisions (NBC and SBC versus UBC) were substantially equivalent. See Ref. 1.\(^4\).

The seismic design provisions of the 2000 edition of the *International Building Code*, were based on the 1997 edition of the *NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures*.\(^1\) Major differences between the 2000 IBC and the NBC and SBC seismic provisions, that were based on the ’91 NEHRP Provisions\(^1\), included:

1. Seismic ground motion maps of the 1991 edition were replaced with spectral response acceleration maps at periods of 0.2 second and 1.0 second.

2. The 1991 maps gave ground motion parameters that had a 10% probability of exceedance in 50 years (i.e., approximately a 475-year return period). The 1997 maps were based on a maximum considered earthquake (MCE), and for most regions the MCE ground motion was defined with a uniform likelihood of exceedance of 2% in 50 years (return period of about 2500 years).

3. Seismic detailing requirements were triggered by building use and estimated ground motion on rock in the ’91 edition; whereas, under the ’97 NEHRP the trigger was revised to include the amplifying effects of soft
soils overlying rock. This might require buildings on soft soils in areas that were traditionally considered to be subject to low or moderate seismic hazard to be detailed for moderate and high seismic risk, respectively.

4. In the ’91 edition, the amplifying effects of soft soils were ignored in calculating the design base shear for short period buildings. These effects were now taken into consideration, and resulted in significant increases in base shear for short period buildings on soft soils in areas subject to low seismic hazard.

5. A reliability/redundancy factor was introduced for buildings subject to high seismic risk. This was done to force designers to either add redundancies to the seismic force-resisting system or to pay a penalty in the form of designing for a higher base shear.

6. Under the ‘97 NEHRP it became a requirement to design every building for a lateral force at each floor equal to 1% of the effective seismic weight at that level. Seismic design of buildings subject to negligible or very low seismic risk (e.g., located in Seismic Zone 0, or assigned to SPC A) has traditionally not been required by building codes. This new requirement meant that in areas where seismic design had traditionally been ignored (e.g., south Florida, and much of Texas), designers now needed to make sure that these so-called index forces did not control the design of the lateral force-resisting system. These index forces instead of wind are liable to control design of the lateral force-resisting system of larger concrete buildings, such as parking structures, or long narrow buildings, such as hotels/motels.

For a comprehensive comparison of the major differences between the seismic design requirements of the 2000 IBC, and the last editions of the NBC, SBC and UBC, see Impact of the Seismic Design Provisions of the International Building Code1.16.

The seismic design requirements of the 2003 IBC are based on ASCE 7-02, which in turn is based on the 2000 edition of the NEHRP (National Earthquake Hazards Reduction Program) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures1.17. A comprehensive discussion of changes in the structural provisions from the 2000 to the 2003 IBC has been provided in Ref. 1.18. The 2003 IBC saw the beginning of a philosophical shift from the code containing almost all the seismic design provisions, as was the case with the 2000 IBC, to one in which the code only has the simplified design provisions. For design of buildings requiring other than simplified analysis procedures, the 2003 IBC references ASCE 7-02. The 2006 IBC carried this shift to its conclusion and removed virtually all the seismic design provisions from the code and references the provisions of ASCE 7-05, including its Supplement Number 1. It should be pointed out that ASCE 7-05 is based on the 2003 edition of the NEHRP (National Earthquake Hazards Reduction Program) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures1.19. Supplement Number 1 to ASCE 7-05 updates the seismic design provisions by referencing the latest editions of material design standards, such as ACI 318-05. It is anticipated that the 2009 edition of the IBC will continue to reference ASCE 7-05; however, it is expected that the reference will also include supplement #2 to ASCE 7-05.

Editions of ASCE 7 prior to 2005 imposed a minimum design base shear equal to 0.044S_{DS}IW applicable to structures of all seismic design categories, where S_{DS} is the short-period design spectral acceleration, I is the importance factor, and W is the effective seismic weight. This minimum design base shear was deleted from ASCE 7-05 because the design spectrum of ASCE 7-05 includes a new constant-displacement branch, which governs the seismic response of structures with elastic fundamental period exceeding a “long-period transition period,” which ranges between 4 and 16 seconds. It was felt that an arbitrary minimum base shear was no longer needed because long-period structures were specifically being addressed by the new branch to the design spectrum. Supplement #2 to ASCE 7-05 reinstates the minimum design base shear of 0.044S_{DS}IW, because it has now been concluded that the removal of that minimum design base shear from ASCE 7-05 was a mistake.

For seismic design, the 2003 edition of NFPA 5000 adopts by reference ASCE 7-02, and the 2006 edition of NFPA 5000 adopts ASCE 7-05, including Supplement No. 1. It is anticipated that the 2009 edition of NFPA 5000 will reference ASCE 7-05, including Supplements Numbers 1 and 2.
Differences in Design Methodology — The UBC earthquake design force level was based on the seismic zone, the structural system, and the building use (occupancy). These design considerations were used to determine a design base shear. As the anticipated level of ground shaking increased, the design base shear increased. Similarly, as the need for post-disaster functionality increased, the design base shear was increased.

As with the UBC, the NBC and the SBC provisions increased the design base shear as the level of ground shaking increased. In the NBC and SBC, this was done not through a seismic zone factor \(Z \) like the UBC, but through a coefficient \(A_v \) representing effective peak velocity-related acceleration or a coefficient \(A_a \) representing effective peak acceleration. For definitions of these terms, see the Commentary to the NEHRP Provisions.1.11 These two quantities were given on separate contour maps that took the place of the seismic zoning map of the UBC. The NBC and the SBC utilized a “seismic performance category” (SPC) that took into account the level of seismicity and the building occupancy. Based on the SPC of the building, different design criteria such as drift limits and detailing requirements were specified. The IBC provision also increase the design base shear as the level of ground shaking increases. However, in the IBC, the \(A_a \) and \(A_v \) maps are replaced with spectral response acceleration maps at periods of 0.2 second and 1.0 second, respectively, the IBC replaces the “seismic performance category” of the NBC and the SBC with a “seismic design category” (SDC). This is more than a change of terminology, because in addition to considering the occupancy of the structure and the estimated ground motion on rock, also considered is the modification of ground motion due to the amplifying effects of soft soils overlying rock. Based on the SDC of the building, different design criteria such as drift limits and detailing requirements are specified. As in the UBC, the NBC and the SBC, the IBC earthquake provisions factor into design the effects of site geology and soil characteristics and the type and configuration of the structural framing system.

Another major difference between the provisions of the 1994 and earlier editions of the UBC and those of the IBC, NBC and SBC is in the magnitude of the design base shear. The designer should note that the earthquake design forces of the IBC, NBC and SBC, and the 1994 and earlier editions of the UBC cannot be compared by simply looking at the numbers, since one set of numbers is based on strength design and the other set is based on working or allowable stress design. NBC and SBC design earthquake forces were strength level while pre-1997 UBC forces were service load level. IBC also provides strength level design earthquake forces. The difference shows up in the magnitude of the response modification coefficient, commonly called the “R” factor. In the NBC and SBC provisions, the term was \(R \); in the IBC, the term is \(R \); in the pre-1997 UBC it was \(R_w \), with the “w” subscript signifying “working” load level design forces. The difference also becomes apparent in the load factors to be applied to the earthquake force effects (\(E \)). In the NBC and SBC, the load factor for earthquake force effects was 1.0, as it is in the IBC. In the pre-1997 UBC, for reinforced concrete design, a load factor of 1.4 was applied to the earthquake force effects. Thus, for reinforced concrete, when comparing the base shear calculated by the pre-1997 UBC with that calculated by the 2000, 2003, or 2006 IBC, or 1993, 1996 or 1999 NBC, or the 1994, 1997 or 1999 SBC, the designer must multiply the UBC base shear by 1.4.

The seismic design force of the 1997 UBC was at strength level, rather than service level. The change was accomplished by changing the former response modification factors, \(R_w \), to strength-based R-factors, similar to those found in the IBC, NBC and SBC. Since the load combinations of Section 9.2 of ACI 318-95, reproduced in Section 1909.2 of the 1997 UBC, were intended to be used with service level loads, the UBC had to adopt strength-based load combinations that were intended to be used with strength level seismic forces. Therefore, the 1997 UBC required that when concrete elements were to be designed for seismic forces or the effects thereof, the strength-based load combinations of UBC Section 1612.2.1 must be used. These load combinations were based on the load combinations of ASCE 7-95. The 1997 UBC also required that when concrete elements were being designed for seismic forces or the effects thereof using the UBC load combination, a multiplier of 1.1 must be applied to amplify the required strengths. This was felt to be necessary at the time because of a presumed incompatibility between the strength reduction factors of Section 9.3 of ACI 318 and the strength design load combination of ASCE 7-95 that were incorporated into the 1997 UBC. After actual seismic designs were performed using the 1997 UBC provisions, it was apparent that use of the 1.1 multiplier resulted in overly conservative designs when compared to the 1994 UBC. Based on a study of the appropriateness of using the multiplier, the SEAOC Seismology Committee has gone on record recommending that it not be used. For addi-
ritional information on this subject, see Ref. 1.21. The multiplier has now been removed from the 2001 California Building Code1.22, which is based on the 1997 UBC.

The vertical distribution of base shear along the height of a building also differs between the UBC and the IBC, NBC and SBC. For shorter buildings (with a fundamental period less than or equal to 0.7 second), the UBC required that the design base shear be distributed to the different floor levels along the height in proportion to the product of the weights assigned to floor levels and the heights of the floors above the building base (in accordance with the first mode of vibration of the building). For taller buildings (with fundamental period greater than 0.7 second), the design base shear was divided into two parts. The first part was applied as a concentrated force at the top of the building (to account for higher modes of vibration), with the magnitude being in proportion to the fundamental period of the building, this concentrated force was limited to 25% of the design base shear. The remainder of the design base shear was required to be distributed as specified for shorter buildings. In the NBC and SBC, a fraction of the base shear was applied at a floor level in proportion to the product of weight applied to the floor and height (above the base) raised to the power k, where k is a coefficient based on building period. The IBC and SBC specify a k of 1 (linear distribution of V) for \(T \leq 0.5 \text{ sec.} \). These loads specified a k of 2 (parabolic distribution of V) for \(T \geq 2.5 \text{ sec.} \). For \(0.5 \text{ sec.} < T < 2.5 \text{ sec.} \), two choices were available. One might interpolate between a linear and a parabolic distribution by finding a k-value between 1 and 2, depending upon the period; or one might use a parabolic distribution (k = 2), which is always more conservative. The IBC uses the same distribution as the NBC and the SBC.

Lastly, the detailing requirements, also termed ductility or toughness requirements, which are applicable to structures in regions of moderate to high seismic risk, or assigned to intermediate or high seismic performance or design categories, were similar in the three legacy codes. These requirements are essential to impart to buildings the ability to deform beyond the elastic limit and to undergo many cycles of extreme stress reversals. Fortunately, for reinforced concrete structures, all three legacy codes adopted and the IBC now adopts the ACI 318 standard including Chapter 21 — Earthquake-Resistant Structures. However, the designer will need to refer to the governing model code for any modifications to the ACI 318 seismic requirements. Portions of UBC Chapter 19 that differ substantially from the ACI were printed in italics. The NBC and SBC also included some modifications to the ACI document, most notably for prestressed concrete structures assigned to SPC D or E. Likewise, the 2000 IBC included modifications to ACI 318 in Section 1908, most of which recognize precast concrete systems not in Chapter 21 of ACI 318-99 for use in structures assigned to SDC D, E or F. Section 1908 of the 2003 IBC contains fewer modifications partly because design provisions for precast concrete structures in SDC D, E or F were included in ACI 318-02. Section 1908 of the 2006 IBC, which is based on ACI 318-05, continues to have some modifications to ACI 318. It is anticipated that the 2009 edition of the IBC, which will be based on ACI 318-08, will also have some modifications to ACI 318 in Section 1908.

Metric in Concrete Construction — Metric is back. In 1988, federal law mandated the metric system as the preferred system of measurement in the United States. In July 1990, by executive order, all federal agencies were required to develop specific timetables for transition to metric. Some federal agencies involved in construction generally agreed to institute the use of metric units in the design of federal construction by January 1994.

The last editions of the three legacy codes featured and the IBC features both inch-pound (U.S. Customary) and SI-metric (Systeme International) units. The “soft” metric equivalents were or are given in the three legacy codes, generally in parentheses after the English units.

It is noteworthy that when metric conversion was first proposed in the 1970s, some of the standards-writing organizations began preparing metric editions of some of their key documents. The American Concrete Institute first published a “hard” metric companion edition to the ACI 318 standard, ACI 318M-83, in 1983. The current ACI 318 standard is available as ACI 318-08 (U.S. Customary units), ACI 318M-08 (SI-metric units), and ACI 318S-08 (Spanish with SI-metric units). ACI 318M-05 was in soft metric, rather than hard metric as previous versions had been, and ACI 318M-08 continues to be a soft metric version of ACI 318-08. Since ACI 318M and ACI 318S are derivatives of ACI 318, ACI 318-08 (U.S. Customary units) is the official version. Within the same
time period, the American Society for Testing and Materials (ASTM) published metric companions to many of its ASTM standards. For example, Standard Specifications A615M and A706M for steel bars for concrete reinforcement were developed as metric companions to A615 and A706. The older editions of these metric standards were in rounded metric (hard metric) numbers and included ASTM standard metric reinforcing bars. Due to the expense of maintaining two inventories, one for bars in inch-pound units and another for bars in hard metric units, reinforcing bar manufacturers convinced the standards writers to do away with the hard metric standards and develop metric standards based upon soft conversion of ASTM standard inch-pound bars. The latest editions of the ASTM metric reinforcing bar standards reflect this philosophy. Since all federally financed projects have to be designed and constructed in metric, bar manufacturers decided in 1997 that rather than produce the same bars with two different systems of designating size and strength (i.e., inch-pound and metric), they would produce bars with only one system of marking and that would be the system prescribed for the soft metric converted bars. Thus, it is now commonplace to see reinforcing bars with metric size and strength designations on a job that was designed in inch-pound units. It is important to remember that if this occurs on your job, the bars are identical to the inch-pound bars that were specified, except for the markings designating size and strength.

This Tenth edition of the “Notes” is presented in the traditional U.S. Customary units. Largely because of the large volume of this text, unlike in most other PCA publications, no soft metric conversion has been included.

1.1.4 One- and Two-Family Dwellings

Section 1.1.4 is new to the ‘08 code. It permits the use of ACI 332-04, Requirements for Residential Concrete Construction, for design and construction of concrete elements within its scope for one- and two-family dwellings, multiple single-family dwellings (townhouses), and their accessory structures. The scope of ACI 322 includes design and construction requirements for the following cast-in-place concrete elements: wall footings, including thickened slab footings, isolated footings, basement or foundation walls constructed with removable forms, and slabs-on-ground. ACI 332-04 does not apply to above-grade walls, precast foundation walls, basement or foundation walls cast in stay-in-place forms (e.g., insulating concrete forms), or to post-tensioned slabs-on-ground. In addition, it does not apply where design is required to resist seismic forces. ACI 332 contains prescriptive designs for footings and foundation walls, and analytical design procedures for foundation walls based on ACI 318, but with modifications to some ACI 318 requirements. ACI 332 is permitted as an alternative to the use of ACI 318, and the licensed design professional makes the decision whether to use it or not.

1.1.7 Soil-Supported Slabs

Prior to the 1995 edition of the code, it did not explicitly state whether soil-supported slabs, commonly referred to as slabs-on-grade or slabs-on-ground, were regulated by the code. They were explicitly excluded from the 1995 edition of ACI 318 “…unless the slab transmits vertical loads from other portions of the structure to the soil.” The 1999 edition expanded the scope by regulating slabs-on-ground that “…transmit vertical loads or lateral forces from other portions of the structure to the soil.” Mat foundation slabs and other slabs-on-ground which help support the structure vertically and/or transfer lateral forces from the supported structure to the soil should be designed according to the applicable provisions of the code, especially Chapter 15 — Footings. The design methodology for typical slabs-on-ground differs from that for building elements, and is addressed in References 1.24 and 1.25. Reference 1.24 describes the design and construction of concrete floors on ground for residential, light industrial, commercial, warehouse, and heavy industrial buildings. Reference 1.25 gives guidelines for slab thickness design for concrete floors on grade subject to loadings suitable for factories and warehouses.

In addition to the requirements of 1.1.7, Section 21.12.3.4 indicates that “slabs-on-ground that resist seismic forces from walls or columns that are part of the seismic-force-resisting system shall be designed as structural diaphragms in accordance with 21.11.” In this location of Chapter 21, the provisions only apply to buildings or structures. In addition to the requirements of 1.1.7, Section 21.12.3.4 indicates that “slabs-on-ground that resist seismic forces from walls or columns that are part of the seismic-force-resisting system shall be designed as structural diaphragms in accordance
with 21.11.” In this location of Chapter 21, the provisions only apply to buildings or structures assigned to Seismic Design Category D, E or F. For buildings or structures assigned to Seismic Design Category A, B or C, the provisions of Chapters 1 through 18, or Chapter 22 apply to such slabs, by virtue of the provision in 1.1.7 (see Table 1-3).

1.1.9 Provisions for Earthquake Resistance

Changes to Sections 1.1.9.1, 1.1.9.2 and other sections throughout the ‘08 code, complete a transition process that began with the terminology used within the 1999 edition of the code to refer to the various seismic risk levels. Prior to the 1999 code, seismic risk was addressed in terms of “low,” “moderate,” or “high.” The ‘08 edition of the code has adopted the terminology used in the recent editions of ASCE 7 and NEHRP Provisions, and all the editions of the IBC and NFPA 5000; that being “seismic design category.” The transition from the pre-1999 edition of the code to the ‘08 code is explained in the following paragraphs.

1.1.9.1 Seismic Design Category Specified in General Building Code – Prior to the 1999 code, the code traditionally addressed levels of seismic hazard as “low,” “moderate,” or “high.” Precise definitions of seismic hazard levels are under the jurisdiction of the general building code, and have traditionally been designated by zones (related to intensity of ground shaking). The model codes specify which sections of Chapter 21 must be satisfied, based on the seismic hazard level. As a guide, in the absence of specific requirements in the general building code, seismic hazard levels and seismic zones generally correlate as follows:

<table>
<thead>
<tr>
<th>Seismic Hazard Level</th>
<th>Seismic Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0 and 1</td>
</tr>
<tr>
<td>Moderate</td>
<td>2</td>
</tr>
<tr>
<td>High</td>
<td>3 and 4</td>
</tr>
</tbody>
</table>

The above correlation of seismic hazard levels and seismic zones refers to the Uniform Building Code1.3.

However, with the adoption of the 1991 NEHRP Provisions into The BOCA National Building Code and the Standard Building Code, the designer needed to refer to the governing model code to determine the appropriate seismic hazard level and corresponding special provisions for earthquake resistance. The NBC, SBC, and ’91 NEHRP Provisions, on which the seismic design requirements of the two legacy model codes were based, assigned a building to a Seismic Performance Category (SPC). The SPC expressed hazard in terms of the nature and use of the building and the expected ground shaking on rock at the building site. To determine the SPC of a structure, one had to first determine its Seismic Hazard Exposure Group. Essential facilities were assigned to Seismic Hazard Exposure Group III, assembly buildings and other structures with a large number of occupants were assigned to Group II. Buildings and other structures not assigned to Group II or III, were considered to belong to Group I (see the governing code for more precise definitions of these Seismic Hazard Exposure Groups). The next step was to determine the effective peak velocity-related acceleration coefficient, A_v, given on a contour map that formed part of the NBC and the SBC. With these two items, the structure’s SPC could be determined from a table in the governing code that was similar to Table 1-2, which is reproduced from the 1991 NEHRP Provisions.

<table>
<thead>
<tr>
<th>Value of A_v</th>
<th>Seismic Hazard Exposure Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_v < 0.05$</td>
<td>A A A</td>
</tr>
<tr>
<td>$0.05 \leq A_v < 0.10$</td>
<td>B B C</td>
</tr>
<tr>
<td>$0.10 \leq A_v < 0.15$</td>
<td>C C C</td>
</tr>
<tr>
<td>$0.15 \leq A_v < 0.20$</td>
<td>C D D</td>
</tr>
<tr>
<td>$0.20 \leq A_v$</td>
<td>D D E</td>
</tr>
</tbody>
</table>
In the 2000 and 2003 editions of the International Building Code (IBC), the seismic design requirements are based on the 19971.15 and 20001.17 edition of the NEHRP Provisions, respectively. The seismic design provisions in the 2006 IBC are based on ASCE 7-051.10, which in turn is based on the 2003 edition of the NEHRP Provisions1.19. In the IBC the seismic hazard is expressed in a manner that is similar to that of the NBC and the SBC, but with one important difference. The IBC also considers the amplifying effects of softer soils on ground shaking in assigning seismic hazard. The terminology used in the IBC for assigning hazard and prescribing detailing and other requirements is the Seismic Design Category (SDC). The SDC of a building is determined in a manner similar to the SPC in the NBC and the SBC. First the building is assigned to an Occupancy Category (OC), which is similar to the Seismic Hazard Exposure Group of the NBC and the SBC. At this point the IBC process becomes more involved. Instead of determining one mapped value of expected ground shaking, two spectral response acceleration values are determined from two different maps; one for a short (0.2 second) period and the other for a period of 1 second. These values are then adjusted for site soil effects and multiplied by two-thirds to arrive at design spectral acceleration values. Knowing the OC and the design spectral response acceleration values (S_{DS} and S_{D1}), one enters two different tables to determine the SDC based on the two design values. The governing SDC is the higher of the two, if they differ.

As a guide, for purposes of determining the applicability of special proportioning and detailing requirements of Chapter 21 of the ACI code, Table 1-3 shows the correlation between UBC seismic zones; the Seismic Performance Categories of the NBC, SBC, 1994 (and earlier) NEHRP and ASCE 7-95 (and earlier); and the Seismic Design Categories of the IBC, NFPA 5000, 1997 (and later) NEHRP, and ASCE 7-98 (and later).

1.1.9.2 Structures Assigned to Seismic Design Categories A and B

For concrete structures assigned to Seismic Design Category (SDC) A or B, no or minor risk of damage due to an earthquake is anticipated. Consequently, for structures assigned to SDC A, no special design or detailing is required; thus, the general requirements of the code, excluding Chapter 21, apply (see 21.1.1.3). For structures assigned to SDC B, the analysis and proportioning requirements of 21.1.2 apply, plus the provisions of 21.2 apply to ordinary moment frames (see 21.1.1.7(a)). With the exception of the requirements noted for structures assigned to SDC B, concrete structures proportioned by the general requirements of the code (not including Chapter 21) are considered to have a level of toughness adequate for structures assigned to SDC A or B since only low earthquake ground motions are expected. Structures assigned to Seismic Design Category C must comply with 21.1.1.5, and structures assigned to Seismic Design Category D, E or F must comply with 21.1.1.6. It should be pointed out that Chapter 21 of the ‘08 code does not indicate the type of seismic-force-resisting system that is required for the various seismic design categories. Section 21.1.1.7 indicates that this is to be determined from “the legally adopted general building code of which this Code forms a part, or determined by other authority having jurisdiction in areas without a legally adopted building code.” Generally this will mean that ASCE 7 will be used to determine the types of seismic-force-resisting systems permitted for a structure assigned to a specific seismic design category.

1.1.10 Tanks and Reservoirs

Section 1.1.10 is new to the ‘08 code and indicates that tanks and reservoirs are not within the scope of the code. The commentary refers the user to ACI 350-06, *Code Requirements for Environmental Engineering Concrete Structures*,1.26 In addition, the designer may also find the following two publications of the Portland Cement Association of value in designing and constructing tanks: *Rectangular Concrete Tanks*,1.27 and *Design of Liquid-Containing Concrete Structures for Earthquake Forces*.1.28

1.2 DRAWINGS AND SPECIFICATIONS

If the design envisioned by the engineer is to be properly implemented in the field, adequate information needs to be included on the drawings or in the specifications, collectively known as the contract documents. The code has for many editions included a list of items that need to be shown on the contract documents.
1.2.1 Items Required to be Shown

The information required to be included as a part of the contract documents remains essentially unchanged from the 1999 code; however, in the 2002 code item “e” was expanded to require that anchors be shown on the drawings. Enough information needs be shown so anchors can be installed with the embedment depth and edge distances the engineer assumed in the design. In addition, where “anchor reinforcement” or “supplemental reinforcement” (see definitions in D.1) was assumed in the design, the location of the reinforcement with respect to the anchors needs to be indicated.

Table 1-3 – Correlation Between Seismic Design Categories of ACI 318-08, Previous Editions of the Code and Other Codes, Standards and Resource Documents

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI 318-95 and before</td>
<td>Low seismic risk, Moderate seismic risk, High seismic risk</td>
</tr>
<tr>
<td>ACI 318-99, ACI 318-02, ACI 318-05</td>
<td>Regions of low seismic risk or for structures assigned to low seismic performance or design categories, Regions of moderate seismic risk or for structures assigned to intermediate seismic performance or design categories, Regions of high seismic risk or for structures assigned to high seismic performance or design categories</td>
</tr>
<tr>
<td>Uniform Building Code 1991, 1994, 1997</td>
<td>Seismic Zone 0, 1, Seismic Zone 2, Seismic Zone 3, 4</td>
</tr>
<tr>
<td>NFPA 5000-2003, 2006</td>
<td>SDC2 A, B, SDC C, SDC D, E, F</td>
</tr>
<tr>
<td>ASCE3 7-93, 7-95</td>
<td>SPC1 A, B, SPC C, SPC D, E</td>
</tr>
<tr>
<td>NEHRP4 1991, 1994</td>
<td>SPC1 A, B, SPC C, SPC D, E</td>
</tr>
<tr>
<td>ASCE3 7-98, 7-02, 7-05</td>
<td>SDC2 A, B, SDC C, SDC D, E, F</td>
</tr>
<tr>
<td>NEHRP5 1997, 2000, 2003</td>
<td>SDC2 A, B, SDC C, SDC D, E, F</td>
</tr>
</tbody>
</table>

1. SPC = Seismic Performance Category as defined in building code, standard or resource document
2. SDC = Seismic Design Category as defined in building code, standard or resource document
4. NEHRP (National Earthquake Hazards Reduction Program) Recommended Provisions for Seismic Regulations for New Buildings
5. NEHRP (National Earthquake Hazards Reduction Program) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures

1.3 INSPECTION

The ACI code requires that concrete construction be inspected as required by the legally adopted general building code. In the absence of inspection requirements in the general building code or in an area where a building code has not been adopted, the provisions of 1.3 may serve as a guide to providing an acceptable level of inspection for concrete construction. In cases where the building code is silent on this issue or a code has not been adopted, concrete construction, at a minimum; should be inspected by a licensed design professional, someone under the supervision of a licensed design professional, or a qualified inspector. Individuals professing to be qualified to perform these inspections should be required to demonstrate their competence by becoming certified. Voluntary certification programs for inspectors of concrete construction have been established by the American Concrete Institute (ACI), and International Code Council (ICC). Other similar certification programs may also exist.
The IBC, adopted extensively in the U.S. to regulate building design and construction, and NFPA 5000 require varying degrees of inspection of concrete construction. However, administrative provisions such as these are frequently amended when the model code is adopted locally. The engineer should refer to the specific inspection requirements contained in the general building code having jurisdiction over the construction.

In addition to periodic inspections performed by the building official or his representative, inspections of concrete structures by special inspectors may be required; see discussion below on 1.3.5. The engineer should check the local building code or with the local building official to ascertain if special inspection requirements exist within the jurisdiction where the construction will be occurring. Degree of inspection and inspection responsibility should be set forth in the contract documents. However, it should be pointed out that most codes with provisions for special inspections do not permit the contractor to retain the special inspector. Normally they require that the owner enter into a contract with the special inspector. Therefore, if the frequency and type of inspections are shown in the project’s contract documents, it should be made clear that the costs for providing these services are not to be included in the bid of the general contractor.

1.3.4 Records of Inspection

Inspectors and inspection agencies will need to be aware of the wording of 1.3.4. Records of inspection must be preserved for two years after completion of a project, or longer if required by the legally adopted general building code. Preservation of inspection records for a minimum two-year period after completion of a project is to ensure that records are available, should disputes or discrepancies arise subsequent to owner acceptance or issuance of a certificate of occupancy, concerning workmanship or any violations of the approved contract documents, or the general building code requirements.

1.3.5 Special Inspections

A subtle change has been made to the ‘08 code. In the ‘05 code, continuous inspection is required for placement of all reinforcement and concrete for special moment frames (beam and column framing systems) resisting earthquake-induced forces in structures located in regions of high seismic hazard, or in structures assigned to high seismic performance or design categories (i.e., structures assigned to Seismic Design Category D, E or F). In the ‘08 code, the continuous inspection requirement applies to special moment frames, regardless of the structure’s assigned seismic design category. This change was made in recognition of the fact that in some cases licensed design professionals may decide to use special moment frames to resist seismic forces in buildings assigned to Seismic Design Category B or C in order to reduce the seismic base shear. Since the special moment frames are being designed for a lower force than would have been required for ordinary or intermediate moment frames, it is important that continuous inspection be provided to assure that the additional detailing required for special moment frames is properly executed.

In addition to the requirement for ordinary moment frames, special moment frames must comply with 21.1.3 - 21.1.7, and 21.5 through 21.7. Special moment frames constructed with precast concrete elements must comply with the additional requirements of 21.8. For information on how the model building codes in use in the U.S. assign seismic hazard, see Table 1-3. The code stipulates that the inspections must be made by a qualified inspector under the supervision of the licensed design professional responsible for the structural design or under the supervision of a licensed design professional with demonstrated capability for supervising inspection of special moment frames. R1.3.5* indicates that qualification of inspectors should be acceptable to the jurisdiction enforcing the general building code.

This inspection requirement is patterned after similar provisions contained in the *The BOCA National Building Code* (NBC), *International Building Code* (IBC), *Standard Building Code* (SBC), and the *Uniform Building Code* (UBC), referred to in those codes as “special inspections.” The specially qualified inspector must “demonstrate competence for inspection of the particular type of construction requiring special inspection.” See Section 1.3

Commentary section numbers are preceded by an “R” (e.g., R1.3.5 refers to Comentary Section R1.3.5).
above for information on voluntary certification programs for concrete special inspectors. Duties and responsibilities of the special inspector are further outlined as follows:

1. Observe the work for conformance with the approved contract documents.
2. Furnish inspection reports to the building official, the engineer or architect of record, and other designated persons.
3. Submit a final inspection report indicating whether the work was in conformance with the approved contract documents and acceptable workmanship.

The requirement for special inspections by a specially qualified special inspector was long a part of the *Uniform Building Code*; however, it was adopted much later in the NBC and the SBC. With the adoption of the NEHRP recommended earthquake provisions by the IBC, NFPA 5000, NBC and the SBC, the need for special inspections came to the forefront. An integral part of the NEHRP provisions is the requirement for special inspections of the seismic-force resisting systems of buildings assigned to Seismic Design Category C, D, E, or F.

By definition, special inspection by a special inspector implies continuous inspection of construction. For concrete construction, special inspection is required during placement of all reinforcing steel, during the taking of samples of concrete used for fabricating strength test cylinders, and during concrete placing operations. The special inspector need not be present during the entire time reinforcing steel is being placed, provided final inspection of the in-place reinforcement is performed prior to concrete placement. Generally, special inspections are not required for certain concrete work when the building official determines that the construction is of a minor nature or that no special hazard to public safety exists. Special inspections are also not required for precast concrete elements manufactured under plant control where the plant has been prequalified by the building official to perform such work without special inspections.

Another “inspection” requirement in the IBC, NFPA 5000, and UBC that was not part of the NBC or the SBC is the concept of “structural observation”. Under the UBC, structural observation was required for buildings located in high seismic risk areas (Seismic Zone 3 or 4). Under the IBC, it is required for more important structures assigned to Seismic Design Category D, E or F, or sited in an area where the basic wind speed exceeds 110 miles per hour (3-second gust speed). NFPA 5000 has requirements that are similar to those of the IBC. Under the UBC, the owner is required to retain the engineer or architect in responsible charge of the structural design work or another engineer or architect designated by the engineer or architect responsible for the structural design to perform visual observation of the structural framing system at significant stages of construction and upon completion, for general conformance to the approved contract documents. Under the IBC and NFPA 5000, any licensed design professional qualified to perform the work can be retained for the purpose of making structural observations. At the completion of the project, and prior to issuance of the certificate of occupancy, the licensed design professional is required to submit a statement in writing to the building official indicating that the site visits have been made and noting any deficiencies that have not been corrected.

With ever-increasing interest in inspection of new building construction in the U.S., especially in high seismic risk areas and high wind areas, the designer will need to review the inspection requirements of the governing general building code, and ascertain the role of the licensed design professional in the inspection of the construction phase.

REFERENCES

1.8 American Society of Civil Engineers (2002), *Minimum Design Loads for Buildings and Other Structures*, SEI/ASCE 7-02 Standard, ASCE, Reston, VA.

1.10 American Society of Civil Engineers (2005), *Minimum Design Loads for Buildings and Other Structures*, ASCE/SEI 7-05 Including Supplement No. 1, ASCE, Reston, VA.

1.23 *Requirements for Residential Concrete Construction (ACI 332-04) and Commentary (ACI 332R-04)*, American Concrete Institute, Farmington Hills, MI, 2004.

1.24 *Concrete Floors on Ground*, Publication EB075.03D, Portland Cement Association, Skokie, IL, Revised 2001.

1.25 *Slab Thickness Design for Industrial Concrete Floors on Grade*, Publication IS195.01D, Portland Cement Association, Skokie, IL, Revised 1996.

1.26 *Code Requirements for Environmental Engineering Concrete Structures (ACI 350-06) and Commentary*, American Concrete Institute, Farmington Hills, MI, 2006.

1.27 *Rectangular Concrete Tanks*, Publication IS003, Portland Cement Association, Skokie, IL, 1998.

CHAPTER 3—MATERIALS

UPDATE FOR THE ’08 CODE

Several new types of reinforcement have been recognized in the ’08 edition. They are:

1. ASTM A955 stainless steel bars (3.5.3.1(c)),
2. ASTM A1035 chromium bars (3.5.3.3),
3. ASTM A1022 deformed stainless steel wire and deformed and plain stainless steel wire for welded wire reinforcement (3.5.3.10),
4. ASTM A1044 steel stud assemblies (3.5.5),
5. ASTM A820 steel discontinuous fibers (3.5.8), and
6. ASTM A970 headed deformed bars (3.5.9).

3.1 TESTS OF MATERIALS

Provisions in 3.1.3 (and in 1.3.4) hold the inspecting engineer and architect responsible for maintaining availability of complete test records during construction. The provisions of 3.1.3 also require that records of tests of materials and of concrete must be retained by the inspector for two years after completion of a project, or longer if required by the locally adopted building code. Retention of test records for a minimum two-year period after completion of a project is to ensure that records are available should questions arise (subsequent to owner acceptance or issuance of the certificate of occupancy) concerning quality of materials and of concrete, or concerning any violations of the approved contract documents or of the building code.

Minimum period for retention of records is required because engineers and architects do not normally inspect concrete, whereas inspectors are typically hired for this purpose. The qualifications of an “inspector” are indicated in R1.3.1. For many portions of the United States, the term “inspector” may be assumed to be the “special inspector”, as defined in the legally adopted building codes. When a special inspector is not employed, other arrangements with the code official will be necessary to insure the availability and retention of the test records.

3.2 CEMENTITIOUS MATERIALS

Cement used in the work must correspond to that on which the selection of concrete proportions for strength and other properties was based. This may simply mean the same type of cement or it may mean cement from the same source. In the case of a plant that has determined the standard deviation from tests involving cements from several sources, the former would apply. The latter would be the case if the standard deviation of strength tests used in establishing the required target strength was based on one particular type of cement from one particular source.

Prior to the ’08 code, cementitious materials that have cementing value where used in concrete by themselves (e.g., portland cement (ASTM C150), blended hydraulic cements (ASTM C585 and ASTM C1157), and
expansive cement (ASTM C845)), were listed separately under “cements.” Cementitious materials that possess cementing value where used with ASTM C150, ASTM C585, ASTM C845 or ASTM C1157 cement, or a combination thereof, such as fly ash, other raw or calcined natural pozzolans, silica fume, and/or ground granulated blast-furnace slag were listed separately under “admixtures.” In the '08 code, all of these materials are listed in 3.2 as cementitious materials.

In ACI 318-02, ASTM C1157 (Performance Specification for Hydraulic Cement) was recognized for the first time. The ASTM C1157 standard differs from ASTM C150 and ASTM C595 in that it does not establish the chemical composition of the different types of cements. However, individual constituents used to manufacture ASTM C1157 cements must comply with the requirements specified in the standard. The standard also provides for several optional requirements, including one for cement with low reactivity to alkali-reactive aggregates.

Shrinkage-compensating concrete, made using expansive cement conforming to ASTM C845 (Specification for Expansive Hydraulic Cement), minimizes the potential for drying shrinkage cracks. Expansive cement expands slightly during the early hardening period after initial setting. When expansion is restrained by reinforcement, expansive cement concrete can also be used to (1) compensate for volume decrease due to drying shrinkage, (2) induce tensile stress in the reinforcement (post-tensioning), and (3) stabilize the long term dimensions of post-tensioned structures with respect to original design. The major advantage of using expansive cement in concrete is in the control and reduction of drying shrinkage cracks.

The proportions of the concrete mix assume additional importance when expansive cement is used in conjunction with some admixtures. The beneficial effects of using expansive cement may be less or may have the opposite effect when some admixtures are used in concrete containing expansive cement. Trial mixtures should be made with the selected admixtures and other ingredients of expansive cement concrete to observe the effects of the admixtures on the properties of the fresh and the hardened concrete.

Also, when expansive cement concrete is specified, the licensed design professional must consider certain aspects of the design that may be affected. Code sections related to such design considerations include:

- **Section 8.2.4** - Effects of forces due to expansion of shrinkage-compensating concrete must be given consideration in addition to all the other effects listed.
- **Section 9.2.3** - Structural effects due to expansion of shrinkage-compensating concrete must be considered.

Silica fume (ASTM C1240) gets its name because it is extracted from the fumes of electric furnaces that produce ferrosilicon or silicon metal. By the time it is collected and prepared as an admixture for concrete it has become a very finely divided solid-microsilica. Silica fume is generally used in concrete for one or more of the following reasons. When used in conjunction with high-range water reducing admixtures, it makes it possible to produce concrete with compressive strengths of 20,000 psi (138 MPa) or higher. It is also used to achieve a very dense cement paste matrix to reduce the permeability of concrete. This provides better corrosion protection to reinforcing steel, particularly when the concrete will be subject to direct or indirect applications of deicing chemicals, such as in bridge decks or in parking garages, respectively.

Mix proportioning, production methods (mixing and handling), and the placing and curing procedures for silica fume concrete require a more concentrated quality control effort than for conventional concretes. It is imperative that the engineer, concrete supplier, and the contractor work as a team to ensure consistently high quality when silica fume concrete is specified.

Note, concrete containing silica fume can be almost black, dark gray, or practically unchanged from the color of cement, depending on the dosage of silica fume. The greatest differences in color will occur in concretes made with cements that are light in color. Mix proportions may also affect variations in color. If color difference is a concern (architectural concrete), the darkest brand of cement available should be used, and different trial mixtures should be tried during the mix design process.
3.3 AGGREGATES

The nominal maximum aggregate size is limited to (i) one-fifth the narrowest dimension between sides of forms, (ii) one-third the depth of the slab, and (iii) three-quarters the minimum clear spacing between individual reinforcing bars or wires, bundles of bars, individual tendons, bundled tendons, or ducts. The limitations on nominal maximum aggregate size may be waived if the workability and methods of consolidation of the concrete are such that the concrete can be placed without honeycomb or voids. The licensed design professional must decide whether the limitations on maximum size of aggregate may be waived.

3.4 WATER

Over the past numbers of years environmental regulations associated with the disposal of water from concrete production operations have caused larger amounts of non-potable water (i.e., sources not fit for human consumption) to be used as mixing water in hydraulic cement concrete. Use of this water source needs to be limited by the solids content in the water. ASTM C16032.2, which is referenced by ASTM C1602, provides a test method for this measurement by means of measuring water density.

In addition to limiting the amount of solids in mixing water, maximum concentrations of other materials that impact the quality of concrete must be limited. These include levels of chloride ion, sulfates, and alkalies. New to the '08 code in 3.4.1 is the requirement that water used to mix concrete must comply with ASTM C16022.3. As indicated in R3.4.1, ASTM C1602 permits the use of potable water without testing.

The chief concern over high chloride content is the possible effect of chloride ions on the corrosion of embedded reinforcing steel or prestressing tendons, as well as concrete containing aluminum embedments or which are cast against stay-in-place galvanized metal forms. Limitations placed on the maximum concentration of chloride ion that are contributed by the ingredients including water, aggregates, cement, and admixtures are given in Chapter 4, Table 4.3.1. These limitations that specifically apply to corrosion protection of reinforcement are measured in water soluble chloride ion in concrete, percent by weight of cement. The previously cited ASTM standard limits the chloride ions in ppm (parts per million) and only applies to that contributed by the mixing water.

3.5 STEEL REINFORCEMENT

3.5.2 Welding of Reinforcement

ACI 318-08 references the latest edition of the Structural Welding Code - Reinforcing Steel - ANSI/AWS D1.4-2005. All welding of reinforcing bars must be performed in strict compliance with the D1.4 requirements. Recent revisions to D1.4 deserve notice. Most notably, the preheat requirements for A615 steel bars require consideration if the chemical composition of the bars is not known. See discussion on 12.14.3 in Part 4.

The licensed design professional should especially note the restriction in 21.1.7 on the location of welded splices of reinforcement in special moment frames and special structural walls. Because these seismic-force-resisting systems may perform beyond the elastic range of response under design earthquake ground motions, welded splices are prohibited in certain locations. Where welded splices are permitted, they must comply with 12.14.3.4 and be performed in strict adherence with the welding procedures outlined in ANSI/AWS D1.4. These procedures include adequate inspection.

Section R3.5.2 provides guidance on welding to existing reinforcing bars (which lack mill test reports) and on field welding of cold drawn wire and welded wire. Cold drawn wire is used as spiral reinforcement, and wires or welded wire reinforcement may occasionally be field welded. Special attention is necessary when welding cold drawn wire to address possible loss of its yield strength and ductility. Electric resistance welding, as covered by ASTM A185 and A497, is an acceptable welding procedure used in the manufacture of welded wire reinforcement. Where welded splices are used in lieu of required laps, pull tests of representative samples or other methods should be specified to determine that an acceptable level of specified strength of steel is provided.
“Tack” welding (welding of cross bars) of deformed bars or wire reinforcement is not permitted unless authorized by the licensed design professional (see 7.5.4).

The last paragraph of R3.5.2 states that welding of wire is not covered in ANSI/AWS D1.4. Actually, ANSI/AWS D1.4 addresses the welding of all forms of steel reinforcement, but lacks certain critical information for wire or welded wire reinforcement (e.g., preheats and electrode selection are not discussed). However, it is recommended that field welding of wire and welded wire reinforcement follow the applicable provisions of ANSI/AWS D1.4, such as certification of welders, inspection procedures, and other applicable welding procedures.

3.5.3 Deformed Reinforcement

Only deformed reinforcement as defined in Chapter 2 may be used for nonprestressed reinforcement, except that plain bars and plain wire may be used for spiral reinforcement. Welded plain wire reinforcement is included under the code definition of deformed reinforcement. Reinforcing bars rolled to ASTM A615 specifications are the most commonly specified for construction. Rail and axle steels (ASTM A616 and ASTM A617, respectively) were deleted from ACI 318-02 and replaced by ASTM A996 (Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement). Deformed reinforcement made from rail steel meeting ASTM A996 must be Type R which means that it complies with the more stringent of the two bend-test criteria in the standard. Rail steel (ASTM A996) is not generally available, except in a few areas of the country.

ASTM A706 covers low-alloy steel deformed bars (Grade 60 only) intended for special applications where welding or bending or both are important. Reinforcing bars conforming to A706 should be specified wherever critical or extensive welding of reinforcement is required. In addition, the provisions of 21.1.5 require that reinforcement resisting earthquake-induced flexural and axial forces in special moment frames, special structural walls, and in coupling beams connecting special structural walls comply with ASTM A706. Section 21.1.5.2 permits Grades 40 and 60 ASTM A615 bars in these members provided:

(a) the actual yield strength based on mill tests does not exceed the specified yield strength by more than 18,000 psi, and
(b) the ratio of actual tensile strength to the actual yield strength is not less than 1.25.

Compliance with ASTM A706 assures that reinforcement manufactured in accordance with that standard will satisfy the requirements of (a) and (b) above; therefore, additional testing is not required.

Before specifying A706 reinforcement, local availability should be investigated. Most rebar producers can make A706 bars, but generally not in quantities less than one heat of steel for each bar size ordered. A heat of steel varies from 50 to 200 tons, depending on the mill. A706 in lesser quantities of single bar sizes may not be immediately available from any single producer. Notably, A706 is being specified more and more for reinforced concrete structures in high seismic risk areas (see Table 1-1 in Part 1). Not only are structural engineers specifying it for use in earthquake-resisting elements of buildings, but also for reinforced concrete bridge structures. Also, A706 has long been the choice of precast concrete producers because it is easier and more cost effective for welding, especially in the various intricate bearing details for precast elements. This increased usage should impact favorably on the availability of this low-alloy bar.

Two new types of reinforcement qualifying as deformed reinforcement have been included in the ’08 code: ASTM A955/A955M (Standard Specification for Deformed and Plain Stainless-Steel Bars for Concrete Reinforcement) in 3.5.3.1 and ASTM A1022 (Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement) in 3.5.3.10. Stainless steel bars, deformed wire or welded wire reinforcement are typically used where high corrosion resistance is needed or controlled magnetic permeability is required. The physical and mechanical properties are the same for bars produced in accordance with ASTM A615 and ASTM A955.

Deformed bars complying with ASTM A1035 (Standard Specification for Deformed and Plain, Low-carbon, Chromium, Steel Bars for Concrete Reinforcement) are now permitted by 3.5.3.3; however, their use is limited
to spiral reinforcement in accordance with 10.9.3 and transverse reinforcement in accordance with 21.6.4. These limitations are imposed because the steel used to manufacture the bars has a minimum yield strength of 80,000 psi (based on .35% strain) and the steel has low ductility. It should also be noted that welding of chromium steel bars should not be done until a welding procedure adequate for the intended use and chemical composition has been established.

Section 9.4 permits designs based on a yield strength of reinforcement up to a maximum of 80,000 psi, except greater yields strengths are permitted for spiral reinforcement in accordance with 10.9.3, confinement reinforcement in accordance with 21.1.5.4, and for prestressing steel. Currently there is no ASTM specification for a Grade 80 reinforcement. However, deformed reinforcing bars No. 6 through No. 18 with a yield strength of 75,000 psi (Grade 75) are included in the ASTM A615 specification. “Section 3.5.3.2 requires that the yield strength of deformed bars with a specified yield strength greater than 60,000 psi be taken as the stress corresponding to a strain of 0.35 percent. The 0.35 percent strain limit is to ensure that the elasto-plastic stress-strain curve assumed in 10.2.4 will not result in unconservative values of member strength. Therefore, the designer should be aware that if ASTM A615, Grade 75 bars are specified, the contract documents need to include a requirement that the yield strength of the bars shall be determined in accordance with Section 9.2.2 of the ASTM A615 specification. Certified mill test reports should be obtained from the supplier when Grade 75 bars are used. Before specifying Grade 75, local availability should be investigated. The higher yield strength No. 6 through No. 18 bars are intended primarily as column reinforcement. They are used in conjunction with higher strength concrete to reduce the size of columns in high-rise buildings and other applications where high capacity columns are required. Wire used to manufacture both plain and deformed welded wire reinforcement can have a specified yield strength in excess of 60,000 psi. It is permissible to take advantage of the higher yield strength provided the specified yield strength, f_y, used in the design corresponds to the stress at a strain of 0.35 percent.

In recent years manufacturers of reinforcing bars have switched their production entirely to soft metric bars. The physical dimensions (i.e., diameter, and height and spacing of deformations) of the soft-metric bars are no different than the inch-pound bars that were manufactured for many years. The only difference is that the bar size mark that is rolled onto the bar is based on SI metric units. Metric bar sizes and bar marks are based on converting the bar’s inch-pound diameter to millimeters and rounding to the nearest millimeter. For example, a No. 4, or 1/2-in. diameter bar, becomes a No. 13 bar since its diameter is 12.7 mm. See Table 2-1 for a complete listing of all 11 ASTM standard reinforcing bar sizes.

ASTM standard specifications A615, A706, A955, and A996 have requirements for bars in both inch-pound and SI metric units; therefore, they have dual designations (e.g., ASTM A706/A706M). Each specification provides criteria for one or more grades of steel, which are summarized in Table 2-2.

The minimum required yield strength of the steel used to produce the bars has been changed slightly within ASTM A615M. The latest edition of the ASTM A615M bar specifications have a Grade 280, or 280 megapascals (MPa) minimum yield strength, which was previously designated as Grade 300. Soft converting Grade 40 or 40,000 psi yield strength steel will result in a metric yield strength of 275.8 MPa (1000 psi = 6895 MPa), which is more closely designated as Grade 280, than the previous Grade 300 designation.

When design and construction proceed in accordance with the ACI 318 Code, using customary inch-pound units, the use of soft metric bars will have only a very small effect on the design strength or allowable load-carrying capability of members. For example, where the design strength of a member is a function of the steel’s specified yield strength, f_y, the use of soft metric bars increases the strength approximately 1.5% for grade 420 [(420 - 413.7)/413.7].
Table 2-1 Inch-Pound and Soft Metric Bar Sizes

<table>
<thead>
<tr>
<th>Inch-Pound</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size No.</td>
<td>Dia. (in.)</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
</tr>
<tr>
<td>10</td>
<td>1.270</td>
</tr>
<tr>
<td>11</td>
<td>1.410</td>
</tr>
<tr>
<td>14</td>
<td>1.693</td>
</tr>
<tr>
<td>18</td>
<td>2.257</td>
</tr>
</tbody>
</table>

Table 2-2 ASTM Specifications - Grade and Min. Yield Strength

<table>
<thead>
<tr>
<th>ASTM Specification</th>
<th>Grade/Minimum Yield Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inch-Pound (psi)</td>
</tr>
<tr>
<td>A615 and A615M</td>
<td>40/40,000</td>
</tr>
<tr>
<td></td>
<td>60/60,000</td>
</tr>
<tr>
<td></td>
<td>75/75,000</td>
</tr>
<tr>
<td>A955 and A955M</td>
<td>40/40,000</td>
</tr>
<tr>
<td></td>
<td>60/60,000</td>
</tr>
<tr>
<td></td>
<td>75/75,000</td>
</tr>
<tr>
<td>A996 and A996M</td>
<td>40/40,000</td>
</tr>
<tr>
<td></td>
<td>50/50,000</td>
</tr>
<tr>
<td></td>
<td>60/60,000</td>
</tr>
<tr>
<td>A706/A706M</td>
<td>60/60,000</td>
</tr>
</tbody>
</table>

3.5.3.5 - 3.5.3.6 Welded Plain and Deformed Wire Reinforcement

On occasion, building department plan reviewers have questioned the use of welded wire reinforcement as an alternative to conventional reinforcing bars for structurally reinforced concrete applications. This usually occurs during the construction phase when reinforcing bars shown on the structural drawings are replaced with welded wire reinforcement through a change order. The code officials’ concern probably stems from the commonly accepted industry terminology for welded wire reinforcement used as “nonstructural” reinforcement for the control of crack widths for slabs-on-ground.

Wire sizes for welded wire reinforcement typically range from W1.4 to W20, with some manufacturers capable of producing welded wire reinforcement with wire up to size W45. Plain wire is denoted by the letter “W” followed by a number indicating cross-sectional area in hundredths of a square inch. Styles of welded wire reinforcement used to control crack widths in residential and light industrial slabs-on-ground are 6 x 6 W1.4 x W1.4, 6 x 6 W2 x W2, 6 x 6 W2.9 x W2.9 and 6 x 6 W4 x W4. These styles of welded wire reinforcement weigh 0.21 lb, 0.30, 0.42 lb and 0.55 lb per square foot respectively, and are manufactured in rolls, although they are also available in sheets. Smaller wire sizes are not typically used as an alternative to conventional reinforcing bars. Welded wire reinforcement used for structural reinforcement is typically made with a wire size larger than W4. The term “welded wire reinforcement” replaced the term “welded wire fabric” in the ‘05 edition of the code to help correct this misinterpretation.
Substitution of welded wire reinforcement for reinforcing bars may be requested for construction or economic considerations. Whatever the reason, both types of reinforcement, either made with welded wire or reinforcing bars are equally recognized and permitted by the code for structural reinforcement. Both welded deformed wire reinforcement and welded plain wire reinforcement are included under the code definition for deformed reinforcement. Welded deformed wire reinforcement utilizes wire deformations plus welded intersections for bond and anchorage. (Deformed wire is denoted by the letter “D” followed by a number indicating the cross-sectional area in hundredths of a square inch.) Welded plain wire reinforcement bonds to concrete by positive mechanical anchorage at each wire intersection. This difference in bond and anchorage for plain versus deformed reinforcement is reflected in the development of lap splices provisions of Chapter 12.

3.5.3.8–3.5.3.9 Coated Reinforcement—Appropriate references to the ASTM specifications for coated reinforcement, A767 (galvanized) and A775 and A934 (epoxy-coated), are included in the code to reflect increased usage of coated bars. Coated welded wire reinforcement is available with an epoxy coating (ASTM A884), with wire galvanized before welding (ASTM A641), and with welded wire galvanized after welding (ASTM A123). The most common coated bars and welded wire are epoxy-coated reinforcement for corrosion protection. Epoxy-coated reinforcement provides a viable corrosion protection system for reinforced concrete structures. Usage of epoxy-coated reinforcement has become commonplace for many types of reinforced concrete construction such as parking garages (exposed to deicing salts), wastewater treatment plants, marine structures, and other facilities located near coastal areas where the risk of corrosion of reinforcement is higher because of exposure to seawater—particularly if the climate is warm and humid.

Designers specifying epoxy-coated reinforcing bars should clearly outline in the contract documents special hardware and handling methods to minimize damage to the epoxy coating during handling, transporting, and placing coated bars, and placing of concrete. Special hardware and handling methods include:

1. Using nylon lifting slings, or padded wire rope slings.
2. Using spreader bars for lifting bar bundles, or lifting bundles at the third points with nylon or padded slings. Bundling bands should be made of nylon, or be padded.
3. Storing coated bars on padded or wooden cribbing.
4. Not dragging coated bars over the ground, or over other bars.
5. Minimizing walking on coated bars and dropping tools or other construction materials during or after placing the bars.
6. Using bar supports of an organic material or wire bar supports coated with an organic material such as epoxy or vinyl compatible with concrete.
7. Using epoxy- or plastic-coated tie wire, or nylon-coated tie wire to minimize damage or cutting into the bar coating.
8. Setting up, supporting and moving concrete conveying and placing equipment carefully to minimize damage to the bar coating.

Contract documents should also address field touch-up of the epoxy coating after bar placement. Permissible coating damage and repair are included in the ASTM A775, A934 and in Ref. 2.5. Reference 2.6 contains suggested contract document provisions for epoxy-coated reinforcing bars.

The designer should be aware that epoxy-coated reinforcement requires increased development and splice lengths for bars in tension (see 12.2.4(b)).
CHAPTER 4—DURABILITY REQUIREMENTS

UPDATE FOR THE ’08 CODE

For the ’08 code, Chapter 4 (Durability Requirements) has been reformatted and the various conditions that affect durability (freeze-thaw, sulfate, permeability and corrosion) have been assigned categories denoted by the letters F, S, P and C. Within each category, classes have been established which represent various degrees of effect on the concrete due to that particular category.

GENERAL CONSIDERATIONS

Proper proportioning of concrete mixtures and use of appropriate materials therein, based on exposure, is addressed in Chapter 4. Exposures addressed in Chapter 4 and demanding special attention include: freeze-thaw exposure while concrete is moist, exposure to sulfates in soil or solutions, and exposure to chlorides, including those in deicing chemicals. Attributes that concrete must possess in order to withstand deterioration from these exposures and perform as anticipated over a long period of time include: adequate air-entrainment, adequate cement paste density, and appropriate chemical composition. These attributes are assured by specifying minimum total air content, maximum water-cementitious materials ratio and/or minimum compressive strength, limitations on certain cementitious materials, or limiting the amount of chloride ion in mixture ingredients, or a combination of these.

Unacceptable deterioration of concrete structures in many areas due to severe exposure to freezing and thawing, to sulfate in soil and water, and to chloride exposure, including chlorides in deicing chemicals used for snow and ice removal, have warranted a stronger emphasis in the code on the special exposure requirements. Chapter 4 directs special attention to the need for considering concrete durability, in addition to concrete strength.

In the context of the code, durability refers to the ability of concrete to resist deterioration from the environment or the service in which it is placed. Properly designed and constructed concrete should serve its intended function without significant distress throughout its service life. The code, however, does not include provisions for especially severe exposures such as to acids or high temperatures, nor is it concerned with aesthetic considerations such as surface finishes. Items like these, which are beyond the scope of the code, must be covered specifically in the contract documents. Concrete ingredients and proportions must be selected to meet the minimum requirements stated in the code and the additional requirements of the contract documents.

In addition to the proper selection of cement, adequate air entrainment, maximum water-cementitious materials ratio, and/or minimum specified compressive strength, and limiting chloride ion content of the materials, other requirements essential for durable concrete exposed to adverse environments include: low slump, adequate consolidation, uniformity, adequate cover of reinforcement, and sufficient moist curing to develop the potential properties of the concrete.

4.1 GENERAL

Section 4.1.1 requires that the specified compressive strength of concrete, \(f'_c \), be the greatest of that required by:

1. Section 1.1.1 (i.e., 2500 psi),
2. Chapter 4 for durability, and
3. structural strength as determined by the licensed design professional.

In addition, some exposure classes in Chapter 4 may specify a maximum water-cementitious materials (w/cm) ratio for normalweight concrete mixtures. It should be noted that 4.1.2 indicates that the w/cm ratios do not apply to lightweight concrete. Lightweight concrete includes all-lightweight and sand-lightweight concrete.
4.2 EXPOSURE CATEGORIES AND CLASSES

Exposure conditions that may adversely affect the long-term performance of concrete are addressed in Chapter 4 - Durability Requirements, to emphasize the importance of certain exposures on concrete durability. The code provisions for concrete proportioning and strength evaluation are located in Chapter 5 - Concrete Quality, Mixing, and Placing. As stated in 5.1.1, selection of concrete proportions must be established to meet the (a) durability requirements of Chapter 4, and (b) satisfy the average compressive strength requirements of Chapter 5.

While many editions of the code have addressed four exposure conditions that may affect the durability of concrete, they were not explicitly categorized as they are in the ’08 code. Section 4.2.1 requires that the licensed design professional evaluate the various concrete elements of the structure in accordance with Table 4.2.1 (Exposure Categories and Classes) and classify the concrete for the various exposure conditions. The four exposure categories of Table 4.2.1 are:

- **F** – for freezing and thawing,
- **S** – for sulfate,
- **P** – for concrete requiring low permeability, and
- **C** – for corrosion protection of reinforcement.

Within each category there are two to four subdivisions referred to as classes. The lowest class within a category, 0, means that no special requirements apply. On the other hand, the highest class, 1, 2 or 3, depending upon the category, is an indication that additional provisions apply to the concrete mix proportions and/or ingredients.

It is important to note that while the presentation of the durability requirements in Chapter 4 have changed significantly from the ’05 to the ’08 code, there are only a few relatively minor technical changes.

4.3 REQUIREMENTS FOR CONCRETE MIXTURES

After evaluating the four exposure categories and determining the class within each category, the licensed design professional uses Table 4.3.1 (Requirements for Concrete by Exposure Class) to determine if any special requirements apply to the concrete.

For example, assume that a cast-in-place, non-prestressed structural member of normalweight concrete will be exposed to freezing-and thawing cycles while in continuous contact with moisture. According to Table 4.2.1, the concrete is classified as F2. Continuing to evaluate the member in accordance with Table 4.2.1 reveals that if there are no sulfates present, the classification is S0. If low permeability is not required, the permeability classification is P0. Since the concrete will be exposed to moisture but not to chlorides, the corrosion protection classification is C1. With the four classifications determined (i.e., F2, S0, P0 and C1), enter Table 4.3.1 and determine the most stringent requirements based on the four classifications. In the case of the F2 classification, the concrete will need to have a maximum water-cementitious materials ratio of 0.45, and a minimum specified compressive strength, \(f'_{c} \), of 4500 psi. In addition, Table 4.3.1 refers the user to Table 4.4.1 which requires concrete classified as F2 to be air-entrained with a minimum total air content of not less than 6%. Also, Table 4.3.1 will require that since the concrete is Class C1, the total water-soluble chloride content of the concrete mixture must not exceed 0.30% of the weight of the cementitious materials.

4.4 ADDITIONAL REQUIREMENTS FOR FREEZING-AND-THAWING EXPOSURE

4.4.1 Air-Entrained Concrete

For concrete that will be exposed to freezing and thawing while occasionally moist (Class F1), concrete exposed to freezing and thawing while continuously moist (Class F2), and for concrete exposed to freezing and thawing
while continuously moist and exposed to deicing chemicals (Class F3), air-entrained concrete must be specified with minimum air content as set forth in Table 4.4.1. Class F1 exposure may include exterior walls, beams, girders, and slabs not in direct contact with soil. Two examples of a Class F2 exposure are an exterior water tank and vertical members in contact with soil. Horizontal members in a parking structures located where deicing chemicals are used are good examples of Class F3 exposure. Concrete that remains dry or is not subjected to freeze-thaw cycles is Class F0. Contract documents should allow the air content of the delivered concrete to be within (-1.5) and (+1.5) percentage points of Table 4.4.1 target values. In addition, for concrete with a specified compressive strength, f'_{c}, greater than 5000 psi, the air contents specified in Table 4.4.1 are permitted to be reduced by 1.0%.

Intentionally entraining air in concrete significantly improves the resistance of hardened concrete to freezing when exposed to water and deicing salts. Sulfate resistance is also improved by air entrainment.

The entrainment of air in concrete can be accomplished by adding an air-entraining admixture at the mixer, by using an air-entraining cement, or by a combination of both. Air-entraining admixtures, which are added at the mixer, must conform to ASTM C260 (3.6.2); air-entraining cements must comply with the specifications in ASTM C150, C595 and C1157 (3.2.1). Air-entraining cements are sometimes difficult to obtain; and their use has been decreasing as the popularity of air-entraining admixtures has increased. ASTM C172 (Standard Practice for Sampling Freshly Mixed Concrete),2.7 which is adopted by reference in the ACI code (5.6.3.1), requires that air content tests be conducted on each sample of concrete obtained to fabricate strength test specimens. ASTM C31 (Standard Practice for Making and Curing Concrete Test Specimens in the Field),2.8 also adopted by reference in the code (5.6.3.2), requires the air content to be determined in accordance with ASTM C173 or ASTM C231.

Normalweight concrete that will be exposed to freeze-thaw conditions while wet and exposed to deicing salts (Class F3) must be proportioned to provide a maximum w/cm ratio of 0.45 and a minimum compressive strength of 4500 psi as indicated in Table 4.3.1. Requiring both criteria helps to ensure that the desired durability will actually be obtained in the field. Generally, the required average concrete compressive strength, f'_{cr}, used to develop the mix design will be 500 to 700 psi higher than the specified compressive strength, f'_{c}. It is also more difficult to accurately determine the w/cm ratio of concrete during production then controlling compressive strength. Thus, when selecting an f'_{cr}, it should be reasonably consistent with the w/cm ratio required for durability. Using this approach, minimum strengths required for durability provide an effective backup quality control check to the w/cm ratio limitation which is more essential for durability.

As indicated in 4.1.2, the maximum w/cm ratios specified in Table 4.3.1 only apply to normalweight concrete. Due to the variable absorption characteristics of lightweight aggregates, the w/cm ratios calculated are meaningless.

However, for the above exposure conditions, the corresponding minimum specified compressive strengths indicated in Table 4.3.1 must be satisfied for both normalweight and lightweight aggregate concretes. Design Example 2.1 illustrates mix proportioning to satisfy both a maximum w/cm ratio and a minimum compressive strength requirement for concrete durability.

4.4.2 Concrete Exposed to Deicing Chemicals

Table 4.4.2 limits the type and amount of portland cement replacement permitted in concrete exposed to freezing and thawing in continuous contact with moisture and exposed to deicing chemicals (Class F3). The amount of fly ash or other pozzolan, or both, is limited to 25 percent of the total weight of cementitious materials. Slag and silica fume are similarly limited to 50 percent and 10 percent, respectively, of the total weight. If fly ash (or other pozzolan) plus slag and silica fume are used as partial cement replacement, the total weight of the combined replacement materials cannot exceed 50 percent of the total weight of cementitious materials, with the maximum percentage of each type of replacement not to exceed the individual percentage limitations. If slag is excluded from the cement replacement combination, the total weight of the combined replacement cannot
exceed 35 percent, with the individual percentages of each also not to be exceeded. It is important to note that the amount of fly ash or other pozzolan, slag and silica fume present in cements manufactured in accordance with ASTM C595 and ASTM C1157 are to be included with amount of these materials from other sources in determining compliance with Table 4.4.2.

For example, if a reinforced concrete element is to be exposed to deicing salts, Table 4.4.2 limits the w/cm ratio to 0.40. If the mix design requires 280 lb of water to produce an air-entrained concrete mix of a given slump, the total weight of cementitious materials cannot be less than 280/0.40 = 700 lbs. The 700 lbs of “cementitious materials” may be all portland cement or a combination of portland cement and fly ash, pozzolan, slag, or silica fume.

If fly ash is used as portland cement replacement, the maximum amount of fly ash is limited to 0.25 (700) = 175 lbs, maintaining the same w/cm = 280/(525 + 175) = 0.40.

If slag is the total replacement, the maximum is limited to 0.50 (700) = 350 lbs, with w/cm = 280/(350 + 350) = 0.40.

If the cement replacement is a combination of fly ash and slag, the maximum amount of the combination is limited to 0.50 (700) = 350 lbs, with the fly ash portion limited to 0.25 (700) = 175 lbs of the total combination, with w/cm = 280/(350 + 175 + 175) = 0.40.

If the cement replacement is a combination of fly ash and silica fume (a common practice in high performance concrete), the maximum amount of the combination is limited to 0.35 (700) = 245 lbs, and the silica fume portion limited to 0.10 (700) = 70 lbs, with w/cm = 280/(385 + 245 + 70) = 0.40.

Obviously, other percentages of cement replacement can be used so long as the combined and individual percentages of Table 4.4.2 are not exceeded.

It should be noted that the portland cement replacement limitations apply only to concrete exposed to the potential damaging effects of deicing chemicals (Class F3). Research has indicated that fly ash, slag, and silica fume can reduce concrete permeability and chloride penetration by providing a more dense and impermeable cement paste. As to the use of fly ash and other pozzolans, and especially silica fume, it is also noteworthy that these cement replacement admixtures are commonly used in high performance concrete (HPC) to decrease permeability and increase strength.

EXPOSURE CATEGORY S - SULFATE EXPOSURE

Sulfate attack of concrete (Category S) can occur when it is exposed to soil, seawater, or groundwater having a high sulfate content. Measures to reduce sulfate attack include the use of sulfate-resistant cement. The susceptibility to sulfate attack is greater for concrete exposed to moisture, such as in foundations and slabs-on-ground, and in structures directly exposed to seawater. Sulfate-resisting cements for concrete that will be exposed to sulfate attack from soil or water must be specified. Table 4.3.1 lists the appropriate types of sulfate-resisting cements from among ASTM C150, ASTM C595 and ASTM C1157, and maximum water-cementitious materials ratios (for normalweight concrete) and corresponding minimum concrete specified compressive strengths for Classes S1, S2 and S3 exposure conditions. Classes of exposure, as indicated in Table 4.2.1, are based on the amount of water-soluble sulfate concentration in soil or on the amount of dissolved sulfate in water. Note that Table 4.2.1 categorizes seawater as Class S1 (moderate) even though it generally contains more than 1500 ppm of dissolved sulfate. The reason is that the presence of chlorides in seawater inhibits the expansive reaction that is characteristic of sulfate attack.2.1

In selecting a cement type for sulfate resistance, the principal consideration is the tricalcium aluminate (C₃A) content. Cements with low percentages of C₃A are especially resistant to soils and waters containing sulfates. For example, where precaution against Class S1 (moderate) sulfate attack is important, as in drainage structures
where sulfate concentrations in groundwater are higher than normal (0.10 - 0.20 percent), but not necessarily Class S2 (severe). Type II Portland cement (maximum C₃A content of eight percent per ASTM C150) must be specified as indicated in Table 4.3.1. Alternative cement types permitted by Table 4.3.1 include: ASTM C595 Type IP(MS) or Type IS (<70) (MS), ASTM C1157 Type MS, and other types of ASTM C150 cement is permitted provided its C₃A content is less than 8%. In addition to certain cement types being specified for the S1 category, Table 4.3.1 also requires a minimum \(f'_{ck} \) of 4000 psi and for normalweight concrete a maximum w/cm ratio of 0.50. In addition, for concrete exposed to seawater (Class S1), any type of ASTM C150 cement with a C₃A content up to 10% is permitted provided the w/cm ratio of the concrete does not exceed 0.40.

Type V portland cement must be specified for concrete exposed to Class S2 (severe) sulfate attack—principally where soils or groundwaters have a high sulfate content (0.20 – 2.00 percent). The high sulfate resistance of Type V cement is attributed to its low tricalcium aluminate content (maximum C₃A content of five percent). Alternative cement types permitted by Table 4.3.1 include: ASTM C595 Type IP(HS) or Type IS (<70) (HS), and ASTM C1157 Type HS. In addition, for Class S2 exposures, any type of ASTM C150 cement is permitted provided its C₃A content is less than 5%. In addition to certain cement types being specified for the S2 category, Table 4.3.1 also requires a minimum \(f'_{ck} \) of 4500 psi and for normalweight concrete a maximum w/cm ratio of 0.45. Sulfate resistance also increases with air entrainment.

For concrete subject to S3 (very severe) sulfate exposure, in addition to the cement types specified for Class S2 exposure, pozzolan or slag shall be used in the mix. The mix design, including the source and amount of pozzolan or slag to be used, must have successfully demonstrated by actual service record to improve sulfate resistance when used in concrete containing Type V cement. Alternatively, the amount of the specific source of the pozzolan or slag to be used shall not be less than the amount tested in accordance with ASTM C1012 and meeting the criteria in 4.5.1.

Before specifying a sulfate resisting cement, its availability should be checked. Type II cement is usually available, especially in areas where resistance to Class S1 (moderate) sulfate attack is needed. Type V cement is available only in particular areas where it is needed to resist severe and very severe sulfate environments. ASTM C595 and ASTM C1157 cements may not be available in many areas.

EXPOSURE CATEGORY C - CORROSION PROTECTION OF REINFORCEMENT

Chlorides can be introduced into concrete through its ingredients: mixing water, aggregates, cement, and admixtures, or through exposure to deicing chemicals, seawater, or salt-laden air in coastal environments. The chloride ion content limitations of Table 4.3.1 are to be applied to the chlorides contributed by the concrete ingredients, not to chlorides from the environment surrounding the concrete (chloride ion penetration). Chloride ion limits are the responsibility of the concrete production facility which must ensure that the ingredients used in the production of concrete (cement, water, aggregate, and admixtures) result in concrete with chloride ion contents within the limits given for different exposure classes of Table 4.2.1 (i.e., C0, C1 and C2). When testing is performed to determine chloride ion content of the individual ingredients, or samples of the hardened concrete, test procedures must conform to ASTM C1218, as indicated in Table 4.3.1. In addition to a high chloride content, oxygen and moisture must be present to induce the corrosion process. The availability of oxygen and moisture adjacent to embedded steel will vary with the in-service exposure condition, which varies among structures, and between different parts of the same structure.

If significant amounts of chlorides may be introduced into the hardened concrete from the concrete materials to be used, the individual concrete ingredients, including water, aggregates, cement, and any admixtures, must be tested to ensure that the total chloride ion concentration contributed from the ingredients does not exceed the limits of Table 4.3.1. These limits have been established to provide a threshold level to avoid corrosion of the embedded reinforcement prior to service exposure. Chloride limits for corrosion protection also depend upon the type of construction and the environment to which the concrete is exposed during its service life, as indicated in Table 4.2.1.

2-12
Chlorides are present in variable amounts in all of the ingredients of concrete. Both water soluble and insoluble chlorides exist; however, only water-soluble chlorides induce corrosion. Tests are available for determining either the water-soluble chloride content or the total (soluble plus insoluble) chloride content. The test for soluble chloride is more time-consuming and difficult to control, and is therefore more expensive than the test for total chloride. An initial evaluation of chloride content may be obtained by testing the individual concrete ingredients for total (soluble plus insoluble) chloride content. If the total chloride ion content is less than that permitted by Table 4.3.1, water-soluble chloride need not be determined. If the total chloride content exceeds the permitted value, testing of samples of the hardened concrete for water-soluble chloride content will need to be performed for direct comparison with Table 4.3.1 values. Some of the soluble chlorides in the ingredients will react with the cement during hydration and become insoluble, further reducing the soluble chloride ion content, the corrosion-inducing culprit. Of the total chloride ion content in hardened concrete, only about 50 to 85 percent is water-soluble; the rest is insoluble. Note that Tables 4.3.1 requires the hardened concrete to be between 28 and 42 days of age when it is evaluated.

Chlorides are among the more abundant materials on earth, and are present in variable amounts in all of the ingredients of concrete. Potentially high chloride-inducing materials and conditions include: use of seawater as mixing water or as washwater for aggregates, since seawater contains significant amounts of sulfates and chlorides; use of marine-dredged aggregates, since such aggregates often contain salt from the seawater; use of aggregates that have been contaminated by salt-laden air in coastal areas; use of admixtures containing chloride, such as calcium chloride; and use of deicing chemicals contains salts where the chemicals may be tracked onto parking structures by vehicles. The engineer needs to be cognizant of the potential hazard of chlorides to concrete in marine environments or other exposures to soluble salts. Research has shown that the threshold value for a water-soluble chloride content of concrete necessary for corrosion of embedded steel can be as low as 0.15 percent by weight of cement. When chloride content is above this threshold value, corrosion is likely if moisture and oxygen are readily available. If chloride content is below the threshold value, the risk of corrosion is low.

Depending on the type of construction and the environment to which it is exposed during its service life, and the amount and extent of protection provided to limit chloride ion penetration, the chloride level in concrete may increase with age and exposure. Protection against chloride ion penetration from the environment is addressed in Table 4.3.1. For Class C2 exposure (concrete exposed to moisture and an external source of chlorides from deicing chemicals, salt, brackish water, seawater, or spray from these sources), normalweight concrete is required to have a maximum water-cementitious materials ratio of 0.40 and a minimum specified compressive strength of 5000 psi for corrosion protection. Resistance to corrosion of embedded steel is also improved with an increase in the thickness of concrete cover. While the thickness of “increased” cover is not indicated in 7.7.6, commentary Section R7.7.6 recommends a minimum concrete cover of 2 in. for cast-in-place walls and slabs, and 2-1/2 in. for other members, where concrete will be exposed to external sources of chlorides in service. For plant-produced precast members, the corresponding recommended minimum concrete covers are 1-1/2 in. and 2 in., respectively.

Other methods of reducing environmentally caused corrosion include the use of epoxy-coated reinforcing steel, stainless steel or chromium reinforcement, corrosion-inhibiting admixtures, surface treatments, and cathodic protection. Epoxy coating of reinforcement prevents chloride ions from reaching the steel. Stainless steel and chromium reinforcement are more resistant to chloride-induced corrosion than ordinary carbon steel bars. Corrosion-inhibiting admixtures attempt to chemically arrest the corrosive reaction. Surface treatments attempt to stop or reduce chloride ion penetration at the exposed concrete surface. Cathodic protection methods reverse the corrosion current flow through the concrete and reinforcing steel. It should be noted that, depending on the potential severity of the chloride exposure, and the type and importance of the construction, more than one of the above methods may be combined to provide “added” protection. For example, in prestressed parking deck slabs in cold climates where deicing salts are used for snow and ice removal, all conventional reinforcement and the post-tensioning tendons may be epoxy-coated, with the entire tendon system including the anchorages encapsulated in a watertight protective system especially manufactured for aggressive environments. In addi-
tion, special high performance (impermeable) concrete may be used, with the entire deck surface covered with a multi-layer membrane surface treatment. Such extreme protective measures may be cost-effective, considering the alternative. Performance tests for chloride permeability of concrete mixtures may also be used to assure corrosion resistance. ASTM C1202, which was introduced in the commentary starting with the 2002 edition of the code, provides a test method for an electrical indication of concrete’s ability to resist chloride ion penetration. It is based on AASHTO T 277, which was previously cited in the commentary.

CHAPTER 5—CONCRETE QUALITY, MIXING, AND PLACING

UPDATE FOR THE ’08 CODE

A limitation of 12 months has been imposed on the age of strength test records that can be used to establish a sample standard deviation for proportioning a concrete mix based on field experience. In addition to the traditional 6-inch diameter by 12-inch high concrete cylinder, the code now officially recognizes the use of 4-inch by 8-inch cylinders for trial mixtures and acceptance testing. Where 4 by 8 cylinders are used, a strength test is the average of the strengths of three cylinders, instead of two as is required for 6 by 12 cylinders.

5.1.1 Concrete Proportions for Strength

Concrete mix designs are proportioned for strength based on probabilistic concepts that are intended to ensure that adequate strength will be developed in the concrete. It is emphasized in 5.1.1 that the required average compressive strength, f'_c, of concrete produced must exceed the larger of the value of f'_c specified for the structural design requirements and the minimum strength required for the exposure conditions set forth in Chapter 4. Concrete proportioned by the code’s probabilistic approach may produce strength tests which fall below the specified compressive strength, f'_c. Section 5.1.1 introduces this concept by noting that it is the code’s intent to “minimize frequency of strength below f'_c.” If a concrete strength test falls below f'_c, the acceptability of this lower strength concrete is provided for in Section 5.6.3.3.

A minimum 2500 psi specified compressive strength, f'_c, is required by 1.1.1 and 5.1.1 of the code. This makes the code consistent with minimum provisions that are contained in several legacy model building codes, and the International Building Code (IBC).

5.1.3 Test Age for Strength of Concrete

Section 5.1.3 permits f'_c to be based on tests at ages other than the customary 28 days. If other than 28 days, the test age for f'_c must be indicated on the design drawings or in the specifications. Higher strength concretes, exceeding 6000 psi compression strength, are often used in tall buildings can justifiably have test ages longer than the customary 28 days. For example, in high-rise structures requiring high-strength concrete, the process of construction is such that the columns of the lower floors are not fully loaded until a year or more after commencement of construction. For this reason, specified compressive strengths, f'_c, based on 56- or 90-day test results are commonly specified.

5.1.6 Steel Fiber-Reinforced Concrete

The ’08 code recognizes the use of steel fiber-reinforced concrete for shear reinforcement in beams complying with the limitations of 11.4.6.1(f). The steel fibers must comply with 3.5.8 and the amount used must comply with 5.6.6.2(a). Minimum specified compressive strength must comply 5.1.1. In addition to the concrete complying the traditional cylinder test acceptance criteria for strength as mandated for all concrete in 5.6.1, testing of beams in accordance with 5.6.6.2(b) and (c) is also required.
5.2 SELECTION OF CONCRETE PROPORTIONS

Recommendations for proportioning concrete mixtures are given in detail in Design and Control of Concrete Mixtures.2.1 Recommendations for selecting proportions for concrete are also given in detail in “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete” (ACI 211.1)2.9 and “Standard Practice for Selecting Proportions for Structural Lightweight Concrete” (ACI 211.2).2.10

The use of field experience or laboratory trial batches (see 5.3) is the preferred method for selecting concrete mixture proportions. When no prior experience or trial batch data are available, permission may be granted by the registered design professional to base concrete proportions on “other experience or information” as prescribed in 5.4.

5.3 PROPORTIONING ON THE BASIS OF FIELD EXPERIENCE AND TRIAL MIXTURES, OR BOTH

5.3.1 Sample Standard Deviation

For establishing concrete mixture proportions, emphasis is placed on the use of laboratory trial batches or strength test records as the basis for selecting the required water-cementitious materials ratio. The code emphasizes a statistical approach to establishing the required average compressive strength of concrete, f_{cr}, or “target strength” required to ensure attainment of the specified compressive strength, f'_c. If an applicable sample standard deviation, s_y, from strength tests of the concrete is known, the target strength level for which the concrete must be proportioned is established. Otherwise, the proportions must be selected to produce a conservative target strength sufficient to allow for a high degree of variability in strength test results. For background information on statistics as it relates to concrete, see “Evaluation of Strength Test Results of Concrete”2.11 and Ref. 2.12.

Existing strength tests results no more than 12 months old may be used to determine the sample standard deviation if the results are for concrete that was similar to that being proposed. To be considered “similar”, it must have been made with the same general types of ingredients and been under no more restrictive conditions of control over material quality and production methods than are specified for the proposed work. In addition, the specified compressive strength of the concrete for which the tests results that are to be used must be within 1000 psi of that specified. A change in the type of concrete or a significant increase in the strength level may increase the sample standard deviation. Such a situation might occur with a change in the type of aggregate; i.e., from natural aggregate to lightweight aggregate or vice versa, or with a change from non-air-entrained concrete to air-entrained concrete. Also, there may be an increase in sample standard deviation when the average strength level is raised by a significant amount, although the increment in sample standard deviation should be somewhat less than directly proportional to the strength increase. When there is reasonable doubt as to its reliability, any estimated sample standard deviation used to calculate the required average strength should always be on the conservative (high) side.

Sample standard deviations are normally established by use of at least 30 consecutive strength tests on concrete of representative materials. If less than 30, but at least 15 tests are available that are no more than 12 months old, Section 5.3.1.2 provides for a proportional increase in the calculated sample standard deviation as the number of consecutive tests decrease from 29 to 15.

Statistical methods provide valuable tools for assessing the results of strength tests. It is important that concrete technicians understand the basic language of statistics and be capable of effectively utilizing the tool to evaluate strength test results.

Figure 2-1 illustrates several fundamental statistical concepts. Data points represent six (6) strength test results* from consecutive tests on a given class of concrete. The horizontal line represents the average of tests that is designated \bar{X}. The average is computed by adding all test values and dividing by the number of values summed; i.e., in Fig. 2-1:
The average \(\bar{X} \) gives an indication of the overall strength level of the concrete tested.

It would also be informative to have a single number which would represent the variability of the data about the average. The up and down deviations from the average (3500 psi) are given as vertical lines in Fig. 2-1. If one were to accumulate the total length of the vertical lines without regard to whether they are up or down, and divide that total length by the number of tests, the result would be the average length, or the average distance from the average strength:

\[
\frac{500 + 1000 + 500 + 500 + 1500 + 1000}{6} = 833 \text{ psi}
\]

This is one measure of variability. If concrete test results were quite variable, the vertical lines would be long. On the other hand, if the test results were close, the lines would be short.

In order to emphasize the impact of a few very high or very low test values, statisticians recommend the use of the square of the vertical line lengths. The square root of the sum of the squared lengths divided by one less than the number of tests (some texts use the number of tests) is known as the standard deviation. This measure of variability is commonly designated by \(s_s \). Mathematically, \(s_s \) is expressed as:

\[
s_s = \sqrt{\frac{\sum (X - \bar{X})^2}{n - 1}}
\]

where

- \(s_s \) = standard deviation, psi
- \(\Sigma \) indicates summation
- \(X \) = an individual strength test result, psi
- \(\bar{X} \) = average strength, psi
- \(n \) = number of tests

For example, for the data in Fig. 2-1, the sample standard deviation would be:

\[
s_s = \sqrt{\frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + (X_3 - \bar{X})^2 + (X_4 - \bar{X})^2 + (X_5 - \bar{X})^2 + (X_6 - \bar{X})^2}{5}}
\]

* For definition of “strength test” see discussion in Section 5.6.2.4.
which is calculated below.

\[
\begin{array}{c|c|c}
\text{Deviation (} X - \bar{X} \text{)} & \text{Deviation squared (} (X - \bar{X})^2 \text{)} \\
\hline
\text{(length of vertical lines)} & \text{(length squared)} \\
4000 - 3500 & +500 & 250,000 \\
2500 - 3500 & -1000 & 1,000,000 \\
3000 - 3500 & -500 & 250,000 \\
4000 - 3500 & +500 & 250,000 \\
5000 - 3500 & +1500 & 2,250,000 \\
2500 - 3500 & -1000 & 1,000,000 \\
\hline
\text{Total} & \text{+5,000,000} \\
\end{array}
\]

\[
s_s = \sqrt{\frac{5,000,000}{5}} = 1,000 \text{ psi (a very large value)}
\]

For concrete strengths in the range of 3000 to 4000 psi, the expected sample standard deviation, representing different levels of quality control, will range as follows:

<table>
<thead>
<tr>
<th>Sample Standard Deviation</th>
<th>Representing</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 to 400 psi</td>
<td>Excellent Quality Control</td>
</tr>
<tr>
<td>400 to 500 psi</td>
<td>Good</td>
</tr>
<tr>
<td>500 to 600 psi</td>
<td>Fair</td>
</tr>
<tr>
<td>> 600 psi</td>
<td>Poor Quality Control</td>
</tr>
</tbody>
</table>

For the very-high-strength, so called high-performance concrete (HPC), with strengths in excess of 10,000 psi, the expected sample standard deviation will range as follows:

<table>
<thead>
<tr>
<th>Sample Standard Deviation</th>
<th>Representing</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 to 500 psi</td>
<td>Excellent Quality Control</td>
</tr>
<tr>
<td>500 to 700 psi</td>
<td>Good</td>
</tr>
<tr>
<td>> 700 psi</td>
<td>Poor Quality Control</td>
</tr>
</tbody>
</table>

Obviously, it would be time consuming to actually calculate \(s_s \) in the manner described above. Most hand-held scientific calculators are programmed to calculate sample standard deviation directly. The appropriate mathematical equations are programmed into the calculator with the user simply entering the statistical data (test values), then pressing the appropriate function key to obtain sample standard deviation directly. Example 2.2 illustrates a typical statistical evaluation of strength test results.

The coefficient of variation, \(V \), is simply the standard deviation expressed as a percentage of the average value. The mathematical formula is:

\[
V = \frac{s_s}{X} \times 100\%
\]

For the test results of Fig. 2-1:

\[
V = \frac{1000}{3500} \times 100 = 29\%
\]

Standard deviation may be computed either from a single group of successive tests of a given class of concrete or from two groups of such tests. In the latter case, a statistical average value of standard deviation is to be used, calculated by usual statistical methods as follows:
where

\[n_1 = \text{number of samples in group 1} \]
\[n_2 = \text{number of samples in group 2} \]
\[n_{\text{total}} = n_1 + n_2 \]

\(s_{s1} \) or \(s_{s2} \) is calculated as follows:

\[s_s = \sqrt{\frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \ldots + (X_n - \bar{X})^2}{n - 1}} \]

For ease of computation,

\[s_s = \sqrt{\frac{X_1^2 + X_2^2 + X_3^2 + \ldots + X_n^2 - n\bar{X}^2}{n - 1}} \]

or

\[s_s = \sqrt{\frac{(X_1^2 + X_2^2 + X_3^2 + \ldots + X_n^2) - (X_1 + X_2 + X_3 + \ldots + X_n)^2}{n - 1}} \]

where \(X_1, X_2, X_3, \ldots X_n \) are the individual strength test results and \(n \) is the total number of strength tests.

5.3.2 Required Average Strength

Where the concrete production facility has a record based on at least 30 consecutive strength tests representing materials and conditions similar to those expected (or a record based on 15 to 29 consecutive tests with the calculated sample standard deviation modified by the applicable factor from Table 5.3.1.2), the average strength used as the basis for selecting concrete proportions for specified compressive strengths, \(f'_c \), equal to or less than 5000 psi must be the larger of:

\[f'_{cr} = f'_c + 1.34s_s \]

and

\[f'_{cr} = f'_c + 2.33s_s - 500 \]

For specified compressive strengths, \(f'_c \) over 5000, the average strength used as the basis for selecting concrete proportions must be the larger of:

\[f'_{cr} = f'_c + 1.34s_s \]

and

\[f'_{cr} = 0.90f'_c + 2.33s_s \]
If the sample standard deviation is unknown, the required average strength f_{cr} used as the basis for selecting concrete proportions must be determined from Table 5.3.2.2:

For f'_c
- less than 3000 psi: $f'_{cr} = f'_c + 1000$ psi
- between 3000 and 5000 psi: $f'_{cr} = f'_c + 1200$ psi
- greater than 5000 psi: $f'_{cr} = 1.10f'_c + 700$ psi

Formulas for calculating the required target strengths are based on the following criteria:

1. A probability of 1 in 100 that the average of 3 consecutive strength tests will be below the specified strength, f'_c: $f'_{cr} = f'_c + 1.34s_s$, and

2. A probability of 1 in 100 that an individual strength test will be more than 500 psi below the specified strength f'_c: $f'_{cr} = f'_c + 2.33s_s - 500$ (for concrete strengths not over 5000 psi), and

3. A probability of 1 in 100 that an individual strength test will be more than 0.90f'_c below the specified strength f'_c (for concrete strengths in excess of 5000 psi): $f'_{cr} = 0.90f'_c + 2.33s_s$.

Criterion (1) will produce a higher required target strength than Criterion (2) for low to moderate standard deviations, up to 500 psi. For higher standard deviations, Criterion (2) will govern.

The average strength provisions of Section 5.3.2 are intended to provide an acceptable level of assurance that concrete strengths are satisfactory when viewed on the following basis: (1) the average of strength tests over an appreciable time period (three consecutive tests) is equal to or greater than the specified compressive strength, f'_c; or (2) an individual strength test is not more than 500 psi below (for specified compressive strengths not over 5000 psi); or (3) an individual strength test is not more than 0.10 f'_c below f'_c (for specified compressive strengths in excess of 5000 psi).

5.3.3 Documentation of Average Compressive Strength

Mix approval procedures are necessary to ensure that the concrete furnished will actually meet the strength requirements. The steps in a mix approval procedure can be outlined as follows:

1. Determine the expected sample standard deviation from past experience.
 a. This is done by examining a record of 30 consecutive strength tests made on a similar mix.
 b. If it is difficult to find a similar mix on which 30 consecutive tests have been conducted, the sample standard deviation can be computed from two mixes, if the total number of tests equals or exceeds 30. The sample standard deviations are computed separately and then averaged by the statistical averaging method already described.

2. Use the sample standard deviation to select the appropriate target strength from the larger of Table 5.3.2.1 (5-1), (5-2) and (5-3).
 a. For example, if the sample standard deviation is 450 psi, then overdesign must be by the larger of:

 \begin{align*}
 1.34 \times 450 &= 603 \text{ psi} \\
 2.33 \times 450 - 500 &= 549 \text{ psi}
 \end{align*}

 Thus, for a 3000 psi specified compressive strength, the average strength used as a basis for selecting concrete mixture proportions must be 3600 psi.
b. Note that if no acceptable test record is available, the average strength must be 1200 psi greater than f'_c (i.e., 4200 psi average for a specified 3000 psi concrete), see Table 5.3.2.2.

3. Furnish data to document that the mix proposed for use will give the average strength needed. This may consist of:

 a. A record of 30 strength tests of concrete used on other projects. This would generally be the same test record that was used to document the sample standard deviation, but it could be a different set of 30 results; or

 b. Laboratory strength data obtained from a series of trial batches.

Where the average strength documentation for strengths over 5000 psi are based on laboratory trail mixtures, it is permitted to increase f'_c calculated in Table 5.3.2.2 to allow for a reduction in strength from laboratory trials to actual concrete production.

Section 5.3.1.1 of the ’08 code imposes a maximum age of 12 months for strength tests results used to establish the standard deviation. This addresses the concern that constituent materials properties at a concrete production facility may change over time.

Section 5.3.3.2(c) permits tolerances on slump and air content when proportioning by laboratory trial batches. New to the ’08 code is the requirement that the tolerance on slump be within the range specified for the proposed work, and the tolerance on air content be within the tolerance specified for the proposed work. Also new to the ’08 code is the provision that test cylinders for trial batches can be 4 inches in diameter by 8 inches high, in addition to the traditional 6- by 12-inch cylinders. Selection of concrete proportions by trial mixtures is illustrated in Example 2.3.

5.4 PROPORTIONING WITHOUT FIELD EXPERIENCE OR TRIAL MIXTURES

When no field or trail mixture data are available, “other experience or information” may be used to select a water-cementitious materials ratio. This mixture proportioning option, however, is permitted only when approved by the licensed design professional. Note that this option must, of necessity, be conservative, requiring a rather high target overstrength (overdesign) of 1200 psi. If, for example, the specified strength is 3000 psi, the strength used as the basis for selecting concrete mixture proportions (water-cementitious materials ratio) must be based on 4200 psi. In the interest of economy of materials, the use of this option for mix proportioning should be limited to relatively small projects where the added cost of obtaining trial mixture data is not warranted. Note also that this alternative applies only for specified compressive strengths of concrete up to 5000 psi; for higher concrete strengths, proportioning by field experience or trial mixture data is required. The ‘99 Edition of the code limited the maximum strength proportioned without field experience or trial mixtures to 4000 psi.

5.6 EVALUATION AND ACCEPTANCE OF CONCRETE

5.6.1 Laboratory and Field Technicians

The concrete test procedures prescribed in the code require personnel with specific knowledge and skills. Experience has shown that only properly trained field technicians and laboratory personnel who have been certified under nationally recognized programs can consistently meet the standard of control that is necessary to provide meaningful test results. Section 5.6.1 of the code requires that tests performed on fresh concrete at the job site and procedures required to prepare concrete specimens for strength tests must be performed by a “qualified field testing technician”. Commonly performed field tests which will require qualified field testing technicians include; unit weight, slump,
Section 5.6.1 also requires that “qualified laboratory technicians” must perform all required laboratory tests. Laboratory technicians performing concrete testing may be qualified by receiving certification in accordance with requirements of ACI Concrete Laboratory Testing Technician, Concrete Strength Testing Technician, or the requirements of ASTM C1007.

The following discussion on Chapter 5 of the code addresses the selection of concrete mixture proportions for strength, based on probabilistic concepts.

5.6.2 Frequency of Testing

Proportioning concrete by the probabilistic basis of the code requires that a statistically acceptable number of concrete strength tests be provided. Requiring that strength tests be performed according to a prescribed minimum frequency provides a statistical basis.

The code minimum frequency criterion for taking samples for strength tests (see 5.6.2.4 below), based on a per day and a per project criterion (the more stringent governs**) for each class of concrete, is summarized below.

5.6.2.1 Minimum Number of Strength Tests Per Day —This number shall be no less than:

- Once per day, nor less than,
- Once for each 150 cu yds of concrete placed, nor less than,
- Once for each 5000 sq ft of surface area of slabs or walls placed.

5.6.2.2 Minimum Number of Strength Tests Per Project —This number shall not be less than:

- Five strength tests from five (5) randomly selected batches or from each batch if fewer than five batches.

If the total quantity of concrete placed on a project is less than 50 cu yds, 5.6.2.3 permits strength tests to be waived by the building official.

Example 2.4 illustrates the above frequency criteria for a large project (5.6.2.1 controls). Example 2.5 illustrates a smaller project (5.6.2.2 controls).

5.6.2.4 Strength Test Defined — The ’05 and prior editions of the code were silent on the size of cylinder to be used for strength testing purposes. According to ASTM C31-03a (Standard Practice for Making and Curing Concrete Test Specimens in the Field), the edition of the standard referenced in the ’05 code, test “cylinders shall be 6 by 12 in. or when specified 4 by 8 in.” Presumably “when specified” meant where the contract documents prepared by the licensed design professional who designed the project specifically indicated that 4 by 8 in. cylinders were acceptable.

With the increased use of very-high-strength concretes (in excess of 10,000 psi), the standard 6 by 12 in. cylinder requires very high capacity testing equipment which is not readily available in many testing laboratories. Consequently, most project contract documents that specify very-high-strength concrete specifically permit the use of the smaller 4 by 8 in. cylinders for strength test specimens. The 4 by 8 in. cylinder requires about one-half the testing capacity of the 6 by 12 in. specimen. Also, many ready mixed and precast concrete producers use the 4 by 8 in. cylinders for in-house concrete quality control.

** On a given project, if total volume of concrete is such that frequency of testing required by 5.6.2.1 would provide less than five tests for a given class of concrete, the per project criterion will govern.
As a result, 5.6.2.4 of the ’08 code indicates that:

“a strength test shall be the average of the strengths of at least two 6 by 12 in. cylinders or at least three 4 by 8 in. cylinders made from the same sample of concrete and tested at 28 days or at test age designated for determination of \(f'_c \)”

Since 4 by 8-inch cylinders tend to have approximately 20 percent higher within-test variability compared to that of 6 by 12 in. cylinders, testing three 4 by 8 in. cylinders preserves the confidence level of the average strength.

Due to the fact that 4 by 8 in. cylinders only weigh about 30% as much as 6 by 12 in. cylinders made with the same concrete, they are becoming more popular, especially with field and laboratory technicians who fabricate and test the cylinders, even for lower strength concrete. In order to promote a smooth transition to the use of the smaller cylinders, code commentary Section R5.6.3.2 advises the owner, licensed design professional, and testing agency to agree upon the cylinder size to be used before construction begins.

It is imperative that the field technician preparing the cylinders knows the differences between the provisions of ASTM C31 for fabricating 4 by 8 in. and 6 by 12 in. cylinders. The following table highlights these differences.

<table>
<thead>
<tr>
<th>Description</th>
<th>4 x 8 cylinders</th>
<th>6 x 12 cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layers of concrete to fill mold:</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Consolidation with tamping rod</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nominal maximum size of coarse aggregate</td>
<td>1.33 in.</td>
<td>2 in.</td>
</tr>
<tr>
<td>If tamping rod is used to consolidate concrete:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter of tamping rod</td>
<td>3/8-in. + 1/16-in.</td>
<td>5/8-in. + 1/16-in.</td>
</tr>
<tr>
<td>Length of tamping rod</td>
<td>12 in. + 4 in.</td>
<td>20 in. + 4 in.</td>
</tr>
<tr>
<td>If mechanical vibrator is used to consolidate concrete:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of insertions per layer</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Maximum diameter of vibrator head</td>
<td>1 inch</td>
<td>1.5 inches</td>
</tr>
</tbody>
</table>

If 4 by 8 in. cylinders are fabricated using equipment and/or techniques intended for 6 by 12 in. cylinders, it is likely that the additional compactive effort used to consolidate the concrete will result in denser concrete, which will normally result in higher compressive strengths.

In addition, ASTM C39-05 (Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens),\(^2\)\(^{14}\) the edition of the standard referenced in the ’08 code, requires that during the latter half of the loading phase, the stress on the specimen must increase at the rate of 35 + 7 psi/second. Since this rate applies regardless of the cylinder diameter, the loading rate is related to cylinder diameter or area. For a 4-in. cylinder, this corresponds to a loading rate of 440 + 88 pounds per second, and for a 6-inch cylinder this translates to a loading rate of 990 + 198 pounds per second; or a loading rate of 2.25 times that needed for 4-in. cylinder.

As indicated in the table above, ASTM C31 limits the nominal maximum size of coarse aggregate to one-third the mold diameter, which is 1.33 inches for the 4-inch cylinder. ASTM C332.15 (Standard Specification for Concrete Aggregate), which is referenced in 3.3.1, establishes gradations (size numbers) of coarse aggregate suitable for use in concrete. Some of the size numbers will contain aggregate particles that are greater than 1.33 inches; therefore, 4 by 8 cylinders will not be permitted for acceptance testing. In addition, some size numbers will contain aggregate particles larger than 2 inches, in which case 6 by 12 cylinders are not permitted unless the concrete sample is wet sieved in accordance with ASTM C172 (Standard Practice for Sampling Freshly Mixed Concrete), to remove aggregate larger than 2 inches. The following table shows the gradation size numbers and corresponding nominal maximum size of aggregate. As pointed out, use of 4 by 8 cylinders is limited to larger ASTM C33 size numbers since these gradations contain smaller aggregate particles.
a. ASTM C1252.16 (Standard Terminology Relating to Concrete and Concrete Aggregates) defines the nominal maximum size of aggregate as “the smallest sieve opening through which the entire amount of the aggregate is permitted to pass.”

b. 6 by 12 cylinders are permitted provided the concrete sample is wet-sieved per ASTM C172 to remove aggregate larger than 2 inches.

Concrete mixtures for most building elements are batched with coarse aggregate having a size number of 5 or larger; therefore, the nominal maximum size of coarse aggregate is 1 inch or less. For mass concrete, such as mat foundations, larger footings and thicker walls, where reinforcement typically is not congested, size numbers smaller than number 5 may be specified. In the former case 4 by 8 cylinders are acceptable; whereas, in the latter case minimum 6-inch diameter cylinders will be required.

The differences pointed out above between fabrication and testing provisions for 4-in. versus 6-in. cylinders illustrate the importance of having certified personnel making and testing the cylinders. If one or more incorrect procedures are used, misleading strength test results will more than likely occur.

It should be noted that the total number of cylinders cast for a project will normally exceed the code minimum number needed to determine acceptance of concrete strength (two or three cylinders per strength test for 6- and 4-in. cylinders, respectively). A prudent total number for a project may include additional cylinders for information (7-day tests) or to be field cured to check early strength development for form stripping and/or posttensioning purposes, plus one or two in reserve, should a low cylinder break occur at the 28-day acceptance test age.

Table: ASTM C33 Size number and Nominal Maximum Size of Aggregate

<table>
<thead>
<tr>
<th>ASTM C33 Size number</th>
<th>Nominal Maximum Size of Aggregatea - inches</th>
<th>Minimum diameter of test cylinder - inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 or smaller</td>
<td>≥ 2.5</td>
<td>6b</td>
</tr>
<tr>
<td>3, 357</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4, 467</td>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>5 or larger</td>
<td>≤ 1</td>
<td>4 or 6</td>
</tr>
</tbody>
</table>

5.6.3.3 Acceptance of Concrete—The strength level of an individual class of concrete is considered satisfactory if both of the following criteria are met:

1. No single test strength (the average of the strengths of at least two 6 by 12 in. or three 4 by 8 in. cylinders from a batch) shall be more than 500 psi below the specified compressive strength when f'_c is 5000 psi or less; or is more than 10 percent below f'_c if f'_c is over 5000 psi.
2. The average of any three consecutive test strengths must equal or exceed the specified compressive strength f'_c.

Examples 2.6 and 2.7 illustrate “acceptable” and “low strength” strength test results, respectively, based on the above code acceptance criteria.

5.6.5 Investigation of Low-Strength Test Results

If the average of three consecutive strength test results is below the specified compressive strength, steps must be taken to increase the strength level of the concrete (see 5.6.3.4). If a single strength test result falls more than 500 psi below the specified strength when f'_c is 5000 or less, or is more than 10 percent below f'_c if f'_c is over 5000 psi, there may be more serious problems, and an investigation is required according to the procedures outlined in 5.6.5 to ensure structural adequacy.

** On a given project, if total volume of concrete is such that frequency of testing required by 5.6.2.1 would provide less than five tests for a given class of concrete, the per project criterion will govern.
Note that for acceptance of concrete, a single strength test result (one “test”) is always the average strength of two 6- by 12-in. or three 4- by 8-in. cylinders broken at the designated test age, usually 28 days. Due to the many potential variables in the production and handling of concrete, concrete acceptance is never based on a single cylinder break. Two major reasons for low strength test results\(^{2,17}\) are: (1) improper fabrication, handling and testing of the cylinders – found to contribute to the majority of low strength investigations; and (2) reduced concrete strength due to an error in production, or the addition of too much water to the concrete at the job site. The latter usually occurs because of delays in placement or requests for a higher slump concrete. High air content due to an over-dosage of air entraining admixture at the batch plant has also contributed to low strength.

If low strength is reported, it is imperative that the investigation follows a logical sequence of possible cause and effect. All test reports should be reviewed and results analyzed before any action is taken. The pattern of strength test results should be studied for any clue to the cause. Is there any indication of actual violation of the specifications? Look at the slump, air content, concrete and ambient temperatures, number of days cylinders were left in the field and under what curing conditions, and any reported cylinder defects.

If the deficiency justifies investigation, testing accuracy should be verified first, and then the structural requirements compared with the measured strength. Of special interest in the early investigation should be the fabrication, handling and testing of the test cylinders. Minor discrepancies in curing cylinders in mild weather will probably not affect strength much, but if major violations occur, large reductions in strength may result. Almost all deficiencies involving handling and testing of cylinders will lower strength test results. A number of simultaneous violations may contribute to significant reductions. Examples include: extra days in the field; curing over 80°F; frozen cylinders; impact during transportation; delay in moist curing at the lab; improper caps; and insufficient care in breaking cylinders.

For in-place concrete investigation, it is essential to know where in the structure the “tested concrete” is located and which batch (truck) the concrete is from. This information should be part of the data recorded at the time the test cylinders were molded. If test results are found deficient, in-place strength testing may be necessary to ascertain compliance with the code and contract documents. If strength is greater than that actually needed, there is little point in investigating the in-place strength. However, if testing procedures conform to the standards and the test results indicate that concrete strength is lower than required for the member in question, further investigation of the in-place concrete may be required (see 5.6.5).

The laboratory should be held responsible for deficiencies in its procedures. Use of qualified lab personnel is essential. Personnel sampling concrete, making test cylinders and operating lab equipment must be qualified by the ACI certification program or equivalent (see 5.6.1).

If core testing should be required (see 5.6.5.2), core drilling from the area in question should be performed according to the procedures outlined in ASTM C42. The testing of cores requires great care in the operation itself and in the interpretation of the results. Detailed procedures are given in ASTM C42. The following highlights proper core drilling and testing procedures:

1. Wait 14 days (minimum) before core drilling.
2. Drill 3 cores from the questionable area.
3. Drill cores with a diamond bit.
4. Drill core with a diameter of 2-1/2 in. (minimum) or 2 × maximum aggregate size.
5. Avoid any reinforcing steel in the drilled cores.
6. Drill a minimum core length of 1 × core diameter, but preferably 2 × core diameter.
7. If possible, drill completely through member.
8. Allow 2 in. extra length at the core end to be broken out.
9. Use wooden wedges to remove end portions to be broken out.
10. Saw broken ends to plane surfaces.
11. If concrete is dry under service conditions, air dry the cores for 7 days (60 to 70°F, 60% relative humidity). Test the cores dry.
12. If concrete is wet under service conditions, soak the cores in water (73.4 ± 3°F) for 40 hours. Test the cores wet.
13. Cap the core ends with 1/8 in. thick (or less) capping material.
14. Accurately center the core in the testing machine.
15. Correct the strength for length-to-diameter ratio less than 2, as shown below (interpolate between listed values):

<table>
<thead>
<tr>
<th>Length-to-Diameter Ratio</th>
<th>Strength Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.94 - 2.10</td>
<td>1.00</td>
</tr>
<tr>
<td>1.75</td>
<td>0.98</td>
</tr>
<tr>
<td>1.50</td>
<td>0.96</td>
</tr>
<tr>
<td>1.25</td>
<td>0.93</td>
</tr>
<tr>
<td>1.00</td>
<td>0.87</td>
</tr>
</tbody>
</table>

In addition to the procedures contained in ASTM C42, the Commentary to 5.6.5 cautions that where a water-cooled bit is used to obtain cores, the coring process causes a moisture gradient between the exterior and interior of the core, which will adversely affect the core’s compressive strength. Thus, a restriction on the commencement of core testing is imposed to provide a minimum time for the moisture gradient to dissipate.

There were several significant changes to the ’02 Edition of the code that affect the storage and testing of drilled cores. The provisions in 5.6.5.3 were completely revised to require that immediately after drilling, cores must have any surface water removed by wiping and be placed in watertight bags or containers prior to transportation and storage. The ’08 code removed the provision that drilling water be wiped from the core’s surfaces before the core is placed in a watertight bag or container. The cores must be tested no earlier than 48 hours, nor more than 7 days after coring unless approved by the licensed design professional. In prior editions, storage conditions and restrictions on when testing could be performed were different for concrete in structures that would be “dry” or “superficially wet” under service conditions.

In evaluating core test results, the fact that core strengths may not equal the strength specified for molded cylinders should not be a cause for concern. Specified compressive strengths, f'_c, allow a large margin for the unknowns of placement and curing conditions in the field as well as for normal variability. For cores actually taken from the structure, the unknowns have already exerted their effect, and the margin of measured strength above required strength can logically be reduced.

Section 5.6.5.4 states that the concrete will be considered structurally adequate if the average strength of three cores is at least 85 percent of f'_c with no single core strength less than 75 percent of the specified compressive strength. The concrete can be considered acceptable from the standpoint of strength if the core test results for a given location meet these requirements. The licensed design professional should examine cases where core strength values fail to meet the above criteria, to determine if there is cause for concern over structural adequacy. If the results of properly made core tests are so low as to leave structural integrity in doubt, further action may be required.

As a last resort, load tests may be required to check the adequacy of structural members which are seriously in doubt. Generally such tests are suited only for flexural members—floors, beams, and the like—but they may sometimes be applied to other members. In any event, load testing is a highly specialized endeavor that should be performed and interpreted only by a licensed design professional fully qualified in the proper techniques. Load testing procedures and criteria for their interpretation are given in code Chapter 20.

In those rare cases where a structural element fails the load test or where structural analysis of unstable members indicates an inadequacy, appropriate corrective measures must be taken. The alternatives, depending on individual circumstances, are:
• Reducing the load rating to a level consistent with the concrete strength actually obtained.
• Augmenting the construction to bring its load-carrying capacity up to original expectations. This might involve adding new structural members or increasing the size of existing members.
• Replacing the unacceptable concrete.

REFERENCES

2.9 ACI Committee 211.1, “Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete (ACI 211.1-91 (Reapproved 2002))”, American Concrete Institute, Farmington Hills, MI, 2002.

2.11 ACI Committee 214, “Evaluation of Strength Test Results of Concrete (ACI 214R-02),” American Concrete Institute, Farmington Hills, MI, 2002.

Example 2.1—Selection of Water-Cementitious Materials Ratio for Strength and Durability

Concrete is required for a loading dock slab that will be exposed to occasional moisture in a severe freeze-thaw climate, but not subject to deicers. A specified compressive strength \(f'_c \) of 3000 psi is used for structural design. Type I cement with 3/4-in. maximum size normal weight aggregate is specified.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine the required minimum strength and maximum w/c ratio for the</td>
<td>5.2.1</td>
</tr>
<tr>
<td>proposed concrete work to satisfy both design strength and exposure</td>
<td></td>
</tr>
<tr>
<td>requirements.</td>
<td></td>
</tr>
<tr>
<td>For concrete exposed to freezing and thawing and occasional moisture, Table</td>
<td>4.2.1</td>
</tr>
<tr>
<td>4.2.1 categorizes the concrete F1 and Table 4.3.1 requires a maximum</td>
<td>4.3.1</td>
</tr>
<tr>
<td>water-cementitious materials ratio of 0.45, and a minimum strength (f'_c)</td>
<td></td>
</tr>
<tr>
<td>of 4500 psi.</td>
<td></td>
</tr>
<tr>
<td>Since the required strength for the exposure conditions is greater than the</td>
<td></td>
</tr>
<tr>
<td>required strength for structural design ((f'_c = 3000) psi), the strength</td>
<td></td>
</tr>
<tr>
<td>for the exposure requirements ((f'_c = 4500) psi) governs.</td>
<td></td>
</tr>
<tr>
<td>2. Select a w/c ratio to satisfy the governing required strength, (f'_c =</td>
<td>4.4.1</td>
</tr>
<tr>
<td>4500) psi.</td>
<td></td>
</tr>
<tr>
<td>Concrete class F1 must be air-entrained, with air content indicated in Table</td>
<td>5.3</td>
</tr>
<tr>
<td>4.4.1. For F1 concrete, a target air content of 5% is required for a 3/4-in.</td>
<td></td>
</tr>
<tr>
<td>maximum size aggregate.</td>
<td></td>
</tr>
<tr>
<td>Selection of water-cementitious materials ratio for required strength</td>
<td></td>
</tr>
<tr>
<td>should be based on trial mixtures or field data made with actual job</td>
<td></td>
</tr>
<tr>
<td>materials, to determine the relationship between w/c ratio and strength.</td>
<td></td>
</tr>
<tr>
<td>Assume that the strength test data of Example 2.2, with an established</td>
<td>5.3.1.1</td>
</tr>
<tr>
<td>sample standard deviation of 353 psi, represent materials and conditions</td>
<td></td>
</tr>
<tr>
<td>similar to those expected for the proposed concrete work:</td>
<td></td>
</tr>
<tr>
<td>a. normal weight, air-entrained concrete</td>
<td></td>
</tr>
<tr>
<td>b. specified strength (4000 psi) within 1000 psi of that required for the</td>
<td></td>
</tr>
<tr>
<td>proposed work (4500 psi)</td>
<td></td>
</tr>
<tr>
<td>c. 30 strength test results.</td>
<td></td>
</tr>
<tr>
<td>For a sample standard deviation of 353 psi, the required average</td>
<td>5.3.2</td>
</tr>
<tr>
<td>compressive strength (f'_c) to be used as the basis for selection of</td>
<td></td>
</tr>
<tr>
<td>concrete proportions must be the larger of</td>
<td></td>
</tr>
<tr>
<td>(f'_c = f'_c + 1.34s_s = 4500 + 1.34 (353) \approx. 5000) psi, or</td>
<td>5.3 Eq. 5-1</td>
</tr>
<tr>
<td>(f'_c = f'_c + 2.33s_s - 500 = 4500 + 2.33 (353) - 500 \approx. 4800)</td>
<td></td>
</tr>
<tr>
<td>psi</td>
<td></td>
</tr>
<tr>
<td>Therefore, (f'_c = 5000) psi.</td>
<td></td>
</tr>
</tbody>
</table>
Note: The average strength required for the mix design should equal the specified strength plus an allowance to account for variations in materials; variations in methods of mixing, transporting, and placing the concrete; and variations in making, curing, and testing concrete cylinder specimens. For this example, with a sample standard deviation of 353 psi, an allowance of 500 psi for all those variations is made.

Typical trial mixture or field data strength curves are given in Ref. 2.1. Using the field data strength curve in Fig. 2-2, the required water-cementitious materials ratio (w/c) approximately equals 0.38 for an f'_{cr} of 5000 psi. (Use of the typical data curve of Fig. 2-2 is for illustration purposes only; a w/c versus required strength curve that is reflective of local materials and conditions should be used in an actual design situation.)

Since the required w/c ratio of 0.38 for the 4500 psi specified compressive strength is less than the 0.45 required by Table 4.3.1, the 0.38 value must be used to establish the mixture proportions. Note that the specified strength, $f'_{cr} = 4500$ psi, is the strength that is expected to be equaled or exceeded by the average of any set of three consecutive strength tests, with no individual test more than 500 psi below the specified 4500 psi strength.

As a follow up to this example, the test records of Example 2.2 could probably be used (by the concrete producer) to demonstrate that the concrete mix for which the records were generated will produce the required average strength f'_{cr} of the concrete work for this project. For the purpose of documenting the average strength potential of the concrete mix, the concrete producer need only select 10 consecutive tests from the total of 30 tests that represent a higher average than the required average of 5000 psi. Realistically, the average of the total 30 test results (4835 psi) is close enough to qualify the same concrete mix for the proposed work.

![Figure 2-2 Typical Trial Mixture or Field Data Strength Curves](image-url)
Example 2.2—Strength Test Data Report

Calculate the mean and sample standard deviation for the 30 strength tests results for the 6 by 12 in. cylinders given below, using the formula for sample standard deviation given in R5.3.1. The project specifications call for column concrete to be normal weight, air-entrained, with a specified strength of 4000 psi.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Date of Test</th>
<th>28-Day #1</th>
<th>28-Day #2</th>
<th>28-Day Average</th>
<th>28-Day Average (3-Consecutive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05-March-07</td>
<td>4640</td>
<td>4770</td>
<td>4705</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>06-March-07</td>
<td>4910</td>
<td>5100</td>
<td>5005</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10-March-07</td>
<td>4570</td>
<td>4760</td>
<td>4665</td>
<td>4792</td>
</tr>
<tr>
<td>4</td>
<td>12-March-07</td>
<td>4800</td>
<td>5000</td>
<td>4900</td>
<td>4857</td>
</tr>
<tr>
<td>5</td>
<td>13-March-07</td>
<td>5000</td>
<td>4900</td>
<td>4950</td>
<td>4838</td>
</tr>
<tr>
<td>6</td>
<td>17-March-07</td>
<td>4380</td>
<td>4570</td>
<td>4475</td>
<td>4775</td>
</tr>
<tr>
<td>7</td>
<td>19-March-07</td>
<td>4630</td>
<td>4820</td>
<td>4725</td>
<td>4717</td>
</tr>
<tr>
<td>8</td>
<td>21-March-07</td>
<td>4800</td>
<td>4670</td>
<td>4735</td>
<td>4645</td>
</tr>
<tr>
<td>9</td>
<td>25-March-07</td>
<td>5020</td>
<td>4940</td>
<td>4980</td>
<td>4813</td>
</tr>
<tr>
<td>10</td>
<td>28-March-07</td>
<td>4740</td>
<td>4900</td>
<td>4820</td>
<td>4845</td>
</tr>
<tr>
<td>11</td>
<td>30-March-07</td>
<td>4300</td>
<td>4110</td>
<td>4205</td>
<td>4668</td>
</tr>
<tr>
<td>12</td>
<td>02-April-07</td>
<td>4280</td>
<td>3620</td>
<td>3950</td>
<td>4325</td>
</tr>
<tr>
<td>13</td>
<td>05-April-07</td>
<td>4740</td>
<td>4880</td>
<td>4810</td>
<td>4322</td>
</tr>
<tr>
<td>14</td>
<td>08-April-07</td>
<td>4870</td>
<td>5040</td>
<td>4955</td>
<td>4592</td>
</tr>
<tr>
<td>15</td>
<td>09-April-07</td>
<td>4590</td>
<td>4670</td>
<td>4630</td>
<td>4798</td>
</tr>
<tr>
<td>16</td>
<td>15-April-07</td>
<td>4420</td>
<td>4690</td>
<td>4555</td>
<td>4713</td>
</tr>
<tr>
<td>17</td>
<td>16-April-07</td>
<td>4980</td>
<td>5070</td>
<td>5025</td>
<td>4737</td>
</tr>
<tr>
<td>18</td>
<td>19-April-07</td>
<td>4900</td>
<td>4860</td>
<td>4880</td>
<td>4820</td>
</tr>
<tr>
<td>19</td>
<td>20-April-07</td>
<td>5690</td>
<td>5570</td>
<td>5630</td>
<td>5178</td>
</tr>
<tr>
<td>20</td>
<td>22-April-07</td>
<td>5310</td>
<td>5310</td>
<td>5310</td>
<td>5273</td>
</tr>
<tr>
<td>21</td>
<td>24-April-07</td>
<td>5080</td>
<td>4970</td>
<td>5025</td>
<td>5322</td>
</tr>
<tr>
<td>22</td>
<td>28-April-07</td>
<td>4640</td>
<td>4440</td>
<td>4540</td>
<td>4958</td>
</tr>
<tr>
<td>23</td>
<td>01-May-07</td>
<td>5090</td>
<td>5080</td>
<td>5085</td>
<td>4883</td>
</tr>
<tr>
<td>24</td>
<td>03-May-07</td>
<td>5430</td>
<td>5510</td>
<td>5470</td>
<td>5032</td>
</tr>
<tr>
<td>25</td>
<td>07-May-07</td>
<td>5290</td>
<td>5360</td>
<td>5325</td>
<td>5293</td>
</tr>
<tr>
<td>26</td>
<td>10-May-07</td>
<td>4700</td>
<td>4770</td>
<td>4735</td>
<td>5177</td>
</tr>
<tr>
<td>27</td>
<td>11-May-07</td>
<td>4880</td>
<td>5040</td>
<td>4960</td>
<td>5007</td>
</tr>
<tr>
<td>28</td>
<td>15-May-07</td>
<td>5000</td>
<td>4890</td>
<td>4945</td>
<td>4880</td>
</tr>
<tr>
<td>29</td>
<td>16-May-07</td>
<td>4810</td>
<td>4670</td>
<td>4740</td>
<td>4882</td>
</tr>
<tr>
<td>30</td>
<td>18-May-07</td>
<td>4250</td>
<td>4400</td>
<td>4325</td>
<td>4670</td>
</tr>
</tbody>
</table>

Calculations and Discussion

Computation of the mean strength and sample standard deviation is shown in the following table. The sample standard deviation of 353 psi represents excellent quality control for the specified 4000 psi concrete.

Note that the concrete supplied for this concrete work satisfies the acceptance criteria of 5.6.3.3; no single strength test (28-day average of two cylinders) falls below the specified strength (4000 psi) by more than 500 psi (3500 psi), and the average of each set of 3 consecutive strength tests exceeds the specified compressive strength (4000 psi).
Example 2.2 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>Test No.</th>
<th>28-day Strength, X, psi</th>
<th>X – X, psi</th>
<th>(X – X)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4705</td>
<td>-130</td>
<td>16,900</td>
</tr>
<tr>
<td>2</td>
<td>5005</td>
<td>170</td>
<td>28,900</td>
</tr>
<tr>
<td>3</td>
<td>4865</td>
<td>-170</td>
<td>28,900</td>
</tr>
<tr>
<td>4</td>
<td>4900</td>
<td>65</td>
<td>4,225</td>
</tr>
<tr>
<td>5</td>
<td>4950</td>
<td>115</td>
<td>13,225</td>
</tr>
<tr>
<td>6</td>
<td>4475</td>
<td>-360</td>
<td>129,600</td>
</tr>
<tr>
<td>7</td>
<td>4725</td>
<td>-110</td>
<td>12,100</td>
</tr>
<tr>
<td>8</td>
<td>4735</td>
<td>-100</td>
<td>10,000</td>
</tr>
<tr>
<td>9</td>
<td>4980</td>
<td>145</td>
<td>21,025</td>
</tr>
<tr>
<td>10</td>
<td>4820</td>
<td>-15</td>
<td>225</td>
</tr>
<tr>
<td>11</td>
<td>4205</td>
<td>-630</td>
<td>396,900</td>
</tr>
<tr>
<td>12</td>
<td>3950</td>
<td>-885</td>
<td>783,225</td>
</tr>
<tr>
<td>13</td>
<td>4810</td>
<td>-25</td>
<td>625</td>
</tr>
<tr>
<td>14</td>
<td>4955</td>
<td>100</td>
<td>10,000</td>
</tr>
<tr>
<td>15</td>
<td>4630</td>
<td>-205</td>
<td>42,025</td>
</tr>
<tr>
<td>16</td>
<td>4555</td>
<td>-280</td>
<td>78,400</td>
</tr>
<tr>
<td>17</td>
<td>5025</td>
<td>190</td>
<td>36,100</td>
</tr>
<tr>
<td>18</td>
<td>4880</td>
<td>45</td>
<td>2,025</td>
</tr>
<tr>
<td>19</td>
<td>5630</td>
<td>795</td>
<td>632,025</td>
</tr>
<tr>
<td>20</td>
<td>5310</td>
<td>475</td>
<td>225,625</td>
</tr>
<tr>
<td>21</td>
<td>5025</td>
<td>190</td>
<td>36,100</td>
</tr>
<tr>
<td>22</td>
<td>4540</td>
<td>-295</td>
<td>87,025</td>
</tr>
<tr>
<td>23</td>
<td>5085</td>
<td>250</td>
<td>62,500</td>
</tr>
<tr>
<td>24</td>
<td>5470</td>
<td>635</td>
<td>403,225</td>
</tr>
<tr>
<td>25</td>
<td>5325</td>
<td>490</td>
<td>240,100</td>
</tr>
<tr>
<td>26</td>
<td>4735</td>
<td>-100</td>
<td>10,000</td>
</tr>
<tr>
<td>27</td>
<td>4960</td>
<td>125</td>
<td>15,625</td>
</tr>
<tr>
<td>28</td>
<td>4945</td>
<td>110</td>
<td>12,100</td>
</tr>
<tr>
<td>29</td>
<td>4740</td>
<td>-95</td>
<td>9,025</td>
</tr>
<tr>
<td>30</td>
<td>4325</td>
<td>-510</td>
<td>260,100</td>
</tr>
</tbody>
</table>

\[\Sigma = 145,060 \quad 3,607,850 \]

- **Number of Tests** = 30
- **Maximum Strength** = 5630 psi
- **Minimum Strength** = 3950 psi
- **Mean Strength** = \(\frac{145,060}{30} = 4835 \text{ psi} \)
- **Sample Standard Deviation** = \(\sqrt{\frac{3,607,850}{29}} = 353 \text{ psi} \)

The single low strength test (3950 psi) results from the very low break for cylinder #2 (3620 psi) of test No. 12. The large disparity between cylinder #2 and cylinder #1 (4280 psi), both from the same batch, would seem to indicate a possible problem with the handling and testing procedures for cylinder #2.
Interestingly, the statistical data from the 30 strength test results can be filed for use on subsequent projects to establish the standard deviation for a mix design provided: (1) the proposed work calls for normal weight air-entrained concrete with a specified compressive strength within 1000 psi of the specified value of 4000 psi value (3000 to 5000 psi), and (2) the strength test data is no more than 12 months old. The target strength for mix proportioning would be calculated using the 353 psi sample standard deviation in code Eqs. (5-1) and (5-2). The low sample standard deviation should enable the “ready-mix company” to produce an economical mix for similar concrete work. The strength test data of this example are used to demonstrate that the concrete mix used for this project qualifies for the proposed concrete work of Example 2.1.
Example 2.3—Selection of Concrete Proportions by Trial Mixtures

Establish a water-cementitious materials ratio for a concrete mixture on the basis of the specified compressive strength of the concrete to satisfy the structural design requirements.

Project Specifications:

\[f'_c = 3000 \text{ psi (normal weight) at 28 days} \]

3/4-in. max. size aggregate

5% total air content (tolerance ± 0.50%)

4 in. max slump (tolerance ± 0.75 in.)

Kona sand and gravel

Type I Portland Cement

Assume no strength test records are available to establish a target strength for selection of concrete mixture proportions. The water-cementitious materials ratio is to be determined by trial mixtures. See 5.3.3.2.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>
| **1.** Without strength test results, use Table 5.3.2.2 to establish a target strength, \(f'_{cr} \).

\[f'_{cr} = f'_c + 1200 = 3000 + 1200 = 4200 \text{ psi} \]

<table>
<thead>
<tr>
<th>2. Trial Mixture Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3.2</td>
</tr>
</tbody>
</table>

Trial mixtures should be based on the same materials as proposed for the concrete work. Three (3) concrete mixtures with three (3) different water-cementitious materials ratios (w/cm) should be made to produce a range of strengths that encompass the target strength \(f'_{cr} \). The trial mixtures should have a slump within ± 0.75 in. of the maximum specified (3.25 to 4.75 in.), and a total air content within ± 0.5% of the volume required (4.5 to 5.5%) since these are the tolerances permitted by the contract documents. Three (3) test cylinders per trial mixture should be made and tested at 28 days since 4 by 8 in. cylinders are being used. The test results are then plotted to produce a strength versus w/cm ratio curve to be used to establish an appropriate w/cm ratio for the target strength \(f'_{cr} \).

To illustrate the trial mixture procedure, assume trial mixtures and test data as shown in Table 2-3. Based on the test results plotted in Fig. 2-3 for the three trial mixtures, the maximum w/cm ratio to be used as the basis for proportioning the concrete mixture with a target strength, \(f'_{cr} \), of 4200 psi by interpolation, is 0.49.

Using a water-cementitious materials ratio of 0.49 to produce a concrete with a specified strength of 3000 psi results in a significant overdesign. Referring to Fig. 2-2, Example 2.1, for a w/cm ratio of 0.49, a strength level approximating 3800 psi can be expected for air-entrained concrete. The required extent of mix overdesign, when sufficient strength data are not available to establish a sample standard deviation, should be apparent.
Table 2-3 Trial Mixture Data

<table>
<thead>
<tr>
<th>Trial Mixtures</th>
<th>Batch No. 1</th>
<th>Batch No. 2</th>
<th>Batch No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected w/c ratio</td>
<td>0.45</td>
<td>0.55</td>
<td>0.65</td>
</tr>
<tr>
<td>Measured slump, in.</td>
<td>3.75</td>
<td>4.25</td>
<td>4.50</td>
</tr>
<tr>
<td>Measured air content, %</td>
<td>4.6</td>
<td>5.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Test results, psi:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder #1</td>
<td>4650</td>
<td>3900</td>
<td>2750</td>
</tr>
<tr>
<td>Cylinder #2</td>
<td>4350</td>
<td>3750</td>
<td>2900</td>
</tr>
<tr>
<td>Cylinder #3</td>
<td>4520</td>
<td>3650</td>
<td>2850</td>
</tr>
<tr>
<td>Average</td>
<td>4510</td>
<td>3770</td>
<td>2830</td>
</tr>
</tbody>
</table>

As strength test data become available during construction, the amount by which the value of \(f'_c \) must exceed the specified value of \(f'_c \) (1200 psi) may be reduced using a sample standard deviation calculated from the actual job test data, producing a more economical concrete mix.

![Figure 2-3 Trial Mixture Strength Curve](image-url)
Example 2.4—Frequency of Testing

Determine the minimum number of test cylinders that must be cast to satisfy the code minimum sampling frequency for strength tests. Concrete placement = 200 cu yd per day for 7 days, transported by 10 cu yd truck mixers. This is a larger project where the minimum number of test cylinders per day of concrete placement (see 5.6.2.1) is greater than the minimum number per project (see 5.6.2.2). For this project, 4 by 8 in. cylinders will be used.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total concrete placed on project = 200 (7) = 1400 cu yd</td>
<td></td>
</tr>
<tr>
<td>2. Total truck loads (batches) required ≈ 1400/10 ≈ 140</td>
<td></td>
</tr>
<tr>
<td>3. Truck loads required to be sampled per day = 200/150 = 1.3</td>
<td>5.6.2.1</td>
</tr>
<tr>
<td>4. 2 truck loads must be sampled per day</td>
<td></td>
</tr>
<tr>
<td>5. Total truck loads required to be sampled for project = 2 (7) = 14</td>
<td></td>
</tr>
<tr>
<td>6. Total number of cylinders required to be cast for project = 14 (three 4 by 8 in. cylinders per strength test) = 42 (minimum)</td>
<td>5.6.2.4</td>
</tr>
</tbody>
</table>

It should be noted that the total number of cylinders required to be cast for this project represents a code required minimum number only that is needed for determination of acceptable concrete strength. Additional cylinders should be cast to provide for 7-day breaks, to provide field cured specimens to check early strength development for form removal or for determining when to post-tension prestressing tendons, and to keep one or two in reserve, should a low cylinder break occur at 28-day.
Example 2.5—Frequency of Testing

Determine the minimum number of test cylinders that must be cast to satisfy the code minimum sampling frequency for strength tests. Concrete to be placed is a 100 ft \(\times \) 75 ft \(\times \) 7-1/2 in. slab. The concrete will be transported by 10 cu yd mixer trucks and placed in one day. This is a smaller project where the minimum required number of test cylinders is based on the frequency criteria of 5.6.2.2. For this project, 6 by 12 in. cylinders will be used.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total surface area placed (= 100 \times 75 = 7500 \text{ sq ft})</td>
<td></td>
</tr>
<tr>
<td>2. Total concrete placed on project (= 7500 \times 7.5 \times \frac{1 \text{ ft}}{12 \text{ in.}} / 27 = 174 \text{ cu yd})</td>
<td></td>
</tr>
<tr>
<td>3. Total truck loads (batches) required (\approx \frac{174}{10} \approx 18)</td>
<td></td>
</tr>
<tr>
<td>4. Required truck loads sampled per day (= \frac{174}{150} = 1.2) (= \frac{7500}{5000} = 1.5)</td>
<td>5.6.2.1</td>
</tr>
<tr>
<td>5. But not less than 5 truck loads (batches) per project</td>
<td>5.6.2.2</td>
</tr>
<tr>
<td>6. Total number of cylinders cast for project (= 5) (two 6 by 12 in. cylinders per strength test) (= 10) (minimum)</td>
<td>5.6.2.4</td>
</tr>
</tbody>
</table>

It should again be noted that the total number of cylinders cast represents a code required minimum number only for acceptance of concrete strength. A more prudent total number for a project may include additional cylinders.
Example 2.6—Acceptance of Concrete

The following table lists strength test data from 5 truck loads (batches) of concrete delivered to the job site in Example 2.5. For each batch, two cylinders were cast and tested at 28 days. The specified strength of the concrete f'_c is 4000 psi. Determine the acceptability of the concrete based on the strength criteria of 5.6.3.3. Cylinders cast were 6 by 12 in.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Cylinder #1</th>
<th>Cylinder #2</th>
<th>Test Average</th>
<th>Average of 3 Consecutive Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4110</td>
<td>4260</td>
<td>4185</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>3840</td>
<td>4080</td>
<td>3960</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>4420</td>
<td>4450</td>
<td>4435</td>
<td>4193</td>
</tr>
<tr>
<td>4</td>
<td>3670</td>
<td>3820</td>
<td>3745</td>
<td>4047</td>
</tr>
<tr>
<td>5</td>
<td>4620</td>
<td>4570</td>
<td>4595</td>
<td>4258</td>
</tr>
</tbody>
</table>

Calculations and Discussion

The average of the two cylinder breaks for each batch represents a single strength test result. Even though the lowest of the five strength test results (3745 psi) is below the specified strength of 4000 psi, the concrete is considered acceptable because it is not below the specified value by more than 500 psi for concrete with an f'_c not over 5000 psi; i.e., not below 3500 psi. The second acceptance criterion, based on the average of three (3) consecutive tests, is also satisfied by the three consecutive strength test averages shown. The procedure to evaluate acceptance based on 3 consecutive strength test results is shown in the right column. The 4193 psi value is the average of the first 3 consecutive test results: $(4185 + 3960 + 4435)/3 = 4193$ psi. The average of the next 3 consecutive tests is calculated as $(3960 + 4435 + 3745)/3 = 4047$ psi, after the 4185 psi value is dropped from consideration. The average of the next 3 consecutive values is calculated by dropping the 3960 psi value. For any number of strength test results, the consecutive averaging is simply a continuation of the above procedure. Thus, based on the code acceptance criteria for concrete strength, the five strength tests results are acceptable, both on the basis of individual test results and the average of three consecutive test results.

It should be noted that since tests 2 and 4 were below the specified compressive strength of 4000 psi, 5.6.3.4 requires that steps be taken to increase the average of subsequent strength test results.
Example 2.7—Acceptance of Concrete

The following table lists strength test data from 5 truck loads (batches) of concrete delivered to the job site in Example 2.5. For each batch, two cylinders were cast and tested at 28 days. The specified strength of the concrete f'_c is 4000 psi. Determine the acceptability of the concrete based on the strength criteria of 5.6.3.3. Cylinders cast were 6 by 12 in.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Cylinder #1</th>
<th>Cylinder #2</th>
<th>Test Average</th>
<th>Average of 3 Consecutive Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3620</td>
<td>3550</td>
<td>3585</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>3970</td>
<td>4060</td>
<td>4015</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>4080</td>
<td>4000</td>
<td>4040</td>
<td>3880*</td>
</tr>
<tr>
<td>4</td>
<td>4860</td>
<td>4700</td>
<td>4780</td>
<td>4278</td>
</tr>
<tr>
<td>5</td>
<td>3390</td>
<td>3110</td>
<td>3250**</td>
<td>4023</td>
</tr>
</tbody>
</table>

*Average of 3 consecutive tests below f'_c (4000 psi).
**One test more than 500 psi below specified value.

Calculations and Discussion

Investigation of low-strength test results is addressed in 5.6.5. If average of three consecutive “tests” dips below the specified strength, steps must be taken to increase the strength of the concrete. If a “test” falls more than 500 psi below the specified strength for concrete with an f'_c not over 5000 psi, there may be more serious problems, requiring an investigation to ensure structural adequacy; and again, steps taken to increase the strength level. For investigations of low strength, it is imperative that the location of the questionable concrete in the structure be known, so that the licensed design professional can make an evaluation of the low strength on the structural adequacy of the member or element.

Based on experience, the major reasons for low strength test results are (1) improper sampling and testing, and (2) reduced concrete quality due to an error in production, or the addition of too much water to the concrete at the job site, caused by delays in placement or requests for wet or high slump concrete. High air content can also be a cause of low strength.

The test results for the concrete from Truck 5 are below the specified value, especially the value for cylinder #2, with the average strength being only 3250 psi. Note that no acceptance decisions are based on the single low cylinder break of 3110 psi. Due to the many variables in the production, sampling and testing of concrete, acceptance or rejection is always based on the average of at least 2 cylinder breaks (i.e., a “strength test”).
Details of Reinforcement

GENERAL CONSIDERATIONS

Good reinforcement details are vital to satisfactory performance of reinforced concrete structures. Standard practice for reinforcing steel details has evolved gradually. The Building Code Committee (ACI 318) continually collects reports of research and practice related to structural concrete, suggests new research needed, and translates the results into specific code provisions for details of reinforcement.

The *ACI Detailing Manual* provides recommended methods and standards for preparing contract documents, and drawings for fabrication and placing of reinforcing steel in reinforced concrete structures. Separate sections of the manual define responsibilities of both the engineer and the reinforcing bar detailer. The CRSI *Manual of Standard Practice* provides recommended industry practices for reinforcing steel. As an aid to designers, Recommended Industry Practices for Estimating, Detailing, Fabrication, and Field Erection of Reinforcing Materials are included in Ref. 3.2, for direct reference in project contract documents. The WRI *Structural Detailing Manual* provides information on detailing welded wire reinforcement systems.

7.1 STANDARD HOOKS

The requirements for standard hooks for reinforcing bars are illustrated in Figures 3-1 and 3-2. Figure 3-1 shows the requirements for primary reinforcement while Figure 3-2 is for stirrups and ties. The standard hook details for stirrups and ties apply to No. 8 and smaller bar sizes only.

![Figure 3-1 Standard Hooks for Primary Reinforcement](image-url)
Moment resisting frames used to resist seismic lateral forces in Seismic Design Categories D, E, and F (see Table 1-3), must be designed as special moment frames as defined in 2.2. In special moment frames, detailing of transverse reinforcement in beams and columns must comply with 21.5.3 and 21.6.4, respectively. Except for circular hoops which are required to have seismic hooks with a 90-degree bend on the free ends, the ends of hoops and crossed ties must terminate in seismic hooks with 135-degree bends. These hooks are necessary to effectively anchor the free ends within the confined core so satisfactory performance is achieved in areas of members where inelastic behavior may occur. See Part 29 of this publication for discussion and illustrations of this special detailing requirement.

7.2 MINIMUM BEND DIAMETERS

Minimum bend diameter for a reinforcing bar is specified as “the diameter of bend measured on the inside of the bar.” Minimum bend diameters, expressed as multiples of bar diameters, are dependent on bar size; for No. 3 to No. 8 bars, the minimum bend diameter is 6 bar diameters; for No. 9 to No. 11 bars, the minimum bend diameter is 8 bar diameters; and for No. 14 and No. 18 bars, the minimum bend diameter is 10 bar diameters. Exceptions to these provisions are:

1. For stirrups and ties in sizes No. 5 and smaller, the minimum bend diameter is 4 bar diameters. For No. 6 through No. 8 stirrups and ties, the minimum bend diameter is 6 bar diameters.

2. For welded wire reinforcement used for stirrups and ties, the inside diameter of the bend must not be less than four wire diameters for deformed wire larger than D6 and two wire diameters for all other wire. Welded intersections must be at least four wire diameters away from bends with inside diameters of less than eight wire diameters.

7.3 BENDING

All reinforcement must be bent cold unless otherwise permitted by the licensed design professional. For unusual bends, special fabrication including heating may be required and the licensed design professional must give approval to the techniques used.

7.3.2 Field Bending of Reinforcing Bars

Reinforcing bars partially embedded in concrete are frequently subjected to bending and straightening in the field. Protruding bars often must be bent to provide clearance for construction operations. Field bending and straightening may also be required because of incorrect fabrication or accidental bending. According to 7.3.2, bars partially embedded in concrete must not be field bent without authorization of the licensed design professional unless shown on the plans. Test results\(^3,4\) provide guidelines for field bending and straightening, and heating if necessary, of bars partially embedded in concrete. As an aid to the licensed design professional on proper procedure, the recommendations of Ref. 3.4 are stated below. ASTM A 615 Grade 60 deformed bars were used in the experimental work on which the recommendations are based.
1. Field bending/straightening should be limited to bar sizes No. 11 and smaller. Heat should be applied for bending/straightening bar sizes No. 6 through No. 11, or for bending/straightening bar sizes No. 5 and smaller when those bars have been previously bent. Previously unbent bars of sizes No. 5 and smaller may be bent/straightened without heating.

2. A bending tool with bending diameter as shown in Table 3-1(a) should be used. Any bend should be limited to 90 degrees.

3. In applying heat for field bending/straightening, the steel temperature should be at or above the minimum temperature shown in Table 3-1(b) at the end of the heating operation, and should not exceed the maximum temperature shown during the heating operation.

4. In applying heat for field bending/straightening, the entire length of the portion of the bar to be bent (or the entire length of the bend to be straightened) should be heated plus an additional 2 in. at each end. For bars larger than No. 9, two heat tips should be used simultaneously on opposite sides of the bar to assure a uniform temperature throughout the thickness of the bar.

5. Before field bending/straightening, the significance of possible reductions in the mechanical properties of bent/straightened bars, as indicated in Table 3-1(c), should be evaluated.

7.4 Surface conditions of reinforcement

At the time concrete is placed all reinforcing steel must be free of ice, mud, oil, loose rust, or other materials or non-metallic coatings that decrease bond [See 5.7.1(e) and 7.4.1]. “Loose rust” is usually defined as very heavy or “flaking” rust. The presence of any of these materials can seriously affect development of the bonding action between the steel and the concrete. A light coating of rust has been shown to actually improve bond between the concrete and the steel, versus that developed with a clean un-rusted bar; therefore, it is specifically permitted by the code. Reinforcing bars, except prestressing steel, with rust or mill scale are permitted if the minimum dimensions, including height of deformations and weight of a hand-wire-brushed bar comply with the applicable ASTM material specification [see 7.4.2]. Reinforcing bars with coatings (i.e., epoxy or galvanizing), which are frequently specified for special exposure environments, are permitted if they comply with the appropriate ASTM standards [see 7.4.1].

Stainless steel bars, new to the 2008 Code, are also frequently specified for special exposure conditions. If stainless steel bars are used, additional attention must be given to the surface condition of the bars prior to acceptance at the job site. Poor quality or damaged bars can prevent the bars from resisting long-term deterioration during the life of the structure. Most of the information that follows is adapted from Ref. 3.5.

One thing to look for is the overall color of the reinforcing steel. Stainless steel should have a uniformly silver-grey color that can vary from quite bright to dull in appearance. Stainless steel that does not look silver-grey or looks discolored or has irregularities on the surface may have been damaged in the manufacturing process to the extent that it could affect the performance of the steel. The surface of the bars should be such that they are not contaminated with deposits of iron and non-stainless steels.

Another problem which may be harder to spot, is physical damage or defects to the surface of the bar. These defects are usually a result of poor or improper transportation, handling or fabrication procedures. These defects may occur only in one small area of a bar or can occur at intervals along the length of the bar.

For example, should stainless steel bars be bent using the wrong kind of equipment or improperly handled, steel from the bending equipment or the environment can get pressed into the stainless steel surface. Usually if this happens, by the time the bar gets to the job site “rust” appears on the bar. The presence of rust suggests that there is contamination on the bar since stainless steel itself does not rust. If the amount of rust contamination on the surface is significant, or occurs at frequent intervals along the length of the bar, the reinforcing bar should be rejected.
Some guidelines for considering rejection of the bars include:

1. Surface area of contamination of the stainless steel by iron exceeds 4 inches in length along the reinforcing bar.

2. Two or more areas of iron contamination greater than 1-inch in length occur along the length of the reinforcing bar.

3. Frequent small localized spots of rust contamination occurring along the full length of the bar.

This contamination of the stainless steel should not just be considered a “cosmetic” problem. Long term, these contaminants on the stainless steel bar can cause localized damage (pitting) of the surface that can be very harmful and reduce the effective service life of the bar.

Should the reinforcing bars be rejected because of excessive iron contamination on the surface, the contractor may be able to have the bar(s) treated to remove the contamination and render them acceptable for service. Methods to accomplish this include mechanical cleaning with a (stainless steel) wire brush, use of a polishing machine or by chemical treatment (pickling) should the contamination be excessive. Other approved methods can be considered if these standard methods are not successful.

Addressing the problem of mechanical damage to bars that occurs during bending or straightening operations is not as straightforward. This type of damage occurs when the stainless steel received from the supplier is in the form of large coils which are then straightened and cut into bars by the fabricator. During this process the straightening is not done properly and the bar is left “twisted” (i.e. the longitudinal rib gets a twist around the bar or does not run straight along the bar length) or the deformations damaged. The deformations can also be flattened often leaving them with very sharp tears or edges along the bar. This distorted or destroyed pattern of deformations on the bar is not acceptable as it may affect bonding to the concrete. In addition these sharp edges can cause injuries to those handling the steel. Determining whether these damaged bars are acceptable for use must be made on a case by case basis.

7.5 PLACING REINFORCEMENT

7.5.1 Support for Reinforcement

Support for reinforcement, including tendons and post-tensioning ducts, is required to adequately secure the reinforcement against displacement during concrete placement. The CRSI Manual of Standard Practice3,2 gives an in-depth treatise on types and typical sizes of supports for reinforcement. Types and typical sizes of wire bar supports are illustrated in Table 3-2. In addition to wire bar supports, bar supports are also available in precast concrete, cementitious fiber-reinforced and plastic materials. If the concrete surface will be exposed during service, consideration must be given to the importance of the appearance of the concrete surface and the environment to which it will be exposed. For example, if the concrete surface will be exposed directly to the weather or to a humid environment, it is likely that rust spots or stains will eventually show if unprotected bright steel bar supports are used. As outlined in the CRSI manual, bar supports are available in four classes of protection, depending on their expected exposure and the amount of corrosion protection required. Based on current industry practice, the available classes of protection are:

Class 1 Maximum Protection
Plastic protected bar supports intended for use in situations of moderate to severe exposure and/or situations requiring light grinding (1/16 in. maximum) or sandblasting of the concrete surface.

Class 1A Maximum Protection (For Use With Epoxy-Coated Reinforcement Bars) Epoxy-, vinyl-, or plastic coated bright basic wire bar supports intended for use in situations of moderate to maximum exposure
where no grinding or sandblasting of the concrete surface is required. Generally, they are used where epoxy-coated reinforcing bars are required.

Class 2 Moderate Protection
Stainless steel protected steel wire bar supports intended for use in situations of moderate exposure and/or situations requiring light grinding (1/16 in. maximum) or sandblasting of the concrete surface. The bottom of each leg is protected with a stainless steel tip.

Class 3 No Protection
Bright basic wire bar supports with no protection against rusting. Unprotected wire bar supports are intended for use in situations where surface blemishes can be tolerated, or where supports do not come into contact with a concrete surface which is exposed.

Table 3-1 Field Bending and Straightening of Reinforcing Bars

(a) Ratio of Bend Diameter to Bar Diameter

<table>
<thead>
<tr>
<th>Bar Size, No. (a)</th>
<th>Bend inside diameter/bar diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Heated</td>
</tr>
<tr>
<td>3, 4, 5</td>
<td>8</td>
</tr>
<tr>
<td>6, 7, 8, 9</td>
<td>Not permitted</td>
</tr>
<tr>
<td>10, 11</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

(b) Temperature Limits for Heating Bars

<table>
<thead>
<tr>
<th>Bar Size, No.</th>
<th>Minimum Temperature (°F)</th>
<th>Maximum Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 4</td>
<td>1200</td>
<td>1250</td>
</tr>
<tr>
<td>5, 6</td>
<td>1350</td>
<td>1400</td>
</tr>
<tr>
<td>7, 8, 9</td>
<td>1400</td>
<td>1450</td>
</tr>
<tr>
<td>10, 11</td>
<td>1450</td>
<td>1500</td>
</tr>
</tbody>
</table>

(c) Percent Reduction in Mechanical Properties of Bent and Straightened Bars

<table>
<thead>
<tr>
<th>Bending Condition</th>
<th>Bar Size, No.</th>
<th>% Yield Strength Reduction</th>
<th>% Ultimate Tensile Strength Reduction</th>
<th>% Elongation Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>3, 4</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>Cold</td>
<td>5</td>
<td>5</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>Hot</td>
<td>All sizes</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

The engineer will need to specify the proper class of protection in the project specifications. It should be noted that the support system for reinforcement is usually detailed on the reinforcement placing drawings prepared by the “rebar” fabricator. The support system, including the proper class of protection, should be reviewed by the engineer, noting that the bar support size also dictates the cover provided for the reinforcement.

Use of epoxy-coated reinforcing bars will require bar supports made of a dielectrical material, or wire supports coated with a dielectrical material such as epoxy or vinyl, which is compatible with concrete. See discussion on 3.5.3.8, in Part 2 of this document, concerning special hardware and handling to minimize damage to the epoxy coating during handling, transporting, and placing epoxy-coated bars.

Commentary R7.5.1 emphasizes the importance of rigidly supporting the beam stirrups, in addition to the main flexural reinforcement, directly on the formwork. If not supported directly, foot traffic during concrete placement can push the web reinforcement down onto the forms, resulting in less of cover and potential corrosion problems.
It should be noted that the CRSI Manual of Standard Practice\(^3\), often referenced in the design documents for placing reinforcing bars, does not specifically address this need for direct web reinforcement support. The placing drawings, usually prepared by the bar fabricator, should show a typical section or detail, so that this support requirement is clear and not overlooked by the ironworkers.

A word of caution on reinforcement displacement during concrete placing operations. If concrete placement is by pumping, it is imperative that the pipelines and the pipeline support system be supported above and independently of the chaired reinforcement by “chain-chairs” or other means. There must be no contact, direct or indirect, with the chaired reinforcement; otherwise, the surging action of the pipeline during pumping operations can, and most assuredly will, completely dislodge the reinforcement. This potential problem is especially acute in relatively thin slab members, especially those containing tendons, where the vertical placement of the reinforcement is most critical. The contract documents should specifically address this potential problem.

7.5.2 Tolerances in Placing Reinforcement

The code provides tolerances applied simultaneously to concrete cover and member effective depth, d. With dimension “d” being the most structurally important dimension, any deviation in this dimension, especially for members of lesser depth, can have an adverse effect on the strength provided in the completed construction. The permitted variation from the effective depth d takes this strength reduction into account, with a smaller permitted variation for shallower members. The permitted tolerances are also established to reflect common construction techniques and practices. The critical dimensional tolerances for locating the longitudinal reinforcement are illustrated in Table 3-3, with two exceptions:

1. **Tolerance for clear distance to formed soffits must not exceed minus 1/4 in.**

2. **Tolerance for cover must not exceed minus one-third the concrete cover required in the design drawings and specifications.** See Example 3.1

For ends of bars and longitudinal location of bends, the tolerance is ± 2 in., except at discontinuous ends of corbels and brackets where the tolerance is ± 1/2 in. At the discontinuous ends of other members the tolerance is permitted to be ± 1 in. The tolerance for minimum cover in 7.5.2.1 shall also apply. These tolerances are illustrated in Fig. 3-3.

Note that a plus (+) tolerance increases the dimension and a minus (-) tolerance decreases the dimension. Where only a minus tolerance is indicated on minimum cover, there is no limit in the other direction; however in many instances increasing the cover will reduce the effective depth, d. Quality control during construction should be based on the more restrictive of related tolerances.

In addition to the code prescribed rebar placing tolerances, the engineer should be familiar with ACI Standard 117, *Standard Tolerances for Concrete Construction and Materials and Commentary*.\(^3\,6\) ACI 117 includes tolerances for all measured dimensions, quantities and concrete properties used in concrete construction. The ACI 117 document is intended to be used by direct reference in the project specifications; therefore it is written in a specification format.

The designer must specify and clearly identify cover tolerances as the needs of the project dictate. For example, if concrete is to be exposed to a very aggressive environment, such as deicing chemicals, where the amount of concrete cover to the reinforcement may be a critical durability consideration, the engineer may want to indicate closer tolerances on concrete cover than those permitted by the code, or alternatively, specify a larger cover in recognition of expected variation in the placing of the reinforcement.
Table 3-2 Types and Sizes of Wire Bar Supports

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>BAR SUPPORT ILLUSTRATION</th>
<th>BAR SUPPORT ILLUSTRATION PLASTIC CAPPED OR DIPPED</th>
<th>TYPE OF SUPPORT</th>
<th>TYPICAL SIZES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Slab Bolster</td>
<td>CAPPED</td>
<td>Slab Bolster Upper</td>
<td>Same as SB</td>
</tr>
<tr>
<td>SBU*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Beam Bolster</td>
<td>CAPPED</td>
<td>Beam Bolster Upper</td>
<td>Same as BB</td>
</tr>
<tr>
<td>BBU*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>Individual Bar Chair</td>
<td>DIPPED</td>
<td>Individual Bar Chair</td>
<td>1/4, 1/2, and 1⅛ in. heights</td>
</tr>
<tr>
<td>JC</td>
<td>Joist Chair</td>
<td>DIPPED</td>
<td>Joist Chair</td>
<td>4, 5, and 6 in. widths and 1⅛, 1 and 1⅜ in. heights</td>
</tr>
<tr>
<td>HC</td>
<td>Individual High Chair</td>
<td>CAPPED</td>
<td>Individual High Chair</td>
<td>2 to 15 in. heights in increments of ¼ in.</td>
</tr>
<tr>
<td>HCM*</td>
<td>High Chair for Metal Deck</td>
<td></td>
<td>High Chair for Metal Deck</td>
<td>2 to 15 in. heights in increments of ¼ in.</td>
</tr>
<tr>
<td>CHC</td>
<td>Continuous High Chair</td>
<td>CAPPED</td>
<td>Continuous High Chair</td>
<td>Same as HC in 3 ft and 10 ft lengths</td>
</tr>
<tr>
<td>CHCU*</td>
<td>Continuous High Chair Upper</td>
<td></td>
<td>Continuous High Chair Upper</td>
<td>Same as CHC</td>
</tr>
<tr>
<td>CHCM*</td>
<td>Continuous High Chair for Metal Deck</td>
<td></td>
<td>Continuous High Chair for Metal Deck</td>
<td>Up to 5 in. heights in increments of ¼ in.</td>
</tr>
<tr>
<td>JCU**</td>
<td>Joist Chair Upper</td>
<td>DIPPED</td>
<td>Joist Chair Upper</td>
<td>14 in. span; heights -1⅛ in. thru +3¼ in. vary in ¼ in. increments</td>
</tr>
<tr>
<td>CS</td>
<td>Continuous Support</td>
<td>DIPPED</td>
<td>Continuous Support</td>
<td>1⅛ to 12 in. lengths of ¼ in. in lengths of 6-8"</td>
</tr>
<tr>
<td>SBC</td>
<td>Single Bar Centralizer (Fricson)</td>
<td></td>
<td>Single Bar Centralizer (Fricson)</td>
<td>6 in. to 24 in. diameter</td>
</tr>
</tbody>
</table>

* Usually available in Class 3 only, except on special order.
** Usually available in Class 3 only, with upturned or end-bearing legs.

1 in. = 25.4 mm
1 ft = 304.8 mm

Table 3-3 Critical Dimensional Tolerances for Placing Reinforcement

<table>
<thead>
<tr>
<th>Effective Depth d</th>
<th>Tolerance on d</th>
<th>Tolerance on Specified Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>d ≤ 8 in.</td>
<td>± 3/8 in.</td>
<td>- 3/8 in.</td>
</tr>
<tr>
<td>d > 8 in.</td>
<td>± 1/2 in.</td>
<td>- 1/2 in.</td>
</tr>
</tbody>
</table>

[Diagram of Effective depth, d, (±) and Clear cover (¬)]
7.5.4 “Tack” Welding

Note that welding of crossing bars (tack welding) for assembly of reinforcement is prohibited except as specifically authorized by the licensed design professional. By definition, a tack weld is a small spotweld to facilitate fabrication or field installation of reinforcement, and is not intended as a structural weld. Tack welding can lead to local embrittlement of the steel, and should never be done on reinforcement required by design. As noted in 3.5.2, all welding of reinforcement must conform to controlled welding procedures specified in AWS D1.4, including proper preheat (if required), and welding with electrodes meeting requirements of final welds.

7.6 SPACING LIMITS FOR REINFORCEMENT

Spacing (clear distance) between bars must be as follows:

Minimum Spacing

For members with parallel bars in a layer, the clear spacing between bars must be at least one bar diameter but not less than 1 in.; and for reinforcement in two or more layers, bars in the upper layers must be directly above bars in the bottom layer, with at least 1 in. clear vertically between layers. For spirally reinforced and tied reinforced compression members, the clear distance between longitudinal bars must be at least 1-1/2 bar diameters, but not less than 1-1/2 in. These spacing requirements also apply to clear distance between contact-lap-spliced single or bundled bars and adjacent splices or bars. Section 3.3.2, which contains spacing requirements based on maximum nominal aggregate size, may also be applicable. Clear distances between bars are illustrated in Table 3-4.

Maximum Spacing

In walls and slabs other than concrete joists, primary flexural reinforcement must not be spaced greater than 3 times the wall or slab thickness nor 18 in.
Table 3-4 Minimum Clear Distances Between Bars, Bundles, or Tendons

<table>
<thead>
<tr>
<th>Reinforcement Type</th>
<th>Type Member</th>
<th>Clear Horizontal Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformed bars</td>
<td>Flexural members</td>
<td>$d_b \geq 1$ in.</td>
</tr>
<tr>
<td>Compression members</td>
<td>tied or spirally reinforced</td>
<td>$1.5d_b \geq 1.5$ in.</td>
</tr>
</tbody>
</table>

7.6.6 Bundled Bars

For isolated situations requiring heavy concentration of reinforcement, bundles of standard bar sizes can save space and reduce congestion for easier placement and consolidation of concrete. In those situations, bundling of bars in columns is a means to better locating and orienting the reinforcement for increased column capacity; also, fewer ties are required if column bars are bundled.

Bundling of bars (parallel reinforcing bars in contact, assumed to act as a unit) is permitted, provided specific limitations are met. The limitations on the use of bundled bars are as follows:

1. No. 14 and No. 18 bars cannot be bundled in beams.
2. If individual bars in a bundle are cut off within the span of beams, such cutoff points must be staggered at least 40 bar diameters.
3. A maximum of two bundled bars in any one plane is implied (three or four adjacent bars in one plane are not considered as bundled bars).
4. For spacing and concrete cover based on bar diameter, d_b, a unit of bundled bars must be treated as a single bar with diameter derived from the total area of all bars in the bundle. Equivalent diameters of bundled bars are given in Table 3-5.
5. A maximum of four bars may be bundled (See Fig. 3-4).
6. Bundled bars must be enclosed within stirrups or ties.
Table 3-5 Equivalent Diameters of Bundled Bars, in.

<table>
<thead>
<tr>
<th>Bar Size, No.</th>
<th>Bar Diameter</th>
<th>2-Bar Bundle</th>
<th>3-Bar Bundle</th>
<th>4-Bar Bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.750</td>
<td>1.06</td>
<td>1.30</td>
<td>1.50</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
<td>1.24</td>
<td>1.51</td>
<td>1.75</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
<td>1.42</td>
<td>1.74</td>
<td>2.01</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
<td>1.60</td>
<td>1.95</td>
<td>2.26</td>
</tr>
<tr>
<td>10</td>
<td>1.270</td>
<td>1.80</td>
<td>2.20</td>
<td>2.54</td>
</tr>
<tr>
<td>11</td>
<td>1.410</td>
<td>1.99</td>
<td>2.44</td>
<td>2.82</td>
</tr>
<tr>
<td>14</td>
<td>1.693</td>
<td>2.39</td>
<td>2.93</td>
<td>3.39</td>
</tr>
</tbody>
</table>

Figure 3-4 Possible Reinforcing Bar Bundling Schemes

7.6.7 Prestressing Steel and Ducts

Prior to the '99 code, distances between prestressed steel were specified in terms of minimum clear distances. The '99 and subsequent codes specifies distances between prestressed steel in terms of minimum center-to-center spacing and requires 4db for strands and 5db for wire. When the compressive strength of the concrete at the time of prestress transfer, \(f'_{ci} \) is 4000 psi or greater, the minimum center-to-center spacing can be reduced to 1-3/4 in. for strands 1/2-in. nominal diameter or smaller and 2 in. for strands 0.6-in. nominal diameter. These changes were made as a result of research sponsored by the Federal Highway Administration. Center-to-center spacing is now specified because that is the way it was measured in the research. In addition, converting to clear spacing is awkward and unnecessary, and templates used by precast manufacturers have always been fabricated based on center-to-center dimensions. Closer vertical spacing and bundling of prestressed steel is permitted in the middle portion of the span if special care in design and fabrication is employed. Post-tensioning ducts may be bundled if concrete can be satisfactorily placed and provision is made to prevent the tendons from breaking through the duct when tensioned.

7.7 CONCRETE PROTECTION FOR REINFORCEMENT

Concrete cover or protection requirements are specified for members cast against earth, in contact with earth or weather, and for interior members not exposed to weather. Starting with the '02 code, the location of the cover requirements for cast-in-place concrete (prestressed) was reorganized. Cast-in-place concrete (prestressed) immediately follows cast-in-place (nonprestressed). They are then followed by the cover requirements for precast concrete manufactured under plant control conditions. In some cases slightly reduced cover or protection is permitted under the conditions for cast-in-place (prestressed) and precast concrete manufactured under plant control conditions than permitted for cast-in-place concrete (non-prestressed). The term “manufactured under plant controlled conditions” does not necessarily mean that precast members must be manufactured in a plant. Structural elements precast at the job site (e.g., tilt-up concrete walls) will also qualify for the lesser cover if the control of form dimensions, placing of reinforcement, quality of concrete, and curing procedure are equivalent to those normally expected in a plant operation. Larger diameter bars, bundled bars, and prestressed tendons require greater cover. Corrosive environments or fire protection may also warrant increased cover. Section 18.3.3, which was introduced in the '02 code, requires that prestressed flexural members be classified as Class U (uncracked), Class C (cracked), or Class T (transition between uncracked and cracked). Section 7.7.6.1, also new to the '02 code, requires the cover for prestressed members where the members are exposed to corrosive environments or other severe exposure conditions and classified as Class C or T to be increased to 1.5 times the
specified cover of 7.7.2 and 7.7.3. The requirement to increase the cover may be waived if the precompressed zone is not in tension under sustained load. The designer should take special note of the commentary recommendations (R7.7.6) for increased cover where concrete will be exposed to external sources of chlorides in service, such as deicing salts and seawater. As noted in R7.7, alternative methods of protecting the reinforcement from weather may be used if they provide protection equivalent to the additional concrete cover required in 7.7.1(b), 7.7.2(b), and 7.7.3(a), as compared to 7.7.1(c), 7.7.2(c), and 7.7.3(b), respectively.

7.8 REINFORCEMENT DETAILS FOR COLUMNS

Section 7.8 covers the special detailing requirements for offset bent longitudinal bars and steel cores of composite columns.

Where column offsets of less than 3 in. are necessary, longitudinal bars may be bent, subject to the following limitations:

1. Slope of the inclined portion of an offset bar with respect to the axis of column must not exceed 1 in 6 (see Fig. 3-5).
2. Portions of bar above and below an offset must be parallel to axis of column.
3. Horizontal support at offset bends must be provided by lateral ties, spirals, or parts of the floor construction. Ties or spirals, where used, shall be placed not more than 6 in. from points of bend (see Fig. 3-5). Horizontal support provided must be designed to resist 1-1/2 times the horizontal component of the computed force in the inclined portion of an offset bar.
4. Offset bars must be bent before placement in the forms.

When a column face is offset 3 in. or more, longitudinal column bars parallel to and near that face must not be offset bent. Separate dowels, lap spliced with the longitudinal bars adjacent to the offset column faces, must be provided (see Fig. 3-5). In some cases, a column might be offset 3 in. or more on some faces, and less than 3 in. on the remaining faces, which could possibly result in some offset bent longitudinal column bars and some separate dowels being used in the same column.

Steel cores in composite columns may be detailed to allow transfer of up to 50 percent of the compressive load in the core by direct bearing. The remainder of the load must be transferred by welds, dowels, splice plates, etc. This should ensure a minimum tensile capacity similar to that of a more common reinforced concrete column.

7.9 CONNECTIONS

Enclosures must be provided for splices of continuing reinforcement, and for end anchorage of reinforcement terminating at beam and column connections. This confinement may be provided by the surrounding concrete or internal closed ties, spirals, or stirrups.

7.10 LATERAL REINFORCEMENT FOR COMPRESSION MEMBERS

7.10.4 Spirals

Minimum diameter of spiral reinforcement in cast-in-place construction is 3/8 in. and the clear spacing must be between the limits of 1 in. and 3 in. This requirement does not preclude the use of a smaller minimum diameter for precast units. Beginning with the '99 code, full mechanical splices complying with 12.14.3 are allowed. Previously, only lap splices and full welded splices were permitted. Editions of the code prior to the '99 required lap splices to be 48 bar or wire diameters, regardless of whether the bar or wire was plain or deformed, or uncoated or epoxy-coated. The '99 code was revised to require that lap splices of plain uncoated and epoxy-coated deformed bar or wire be 72 bar or wire diameters. The required lap splice length for plain uncoated and
epoxy-coated deformed bar or wire is permitted to be reduced to 48 bar or wire diameters provided the ends of the lapped bars or wires terminate in a standard 90 degree hook as required for stirrups and ties (7.1.3). The lap splice length for deformed uncoated bar or wire remains unchanged at 48 bar or wire diameters, as does the requirement that the minimum lap splice length be not less than 12 in. Anchorage of spiral reinforcement must be provided by 1-1/2 extra turns at each end of a spiral unit.

Spiral reinforcement must extend from the top of footing or slab in any story to the level of the lowest horizontal reinforcement in slabs, drop panels, or beams above. If beams or brackets do not frame into all sides of the column, ties must extend above the top of the spiral to the bottom of the slab, drop panel or shear cap (see Fig. 3-6). In columns with capitals, spirals must extend to a level where the diameter or width of capital is twice that of the column.

Spirals must be held firmly in place, at proper pitch and alignment, to prevent displacement during concrete placement. Prior to ACI 318-89, the code specifically required spacers for installation of column spirals. Section 7.10.4.9 now simply states that “spirals shall be held firmly in place and true to line.” This performance provision permits alternative methods, such as tying, to hold the fabricated cage in place during construction, which is current practice in most areas where spirals are used. The original spacer requirements were moved to the commentary to provide guidance where spacers are used for spiral installation. Note that the project specifications should cover the spacer requirements (if used) or the tying of the spiral reinforcement.

7.10.5 Ties

In tied reinforced concrete columns, ties must be located at no more than half a tie spacing above the floor slab or footing and at no more than half a tie spacing below the lowest horizontal reinforcement in the slab, drop panel or shear cap above. If beams or brackets frame from four directions into a column, ties may be terminated not more than 3 in. below the lowest horizontal reinforcement in the shallower of such beams or brackets (see Fig. 3-7). Minimum tie sizes in tied reinforced columns is related to the size of the longitudinal bars. Minimum tie sizes are No. 3 for non-prestressed longitudinal bars No. 10 and smaller, and No. 4 for No. 11 longitudinal bars and larger and for bundled bars. The following restrictions also apply: spacing must not exceed 16 longitudinal bar diameters, 48 tie bar or wire diameters, or the least dimension of the column; every corner bar and alternate bar must have lateral support provided by the corner of a tie or crosstie with an included angle of not more than 135 degree. No unsupported bar shall be farther than 6 in. clear from a supported bar (see Fig. 3-8). Note that the 6-in. clear distance is measured along the tie.
Welded wire reinforcement and continuously wound bars or deformed wire reinforcement of equivalent area may be used for ties. Where main reinforcement is arranged in a circular pattern, it is permissible to use complete circular ties at the specified spacing. This provision allows the use of circular ties at a spacing greater than that specified for spirals in spirally reinforced columns. Anchorage at the end of a continuously wound bar or wire reinforcement should be by a standard hook or by one additional turn of the tie pattern.

Where anchor bolts are provided in the tops of columns or pedestals to attach other structural members, the code requires that these bolts be confined by lateral reinforcement that is also surrounding at least four of the vertical bars in the column or pedestal for continuity of the load transfer at the connection. The lateral ties are required to be a minimum of two No. 4 or three No. 3 bars and must be distributed within the top 5 in. of the column or pedestal.

![Figure 3-6 Termination of Spirals](image)

![Figure 3-7 Termination of Column Ties](image)

![Figure 3-8 Lateral Support of Column Bars by Ties](image)
Where compression reinforcement is used to increase the flexural strength of a member (10.3.5.1), or to control long-term deflection \[Eq. (9-11) \], 7.11.1 requires that such reinforcement be enclosed by ties or stirrups. Like ties or spirals in a column, the purpose of the ties or stirrups is to prevent buckling of the compression reinforcement. Requirements for size and spacing of the ties are the same as for ties in tied columns. Where stirrups are used to provide the required lateral reinforcement, size and spacing must comply with the more stringent requirements of 7.10.5 for ties and 11.4 for stirrups. Welded wire reinforcement of equivalent area may be used. The ties or stirrups must extend throughout the distance where the compression reinforcement is required for flexural strength or deflection control. Section 7.11.1 is interpreted not to apply to reinforcement located in a compression zone to help assemble the reinforcing cage or hold the web reinforcement in place during concrete placement.

Enclosing reinforcement required by 7.11.1 is illustrated by the U-shaped stirrup in Fig. 3-9, for a continuous beam, in the negative moment region; the continuous bottom portion of the stirrup satisfies the enclosure intent of 7.11.1 for the two bottom bars shown. A completely closed stirrup is ordinarily not necessary, except in cases of high moment reversal, where reversal conditions require that both top and bottom longitudinal reinforcement be designed as compression reinforcement.

![Figure 3-9 Enclosed Compression Reinforcement in Negative Moment Region](image)

Torsion reinforcement, where required, must consist of completely closed stirrups, closed ties, spirals, or closed cages of welded wire reinforcement as required by 11.5.4.

7.11.3 Closed Ties or Stirrups

According to 7.11.3, a closed tie or stirrup is formed either in one piece with overlapping 90-degree or 135-degree end hooks around a longitudinal bar, or in one or two pieces with a Class B lap splice, as illustrated in Fig. 3-10. The one-piece closed stirrup with overlapping end hooks is not practical for placement. Neither of the closed stirrups shown in Fig. 3-10 is considered effective for members subject to high torsion. Tests have shown that, with high torsion, loss of concrete cover and subsequent loss of anchorage result if the 90-degree hook and lap splice details are used where confinement by external concrete is limited. See Fig. 3-11. The *ACI Detailing Manual* recommends the details illustrated in Fig. 3-12 for closed stirrups used as torsional reinforcement.
Figure 3-10 Code Definition of Closed Tie or Stirrup

Figure 3-11 Closed Stirrup Details Not Recommended for Members Subject to High Torsion

Figure 3-12 Two-Piece Closed Stirrup Details Recommended for Members Subject to High Torsion
7.12 SHRINKAGE AND TEMPERATURE REINFORCEMENT

Minimum shrinkage and temperature reinforcement normal to primary flexural reinforcement is required for structural floor and roof slabs (not slabs on ground) where the flexural reinforcement extends in one direction only. Minimum steel ratios, based on the gross concrete area, are:

1. 0.0020 for Grades 40 and 50 deformed bars;
2. 0.0018 for Grade 60 deformed bars or welded wire reinforcement;
3. $0.0018 \times \frac{60,000}{f_y}$ for reinforcement with a yield strength greater than 60,000 psi;
 but not less than 0.0014 in all cases.

Spacing of shrinkage and temperature reinforcement must not exceed 5 times the slab thickness nor 18 in. Splices and end anchorages of such reinforcement must be designed for the full specified yield strength. The minimum steel ratios cited above do not apply where prestressed steel is used.

Bonded or unbonded prestressing tendons may be used for shrinkage and temperature reinforcement in structural slabs (7.12.3). The tendons must provide a minimum average compressive stress of 100 psi on the gross concrete area, based on effective prestress after losses. Spacing of tendons must not exceed 6 ft. Where the spacing is greater than 54 in., additional bonded reinforcement must be provided at slab edges.

7.13 REQUIREMENTS FOR STRUCTURAL INTEGRITY

Structures capable of safely supporting all conventional design loads may suffer local damage from severe local abnormal loads, such as explosions due to gas or industrial liquids; vehicle impact; impact of falling objects; and local effects of very high winds such as tornadoes. Generally, such abnormal loads or events are not design considerations. The overall integrity of a reinforced concrete structure to withstand such abnormal loads can be substantially enhanced by providing relatively minor changes in the detailing of the reinforcement. The intent of 7.13 is to improve the redundancy and ductility of structures. This is achieved by providing, as a minimum, some continuity reinforcement or tie between horizontal framing members. In the event of damage to a major supporting element or an abnormal loading event, the integrity reinforcement is intended to confine any resulting damage to a relatively small area, thus improving overall stability.

It is not the intent of 7.13 that a structure be designed to resist general collapse caused by gross misuse or to resist severe abnormal loads acting directly on a large portion of the structure. General collapse of a structure as the result of abnormal events such as wartime or terrorist bombing, and landslides, are beyond the scope of any practical design.

7.13.1 General Structural Integrity

Since accidents and misuse are normally unforeseeable events, they cannot be defined precisely; likewise, providing general structural integrity to a structure is a requirement that cannot be stated in simple terms. The performance provision...“members of a structure shall be effectively tied together to improve integrity of the overall structure,” will require a level of judgment on the part of the design engineer, and will generate differing opinions among engineers as to how to effectively provide a general structural integrity solution for a particular framing system. It is obvious that all conditions that might be encountered in design cannot be specified in the code. The code, however, does set forth specific examples of certain reinforcing steel details for cast-in-place joists, beams, and two-way slab construction.

With damage to a support, top reinforcement which is continuous over the support, but not confined by stirrups, will tend to tear out of the concrete and will not provide the catenary action needed to bridge the damaged support. By making a portion of the bottom reinforcement in beams continuous over supports, some catenary action can be provided. By providing some continuous top and bottom reinforcement in edge or perimeter beams, an entire structure can be tied together. Also, the continuous tie provided in perimeter beams of a structure will
toughen the exterior portion of a structure, should an exterior column be severely damaged. Other examples of ways to detail for required integrity of a framing system to carry loads around a severely damaged member can be cited. The design engineer will need to evaluate his or her particular design for specific ways of handling the problem. The concept of providing general structural integrity is discussed in the Commentary of ASCE 7, Minimum Design Loads for Buildings and Other Structures. The reader is referred to that document for further discussion of design concepts and details for providing general structural integrity.

7.13.2 Cast-in-Place Joists and Beams

In joist construction as defined in 8.13.1 through 8.13.3, Section 7.13.2.1 requires at least one bottom bar to be continuous as illustrated in Figure 3-13. Section 7.13.2.2 addresses beams along the perimeter of the structure and requires continuous top and bottom reinforcement as illustrated in Figure 3-14. In perimeter beams, a minimum of one-sixth the tension reinforcement for negative moment at the support and one-fourth of the tension reinforcement for positive moment at midspan must be continuous; with a minimum of two top and bottom bars required to be continuous. The continuous reinforcement is required to be enclosed by transverse reinforcement by 7.13.2.3. In previous code editions this transverse reinforcement could be U-stirrups having not less than one 135 degree hook around each of the continuous bars or a one piece closed stirrup with a single 135 degree hook around one of the continuous bars. The '08 Code now requires the transverse reinforcement to be closed stirrups or ties, closed cages of welded wire reinforcement or spiral reinforcement as specified in 11.5.4.1.

Section 7.13.2.5 addresses beams that are not along the perimeter of the structure. Where such beams have transverse reinforcement complying with 7.13.2.3, there are no additional requirements for integrity reinforcement. In beams without transverse reinforcement complying with 7.13.2.3, at least one-fourth of the positive moment reinforcement required at midspan, but not less than 2 bars, must be continuous. See Figure 3-15.

Whether in a joist or beam, bars required to be continuous may be spliced. Lap splices, and mechanical and welded splices are permitted. Splices in positive moment reinforcement (usually bottom bars) must occur over or near supports. Negative moment reinforcement (usually top bars) must be spliced at or near midspan. See 7.13.2.1, 7.13.2.4 and 7.13.2.5. The '08 Code requires Class B tension splices; whereas, previous editions allowed Class A. Class B tension splices are specified to provide strength similar to mechanical and welded splices and to provide a higher degree of reliability in the event of abnormal loadings conditions.

In joists and beams where reinforcement cannot be continuous through the support, bars must be anchored at the face of the support by standard hooks with sufficient development length to develop the specified yield strength of the reinforcement. New to the '08 Code, noncontinuous bars are also permitted to be anchored by headed bars complying with the requirements of 12.6.

Requirements for structural integrity of nonprestressed two-way slab construction are given in 13.3.8.5, and for prestressed two-way slab construction in 18.12.6 and 18.12.7.

![Figure 3-13 Continuity Reinforcement for Joist Construction](image-url)
7.13.3 Precast Concrete Construction

While the requirements for structural integrity introduced in ACI 318-89 were prescriptive for cast-in-place construction, the ’89 code provided only performance requirements for precast construction. This approach was made necessary because precast structures can be built in a lot of different ways. The code requires tension ties for precast concrete buildings of all heights. Connections that rely solely on friction due to gravity forces are not permitted.
The general requirement for structural integrity (7.13.1) states that “...members of a structure shall be effectively tied together...”. The ’89 commentary cautioned that for precast concrete construction, connection details should be arranged so as to minimize the potential for cracking due to restrained creep, shrinkage, and temperature movements. Ref. 3.8 contains information on industry practice for connections and detailing requirements. Prescriptive requirements recommended by the PCI for precast concrete bearing wall buildings are given in Ref. 3.9. Prescriptive structural integrity requirements for precast concrete structures were introduced for the first time in Chapter 16 of ACI 318-95 (see discussion in Part 23 of this publication).

7.13.4 Lift-Slab Construction

Section 7.13.4 refers the code user to 13.3.8.6 and 18.12.8 for lift-slab construction.

REFERENCES

3.6 *Standard Specification for Tolerances for Concrete Construction and Materials and Commentary*, ACI 117-06, American Concrete Institute, Farmington Hills, MI, 2006.

3.8 *Design and Typical Details of Connections for Precast and Prestressed Concrete*, Publication MNL-123-88, Precast/Prestressed Concrete Institute, Chicago, IL, 1988.

Example 3.1—Placing Tolerance for Rebars

For the wall section shown below, with specified clear concrete cover indicated, determine the minimum cover permitted in construction, including the code tolerances on concrete cover. Assume effective depth, d, is greater than 8 in. and No. 5 bars.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.2.1</td>
</tr>
</tbody>
</table>

Tolerance on concrete cover is minus 1/2 in., but in no case may the tolerance be more than 1/3 the specified concrete cover.

1. For the exterior face, a measured 1 in. cover (1-1/2 - 1/2) is permitted. Actual bar placement may be within 1 in. of the side forms.

2. For the interior face, a measured 1/2 in. cover (3/4 - 1/4) is permitted. For the 3/4 in. specified cover, the tolerance limit is (1/3) (3/4) = 1/4 in. < 1/2 in.

As noted in the ACI 117 Standard, tolerances are a means to establish permissible variation in dimension and location, giving both the designer and the contractor parameters within which the work is to be performed. They are the means by which the designer conveys to the contractor the performance expectations.
Development and Splices of Reinforcement

UPDATE FOR THE ‘08 CODE

Section 12.6 is expanded to include development of headed deformed bars. Previously, 12.6 addressed only mechanical anchorage of reinforcement. Most of the remaining changes in Chapter 12 regarding development and splices of reinforcement are minor. Many of the changes relate to the change in the lightweight concrete factor, \(\lambda \) (See 8.6). Section 12.15.3 was added to clarify the lap splice length of bars of different sizes.

BACKGROUND

The development length concept for anchorage of deformed bars and deformed wire in tension is based on the attainable average bond stress over the length of embedment of the reinforcement. This concept requires the specified minimum lengths or extensions of reinforcement beyond all locations of peak stress in the reinforcement. Such peak stresses generally occur in flexural members at the locations of maximum stress and where adjacent reinforcement terminates or is bent.

The strength reduction factor \(\phi \) is not used in Chapter 12 of the code since the specified development lengths already include an allowance for understrength.

12.1 DEVELOPMENT OF REINFORCEMENT—GENERAL

Development length or anchorage of reinforcement is required on both sides of a location of peak stress at each section of a reinforced concrete member. In continuous members, for example, reinforcement typically continues for a considerable distance on one side of a critical stress location so that detailed calculations are usually required only for the side where the reinforcement is terminated. In addition to embedment length, hooks, and mechanical anchorage, the Code now allows headed deformed bars to provide the required development.

Until further research is completed and to ensure ductility and safety of structures built with high strength concrete, starting with the 1989 code, the term \(\sqrt{f_c'} \) has been limited to 100 psi. Existing design equations for development of straight bars in tension and compression, and standard hooks in tension, are all a function of \(\sqrt{f_c'} \). These equations were developed from results of tests on reinforcing steel embedded in concrete with compressive strengths of 3000 to 6000 psi. ACI Committee 318 was prudent in limiting \(\sqrt{f_c'} \) at 100 psi pending completion of tests to verify applicability of current design equations to bars in high strength concrete. Since the requirement for structural integrity may control the detailing of reinforcement at splices and termination, Chapter 12 includes a reminder that the requirements of 7.13 must be satisfied (12.1.3).

12.2 DEVELOPMENT OF DEFORMED BARS AND DEFORMED WIRE IN TENSION

The provisions of 12.2 are based on the work of Orangun, Jirsa, and Breen\(^4\,^1\), and Sozen and Moehle\(^4\,^2\). Development length of straight deformed bars and wires in tension, expressed in terms of bar or wire diameter, is given in 12.2.3 by the general equation:
\[
\ell_d = \left(\frac{3}{40} \frac{f_y}{\lambda \sqrt{f'_c}} \frac{\psi_t \psi_e \psi_s}{c_b + K_{tr}}\right) d_b
\]

Eq. (12-1)

where

\(\ell_d \) = development length, in.

\(d_b \) = nominal diameter of bar or wire, in.

\(f_y \) = specified yield strength of nonprestressed bar or wire, psi

\(f'_c \) = specified compressive strength of concrete, psi

\(\psi_t \) = reinforcement location factor

= 1.3 for horizontal reinforcement placed such that more than 12 in. of fresh concrete is cast below the development length or splice

= 1.0 for other reinforcement

\(\psi_e \) = coating factor

= 1.5 for epoxy-coated bars or wires with cover less than 3\(d_b \) or clear spacing less than 6\(d_b \)

= 1.2 for all other epoxy-coated bars or wires

= 1.0 for uncoated reinforcement

The product of \(\psi_t \) and \(\psi_e \) need not be taken greater than 1.7.

\(\psi_s \) = reinforcement size factor

= 0.8 for No. 6 and smaller bars and deformed wires

= 1.0 for No. 7 and larger bars

\(\lambda \) = lightweight aggregate concrete factor

= 0.75 when lightweight concrete is used or

= \(6.7 \sqrt{f'_c} / f_{ct} \), but not less than 1.0, when \(f_{ct} \) is specified

= 1.0 for normalweight concrete

\(c_b \) = spacing or cover dimension, in.

= the smaller of (1) distance from center of bar or wire being developed to the nearest concrete surface, and (2) one-half the center-to-center spacing of bars or wires being developed

\(K_{tr} \) = transverse reinforcement index

= \(\frac{40A_{tr}}{sn} \)

where

\(A_{tr} \) = total cross-sectional area of all transverse reinforcement which is within the spacing \(s \) and which crosses the potential plane of splitting through the reinforcement being developed, in.\(^2\)

\(s \) = maximum spacing of transverse reinforcement within \(\ell_d \), center-to-center, in.

\(n \) = number of bars or wires being developed along the plane of splitting
Note that the term \(\left(\frac{c_b + K_{tr}}{d_b} \right) \) cannot be taken greater than 2.5 (12.2.3) to safeguard against pullout type failures. In the 1989 and earlier editions of the code, the expression \(0.03d_b f_y / \sqrt{f'_c} \) was specified to prevent pullout type failures.

As a design simplification, it is conservative to assume \(K_{tr} = 0 \), even if transverse reinforcement is present. If a clear cover of \(2d_b \) and a clear spacing between bars being developed of \(4d_b \) is provided, variable “c” would equal \(2.5d_b \). For the preceding conditions, even if \(K_{tr} = 0 \), the term \(\left(\frac{c_b + K_{tr}}{d_b} \right) \) would equal 2.5.

The term \(\left(\frac{c_b + K_{tr}}{d_b} \right) \) in the denominator of Eq. (12-1) accounts for the effects of small cover, close bar spacing, and confinement provided by transverse reinforcement. To further simplify computation of \(\ell_{d} \), preselected values for term \(\left(\frac{c_b + K_{tr}}{d_b} \right) \) were chosen starting with the 1995 code. As a result, Equation (12-1) can take the simplified forms specified in 12.2.2, and shown below in Table 4-1. For discussion purposes only, the four equations are identified in this table as Equations A through D. Note that these identifiers do not appear in the code.

In Eqs. A and B, the term \(\left(\frac{c_b + K_{tr}}{d_b} \right) = 1.5 \), while in Eqs. C and D, \(\left(\frac{c_b + K_{tr}}{d_b} \right) = 1.0 \). Equations A and C include a reinforcement size factor \(\psi_s = 0.8 \). The 20 percent reduction is based on comparisons with past provisions and numerous test results.

Equations A and B can only be applied if one of the following two different sets of conditions is satisfied:

\[\left(\frac{f_y \psi_t \psi_e}{25 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{f_y \psi_t \psi_e}{20 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{3f_y \psi_t \psi_e}{50 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{3f_y \psi_t \psi_e}{40 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{f_y \psi_t \psi_e}{20 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{f_y \psi_t \psi_e}{25 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{3f_y \psi_t \psi_e}{50 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{3f_y \psi_t \psi_e}{40 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{f_y \psi_t \psi_e}{20 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{f_y \psi_t \psi_e}{25 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{3f_y \psi_t \psi_e}{50 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]

\[\left(\frac{3f_y \psi_t \psi_e}{40 \lambda' f_c} \right) \frac{d_b}{\sqrt{f_c}} \]
Set #1

The following three conditions must simultaneously be satisfied:

1. The clear spacing of reinforcement being developed or spliced should not be less than the diameter of reinforcement being developed, \(d_b\),
2. The clear cover for reinforcement being developed should not be less than \(d_b\), and
3. Minimum amount of stirrups or ties throughout \(\ell_d\) should not be less than the minimum values specified in 11.4.5.3 for beams or 7.10.5 for columns.

Set #2

The following two conditions must simultaneously be satisfied:

1. The clear spacing of reinforcement being developed or spliced should not be less than \(2d_b\), and
2. The clear cover should not be less than \(d_b\).

If all the conditions of Set #1 or of Set #2 cannot be satisfied, then Eqs. C or D must be used. Note that Eq. D is identical to Eq. (12-1) with \(\frac{c_b + K_{tr}}{d_b} = 1.0\) and reinforcement size factor \(\gamma = 1.0\).

Although Eqs. A through D are easier to use than Eq. (12-1), the term \(\frac{c_b + K_{tr}}{d_b}\) can only assume the value of 1.0 (Eqs. C and D) or 1.5 (Eqs. A and B). On the other hand, Eq. (12-1) may require a little extra effort, but the value of expression \(\frac{c_b + K_{tr}}{d_b}\) can be as high as 2.5. Therefore, the development lengths \(\ell_d\) computed by Eq. (12-1) could be substantially shorter than development lengths computed from the simplified equations of 12.2.2.

The development lengths of Table 4-1 can be further simplified for specific conditions. For example, for Grade 60 reinforcement \((f_y = 60,000 \text{ psi})\) and different concrete compressive strengths, assuming normalweight concrete \((\lambda = 1.0)\) and uncoated \((\psi_e = 1.0)\) bottom bars or wires \((\psi_t = 1.0)\), values of \(\ell_d\) as a function of \(d_b\) can be determined as shown in Table 4-2.
Table 4-2 Development Length ℓ_d for Grade 60, Uncoated, Bottom Reinforcement in Normal Weight Concrete

<table>
<thead>
<tr>
<th>Clear spacing of bars being developed or spliced not less than d_b, clear cover not less than d_b, and beam stirrups or column ties throughout ℓ_d not less than the code minimum</th>
<th>ℓ_d psi</th>
<th>No. 6 and smaller bars and deformed wires</th>
<th>No. 7 and larger bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>44d_b</td>
<td>55d_b</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>38d_b</td>
<td>47d_b</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>34d_b</td>
<td>42d_b</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>31d_b</td>
<td>39d_b</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td>27d_b</td>
<td>34d_b</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>24d_b</td>
<td>30d_b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other cases</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>66d_b</td>
<td>82d_b</td>
</tr>
<tr>
<td>4000</td>
<td>57d_b</td>
<td>71d_b</td>
</tr>
<tr>
<td>5000</td>
<td>51d_b</td>
<td>64d_b</td>
</tr>
<tr>
<td>6000</td>
<td>46d_b</td>
<td>58d_b</td>
</tr>
<tr>
<td>8000</td>
<td>40d_b</td>
<td>50d_b</td>
</tr>
<tr>
<td>10,000</td>
<td>36d_b</td>
<td>45d_b</td>
</tr>
</tbody>
</table>

As in previous editions of the code, development length of straight deformed bars or wires, including all modification factors must not be less than 12 in.

12.2.5 Excess Reinforcement

Reduction in ℓ_d may be permitted by the ratio $[(A_s \text{ required})/(A_s \text{ provided})]$ when excess reinforcement is provided in a flexural member. Note that this reduction does not apply when the full f_y development is required, as for tension lap splices in 7.13, 12.15.1, and 13.3.8.5, development of positive moment reinforcement at supports in 12.11.2, and for development of shrinkage and temperature reinforcement according to 7.12.2.3. Note also that this reduction in development length is not permitted for reinforcement in structures located in regions of high seismic risk or for structures assigned to high seismic performance or design categories (see 21.11.7.3 and R21.11.7.3).

Reduced ℓ_d computed after applying the excess reinforcement according to 12.2.5 must not be less than 12 in.

12.3 DEVELOPMENT OF DEFORMED BARS AND DEFORMED WIRE IN COMPRESSION

Shorter development lengths are required for bars in compression than in tension since the weakening effect of flexural tension cracks in the concrete is not present. The development length for deformed bars or deformed wire in compression is $\ell_{dc} = 0.02d_b f_y / \lambda \sqrt{f'_c}$, but not less than $(0.0003f_y)d_b$ or 8 in. ℓ_{dc} may be reduced where excess reinforcement is provided (12.3.3(a)) and where “confining” ties or spirals are provided around the reinforcement (12.3.3(b)). Note that the tie and spiral requirements to permit the 25 percent reduction in development length are somewhat more restrictive than those required for “regular” column ties in 7.10.5 and less restrictive than those required for spirals in 7.10.4. For reference, compression development lengths for Grade 60 bars are given in Table 4-3.
4-6

For minimum basic development length 0.0003dbfy governs; for Grade 60 bars, \(l_{dc} = 18d_b \).

** Development length \(l_{dc} \) (including applicable modification factors) must not be less than 8 in.

12.4 DEVELOPMENT OF BUNDLED BARS

Increased development length for individual bars within a bundle, whether in tension or compression, is required when 3 or 4 bars are bundled together. The additional length is needed because the grouping makes it more difficult to mobilize resistance to slippage from the “core” between the bars. The modification factor is 1.2 for a 3-bar bundle, and 1.33 for a 4-bar bundle. Other pertinent requirements include 7.6.6.4 concerning cut-off points of individual bars within a bundle, and 12.14.2.2 relating to lap splices of bundled bars.

For determining the appropriate spacing and cover values in 12.2.2, the confinement term in 12.2.3 and the \(\psi_e \) factor in 12.2.4(b), a unit of bundled bars must be treated as a single bar of a diameter derived from the total equivalent area and having a cendroid that coincides with the centroid of the bundled bars. See Table 3-5 in Part 3 of this document.

12.5 DEVELOPMENT OF STANDARD HOOKS IN TENSION

The current provisions for hooked bar development were first introduced in the 1983 code. They represented a major departure from the hooked-bar anchorage provisions of earlier codes in that they uncoupled hooked-bar anchorages from straight bar development and gave total hooked-bar embedment length directly. The current provisions not only simplify calculations for hook anchorages but also result in a required embedment length considerably less, especially for the larger bar sizes, than that required by earlier codes. Provisions are given in 12.5 for determining the development length of deformed bars with standard end hooks. End hooks can only be considered effective in developing bars in tension, and not in compression (see 12.1.1 and 12.5.5). Only “standard” end hooks (see 7.1) are considered; anchorage capacity of end hooks with larger end diameters cannot be determined by the provisions of 12.5.

In applying the hook development provisions, the first step is to calculate the development length of the hooked bar, \(\ell_{dh} \) from 12.5.2. This length is then multiplied by the applicable modification factor or factors of 12.5.3. Development length \(\ell_{dh} \) is measured from the critical section to the outside end of the standard hook, i.e., the straight embedment length between the critical section and the start of the hook, plus the radius of bend of the hook, plus one-bar diameter. For reference, Fig. 4-1 shows \(\ell_{dh} \) and the standard hook details (see 7.1) for all standard bar sizes. For 180 degree hooks normal to exposed surfaces, the embedment length should provide for a minimum distance of 2 in. beyond the tail of the hook.
12.5.2 Development Length l_{dh} for Standard Hooks in Tension

The development length, l_{dh}, for standard hooks in tension is given in 12.5.2 as:

$$l_{dh} = \left(\frac{0.02 \psi_{efy}}{\lambda \sqrt{f'_c}} \right) d_b$$

where $\psi_e = 1.2$ for epoxy-coated reinforcement and $\lambda = 0.75$ for lightweight concrete. For other cases, ψ_e and λ are equal to 1.0.

Table 4-4 lists the development length of hooked bars embedded in normal weight concrete with different specified compressive strengths and uncoated Grade 60 reinforcing bars.

Table 4-4 Development Length l_{dh} (inches) of Standard Hooks for Uncoated Grade 60 Bars

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>8000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 3</td>
<td>8.2</td>
<td>7.1</td>
<td>6.4</td>
<td>5.8</td>
<td>5.9</td>
<td>4.5</td>
</tr>
<tr>
<td>No. 4</td>
<td>11.0</td>
<td>9.5</td>
<td>8.5</td>
<td>7.7</td>
<td>6.7</td>
<td>6.0</td>
</tr>
<tr>
<td>No. 5</td>
<td>13.7</td>
<td>11.9</td>
<td>10.6</td>
<td>9.7</td>
<td>8.4</td>
<td>7.5</td>
</tr>
<tr>
<td>No. 6</td>
<td>16.4</td>
<td>14.2</td>
<td>12.7</td>
<td>11.6</td>
<td>10.1</td>
<td>9.0</td>
</tr>
<tr>
<td>No. 7</td>
<td>19.2</td>
<td>16.6</td>
<td>14.8</td>
<td>13.6</td>
<td>11.7</td>
<td>10.5</td>
</tr>
<tr>
<td>No. 8</td>
<td>21.9</td>
<td>19.0</td>
<td>17.0</td>
<td>15.5</td>
<td>13.4</td>
<td>12.0</td>
</tr>
<tr>
<td>No. 9</td>
<td>24.7</td>
<td>21.4</td>
<td>19.1</td>
<td>17.5</td>
<td>15.1</td>
<td>13.5</td>
</tr>
<tr>
<td>No. 10</td>
<td>27.8</td>
<td>24.1</td>
<td>21.6</td>
<td>19.7</td>
<td>17.0</td>
<td>15.2</td>
</tr>
<tr>
<td>No. 11</td>
<td>30.9</td>
<td>26.8</td>
<td>23.9</td>
<td>21.8</td>
<td>18.9</td>
<td>16.9</td>
</tr>
<tr>
<td>No. 14</td>
<td>37.1</td>
<td>32.1</td>
<td>28.7</td>
<td>26.2</td>
<td>22.7</td>
<td>20.3</td>
</tr>
<tr>
<td>No. 18</td>
<td>49.5</td>
<td>42.8</td>
<td>38.3</td>
<td>35.0</td>
<td>30.3</td>
<td>27.1</td>
</tr>
</tbody>
</table>

* Development length l_{dh} (including modification factors) must not be less than the larger of $8d_b$ or 6 in.

12.5.3 Modification Factors

The l_{dh} modification factors listed in 12.5.3 account for:

- Favorable confinement conditions provided by increased cover (12.5.3(a))
- Favorable confinement provided by transverse ties or stirrups to resist splitting of the concrete (12.5.3(b) and (c))
- More reinforcement provided than required by analysis (12.5.3(d))
The side cover (normal to plane of hook), and the cover on bar extension beyond 90 degree hook referred to in 12.5.3(a) are illustrated in Fig. 4-2.

Note that requirements for 90-degree and 180-degree hooks are clarified in 12.5.3. Figures R12.5.3 (a) and R12.5.3 (b) illustrate the cases where the modification factor of 12.5.3 (b) may be used.

After multiplying the development length \(l_{dh} \) by the applicable modification factor or factors, the resulting development length \(l_{dh} \) must not be less than the larger of 8db or 6 in.

![Figure 4-2 Concrete Covers Referenced in 12.5.3(a)](image)

12.5.4 Standard Hook at Discontinuous Ends

Section 12.5.4 is a special provision for hooked bars terminating at discontinuous ends of members, such as at the ends of simply-supported beams, at free ends of cantilevers, and at ends of members framing into a joint where the member does not extend beyond the joint. If the full strength of a hooked bar must be developed, and both side cover and top (or bottom) cover over the hook are less than 2.5 in., 12.5.4 requires the hook to be enclosed within ties or stirrup for the full development length, \(l_{dh} \). Spacing of the ties or stirrup must not exceed 3db, where db is the diameter of the hooked bar. In addition, the modification factor of 0.8 for confinement provided by ties or stirrups (12.5.3(b) and (c)) does not apply to the special condition covered by 12.5.4. At discontinuous ends of slabs with concrete confinement provided by the slab continuous on both sides normal to the plane of the hook, the provisions of 12.5.4 do not apply.

12.6 DEVELOPMENT LENGTH FOR HEADED AND MECHANICALLY-ANCHORED DEFORMED BARS IN TENSION

Section 12.6 differentiates between development length and anchorage. Development describes cases in which the force in the bar is transferred to the concrete through a combination of a bearing force at the head and bond forces along the bar. In contrast, anchorage describes cases in which the force in the bar is transferred through bearing to the concrete at the head alone. Figure 4-3 illustrates the use of headed deformed bars.

Headed deformed bars must meet the following limitations:

a. \(f_y \) must not exceed 60,000 psi
b. Bar size must be less than No. 11
c. Concrete must be normalweight
d. Net bearing area of the head \(A_{brg} \) must not be less than 4 times the bar area \(A_b \)
e. Clear cover for bar shall not be less than 2db
f. Clear spacing between bars shall not be less than 4db
g. The value of \(f_c \) used to calculate \(l_{dt} \) shall not exceed 6000 psi
The development length, \(\ell_{dt} \), for headed deformed bars in tension is given in 12.6.2 as:

\[
\ell_{dt} = \left(0.016 \psi_e f_y / \sqrt{f'_c} \right) d_b,
\]

where \(\psi_e = 1.2 \) for epoxy-coated reinforcement and \(\psi_e = 1.0 \) for other cases.

As for hooked bars in tension, the Code permits \(\ell_{dt} \) to be multiplied by \((A_s \text{ required} / A_s \text{ provided}) \) where the reinforcement is in excess of that required by analysis. After multiplying the development length by \((A_s \text{ required} / A_s \text{ provided}) \), the resulting value must not be less than the larger of 8\(d_b \) and 6 in. Also, as for hooked bars, heads are not considered effective in developing deformed bars in compression. Where development of \(f_y \) is specifically required, e.g. in several sections in 7.13, use factor \((A_s \text{ required} / A_s \text{ provided}) \) is prohibited.

Provisions for anchorage of cast-in-place headed bolts and studs are given in Appendix D.

Table 4-5 lists the development length of headed bars embedded in normal weight concrete with different specified compressive strengths and uncoated Grade 60 reinforcing bars.

Table 4-5 Development Length \(\ell_{dt} \) (inches) of Headed Deformed Bars for Uncoated Grade 60 Bars*

<table>
<thead>
<tr>
<th>Bar Size No.</th>
<th>(f'_c) (Normalweight Concrete), psi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>3</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td>8.8</td>
</tr>
<tr>
<td>5</td>
<td>11.0</td>
</tr>
<tr>
<td>6</td>
<td>13.1</td>
</tr>
<tr>
<td>7</td>
<td>15.3</td>
</tr>
<tr>
<td>8</td>
<td>17.5</td>
</tr>
<tr>
<td>9</td>
<td>19.8</td>
</tr>
<tr>
<td>10</td>
<td>22.3</td>
</tr>
<tr>
<td>11</td>
<td>24.7</td>
</tr>
</tbody>
</table>

*Development length \(\ell_{dt} \) (including modification factors) must not be less than the larger of 8\(d_b \) or 6 in.

The basic equation for development length of standard hooks in tension is given in 12.5.2 as:

\[
\ell_{dh} = \left(0.02 \psi_e f_y / \left(\lambda \sqrt{f'_c} \right) \right) d_b.
\]
while the corresponding equation for headed bars is given in 12.6 as:

\[\ell_{dt} = \left(0.016 \psi_e f_y / \sqrt{f_c^*} \right) d_b \]

It is obvious that the development length of headed bars is 20% shorter than that of hooked bars. Conversely, hooked bars require 25% more development length than headed bars.

Section 12.6.4 permits the use of mechanical devices for development of reinforcement, provided their adequacy without damaging the concrete has been confirmed by tests. Section 12.6.4 reflects the concept that development of reinforcement may consist of a combination of mechanical anchorage plus additional embedment length of the reinforcement. For example, when a mechanical device cannot develop the design strength of a bar, additional embedment length must be provided between the mechanical device and the critical section.

12.7 DEVELOPMENT OF WELDED DEFORMED WIRE REINFORCEMENT IN TENSION

For welded deformed wire reinforcement, development length is measured from the critical section to the end of the wire. As specified in 12.7.1, development of welded deformed wire is computed as the product of \(\ell_d \) from 12.2.2 or 12.2.3 times a wire reinforcement factor from 12.7.2 or 12.7.3. Where provided reinforcement is more than required, development length can be reduced by 12.2.5. In applying 12.2.2 or 12.2.3 to epoxy-coated deformed wire reinforcement, a coating factor \(\psi_e = 1.0 \) can be used. The resulting development length \(\ell_d \) cannot be less than 8 in., except in computation of lap splice lengths (see 12.18) and development of web reinforcement (see 12.13). Figure 4-4 shows the development length requirements for welded deformed wire reinforcement.

To apply the wire reinforcement factor of 12.7.2 to the development length of deformed wire reinforcement requires at least one cross wire located within the development length at a distance no less than 2 in. from the critical section. The wire reinforcement factor given in 12.7.2 is the greater of \((f_y - 35,000)/f_y\) or \(5d_b/s\), but need not be taken greater than 1.0. \(s\) is the spacing between the wires to be developed.

If there is no cross wire within the development length, or the cross wire is less than 2 in. from the critical section, the development length of welded deformed wire reinforcement must be computed from 12.2.2 or 12.2.3. For this condition, the wire reinforcement factor must be taken equal to 1.0 (see 12.7.3).

According to ASTM A497, welded deformed steel wire reinforcement may consist solely of deformed steel wire (ASTM A496), or welded deformed steel wire reinforcement (ASTM A496) in one direction in combination with plain steel wire (ASTM A82) in the orthogonal direction. In the latter case, or where deformed wires larger than D-31 are present in the direction of the development length, the reinforcement must be developed as plain wire reinforcement according to 12.8.

![Figure 4-4 Development of Welded Deformed Wire Reinforcement](image)
For welded plain wire reinforcement, the development length is measured from the point of critical section to the outermost cross wire. Full development of plain reinforcement (A_{wf}) is achieved by embedment of at least two cross wires beyond the critical section, with the closer cross wire located not less than 2 in. from the critical section. Section 12.8 further requires that the length of embedment from critical section to outermost cross wire not be less than $\ell_d = 0.27(A_d/s)(f_y/\lambda\sqrt{f'_c})$, nor less than 6 in. If more reinforcement is provided than that required by analysis, the development length ℓ_d may be reduced by the ratio of $(A_s$ required)/$(A_s$ provided). The 6 in. minimum development length does not apply to computation of lap splice lengths (see 12.19). Figure 4-5 shows the development length requirements for welded plain wire reinforcement.

![Figure 4-5 Development of Welded Plain Wire Reinforcement](image)

For fabrics made with smaller wires, embedment of two cross wires, with the closer cross wire not less than 2 in. from the critical section, is usually adequate to develop the full yield strength of the anchored wires. Fabrics made with larger (closely spaced) wires will require a longer embedment ℓ_d.

For example, check fabric 6×6-W4 with $f'_c = 3000$ psi, $f_y = 60,000$ psi, and normal weight concrete. ($\lambda = 1.0$)

$$\ell_d = 0.27 \times (A_d/s_s) \times \left(f_y / \lambda \sqrt{f'_c} \right)$$

$$= 0.27 \times (0.04/6) \times [60,000/(1.0 \times \sqrt{3000})] = 1.97 \text{ in.}$$

< 6 in.

< (1 space + 2 in.) governs

Two cross wire embedment plus 2 in. is satisfactory (see Fig. 4-6).

![Figure 4-6 Development of 6×6-W4 \times W4 Welded Wire Reinforcement](image)
Check fabric 6 × 6-W20 × W20:

\[
\ell_d = 0.27 \times (0.20/6) \times \left[60,000 / \left(1.0 \times \sqrt{3000} \right) \right] = 9.9 \text{ in.}
\]

> 6 in.

> (1 space + 2 in.)

As shown in Fig. 4-7, an additional 2 in. beyond the two cross wires plus 2 in. embedment is required to fully develop the W20 fabric. If the longitudinal spacing is reduced to 4 in. (4 × 6-W20 × W20), a minimum \(\ell_d \) of 15 in. is required for full development, i.e. 3 cross wires plus 3 in. embedment.

References 4.4 and 4.5 provide design aids for welded wire reinforcement, including development length tables for both deformed and plain welded wire reinforcement.

![Development of 6 × 6-W20 × W20 Fabric](image)

Note: If end support is not wide enough for straight embedment, the development length \(\ell_d \) may be bent down (hooked) into support.

Figure 4-7 Development of 6 × 6-W20 × W20 Fabric

12.9 DEVELOPMENT OF PRESTRESSING STRAND

Prestressed concrete members may be either pretensioned or post-tensioned. In post-tensioned applications, development of tendons is accomplished through mechanical anchorage. Tendons may include strands, wires or high-strength bars.

In pretensioned members, tendons typically consist of seven-wire strands. Development length \(\ell_d \) (in inches) of strands is specified in 12.9.1 and is computed from Eq. (12-2), which was formerly in R12.9:

\[
\ell_d = \left(\frac{f_{se}}{3000} \right) d_b + \left(\frac{f_{ps} - f_{se}}{1000} \right) d_b
\]

Eq. (12-2)

where

- \(f_{ps} \) = stress in prestressed reinforcement at nominal strength, psi
- \(f_{se} \) = effective stress in prestressed reinforcement after all prestress losses, psi
- \(d_b \) = nominal diameter of strand, in.

The expressions in parentheses are dimensionless.

The term \(\left(\frac{f_{se}}{3000} \right) d_b \) represents the transfer length of the strand \((\ell_t) \), i.e., the distance over which the strand should be bonded to the concrete to develop \(f_{se} \) in the strand. The second term, \(\left[(f_{ps} - f_{se})/1000 \right] d_b \),
represents the flexural bond length, i.e., the additional length over which the strand should be bonded so that a stress f_{ps} may develop in the strand at nominal strength of the member.

Where bonding of one or more strands does not extend to the end of the member, critical sections may be at locations other than those where full design strength is required (see 12.9.2). In such cases, a more detailed analysis may be required. Similarly, where heavy concentrated loads occur within the strand development length, critical sections may occur away from the section that is required to develop full design strength.

Note that two times the development length specified in 12.9.1 is required for “debonded” strands (12.9.3) when the member is designed allowing tension in the precompressed tensile zone under service load conditions.

In some pretensioned applications, total member length may be shorter than two times the development length. This condition may be encountered in very short precast, prestressed concrete members. In such cases, the strands will not be able to develop f_{ps}. Maximum usable stress in underdeveloped strands can be derived as illustrated in Fig. 4-8. The maximum strand stress, f_{max}, at distance l_x from girder end can be determined for the condition of $l_t < l_x < l_d$ as follows:

$$f_{max} = f_{se} + \Delta f$$

$$f_{max} = f_{se} + \frac{f_{ps} - f_{se}}{f_{ps} - f_{se}} \left(\frac{l_x}{d_b} - \frac{f_{se}}{3000} \right)$$

$$f_{max} = f_{se} + \frac{l_x}{d_b} - \frac{f_{se}}{3000}$$

Therefore,

$$f_{max} = \frac{l_x}{d_b} + \frac{2}{3000} f_{se}$$

![Figure 4-8 Strand Transfer and Development Lengths](image-url)
Section 12.10 gives the basic requirements for providing development length of reinforcement from the points of maximum or critical stress. Figures 4-9(a) and (b) illustrate typical critical sections and code requirements for development and termination of flexural reinforcement in a continuous beam. Points of maximum positive and negative moments \(M_u^+ \) and \(M_u^- \) are critical sections, from which adequate anchorage \(l_d \) must be provided. Critical sections are also at points within the span where adjacent reinforcement is terminated; continuing bars must have adequate anchorage \(l_d \) from the theoretical cut-off points of terminated bars (see 12.10.4). Note also that terminated bars must be extended beyond the theoretical cut-off points in accordance with 12.10.3. This extension requirement is to guard against possible shifting of the moment diagram due to load variation, settlement of supports, and other unforeseen changes in the moment conditions. Development lengths \(l_d \) are determined from 12.2.

Note (a): Portion of total negative reinforcement \(A_n^- \) must be continuous (or spliced with a Class B splice or a mechanical or welded splice satisfying 12.14.3) along full length of perimeter beams (7.13.2.2).

(a) Negative Moment Reinforcement

Figure 4-9 Development of Positive and Negative Moment Reinforcement
Note (b): Portion of total positive reinforcement must be continuous (or spliced with a Class B splice or a mechanical or welded splice satisfying 12.14.3) along full length of perimeter beams and of beams without closed stirrups (7.13.2.2). See also 7.13.2.4.

(b) Positive Moment Reinforcement

Figure 4-9 Development of Positive and Negative Moment Reinforcement — continued —

Sections 12.10.1 and 12.10.5 address the option of anchoring tension reinforcement in a compression zone. Research has confirmed the need for restrictions on terminating bars in a tension zone. When flexural bars are cut off in a tension zone, flexural cracks tend to open early. If the shear stress in the area of bar cut-off and tensile stress in the remaining bars at the cut-off location are near the permissible limits, diagonal tension cracking tends to develop from the flexural cracks. One of the three alternatives of 12.10.5 must be satisfied to reduce the possible occurrence of diagonal tension cracking near bar cut-offs in a tension zone. Section 12.10.5.2 requires excess stirrup area over that required for shear and torsion. Requirements of 12.10.5 are not intended to apply to tension splices.
Section 12.10.6 is for end anchorage of tension bars in special flexural members such as brackets, members of variable depth, and others where bar stress, f_s, does not decrease linearly in proportion to a decreasing moment. In Fig. 4-10, the development length l_d into the support is probably less critical than the required development length. In such a case, safety depends primarily on the outer end anchorage provided. A welded cross bar of equal diameter should provide an effective end anchorage. A standard end hook in the vertical plane may not be effective because an essentially plain concrete corner might exist near the load and could cause localized failure. Where brackets are wide and loads are not applied too close to the corners, U-shaped bars in a horizontal plane provide effective end hooks.

Figure 4-10 Special Member Largely Dependent on End Anchorage

12.11 DEVELOPMENT OF POSITIVE MOMENT REINFORCEMENT

Section 12.11 provides requirements for development of positive moment reinforcement. In addition to the requirements of Section 12.11, the requirements for structural integrity described in Section 7.13 must also be satisfied.

To further guard against possible shifting of moments due to various causes, 12.11.1 requires specific amounts of positive moment reinforcement to be extended along the same face of the member into the support, and for beams, to be embedded into the support at least 6 in. The specified amounts are one-third for simple members and one-fourth for continuous members. In Fig. 4-9(b), for example, the area of Bars “B” would have to be at least one-fourth of the area of reinforcement required at the point of maximum positive moment M_u^+. Section 12.11.2 is intended to assure ductility in the structure under severe overload, as might be experienced in a strong wind or earthquake. In a lateral load resisting system, full anchorage of the reinforcement extended into the support provides for possible stress reversal under such overload. Anchorage must be provided to develop the full yield strength in tension at the face of the support. The provision will require such members to have bottom bars lapped at interior supports or hooked at exterior supports. The full anchorage requirement does not apply to any excess reinforcement provided at the support.

Section 12.11.3 limits bar sizes for the positive moment reinforcement at simple supports and at points of inflection. In effect, this places a design restraint on flexural bond stress in areas of small moment and large shear. Such a condition could exist in a heavily loaded beam of short span, thus requiring large size bars to be developed within a short distance. Bars should be limited to a diameter such that the development length l_d computed for f_y according to 12.2 does not exceed $(M_u/V_u) + l_a$ (12.11.3). The limit on bar size at simple supports is waived if the bars have standard end hooks or mechanical anchorages terminating beyond the centerline of the support. Mechanical anchorages must be equivalent to standard hooks.
The length \(\frac{M_n}{V_u} \) corresponds to the development length of the maximum size bar permitted by the previously used flexural bond equation. The length \(\frac{M_n}{V_u} \) may be increased 30% when the ends of the bars are confined by a compressive reaction, such as provided by a column below, but not when a beam frames into a girder.

For the simply-supported beam shown in Fig. 4-11, the maximum permissible \(\ell_d \) for Bars “a” is \(1.3 \frac{M_n}{V_u} + \ell_a \). This has the effect of limiting the size of bar to satisfy flexural bond. Even though the total embedment length from the critical section for Bars “a” is greater than \(1.3 \frac{M_n}{V_u} + \ell_a \), the size of Bars “a” must be limited so that \(\ell_d \leq 1.3 \frac{M_n}{V_u} + \ell_a \). Note that \(M_n \) is the nominal flexural strength of the cross-section (without the \(\phi \) factor). As noted previously, larger bar sizes can be accommodated by providing a standard hook or mechanical anchorage at the end of the bar within the support. At a point of inflection (see Fig. 4-12), the positive moment reinforcement must have a development length \(\ell_d \), as computed by 12.2, not to exceed the value of \(\frac{M_n}{V_u} + \ell_a \), with \(\ell_a \) not greater than \(d \) or \(12d_b \), whichever is greater.

![Figure 4-11 Development Length Requirements at Simple Support (straight bars)](image1)

![Figure 4-12 Concept for Determining Maximum Size of Bars “a” at Point of Inflection (12.11.3)](image2)

Sections 12.11.4 and 12.12.4 address development of positive and negative moment reinforcement in deep flexural members. The provisions specify that at simple supports of deep beams, positive moment tension reinforcement should be anchored to develop its specified yield strength \(f_y \) in tension at the face of the support. However, if the design is carried out using the strut-and-tie method of Appendix A, this reinforcement shall be anchored in accordance with A.4.3. At interior supports of deep beams, both positive and negative moment tension reinforcement shall be continuous or be spliced with that of the adjacent spans.
12.12 DEVELOPMENT OF NEGATIVE MOMENT REINFORCEMENT

The requirements in 12.12.3 guard against possible shifting of the moment diagram at points of inflection. At least one-third of the negative moment reinforcement provided at a support must be extended a specified embedment length beyond a point of inflection. The embedment length must be the effective depth of the member, \(d \), \(12d_b \), or \(\frac{l}{16} \) the clear span, whichever is greater, as shown in Figs. 4-9 and 4-13. The area of Bars “E” in Fig. 4-9(a) must be at least one-third the area of reinforcement provided for \(-M_u\) at the face of the support. Anchorage of top reinforcement in tension beyond interior support of continuous members usually becomes part of the adjacent span top reinforcement, as shown in Fig. 4-13. In addition to the requirements of Section 12.12, the requirements for structural integrity described in Section 7.13 must be satisfied.

(Usually such anchorage becomes part of adjacent beam reinforcement)

Figure 4-13 Anchorage into Adjacent Beam

Standard end hooks are an effective means of developing top bars in tension at exterior supports as shown in Fig. 4-14. Code requirements for development of standard hooks are discussed above in 12.5. Mechanically-anchored bars or headed deformed bars are also effective in developing top bars in tension at exterior supports, and may help reduce congestion at the support. Code requirements for development of headed and mechanically-anchored bars in tension are discussed in 12.6.

12.13 DEVELOPMENT OF WEB REINFORCEMENT

Stirrups must be properly anchored so that the full tensile force in the stirrup can be developed at or near mid-depth of the member. To function properly, stirrups must be extended as close to the compression and tension surfaces of the member as cover requirements and proximity of other reinforcement permit (12.13.1). It is equally important for stirrups to be anchored as close to the compression face of the member as possible because flexural tension cracks initiate at the tension face and extend towards the compression zone as member strength is approached.

The ACI code anchorage details for stirrups have evolved over many editions of the code and are based primarily on past experience and performance in laboratory tests. For No. 5 bar and smaller, stirrup anchorage is provided by a standard stirrup hook (90 deg bend plus \(6d_b \) extension at free end of bar) around a longitudinal bar (12.13.2.1). The same anchorage detail is permitted for the larger stirrup bar sizes, No. 6, No. 7, and No. 8, in Grade 40. Note that for the larger bar sizes, the 90 deg hook detail requires a \(12d_b \) extension at the free end of the bar (7.1.3(b)). Fig. 4-15 illustrates the anchorage requirement for U-stirrups fabricated from deformed bars and deformed wire.

* For structures located in regions of high seismic risk, stirrups required to be hoops must be anchored with a 135-degree bend plus \(6d_b \) (but not less than 3 in.) extension. See definition of seismic hook in 2.2.
Critical section for bar development at face of support

Standard 90° or 180° hook

Outside edge of hook

Figure 4-14 Anchorage into Exterior Support with Standard Hook

Std. stirrup hook (7.1.3(a)) around longitudinal bar

Std. stirrup hook (7.1.3(b)) around longitudinal bar

No. 5 bars and smaller

No. 6, No. 7, No. 8 bars

Figure 4-15 Anchorage Details for U-Stirrups (Deformed Bars and Deformed Wires)

For the larger stirrup bar sizes (No. 6, No. 7, or No. 8) in Grade 60, in addition to a standard stirrup hook, an embedment of \(0.014d_b f_{yt} / \lambda \sqrt{f'_c}\) between midheight of member and outside end of hook is required. The available embedment length, denoted \(\ell\), must be checked to ensure adequate anchorage at the higher bar force (see 12.13.2.2). The embedment length required is illustrated in Fig. 4-15 and listed in Table 4-6. Minimum depth of member required to accommodate No. 6, No. 7, or No. 8 stirrups fabricated in Grade 60 is also shown in Table 4-7. For practical size of beams where the loads are of such magnitude to require No. 6, No. 7, or No. 8 bar sizes for shear reinforcement, the embedment length required should be easily satisfied, and the designer need only be concerned with providing a standard stirrup hook around a longitudinal bar for proper stirrup end anchorage.

Provisions of 12.13.2.3 covering the use of welded plain wire reinforcement as simple U-stirrups are shown in Fig. 4-16. Requirements for stirrup anchorage (12.13.2.4) detail for straight single leg stirrups formed with welded plain or deformed wire reinforcement is shown in Fig. 4-17. Anchorage of the single leg is provided primarily by the longitudinal wires. Use of welded wire reinforcement for shear reinforcement has become commonplace in the precast, prestressed concrete industry.
Table 4-6 Embedment Length l, (in.) for Grade 60 Stirrups

<table>
<thead>
<tr>
<th>Bar Size No.</th>
<th>Concrete Compressive Strength f_{c}, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>6</td>
<td>11.5</td>
</tr>
<tr>
<td>7</td>
<td>13.4</td>
</tr>
<tr>
<td>8</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Table 4-7 Minimum Depth of Member (in.) to Accommodate Grade 60 No. 6, No. 7, and No. 8 Stirrups

<table>
<thead>
<tr>
<th>Clear cover to stirrup (in.)</th>
<th>Bar Size No.</th>
<th>Concrete Compressive Strength f_{c}, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>1-1/2</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>35</td>
</tr>
</tbody>
</table>

Figure 4-16 Anchorage Details for Welded Plain Wire Reinforcement U-Stirrups (12.13.2.3)
Note that 12.13.3 requires that each bend in the continuous portion of U-stirrups must enclose a longitudinal bar. This requirement is usually satisfied for simple U-stirrups, but requires special attention in bar detailing when multiple U-stirrups are used.

Clarifications of anchorage of web reinforcement made in the 1989 code eliminated the possibility of anchoring web reinforcement without hooking the stirrup around a longitudinal bar. Inquiries have shown that some designers routinely use small bars in joists without hooking them around a longitudinal bar, particularly a continuously bent single leg stirrup called a W-stirrup, accordion stirrup, or snake. To recognize this practice, 12.13.2.5 was introduced starting with the 1995 code.

12.13.4 Anchorage for Bent-Up Bars

Section 12.13.4 gives anchorage requirements for longitudinal (flexural) bars bent up to resist shear. If the bent-up bars are extended into a tension region, the bent-up bars must be continuous with the longitudinal reinforcement. If the bent-up bars are extended into a compression region, the required anchorage length beyond mid-depth of the member (d/2) must be based on that part of f_{yt} required to satisfy Eq. (11-17). For example, if f_{yt} = 60,000 psi and calculations indicate that 30,000 psi is required to satisfy Eq. (11-17), the required anchorage length \(\ell'_d = (30,000/60,000) \ell_d \), where \(\ell_d \) is the tension development length for full f_y per 12.2. Fig. 4-18 shows the required anchorage length \(\ell'_d \).
12.13.5 Closed Stirrups or Ties

Section 12.13.5 gives requirements for lap splicing double U-stirrups or ties (without hooks) to form a closed stirrup. Legs are considered properly spliced when the laps are $1.3\ell_d$ as shown in Fig. 4-19, where ℓ_d is determined from 12.2.

![Figure 4-19 Overlapping U-Stirrups to Form Closed Unit](image)

Alternatively, if a lap splice of $1.3\ell_d$ cannot fit within the depth of shallow members, provided that depth of members is at least 18 in., double U-stirrups may be used if each leg extends the full available depth of the member and the force in each leg does not exceed 9000 lb ($A_b f_{yt} \leq 9000$ lb.; see Fig. 4-20).

If stirrups are designed for the full yield strength f_y, No. 3 and 4 stirrups of Grade 40 and only No. 3 of Grade 60 satisfy the 9000 lb limitation.

![Figure 4-20 Lap Splice Alternative for U-Stirrups](image)

12.14 SPLICES OF REINFORCEMENT—GENERAL

The splice provisions require the engineer to show clear and complete splice details in the contract documents. The structural drawings, notes and specifications should clearly show or describe all splice locations, types permitted or required, and for lap splices, length of lap required. The engineer cannot simply state that all splices shall be in accordance with the ACI 318 code. This is because many factors affect splices of reinforcement, such as the following for tension lap splices of deformed bars:

- No. 3: $0.11(40,000) = 4400$ lb.
- No. 4: $0.20(40,000) = 8000$ lb.
- No. 5: $0.31(40,000) = 12,400$ lb.
- No. 3: $0.11(60,000) = 6600$ lb.
- No. 4: $0.20(60,000) = 12,000$ lb.
It is virtually impossible for a reinforcing bar detailer to know what splices are required at a given location in a structure, unless the engineer explicitly illustrates or defines the splice requirements. Section 12.14.1 states: “Splices of reinforcement shall be made only as required or permitted on the design drawings, or in specifications, or as authorized by the engineer.”

Two industry publications are suggested as design reference material for proper splicing of reinforcement. Reference 4.4 provides design aid data in the use of welded wire reinforcement, including development length and splice length tables for both deformed and plain wire reinforcement. Reference 4.5 provides accepted practices in splicing reinforcement; use of lap, mechanical, and welded splices are described, including simplified design data for lap splice lengths.

12.14.2 Lap Splices

Lap splices are not permitted for bars larger than No. 11, either in tension or compression, except:

- No. 14 and No. 18 bars in compression only may be lap spliced to No. 11 and smaller bars (12.16.2), and
- No. 14 and No. 18 bars in compression only may be lap spliced to smaller size footing dowels (15.8.2.3).

Section 12.14.2.2 gives the provisions for lap splicing of bars in a bundle (tension or compression). The lap lengths required for individual bars within a bundle must be increased by 20 percent and 33 percent for 3- and 4-bar bundles, respectively. Overlapping of individual bar splices within a bundle is not permitted. Two bundles must not be lap-spliced as individual bars.

Bars in flexural members may be spliced by noncontact lap splices. To prevent a possible unreinforced section in a spaced (noncontact) lap splice, 12.14.2.3 limits the maximum distance between bars in a splice to one-fifth the lap length, or 6 in. whichever is less. Contact lap splices are preferred for the practical reason that when the bars are wired together, they are more easily secured against displacement during concrete placement.

12.14.3 Mechanical and Welded Splices

Section 12.14.3 permits the use of mechanical or welded splices. A full mechanical splice must develop, in tension or compression, at least 125 percent of the specified yield strength of the bar (12.14.3.2). In a full welded splice, the bars must develop in tension at least 125 percent of the specified yield strength of the bar (12.14.3.4). ANSI/AWS D1.4 allows indirect welds where the bars are not butted. Note that ANSI/AWS D1.4 indicates that wherever practical, direct butt splices are preferable for No. 7 and larger bars. Use of mechanical or welded splices having less than 125 percent of the specified yield strength of the bar is limited to No. 5 and smaller bars (12.14.3.5) in regions of low computed stress. Mechanical and welded splices not meeting 12.14.3.2 and 12.14.3.4 are limited to No. 5 and smaller bars due to the potentially brittle nature of failure at these welds.

Section 12.14.3.3 requires all welding of reinforcement to conform to Structural Welding Code-Reinforcing Steel (ANSI/AWS D1.4). Section 3.5.2 requires that the reinforcement to be welded must be indicated on the drawings, and the welding procedure to be used must be specified. To carry out these code requirements properly, the engineer should be familiar with provisions in ANSI/AWS D1.4 and the ASTM specifications for reinforcing bars.
The standard rebar specifications ASTM A615, A616 and A617 do not address weldability of the steel. No limits are given in these specifications on the chemical elements that affect weldability of the steels. A key item in ANSI/AWS D1.4 is carbon equivalent (C.E.). The minimum preheat and interpass temperatures specified in ANSI/AWS D1.4 are based on C.E. and bar size. Thus, as indicated in 3.5.2 and R3.5.2, when welding is required, the ASTM A615, A616 and A617 rebar specifications must be supplemented to require a report of the chemical composition to assure that the welding procedure specified is compatible with the chemistry of the bars.

ASTM A706 reinforcing bars are intended for welding. The A706 specification contains restrictions on chemical composition, including carbon, and C.E. is limited to 0.55 percent. The chemical composition and C.E. must be reported. By limiting C.E. to 0.55 percent, little or no preheat is required by ANSI/AWS D1.4. Thus, the engineer does not need to supplement the A706 specification when the bars are to be welded. However, before specifying ASTM A706 reinforcing bars, local availability should be investigated.

Reference 4.5 contains a detailed discussion of welded splices. Included in the discussion are requirements for other important items such as field inspection, supervision, and quality control.

The ANSI/AWS D1.4 document covers the welding of reinforcing bars only. For welding of wire to wire, and of wire or welded wire reinforcement to reinforcing bars or structural steels, such welding should conform to applicable provisions of ANSI/AWS D1.4 and to supplementary requirements specified by the engineer. Also, the engineer should be aware that there is a potential loss of yield strength and ductility of low carbon cold-drawn wire if wire is welded by a process other than controlled resistance welding used in the manufacture of welded wire reinforcement.

In the discussion of 7.5 in Part 3 of this document, it was noted that welding of crossing bars (tack welding) is not permitted for assembly of reinforcement unless authorized by the engineer. An example of tack welding would be a column cage where the ties are secured to the longitudinal bars by small arc welds. Such welding can cause a metallurgical notch in the longitudinal bars, which may affect the strength of the bars. Tack welding seems to be particularly detrimental to ductility (impact resistance) and fatigue resistance. Reference 4.5 recommends: “Never permit field welding of crossing bars (‘tack’ welding, ‘spot’ welding, etc.). Tie wire will do the job without harm to the bars.”

12.15 SPLICES OF DEFORMED BARS AND DEFORMED WIRE IN TENSION

Tension lap splices of deformed bars and deformed wire are designated as Class A and B with the length of lap being a multiple of the tensile development length l_d. The two-level splice classification (Class A & B) is intended to encourage designers to splice bars at points of minimum stress and to stagger lap splices along the length of the bars to improve behavior of critical details.

The development length l_d (12.2) used in the calculation of lap length must be that for the full f_y because the splice classifications already reflect any excess reinforcement at the splice location (factor of 12.2.5 for excess A_s must not be used). The minimum length of lap is 12 in.

For lap splices of slab and wall reinforcement, effective clear spacing of bars being spliced at the same location is taken as the clear spacing between the spliced bars (R12.15.1). This clear spacing criterion is illustrated in Fig. 4-21(a). Spacing for noncontact lap splices (spacing between lapped bars not greater than (1/5) lap length nor 6 in.) should be considered the same as for contact lap splices. For lap splices of column and beam bars, effective clear spacing between bars being spliced will depend on the orientation of the lapped bars; see Fig. 4-21(b) and (c), respectively.
The designer must specify the class of tension lap splice to be used. The class of splice depends on the magnitude of tensile stress in the reinforcement and the percentage of total reinforcement to be lap spliced within any given splice length as shown in Table 4-8. If the area of tensile reinforcement provided at the splice location is more than twice that required for strength (low tensile stress) and 1/2 or less of the total steel area is lap spliced within the required splice length, a Class A splice may be used. Both splice conditions must be satisfied, otherwise, a Class B splice must be used. In other words, if the area of reinforcement provided at the splice location is less than twice that required for strength (high tensile stress) and/or more than 1/2 of the total area is to be spliced within the lap length, a Class B splice must be used.

Table 4-8 Tension Lap Splice Conditions (at splice location)

<table>
<thead>
<tr>
<th>Class A…1.0(f_{\text{d}})</th>
<th>Class B…1.3(f_{\text{d}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((A_s \text{ provided}) \geq 2 (A_s \text{ required})) and percent (A_s \text{ Spliced} \leq 50)</td>
<td>All other conditions</td>
</tr>
</tbody>
</table>

Mechanical or welded splices conforming to 12.14.3 may be used in lieu of tension lap splices. Section R12.15.3 clarifies that such splices need not be staggered although such staggering is encouraged where the area of reinforcement provided is less than twice that required by analysis.

Section 12.15.4 emphasizes that mechanical and welded splices not meeting the requirements of 12.14.3.2 and 12.14.3.4, respectively, are only allowed for No. 5 bars and smaller, and only if certain conditions are met (see 12.15.5.1 and 12.15.5.3).
Splices in tension tie members are required to be made with a full mechanical or welded splice with a 30 in. stagger between adjacent bar splices. See definition of “tension tie member” in R12.15.5.

12.16 SPICES OF DEFORMED BARS IN COMPRESSION

Since bond behavior of reinforcing bars in compression is not complicated by the potential problem of transverse tension cracking in the concrete, compression lap splices do not require such strict provisions as those specified for tension lap splices. Tests have shown that the strength of compression lap splices depends primarily on end bearing of the bars on the concrete, without a proportional increase in strength even when the lap length is doubled. Thus, the code requires significant longer lap length for bars with a yield strength greater than 60,000 psi.

12.16.1 Compression Lap Splices

Calculation of compression lap splices was simplified starting with the ’89 code by removing the redundant calculation for development length in compression. For compression lap splices, 12.16.1 requires the minimum lap length to be simply 0.0005dbfy for fy = 60,000 psi or less, but not less than 12 in. For reinforcing bars with a yield strength greater than 60,000 psi, a minimum lap length of (0.0009fy - 24) db but not less than 12 in. is specified. Lap splice lengths must be increased by one-third for concrete with a specified compressive strength less than 3000 psi.

As noted in the discussion of 12.14.2, No. 14 and No. 18 bars may be lap spliced, in compression only, to No. 11 and smaller bars or to smaller size footing dowels. Section 12.16.2 requires that when bars of a different size are lap spliced in compression, the length of lap must be the compression development length of the larger bar, or the compression lap splice length of the smaller bar, whichever is the longer length.

12.16.4 End-Bearing Splices

Section 12.16.4 specifies the requirements for end-bearing compression splices. End-bearing splices are only permitted in members containing closed ties, closed stirrups or spirals (12.16.4.3). Section R12.16.4.1 cautions the engineer in the use of end-bearing splices for bars inclined from the vertical. End-bearing splices for compression bars have been used almost exclusively in columns and the intent is to limit use to essentially vertical bars because of the field difficulty of getting adequate end bearing on horizontal bars or bars significantly inclined from the vertical. Mechanical or welded splices are also permitted for compression splices and must meet the requirements of 12.14.3.2 or 12.14.3.4, respectively.

12.17 SPECIAL SPLICE REQUIREMENTS FOR COLUMNS

The special splice requirements for columns were significantly simplified in the ’89 code. The column splice requirements simplify the amount of calculations that are required compared to previous provisions by assuming that a compression lap splice (12.17.2.1) has a tensile capacity of at least one-fourth fy (R12.17).

The column splice provisions are based on the concept of providing some tensile resistance at all column splice locations even if analysis indicates compression only at a splice location. In essence, 12.17 establishes the required tensile strength of spliced longitudinal bars in columns. Lap splices, butt-welded splices, mechanical or end-bearing splices may be used.

12.17.2 Lap Splices in Columns

Lap splices are permitted in column bars subject to compression or tension. Type of lap splice to be used will depend on the bar stress at the splice location, compression or tension, and magnitude if tension, due to all factored load combinations considered in the design of the column. Type of lap splice to be used will be governed by the load combination producing the greatest amount of tension in the bars being spliced. The design require-
ments for lap splices in column bars can be illustrated by a typical column load-moment strength interaction as shown in Fig. 4-22.

![Figure 4-22 Special Splice Requirements for Columns](image)

Bar stress at various locations along the strength interaction curve define segments of the strength curve where the different types of lap splices may be used. For factored load combinations along the strength curve, bar stress can be readily calculated to determine type of lap splice required. However, a design dilemma exists for load combinations that do not fall exactly on the strength curve (below the strength curve) as there is no simple exact method to calculate bar stress for this condition.

A seemingly rational approach is to consider factored load combinations below the strength curve as producing bar stress of the same type, compression or tension, and of the same approximate magnitude as that produced along the segment of the strength curve intersected by radial lines (lines of equal eccentricity) through the load combination point. This assumption becomes more exact as the factored load combinations being investigated fall nearer to the actual strength interaction curve of the column. Using this approach, zones of “bar stress” can be established as shown in Fig. 4-22.

For factored load combinations in Zone 1 of Fig. 4-22, all column bars are considered to be in compression. For load combinations in Zone 2 of the figure, bar stress on the tension face of the column is considered to vary from zero to 0.5f_y in tension. For load combinations in Zone 3, bar stress on the tension face is considered to be greater than 0.5f_y in tension. Type of lap splice to be used will then depend on which zone, or zones, all factored load combinations considered in the design of the column are located. The designer need only locate the factored load combinations on the load-moment strength diagram for the column and bars selected in the design to determine type of lap splice required. Use of load-moment design charts in this manner will greatly facilitate the design of column bar splices. For example, if factored gravity load combination governed design
of the column, say Point A in Fig. 4-22, where all bars are in compression, but a load combination including wind, say Point B in Fig. 4-22, produces some tension in the bars, the lap splice must be designed for a Zone 2 condition (bar stress is tensile but does not exceed 0.5f_y in tension).

The design requirements for lap splices in columns are summarized in Table 4-9. Note that the compression lap splice permitted when all bars are in compression (see 12.17.2.1) considers a compression lap length adequate as a minimum tensile strength requirement. See Example 4.6 for design application of the lap splice requirements for columns.

Table 4-9 Lap Splices in Columns

<table>
<thead>
<tr>
<th>Section</th>
<th>Requirement</th>
<th>Design Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.17.2.1—Bar Stress in compression (Zone 1)*</td>
<td>Use compression lap splice (12.16) modified by factor of 0.83 for ties or 0.75 for spirals.</td>
<td></td>
</tr>
<tr>
<td>12.17.2.2—Bar Stress ≤ 0.5f_y in tension (Zone 2)*</td>
<td>Use Class B tension lap splice (12.15) if more than 1/2 of total column bars spliced at same location. Or Use Class A tension lap splice (12.15) if not more than 1/2 of total column bars spliced at same location. Stagger alternate splices by l_d.</td>
<td></td>
</tr>
<tr>
<td>12.17.2.3—Bar Stress > 0.5f_y in tension (Zone 3)*</td>
<td>Use Class B tension lap splice (12.15).</td>
<td></td>
</tr>
</tbody>
</table>

* For Zones 1, 2, and 3, see Fig. 4-22

Sections 12.17.2.4 and 12.17.2.5 provide reduction factors for the compression lap splice when the splice is enclosed throughout its length by ties (0.83 reduction factor) or by a spiral (0.75 reduction factor). Spirals must meet the requirements of 7.10.4 and 10.9.3. When ties are used to reduce the lap splice length, the ties must have a minimum effective area of 0.0015hs. The tie legs in both directions must provide the minimum effective area to permit the 0.83 modification factor. See Fig. 4-23. The 12 in. minimum lap length also applies to these permitted reductions.

![Figure 4-23 Application of 12.17.2.4](image)

(perpendicular to h_1 dimension) 4 tie bar areas ≥ 0.0015h_1s
(perpendicular to h_2 dimension) 2 tie bar areas ≥ 0.0015h_2s

With the “basic” lap length for compression lap splices a function of bar diameter d_b and bar yield strength f_y, and three modification factors for ties and spirals and for lower concrete strength, it is convenient to establish compression lap splices simply as a multiple of bar diameter.
For Grade 60 bars...30db
enclosed within ties..25db
enclosed within spirals..22.5db
For Grade 75 bars...43.5db
enclosed within ties..36db
enclosed within spirals..33db
but not less than 12 in. For f'_c less than 3000 psi, multiply by a factor of 1.33. Compression lap splice tables for the standard bar sizes can be readily developed using the above values.

12.17.3 Mechanical or Welded Splices in Columns

Mechanical or welded splices are permitted in column bars where bar stress is either compressive or tensile for all factored load combinations (Zones 1, 2, and 3 in Fig. 4-22). “Full” mechanical or “full” welded splices must be used; that is, the mechanical or welded splice must develop at least 125 percent of the bar yield strength, 1.25$A_b f_y$. Use of mechanical or welded splices of lesser strength is permitted for splicing bars No. 5 and smaller in tension, in accordance with 12.15.4.

12.17.4 End Bearing Splices in Columns

End bearing splices are permitted for column bars stressed in compression for all factored load combinations (Zone 1 in Fig. 4-22). Even though there is no calculated tension, a minimum tensile strength of the continuing (unspliced) bars must be maintained when end bearing splices are used. Continuing bars on each face of the column must provide a tensile strength of $A_s f_y /4$, where A_s is the total area of bars on that face of the column. Thus, not more than 3/4 of the bars can be spliced on each face of the column at any one location. End bearing splices must be staggered or additional bars must be added at the splice location if more than 3/4 of the bars are to be spliced.

12.18 SPLICES OF WELDED DEFORMED WIRE REINFORCEMENT IN TENSION

For tension lap splices of deformed wire reinforcement, the code requires a minimum lap length of $1.3\ell_d$, but not less than 8 in. Lap length is measured between the ends of each reinforcement sheet. The development length ℓ_d is the value calculated by the provisions in 12.7. The code also requires that the overlap measured between the outermost cross wires be at least 2 in. Figure 4-24 shows the lap length requirements.

If there are no cross wires within the splice length, the provisions in 12.15 for deformed wire must be used to determine the length of the lap.

Section 12.18.3 provides additional requirements for splicing welded wire reinforcement, at locations having deformed wires in one direction and plain wires in the orthogonal direction, or deformed wires larger than D-31.
12.19 SPLICES OF WELDED PLAIN WIRE REINFORCEMENT IN TENSION

The minimum length of lap for tension lap splices of plain wire reinforcement is dependent upon the ratio of the area of reinforcement provided to that required by analysis. Lap length is measured between the outermost cross wires of each reinforcement sheet. The required lap lengths are shown in Fig. 4-25.

CLOSING REMARKS

One additional comment concerning splicing of temperature and shrinkage reinforcement at the exposed surfaces of walls or slabs: one must assume all temperature and shrinkage reinforcement to be stressed to the full specified yield strength f_y. The purpose of this reinforcement is to prevent excess cracking. At some point in the member, it is likely that cracking will occur, thus fully stressing the temperature and shrinkage reinforcement. Therefore, all splices in temperature and shrinkage reinforcement must be assumed to be those required for development of yield tensile strength. A Class B tension lap splice must be provided for this steel.
REFERENCES

Example 4.1—Development of Bars in Tension

A beam at the perimeter of the structure has 7-No. 9 top bars over the support. Structural integrity provisions require that at least one-sixth of the tension reinforcement be made continuous, but not less than 2 bars (7.13.2.2). Bars are to be spliced with a Class B splice at midspan. Determine required length of Class B lap splice for the following two cases:

Case 1 - Development computed from 12.2.2
Case 2 - Development computed from 12.2.3

Assume:
- Lightweight concrete
- 2.5 in. clear cover to stirrups
- Epoxy-coated bars
- $f'_c = 4000$ psi
- $f_y = 60,000$ psi
- $b = 30$ in. (with bar arrangement as shown)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is assumed that development of negative moment reinforcement has been satisfied and, therefore, top bars are stopped away from midspan.</td>
<td>12.12.3</td>
</tr>
<tr>
<td>Minimum number of top bars to be made continuous for structural integrity is 1/6 of 7 bars provided, i.e., 7/6 bars or, a minimum of 2 bars. Two corner bars will be spliced at midspan.</td>
<td>7.13.2.2</td>
</tr>
<tr>
<td>Class B lap splice requires a $1.3d_D$ length of bar lap</td>
<td>12.15.1</td>
</tr>
<tr>
<td>Nominal diameter of No. 9 bar = 1.128 in.</td>
<td></td>
</tr>
</tbody>
</table>

CASE 1 - Section 12.2.2

Refer to Table 4-1. For bars No. 7 and larger, either Eq. B or Eq. D apply. To determine if Eq. B or Eq. D governs, determine clear cover and clear spacing for bars being developed.
Example 4.1 (cont’d) Calculations and Discussion Code Reference

Clear spacing between spliced bars (corner bars)

\[= [30 - 2 (2.5) - 2 (0.5) - 2(1.128)] \]

\[= 21.7 \text{ in.} \]

\[= 19.3 \text{db} \]

Clear cover to spliced bar = \(2.5 + 0.5 = 3.0 \text{ in.} = 2.7 \text{db} \)

As clear spacing > 2\(d_b \) and clear cover > \(d_b \), Eq. B applies.

\[\ell_d = \left(\frac{f_y \psi_t \psi_c}{20 \lambda \sqrt{f_c'}} \right) d_b \]

\(\psi_t = 1.3 \) for top bar

\(\psi_c = 1.5 \) for epoxy-coated bar with cover less than 3\(d_b \)

\(\psi_t \psi_c = 1.3 \times 1.5 = 1.95; \) however, product of \(\alpha \) and \(\beta \) need not be taken greater than 1.7.

\(\lambda = 0.75 \) for lightweight aggregate concrete

\[\ell_d = \left(\frac{60,000(1.7)}{20(0.75)\sqrt{4000}} \right) (1.128) \]

\[= 121.3 \text{ in.} \]

Class B splice = \(1.3 \ell_d = 157.7 \text{ in.} \)

CASE 2 - Section 12.2.3

Application of Eq. (12-1) requires a little more computations, but can result in smaller development lengths.

\[\ell_d = \left(\frac{3 f_y}{40} \frac{\psi_t \psi_c \psi_s}{\lambda \sqrt{f_c'}} \left(\frac{c_h + K_{tr}}{d_b} \right) \right) d_b \]

Parameter “\(c_h \)” is the smaller of (1) distance from center of bar being developed to the nearest concrete surface, and (2) one-half the center-to-center spacing of bars being developed. Also, note that the term \(\left(\frac{c_h + K_{tr}}{d_b} \right) \) cannot exceed 2.5.

Distance from center of bar or wire being developed to the nearest concrete surface

\[= \text{clear cover to spliced bar} + 1/2 \text{ bar diameter} \]
Example 4.1 (cont’d) Calculations and Discussion

\[= 2.7d_b + 0.5d_b = 3.2d_b \]

Center-to-center spacing = clear spacing + 1.0\(d_b\) = 19.3\(d_b\) + 1.0\(d_b\) = 20.3\(d_b\)

Therefore, \(c\) is the smaller of 3.2\(d_b\) and 0.5 (20.3\(d_b\)), i.e. 3.2\(d_b\)

No need to compute \(K_{tr}\) as \(c/d_b\) is greater than 2.5

\[\psi_s = 1.0 \text{ for No. 7 bar and larger} \]

\[\ell_d = \frac{3(60,000)(1.7)(1.0)}{40(0.75)\sqrt{4000}}(1.128) \]

\[= 72.8 \text{ in.} \]

Class B splice = 1.3\(\ell_d\) = 94.6 in.

The extra computations required to satisfy the general Eq. (12-1) of 12.2.3 can lead to substantial reductions in tension development or splice lengths compared to values computed from the simplified procedure of 12.2.2.
Example 4.2—Development of Bars in Tension

Calculate required tension development length for the No. 8 bars (alternate short bars) in the “sand-lightweight” one-way slab shown below. Use $f'_c = 4000$ psi and $f_y = 60,000$ psi, and uncoated bars.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
<th>Calculations and Discussion</th>
</tr>
</thead>
</table>

Calculations for this example will be performed using 12.2.2 and 12.2.3.

Assume short bars are developed within distance AB while long bars are developed within BC.

Nominal diameter of No. 8 bar is 1.00 in.

A. Development length by 12.2.2

Center-to-center spacing of bars being developed = 8 in. = $8d_b$

Clear cover = 0.75 in. = $0.75d_b$

As clear cover is less than d_b, and bar size is larger than No. 7, Eq. D of Table 4-1 applies.

$$\ell_d = \left(\frac{3f_y \psi_t \psi_e}{40\lambda \sqrt{f'_c}} \right) d_b$$

12.2.2

$\psi_t = 1.3$ for top bar

$\psi_e = 1.0$ for uncoated bars

$\lambda = 0.75$ for lightweight concrete

$$\ell_d = \frac{3(60,000)(1.7)(1.0)}{40(0.75)\sqrt{4000}}(1.0) = 123.3 \text{ in.}$$
B. Development length by **12.2.3**

\[
\ell_d = \left(\frac{3}{40\lambda} \right) \left(\frac{f_y}{\sqrt{f'_c}} \right) \frac{\psi_t \psi_c \psi_s}{\left(\frac{c_b + K_{tr}}{d_b} \right)} d_b
\]

\text{Eq. (12-1)}

\[\psi_t = 1.3\] for top bar

\[\psi_c = 1.0\] for uncoated bars

\[\psi_s = 1.0\] for No. 7 and larger bars

\[\lambda = 0.75\] for lightweight concrete

Center-to-center spacing of bars being developed = 8 in. = 8\(d_b\)

Clear spacing between bars being developed = 8 - 1 = 7 in. = 7\(d_b\)

Clear cover = 0.75 in. = 0.75\(d_b\)

Distance “c” from center of bar to concrete surface = 0.75 + 0.5 = 1.25 in. = 1.25\(d_b\) (governs)

\[= 8d_b/2 = 4d_b\] (center-to-center spacing/2)

\[c_b = 1.25d_b\] (computed above)

\[K_{tr} = \frac{40 A_{tr}}{s} = 0\] (no transverse reinforcement)

\[\text{Eq. (12-2)}\]

\[\ell_d = \frac{3(60,000)(1.3)(1.0)(1.0)(1.0)}{40(0.75)\sqrt{4000}(1.25)}(1.0) = 98.7\text{ in.}\]
Example 4.3—Development of Bars in Tension

Calculate required development length for the inner 2 No. 8 bars in the beam shown below. The 2 No. 8 outer bars are to be made continuous along full length of beam. Use $f'_c = 4000$ psi (normalweight concrete) and $f_y = 60,000$ psi, and uncoated bars. Stirrups provided satisfy the minimum code requirements for beam shear reinforcement.

![Diagram of beam with development length标注](image)

Calculations and Discussion

Calculations for this example will be performed using 12.2.2 and 12.2.3.

Nominal diameter of No. 8 bar = 1.00 in.

A. Development length by 12.2.2

Clear spacing $= (12 - 2 \text{ (cover)} - 2 \text{ (No. 4 stirrups)} - 4 \text{ (No. 8 bars)})/3 \text{ spaces}$

$= (12 - 2 \cdot 1.5 - 2 \cdot 0.5 - 4 \cdot 1.0)/3$

$= 1.33 \text{ in.}$

$= 1.33d_b$

Clear cover $= 1.5 + 0.5 = 2.0 \text{ in.} = 2d_b$

Refer to Table 4-1. Clear spacing between bars being developed more than d_b, clear cover more than d_b, and minimum stirrups provided. Eq. B of Table 4-1 applies.

$$\ell_d = \left(\frac{f_y \psi_t \psi_e}{20 \lambda \sqrt{f'_c}} \right) d_b$$

12.2.2

$\psi_t = 1.3 \text{ for top bar}$

$\psi_e = 1.0 \text{ for uncoated bars}$

$\lambda = 1.0 \text{ for normalweight concrete}$

$$\ell_d = \left(\frac{60,000 \cdot 1.3 \cdot 1.0}{20 \cdot 1.0 \cdot \sqrt{4000}} \right) (1.0) = 61.7 \text{ in.}$$
Example 4.3 (cont’d) Calculations and Discussion

B. Development length by 12.2.3

\[\ell_d = \frac{3}{40\lambda} \frac{f_y}{\sqrt{f_c'}} \left(\frac{\psi_t \psi_c \psi_s}{c_b + K_{tr}} \right) d_b \]
\[Eq. (12-1) \]

\[\psi_t = 1.3 \text{ for top bar} \]
\[\psi_e = 1.0 \text{ for uncoated bars} \]
\[\psi_s = 1.0 \text{ for No. 7 and larger bars} \]
\[\lambda = 1.0 \text{ for normalweight concrete} \]

Clear spacing = 1.33\(d_b\)
Center-to-center spacing of bars being developed = 1.33 + 1.0 in. = 2.33 in. = 2.33\(d_b\)

Clear cover = 1.50 + 0.5 = 2.0 in. = 2\(d_b\)
Distance from center of bar to concrete surface = 1.5 + 0.5 + 0.5 = 2.5 in. = 2.5\(d_b\)

c\(_b\) = the smaller of (1) distance from center of bar being developed to the nearest concrete surface (2.5\(d_b\)), and of (2) one-half the center-to-center spacing of bars being developed (2.33\(d_b\)/2 = 1.17\(d_b\))

\[c_b = 1.17d_b \]

\[K_{tr} = \frac{40A_{tr}}{sn} \]
\[Eq. (12-2) \]

\[A_{tr} (2-\text{No. 4}) = 2 \times 0.2 = 0.4 \text{ in.}^2 \]
\[s = 10 \text{ in. spacing of stirrups} \]
\[n = 2 \text{ bars being developed} \]

\[K_{tr} = \frac{(40)(0.4)}{(10)(2)} = 0.80 \text{ in.} = 0.80d_b \]

\[\left(\frac{c_b + K_{tr}}{d_b} \right) = \frac{1.17 + 0.80}{1.0} = 1.97 < 2.5 \text{ O.K.} \]

\[\ell_d = \frac{3(60,000)(1.3)(1.0)(1.0)}{40(1.0)\sqrt{4000}(1.97)(1.0)}(1.0) = 47.0 \text{ in.} \]
Example 4.4—Development of Flexural Reinforcement

Determine lengths of top and bottom bars for the exterior span of the continuous beam shown below. Concrete is normalweight and bars are Grade 60. Total uniformly distributed factored gravity load on beam is $w_u = 6.0$ kips/ft (including weight of beam).

- $f'_c = 4000$ psi
- $f_y = 60,000$ psi
- $b = 16$ in.
- $h = 22$ in.
Concrete cover = 1 1/2 in.

<table>
<thead>
<tr>
<th>Location</th>
<th>Factored moments & shears</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior face of exterior support</td>
<td>$-M_u = \frac{w_u l^2}{16} = 6 \frac{(25)^2}{16} = -234.4$ ft - kips</td>
</tr>
<tr>
<td>End span positive</td>
<td>$+M_u = \frac{w_u l^2}{14} = 6 \frac{(25)^2}{14} = 267.9$ ft - kips</td>
</tr>
<tr>
<td>Exterior face of first interior support</td>
<td>$-M_u = \frac{w_u l^2}{10} = 6 \frac{(25)^2}{10} = -375.0$ ft - kips</td>
</tr>
<tr>
<td>Exterior face of first interior support</td>
<td>$V_u = 1.15 \frac{w_u l}{2} = 1.15 (6) \frac{25}{2} = 86.3$ kips</td>
</tr>
</tbody>
</table>

b. Determine required flexural reinforcement using procedures of Part 7 of this publication. With 1.5 in. cover, No. 4 bar stirrups, and No. 9 or No. 10 flexural bars, $d \approx 19.4$ in.
Example 4.4 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>M_u</th>
<th>A_s required</th>
<th>Bars</th>
<th>A_s provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>-234.4 ft-kips</td>
<td>2.93 in.2</td>
<td>4 No. 8</td>
<td>3.16 in.2</td>
</tr>
<tr>
<td>+267.9 ft-kips</td>
<td>3.40 in.2</td>
<td>2 No. 8</td>
<td>3.58 in.2</td>
</tr>
<tr>
<td>-375.0 ft-kips</td>
<td>5.01 in.2</td>
<td>4 No. 10</td>
<td>5.06 in.2</td>
</tr>
</tbody>
</table>

\[\phi V_u = \phi \left(2 \lambda \sqrt{f'_c b_w d} \right) = 0.75 \times 2(1.0)\sqrt{4000 \times 16 \times 19.4/1000} = 29.5 \text{ kips} \]

Try No. 4 U-stirrups @ 7 in. spacing \(< s_{\text{max}} = \frac{d}{2} = 9.7 \text{ in.} \)

\[\phi V_s = \frac{\phi A_v f_y d}{s} = 0.75 (0.40) (60) (19.4)/7 = 49.9 \text{ kips} \]

\[\phi V_n = \phi V_c + \phi V_s = 29.5 + 49.9 = 79.4 \text{ kips} > 76.6 \text{ kips} \text{ O.K.} \]
Example 4.4 (cont’d) Calculations and Discussion

Distance from support where stirrups not required:

\[V_u < \frac{\phi V_c}{2} = \frac{29.5}{2} = 14.8 \text{ kips} \]

\[V_u = 86.3 - 6x = 14.8 \text{ kips} \]

\[x = \frac{11.9}{1} = \frac{11.9}{2} \text{ span} \]

Use No. 4 U-stirrups @ 7 in. (entire span)

2. Bar lengths for bottom reinforcement

a. Required number of bars to be extended into supports.

One-fourth of (+A_s) must be extended at least 6 in. into the supports. With a longitudinal bar required at each corner of the stirrups (12.13.3), at least 2 bars should be extended full length. Extend the 2-No. 8 bars full span length (plus 6 in. into the supports) and cut off the 2-No. 9 bars within the span.

b. Determine cut-off locations for the 2 No. 9 bars and check other development requirements.

Shear and moment diagrams for loading condition causing maximum factored positive moment are shown below.
The positive moment portion of the M_u diagram is shown below at a larger scale, including the design moment strengths ϕM_n for the total positive A_s (2-No. 8 and 2-No. 9) and for 2-No. 8 bars separately. For 2-No. 8 and 2-No. 9, $\phi M_n = 280.7$ ft-kips. For 2-No. 8, $\phi M_n = 131.8$ ft-kips.

As shown, the 2-No. 8 bars extend full span length plus 6 in. into the supports. The structural integrity requirements for non-perimeter beams (7.13.2.5) is satisfied by the transverse reinforcement. The 2-No. 9 bars are cut off tentatively at 4.5 ft and 3.5 ft from the exterior and interior supports, respectively. These tentative cutoff locations are determined as follows:

Dimensions (1) and (2) must be the larger of d or $12d_b$:

\[
d = 19.4 \text{ in.} = 1.6 \text{ ft (governs)}
\]

\[
12d_b = 12 (1.128) = 13.5 \text{ in.}
\]

Dimensions (3) and (4) must be equal to or larger than ℓ_d:

\[
\ell_d = 1.6 \text{ ft}
\]
Example 4.4 (cont’d) Calculations and Discussion Code Reference

Within the development length ℓ_d, only 2-No. 8 bars are being developed (2-No. 9 bars are already developed in length 8.45 ft)

Development for No. 8 corner bars, see Table 4-2.

$$\ell_d = 47d_b = 47(1.0) = 47 \text{ in.} = 3.9 \text{ ft}$$

Dimension (3): 6.6 ft $>$ 3.9 ft O.K.
Dimension (4): 5.7 ft $>$ 3.9 ft O.K.

Check required development length ℓ_d for 2-No. 9 bars. Note that 2-No. 8 bars are already developed in length 4 ft from bar end.

Clear spacing between 2-No. 9 bars

$$[16 - 2(1.5) - 2(0.5) - 2(1.0) - 2(1.128)]/3 = 2.58 \text{ in.} = 2.29d_b > 2d_b$$

For No. 9 bar, $\ell_d = 47d_b$

$$= 47(1.128) = 53 \text{ in.} = 4.4 \text{ ft} < 8.45 \text{ ft} \quad \text{O.K.}$$

For No. 8 bars, check development requirements at points of inflection (PI):

$$\ell_d \leq \frac{M_n}{V_u} + \ell_a \quad \text{Eq. (12-5)}$$

For 2-No. 8 bars, $M_n = 131.8/0.9 = 146.4 \text{ ft-kips}$

At left PI, $V_u = 77.6 - 6(3.5) = 56.6 \text{ kips}$

$$\ell_a = \text{larger of } 12d_b = 12(1.0) = 12 \text{ in. or } d = 19.4 \text{ in.} \quad \text{(governs)}$$

$$\ell_d \leq \frac{146.4 \times 12}{56.6} + 19.4 = 50.5 \text{ in.}$$

For No. 8 bars, $\ell_d = 47 \text{ in.} < 50.5 \text{ in.} \quad \text{O.K.}$

At right PI, $V_u = 56.8 \text{ kips}$; by inspection, the development requirements for the No. 8 bars are O.K.

With both tentative cutoff points located in a zone of flexural tension, one of the three conditions of 12.10.5 must be satisfied.

At left cutoff point (4.5 ft from support):

$$V_u = 77.6 - (4.5 \times 6) = 50.6 \text{ kips}$$

$$\phi V_n = 79.4 \text{ kips (No. 4 U-stirrups @ 7 in.)}$$

$$2/3(79.4) = 52.9 \text{ kips} > 50.6 \text{ kips} \quad \text{O.K.}$$
For illustrative purposes, determine if the condition of 12.10.5.3 is also satisfied:

\[M_u = 54.1 \text{ ft-kips at 4.5 ft from support} \]

\[A_s \text{ required} = 0.63 \text{ in.}^2 \]

For 2-No. 8 bars, \(A_s \text{ provided} = 1.58 \text{ in.}^2 \)

\[1.58 \text{ in.}^2 > 2 (0.63) = 1.26 \text{ in.}^2 \quad \text{O.K.} \]

\[3/4 (79.4) = 59.6 \text{ kips} > 50.6 \text{ kips} \quad \text{O.K.} \]

Therefore, 12.10.5.3 is also satisfied at cutoff location.

At right cutoff point (3.5 ft from support):

\[V_u = 72.4 - (3.5 \times 6) = 51.4 \text{ kips} \]

\[2/3 \phi V_n = 52.9 \text{ kips} > 51.4 \text{ kips} \quad \text{O.K.} \]

Summary: The tentative cutoff locations for the bottom reinforcement meet all code development requirements. The 2-No. 9 bars \(\times 17 \text{ ft} \) would have to be placed un-symmetrically within the span. To assure proper placing of the No. 9 bars, it would be prudent to specify a 18 ft length for symmetrical bar placement within the span, i.e., 3.5 ft from each support. The ends of the cut off bars would then be at or close to the points of inflection, thus, eliminating the need to satisfy the conditions of 12.10.5 when bars are terminated in a tension zone. The recommended bar arrangement is shown at the end of the example.

3. Bar lengths for top reinforcement

Shear and moment diagrams for loading condition causing maximum factored negative moments are shown below.

The negative moment portions of the \(M_u \) diagram are also shown below at a larger scale, including the design moment strengths \(\phi M_n \) for the total negative \(A_s \) at each support (4-No. 8 at exterior support and 4-No. 10 at interior support) and for 2-No. 10 bars at the interior support. For 4-No. 8, \(\phi M_n = 251.1 \text{ ft-kips} \). For 4-No. 10, \(\phi M_n = 379.5 \text{ ft-kips} \).

For 2-No. 10, \(\phi M_n = 194.3 \text{ ft-kips} \).
Example 4.4 (cont’d) Calculations and Discussion

\[W_d = 6 \text{kif} \]

\[234.4^k \]

\[375.0^k \]

\[25' \]

\[69.4^k \]

\[80.6^k \]

\[234.4^k \]

\[7.45' \]

\[7.45' \]

\[4.1 \]

\[6.0' \]

\[169.9^k \]

\[5.75' \]

\[5.75' \]

\[4.1' \]

\[1.6' \]

\[1.6' \]

\[1.6' \]

\[6.0' \]

\[7.6' \]

\[25' \]

\[\Theta M_n \text{ for 4-No. 10} = 379.5^k \]

\[\Phi M_n \text{ for 2-No. 10} = 194.3^k \]

\[\Phi M_n \text{ for 4-No. 8} = 251.1^k \]
4. Development requirements for 4-No. 8 bars at exterior support

 a. Required number of bars to be extended.

 One-third of \((-A_s)\) provided at supports must be extended beyond the point of inflection a distance equal to the greater of \(d\), \(12d_b\), or \(\frac{l}{n}/16\).

 \[d = 19.4 \text{ in.} = 1.6 \text{ ft (governs)}\]
 \[12d_b = 12 (1.0) = 12.0 \text{ in.}\]
 \[\frac{l}{n}/16 = 25 \times 12/16 = 18.75 \text{ in.}\]

 Since the inflection point is located only 4.1 ft from the support, total length of the No. 8 bars will be relatively short even with the required 1.6 ft extension beyond the point of inflection. Check required development length \(\ell_d\) for a cutoff location at 5.75 ft from face of support.

 Dimension (5) must be at least equal to \(\ell_d\) \[12.12.2\]

 For No. 8 bars, \(\ell_d = 47d_b = 47 (1.0) = 47 \text{ in.}\) \[Table 4-2\]

 With 4-No. 8 bars being developed at same location (face of support):

 Including top bar effect, \(\ell_d = 1.3 (47) = 61.1 \text{ in.}\)

 For No. 8 top bars, \(\ell_d = 61.1 \text{ in.} = 5.1 \text{ ft} < 5.75 \text{ ft} \ O.K.\)

 b. Anchorage into exterior column.

 The No. 8 bars can be anchored into the column with a standard end hook. From Table 4-4, \(\ell_{dh} = 19.0 \text{ in.}\). The required \(\ell_{dh}\) for the hook could be reduced if excess reinforcement is considered:

 \[\frac{(A_s \text{ required})}{(A_s \text{ provided})} = \frac{2.93}{3.16} = 0.93\]

 \[\ell_{dh} = 19 \times 0.93 = 17.7 \text{ in.}\]

 Overall depth of column required would be \(17.7 + 2 = 19.7 \text{ in.}\)

5. Development requirements for 4-No. 10 bars at interior column

 a. Required extension for one-third of \((-A_s)\) \[12.12.3\]
Example 4.4 (cont’d) Calculations and Discussion Code Reference

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[d = 19.4 \text{ in.} = 1.6 \text{ ft} \quad \text{(governs)} \]

\[12d_b = 12 (1.27) = 15.24 \text{ in.} \]

\[\ell_d/16 = 18.75 \text{ in.} \]

For No. 10 bars, clear spacing \[= [16 - 2 (1.5) - 2 (0.5) - 4 (1.27)]/3 \]

\[= 2.31 \text{ in.} = 1.82d_b > d_b \]

Center-to-center spacing \[= 2.82d_b \]

Cover \[= 1.5 + 0.5 = 2.0 \text{ in.} = 1.57d_b > d_b \]

Distance from center of bar to concrete surface \[= 1.57d_b + 0.5d_b = 2.07d_b \]

With minimum shear reinforcement provided and including top bar effect

\[\ell_d = 1.3 (47d_b) \]

\[= 1.3 (47) (1.27) = 77.6 \text{ in.} \]

Dimension (6) \[= 6.0 \text{ ft} + 1.6 \text{ ft} = 7.6 \text{ ft} > \ell_d = 77.6 \text{ in} = 6.5 \text{ ft} \quad \text{O.K.} \]

6. Summary: Selected bar lengths for the top and bottom reinforcement shown below.

7. Supplementary Requirements

If the beam were part of a primary lateral load resisting system, the 2-No. 8 bottom bars extending into the supports would have to be anchored to develop the bar yield strength at the face of supports. At the exterior column, anchorage can be provided by a standard end hook. Minimum width of support (overall column depth) required for anchorage of the No. 8 bar with a standard hook is a function of the development length \(\ell_{dh} \) from Table 4-4, and the appropriate modification factors (12.5.3).
<table>
<thead>
<tr>
<th>Example 4.4 (cont’d)</th>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the interior column, the 2-No. 8 bars could be extended ℓ_d distance beyond the face of support into the adjacent span or lap spliced with extended bars from the adjacent span. Consider a Class A lap splice adequate to satisfy the intent of 12.11.2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 4.5—Lap Splices in Tension

Design the tension lap splices for the grade beam shown below.

<table>
<thead>
<tr>
<th>Column</th>
<th>Lap</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevation

\[f_c' = 4000 \text{ psi (normalweight)} \]
\[f_y = 60,000 \text{ psi, uncoated bars} \]
\[b = 16 \text{ in.} \]
\[h = 30 \text{ in.} \]
\[\text{Bar cover} = 3.0 \text{ in.} \]
\[4-\text{No. 9 bars top and bottom (continuous)} \]
\[4-\text{No. 4 stirrups @ 14 in. (entire span)} \]
\[+M_u @B = 340 \text{ ft-kips} \]
\[-M_u @A = 120 \text{ ft-kips} \]

Preferably, splices should be located away from zones of high tension. For a typical grade beam, top bars should be spliced under the columns, and bottom bars about midway between columns. Even though in this example the splice at A is not a preferred location, the moment at A is relatively small. Assume for illustration that the splices must be located as shown.

Calculations and Discussion

Calculations for this example will be performed using 12.2.3.

Nominal diameter of No. 9 bar = 1.128 in.

Assuming all bars are spliced at the same location

\[\text{Clear spacing} = \frac{[16 - 2 \text{ (cover)} - 2 \text{ (No. 4 stirrups)} - 4 \text{ (No. 9 bars)/3 spaces}}}{3} \]
\[= \frac{[16 - 2 (3.0) - 2 (0.50) - 4 (1.128)]}{3} \]
\[= 1.50 \text{ in.} \]
\[= 1.33d_b \]

Center-to-center spacing of bars being developed = 1.50 + 1.128 = 2.63 in. = 2.33d_b

Clear cover = 3.0 + 0.5 = 3.5 in. = 3.1d_b
Example 4.5 (cont’d) Calculations and Discussion

Distance from center of bar to concrete surface = 3.0 + 0.5 + (1.128/2) = 4.1 in. = 3.6d_b

c = the smaller of (1) distance from center of bar being developed to the nearest concrete surface and (2) one-half the center-to-center spacing of bars being developed

\[c = 3.6d_b = 2.33d_b/2 = 1.17d_b \] (governs)

Lap Splice of Bottom Reinforcement at Section B

\[\ell_d = \left(\frac{3}{40} \frac{f_y}{\lambda \sqrt{f_c}} \left(\frac{\psi_t \psi_c \psi_s}{c_b + K_{tr}} \right) \right) d_b \] \hspace{1cm} Eq. (12-1)

\[\psi_t = 1.0 \text{ for bottom bar} \]

\[\psi_c = 1.0 \text{ for uncoated bars} \]

\[\psi_s = 1.0 \text{ for No. 7 and larger bars} \]

\[\lambda = 1.0 \text{ for normalweight concrete} \]

\[c_b = 1.17d_b \text{ (computed above)} \]

\[K_{tr} = \frac{40A_{tr}}{s n} \] \hspace{1cm} Eq. (12-2)

\[A_{tr} = \text{area of 2-No. 4 stirrups} = 2 (0.2) = 0.4 \text{ in.}^2 \]

\[s = 14 \text{ in. spacing} \]

\[n = 4 \text{ bars being developed} \]

\[K_{tr} = \frac{(40)(0.4)}{(14)(4)} = 0.29 \text{ in.} = 0.26d_b \]

\[\left(\frac{c_b + K_{tr}}{d_b} \right) = 1.17 + 0.26 = 1.43 < 2.5 \text{ O.K.} \] \hspace{1cm} 12.2.3

\[\ell_d = \frac{3(60,000)(1.0)(1.0)(1.0)}{40(1.0)\sqrt{4000}(1.43)}(1.128) = 56.1 \text{ in.} \]
Example 4.5 (cont’d) Calculations and Discussion Code Reference

\[A_s \text{ required (} +\text{Mu} @ B = 340 \text{ ft-kips}) = 3.11 \text{ in.}^2 \]

\[A_s \text{ provided (4 No. 9 bars)} = 4.00 \text{ in.}^2 \]

\[\frac{A_s \text{ provided}}{A_s \text{ required}} = \frac{4.00}{3.11} = 1.29 < 2 \]

Class B splice required = 1.3 \(\ell_d \)

Note: Even if lap splices were staggered (\(A_s \) spliced = 50%), a Class B splice must be used with (\(A_s \) provided/\(A_s \) required) < 2

Class B Splice = 1.3 \(\ell_d \) = 1.3 (56.1) = 72.9 in. = 6.1 ft

It is better practice to stagger alternate lap splices. As a result, the clear spacing between spliced bars will be increased with a potential reduction of development length.

Clear spacing = 2 (1.50) + 1.128 = 4.13 in. = 3.66\(d_b \)

Center-to-center spacing of bars being developed = 3.66\(d_b \) + \(d_b \) = 4.66\(d_b \)

Distance from center of bar to concrete surface = 3.6\(d_b \)

Thus, \(c = \frac{4.66d_b}{2} = 2.33d_b \)

\(K_{tr} = \frac{(40)(2)(0.2)}{(14)(2)} = 0.57 \text{ in.} = 0.51d_b \)

Therefore, \(\left(\frac{c_b + K_{tr}}{d_b} \right) = 2.33 + 0.51 = 2.84 > 2.5 \) Use 2.5. \(12.2.3 \)

\[\ell_d = \frac{3(60,000)(1.0)(1.0)(1.0)}{40(1.0)\sqrt{4000}(2.5)}(1.128) = 32.1 \text{ in.} \]

Class B splice = 1.3 (32.1) = 41.7 in. = 3.5 ft

Use 3 ft-6 in. lap splice @ B and stagger alternate lap splices.

Lap Splice of Top Reinforcement at Section A

As size of top and bottom reinforcement is the same, computed development and splice lengths for top bars will be equal to that of the bottom bars increased by the 1.3 multiplier for top bars. In addition, because positive and negative factored moments are different, the ratio of provided to required reinforcement may affect the type of splice as demonstrated below.
Example 4.5 (cont’d) Calculations and Discussion Code Reference

\[A_s \text{ required } (+M_u \theta A = 120 \text{ ft-kips}) = 1.05 \text{ in.}^2 \]

\[A_s \text{ provided}/A_s \text{ required } = 4.00/1.05 = 3.81 > 2 \]

If alternate lap splices are staggered at least a lap length \((A_s \text{ spliced} = 50\%) \):

Class A splice may be used \(= 1.0\ell_d \)

Class B splice must be used \(= 1.3\ell_d \)

Assuming splices are staggered, the top bar multiplier will be 1.3.

\[\text{Class A splice } = 1.3 \times 1.0 \times (32.1) = 41.7 \text{ in.} = 3.5 \text{ ft} \]

Use 3 ft-6 in. lap splice @ A also, and stagger alternate lap splices.

Alternate lap splice stagger arrangement
(Note: bar laps are positioned vertically)
Example 4.6—Lap Splices in Compression

The following two examples illustrate typical calculations for compression lap splices in tied and spirally reinforced columns.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Design a compression lap splice for the tied column shown below. Assume all bars in compression for factored load combinations considered in design (Zone 1 in Fig. 4-22). See also Table 4-9.</td>
<td></td>
</tr>
<tr>
<td>[b = 16 \text{ in.}]</td>
<td></td>
</tr>
<tr>
<td>[h = 16 \text{ in.}]</td>
<td></td>
</tr>
<tr>
<td>[f_c' = 4000 \text{ psi (normalweight)}]</td>
<td></td>
</tr>
<tr>
<td>[f_y = 60,000 \text{ psi}]</td>
<td></td>
</tr>
<tr>
<td>8-No. 9 bars</td>
<td></td>
</tr>
<tr>
<td>a. Determine lap splice length: For (f_y = 60,000 \text{ psi}):</td>
<td>12.16.1</td>
</tr>
<tr>
<td>Length of lap = 0.0005f_ydb, but not less than 12 in.</td>
<td></td>
</tr>
<tr>
<td>[= 0.0005 (60,000) 1.128 = 34 \text{ in.}]</td>
<td></td>
</tr>
<tr>
<td>b. Determine column tie requirements to allow an 0.83 reduced lap length:</td>
<td>12.17.2.4</td>
</tr>
<tr>
<td>Required column ties: No. 3 @ 16 in. o.c.</td>
<td>7.10.5.2</td>
</tr>
<tr>
<td>Required spacing of No. 3 ties for reduced lap length:</td>
<td></td>
</tr>
<tr>
<td>effective area of ties (\geq 0.0015hs)</td>
<td></td>
</tr>
<tr>
<td>[(2 \times 0.11) \geq 0.0015 \times 16s]</td>
<td></td>
</tr>
<tr>
<td>[s = 9.2 \text{ in.}]</td>
<td></td>
</tr>
<tr>
<td>Spacing of the No. 3 ties must be reduced to 9 in. o.c. throughout the lap splice length to allow a lap length of 0.83 (34 in.) = 28 in.</td>
<td></td>
</tr>
<tr>
<td>2. Determine compression lap splice for spiral column shown.</td>
<td></td>
</tr>
<tr>
<td>[f_c' = 4000 \text{ psi (normalweight)}]</td>
<td></td>
</tr>
<tr>
<td>[f_y = 60,000 \text{ psi}]</td>
<td></td>
</tr>
<tr>
<td>8-No. 9 bars</td>
<td></td>
</tr>
<tr>
<td>No. 3 spirals</td>
<td></td>
</tr>
<tr>
<td>Calculations and Discussion</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>Example 4.6 (cont’d)</td>
<td></td>
</tr>
<tr>
<td>a. Determine lap splice length</td>
<td></td>
</tr>
<tr>
<td>For $f_y = 60,000$ psi</td>
<td></td>
</tr>
<tr>
<td>Length of lap = $0.0005 f_y d_b$ but not less than 12 in.</td>
<td></td>
</tr>
<tr>
<td>$= 0.0005(60,000)(1.128) = 34$ in.</td>
<td></td>
</tr>
<tr>
<td>For bars enclosed within spirals, “basic” lap splice length may be multiplied by a factor of 0.75.</td>
<td></td>
</tr>
<tr>
<td>$\text{lap} = 0.75(34) = 26$ in.</td>
<td></td>
</tr>
<tr>
<td>Note: End bearing, welded, or mechanical connections may also be used.</td>
<td></td>
</tr>
</tbody>
</table>

References:

- 12.16.1
- 12.17.2.5
- 12.16.3
- 12.16.4
Example 4.7—Lap Splices in Columns

Design the lap splice for the tied column detail shown.

- Continuing bars from column above (4-No. 8 bars)
- Offset bars from column below (4-No. 8 bars)

\[f'_c = 4000 \text{ psi (normalweight)} \]
\[f_y = 60,000 \text{ psi} \]
\[b = h = 16 \text{ in.} \]
4-No. 8 bars (above and below floor level)
No. 3 ties @ 16 in.
Cover = 1.5 in.

Lap splice to be designed for the following factored load combinations:

1. \[P_u = 465 \text{ kips} \]
 \[M_u = 20 \text{ ft-kips} \]

2. \[P_u = 360 \text{ kips} \]
 \[M_u = 120 \text{ ft-kips} \]

3. \[P_u = 220 \text{ kips} \]
 \[M_u = 100 \text{ ft-kips} \]

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.17.2</td>
</tr>
</tbody>
</table>

1. Determine type of lap splice required.

Type of lap splice to be used depends on the bar stress at the splice location due to all factored load combinations considered in the design of the column. For design purposes, type of lap splice will be based on which zone, or zones, of bar stress all factored load combinations are located on the column load-moment strength diagram. See discussion for 12.17.2, and Fig. 4-22. The load-moment strength diagram (column design chart) for the 16 × 16 column with 4-No. 8 bars is shown below, with the three factored load combinations considered in the design of the column located on the interaction strength diagram.

Note that load combination (2) governed the design of the column (selection of 4-No. 8 bars).

For load combination (1), all bars are in compression (Zone 1), and a compression lap splice could be used. For load combination (2), bar stress is not greater than 0.5\(f_y \) (Zone 2), so a Class B tension lap splice is required; or, a Class A splice may be used if alternate lap splices are staggered. For load combination (3), bar stress is greater than 0.5\(f_y \) (Zone 3), and a Class B splice must be used.
Lap splice required for the 4-No. 8 bars must be based on the load combination producing the greatest amount of tension in the bars; for this example, load combination (3) governs the type of lap splice to be used.

Class B splice required = $l_d = 1.3l_{db}$

2. Determine lap splice length

Determine tension development length by 12.2.3.

Nominal diameter of No. 8 bar = 1.00 in.

Clear spacing between bars being developed is large and will not govern.

Clear cover = $1.5 + 0.375 = 1.875$ in. = $1.875d_b$

Distance from center of bar to concrete surface = $1.875 + 0.5 = 2.375$ in. = $2.375d_b$
Example 4.7 (cont’d) Calculations and Discussion Code Reference

c = the smaller of (1) distance from center of bar being developed to the nearest concrete surface, and of (2) one-half the center-to-center spacing of bars being developed

\[c = 2.375d_b \]

\[\ell_d = \frac{3}{40} \frac{f_y}{\lambda \sqrt{f_c'}} \left(\frac{\psi_t \psi_e \psi_s}{c_b + K_{tr}} \right) d_b \] \(Eq. (12-1) \)

\[\psi_t = 1.0 \text{ for vertical bar} \]

\[\psi_e = 1.0 \text{ for uncoated bars} \]

\[\psi_s = 1.0 \text{ for No. 7 and larger bars} \]

\[\lambda = 1.0 \text{ for normal weight concrete} \]

\[c_b = 2.375d_b \]

\[K_{tr} = \frac{40A_{tr}}{sn} \] \(Eq. (12-2) \)

\[A_{tr} = \text{area of 2-No. 3 ties} \]

\[s = 16 \text{ in. spacing} \]

\[n = 2 \text{ bars being developed on one column face} \]

\[K_{tr} = \frac{(40)(2)(0.11)}{(16)(2)} = 0.275 \text{ in.} = 0.275d_b \]

\[\left(\frac{c_b + K_{tr}}{d_b} \right) = 2.375 + 0.275 = 2.65 > 2.5 \text{ Use 2.5} \] \(12.2.3 \)

\[\ell_d = \frac{3(60,000)(1.0)(1.0)(1.0)}{40(1.0)\sqrt{4000}(2.5)}(1.00) = 28.5 \text{ in.} \]

Class B splice = 1.3(28.5) = 37 in.

Use 37 in. lap splice for the 4 No. 8 bars at the floor level indicated.
Design Methods and Strength Requirements

UPDATE FOR THE ‘08 CODE

The strength reduction factor, ϕ, for spirally reinforced compression-controlled sections is increased from 0.70 to 0.75 (9.3.2.2(a)). This revision is based on more recent reliability analyses reported in Reference 9.10 and the superior performance of such members when subjected to excessive demand as documented in Reference 9.11. Also, based on reliability analyses and statistical study of concrete properties, as well as calibration to past practice, the strength reduction factor, ϕ, for flexure, compression, shear, and bearing of structural plain concrete is increased from 0.55 to 0.60 (9.3.5).

8.1 DESIGN METHODS

Two philosophies of design for reinforced concrete have long been prevalent. Working Stress Design was the principal method used from the early 1900s until the early 1960s. After publication of the 1963 edition of the ACI code, there was a rapid transition to Ultimate Strength Design, largely because of its more rational approach. Ultimate strength design, referred to in the Code as the Strength Design Method (SDM) is conceptually more realistic in its approach to structural safety and reliability at the strength limit state.

The 1956 ACI Code (ACI 318-56) was the first code edition which officially recognized and permitted the ultimate strength method of design. Recommendations for the design of reinforced concrete structures by ultimate strength theories were included in an appendix.

The 1963 ACI Code (ACI 318-63) treated the working stress and the ultimate strength methods on an equal basis. However, a major portion of the working stress method was modified to reflect ultimate strength behavior. The working stress provisions of the 1963 Code, relating to bond, shear and diagonal tension, and combined axial compression and bending, had their basis in ultimate strength.

The 1971 ACI Code (ACI 318-71) was based entirely on “ultimate strength design” for proportioning reinforced concrete members, except for 8.10 (1971), devoted to what was called the Alternate Design Method (ADM). The ADM was not applicable to the design of prestressed concrete members. Even in that section, the service load capacities (except for flexure) were given as various percentages of the ultimate strength capacities of other parts of the Code. The transition to ultimate strength methods for reinforced concrete design was essentially complete in the 1971 ACI Code, with the ultimate strength design definitely established as being preferred.

In the 1977 ACI Code (ACI 318-77) the ADM was relegated to Appendix B. The appendix location served to separate and clarify the two methods of design, with the main body of the Code devoted exclusively to the SDM. The ADM was retained in all editions of the Code from 1977 to the 1999 edition, where it was found in Appendix A. In 2002, the Code underwent the most significant revisions since 1963. The ADM method was deleted from the 2002 Code (ACI 318-02). It is still referenced in Commentary Section R1.1 starting with the 2002 Code. The general serviceability
requirements of the main body of the code, such as the provisions for deflection and crack control, must always be satisfied when designing by the SDM.

A modification to the SDM, referred to as the Unified Design Provisions, was added to the ‘95 edition of the code. In keeping with tradition, the method was added as Appendix B. The provisions apply to the design of nonprestressed and prestressed members subject to flexure and axial loads. The Unified Design Provisions were incorporated into the body of the Code starting with the 2002 edition. See 8.1.2 below.

8.1.1 **Strength Design Method**

The Strength Design Method requires that the design strength of a member at any section should equal or exceed the required strength calculated by the code-specified factored load combinations. In general,

\[
\text{Design Strength} \geq \text{Required Strength (U)}
\]

where

Design Strength = \(\phi \times \text{Nominal Strength} \)

\(\phi = \) Strength reduction factor that accounts for (1) the probability of understrength of a member due to variations in material strengths and dimensions, (2) inaccuracies in the design equations, (3) the degree of ductility and required reliability of the loaded member, and (4) the importance of the member in the structure (see 9.3.2).

Nominal Strength = Strength of a member or cross-section calculated using assumptions and strength equations of the Strength Design Method before application of any strength reduction factors.

Required Strength (U) = Load factors \(\times \) Service load effects. The required strength is computed in accordance with the load combinations in 9.2.

Load Factor = Overload factor due to probable variation of service loads.

Service Load = Load specified by general building code (unfactored).

Notation

Required strength:

- \(M_u \) = factored moment (required flexural strength)
- \(P_u \) = factored axial force (required axial load strength) at given eccentricity
- \(V_u \) = factored shear force (required shear strength)
- \(T_u \) = factored torsional moment (required torsional strength)

Nominal strength:

- \(M_n \) = nominal flexural strength
- \(M_b \) = nominal flexural moment strength at balanced strain conditions
- \(P_n \) = nominal axial strength at given eccentricity
- \(P_o \) = nominal axial strength at zero eccentricity
- \(P_b \) = nominal axial strength at balanced strain conditions
- \(V_n \) = nominal shear strength
- \(V_c \) = nominal shear strength provided by concrete
\[V_s = \text{nominal shear strength provided by shear reinforcement} \]
\[T_n = \text{nominal torsional moment strength} \]

Design Strength:

\[\phi M_n = \text{design flexural strength} \]
\[\phi P_n = \text{design axial strength at given eccentricity} \]
\[\phi V_n = \text{design shear strength} = \phi (V_c + V_s) \]
\[\phi T_n = \text{design torsional moment strength} \]

Section R2.2 gives an in-depth discussion on many of the concepts in the Strength Design Method.

8.1.2 Unified Design Provisions

A modification to the Strength Design Method for nonprestressed and prestressed concrete flexural and compression members was introduced in 1995 in *Appendix B*. This appendix introduced substantial changes in the design for flexure and axial loads. Reinforcement limits, strength reduction factors \(\phi \), and moment redistribution were affected.

The Unified Design method is similar to the Strength Design Method in that it uses factored loads and strength reduction factors to proportion the members. The main difference is that in the Unified Design Provisions, a concrete section is defined as either compression-controlled or tension-controlled, depending on the magnitude of the net tensile strain in the reinforcement closest to the tension face of a member. The \(\phi \) factor is then determined by the strain conditions at a section at nominal strength. Prior to these provisions, the \(\phi \) factors were specified for cases of axial load or flexure or both in terms of the type of loading.

It is important to note that the Unified Design Provisions do not alter nominal strength calculations. The major differences occur in checking reinforcement limits for flexural members, determining the \(\phi \) factor for columns with small axial load, and computing redistributed moments.

The 1999 Code sections displaced by the Unified Design Provisions are now located in *Appendix B*. These former provisions are still permitted to be used.

In general, the Unified Design Provisions provide consistent means for designing nonprestressed and prestressed flexural and compression members, and produce results similar to those obtained from the Strength Design Method. The examples in Part 6 and Ref. 5.1 illustrate the use of this new design method.

9.1 STRENGTH AND SERVICEABILITY—GENERAL

9.1.1 Strength Requirements

The basic criterion for strength design as indicated in 9.1.1 is as follows:

Design Strength \(\geq \) Required Strength

\[\text{Strength Reduction Factor (} \phi \text{)} \times \text{Nominal Strength} \geq \text{Load Factor} \times \text{Service Load Effects} \]

All structural members and sections must be proportioned to meet the above criterion under the most critical load combination for all possible actions (flexure, axial load, shear, etc.):

\[\phi P_n \geq P_u \]
\[\phi M_n \geq M_u \]
\[\phi V_n \geq V_u \]
\[\phi T_n \geq T_u \]

The above criterion provides for the margin of structural safety in two ways:

1. It decreases the strength by multiplying the nominal strength with the appropriate strength reduction factor \(\phi \), which is always less than 1. The nominal strength is computed by the code procedures assuming that the member or the section will have the exact dimensions and material properties assumed in the computations. For example, the nominal flexural strength for the singly reinforced section shown in Fig. 5-1 is:

\[M_n = A_s f_y (d - a/2) \]

and the design flexural moment strength is

\[\phi M_n = \phi [A_s f_y (d - a/2)] \]

2. It increases the required strength by using factored loads or the factored internal moments and forces. Factored loads are defined in 2.2 as service loads multiplied by the appropriate load factors. The loads to be used are described in 8.2. Thus, the required flexural strength of the section shown in Fig. 5-1 for dead and live loads is:

\[M_u = 1.2 M_d + 1.6 M_\ell \geq 1.4 M_d \]

where \(M_d \) and \(M_\ell \) are the moments due to service dead and live loads, respectively.

Thus, the design strength requirement for this section becomes:

\[\phi [A_s f_y (d - a/2)] \geq 1.2 M_d + 1.6 M_\ell \geq 1.4 M_d \]

Figure 5-1 Singly Reinforced Section
Similarly, for shear acting on the section, the criterion for strength design can be stated as:

\[
\phi V_n = \phi (V_c + V_s) \geq V_u \\
\phi \left[2\sqrt{f_c'} b_w d + \frac{A_s f_y d}{s} \right] \geq 1.2 V_d + 1.6 M \geq 1.4 V_d
\]

The following are the reasons for requiring strength reduction factors and load factors in strength design: 5.2

1. The strength reduction of materials or elements is required because:
 a. Material strengths may differ from those assumed in design because of:
 • Variability in material strengths—the compression strength of concrete as well as the yield strength and ultimate tensile strength of reinforcement are variable.
 • Effect of testing speed—the strengths of both concrete and steel are affected by the rate of loading.
 • In situ strength vs. specimen strength—the strength of concrete in a structure is somewhat different from the strength of the same concrete in a control specimen.
 • Effect of variability of shrinkage stresses or residual stresses—the variability of the residual stresses due to shrinkage may affect the cracking load of a member, and is significant where cracking is the critical limit state. Similarly, the transfer of compression loading from concrete to steel due to creep and shrinkage in columns may lead to premature yielding of the compression steel, possibly resulting in instability failures of slender columns with small amounts of reinforcement.
 b. Member dimensions may vary from those assumed, due to construction/fabrication tolerances. The following factors are significant:
 • Formwork tolerances affecting final member dimensions.
 • Rolling and fabrication tolerances in reinforcing bars.
 • Geometric tolerances in cross-section and reinforcement placement tolerances.
 c. Assumptions and simplifications in design equations, such as use of the rectangular stress block and the maximum usable strain of concrete equal to 0.003, introduce both systematic and random inaccuracies.
 d. The use of discrete bar sizes leads to variations in the actual capacity of members. Calculated area of reinforcement has to be rounded up to match the area of an integer number of reinforcing bars.

2. The load factors are required for possible overloading because:
 a. Magnitudes of loads may vary from those determined from building codes. Dead loads may vary because of:
 • Variations in member sizes.
 • Variations in material density.
 • Structural and nonstructural alterations.
 Live loads can vary considerably from time to time and from building to building.
 b. Uncertainties exist in the calculation of load effects—the assumptions of stiffnesses, span lengths, etc., and the inaccuracies involved in modeling three-dimensional structures for structural analysis lead to differences between the stresses which actually occur in a building and those estimated in the designer’s analysis.
3. Strength reduction and load increase are also required because the consequences of failure may be severe. A number of factors should be considered:

 a. The type of failure, warning of failure, and existence of alternative load paths.
 b. Potential loss of life.
 c. Costs to society in lost time, lost revenue, or indirect loss of life or property due to failure.
 d. The importance of the structural element in the structure.
 e. Cost of replacing the structure.

By way of background to the numerical values of load factors and strength reduction factors specified in the code, it may be worthwhile reproducing the following paragraph from Ref. 5.2:

“The ACI ... design requirements ... are based on an underlying assumption that if the probability of understrength members is roughly 1 in 100 and the probability of overload is roughly 1 in 1000, the probability of overload on an understrength structure is about 1 in 100,000. Load factors were derived to achieve this probability of overload. Based on values of concrete and steel strength corresponding to probability of 1 in 100 of understrength, the strengths of a number of typical sections were computed. The ratio of the strength based on these values to the strength based on nominal strengths of a number of typical sections were arbitrarily adjusted to allow for the consequences of failure and the mode of failure of a particular type of member, and for a number of other sources of variation in strength.”

An Appendix to Ref. 5.2 traces the history of development of the current ACI load and strength reduction factors.

9.1.2 Serviceability Requirements

The provisions for adequate strength do not necessarily ensure acceptable behavior of the member at service load levels. Therefore, the code includes additional requirements to provide satisfactory service load performance.

There is not always a clear separation between the provisions for strength and those for serviceability. For actions other than flexure, the detailing provisions in conjunction with the strength requirements are meant to ensure adequate performance at service loads. For flexural action, there are special serviceability requirements concerning short-term and long-term deflections, distribution of reinforcement, crack control, and permissible stresses in prestressed concrete. A consideration of service load deflections is particularly important in view of the increasing use of high-strength materials and more accurate methods of design which result in increasingly slender reinforced concrete members.

9.1.3 Appendix C

Starting with the 2002 Code, the load factors and strength reduction factors used in the 1999 and earlier codes were placed in Appendix C. Use of Appendix C is permitted by 9.1.3. However, it is mandatory that both the load combinations and strength reduction factors of Appendix C are used together.

9.2 REQUIRED STRENGTH

As previously stated, the required strength U is expressed in terms of factored loads, or their related internal moments and forces. Factored loads are the service-level loads specified in the general building code, multiplied by appropriate load factors in 9.2. It is important to recognize that earthquake forces computed in accordance with the latest editions of the model buildings codes in use in the U. S. are strength-level forces. Specifically,

This development has created confusion within the structural engineering profession since when designing in concrete one must use some load combinations from ACI 318 and others from the governing building code. To assist the structural engineer in understanding the various load combinations and their proper application to design of concrete structural elements governed by one of these codes, a publication was developed by PCA in 1998. *Strength Design Load Combinations for Concrete Elements* provides background on the use of the ACI 318 factored load combinations. In addition, it cites the load combinations in the model codes, including the IBC, that must be used for seismic design.

Section 9.2 prescribes load factors for specific combinations of loads. A list of these combinations is shown below. The numerical value of the load factor assigned to each type of load is influenced by the degree of accuracy with which the load can usually be assessed, the variation which can be expected in the load during the lifetime of a structure and the probability of simultaneous occurrence of different load types. Hence, dead loads, because they can usually be more accurately determined and are less variable, are assigned a lower load factor (1.2) as compared to live loads (1.6). Also, weight and pressure of liquids with well-defined densities and controllable maximum heights are assigned a reduced load factor of 1.2 due to the lesser probability of overloading. A higher load factor of 1.6 is required for earth and groundwater pressures due to considerable uncertainty of their magnitude and recurrence. Note that while most usual combinations of loads are included, it should not be assumed that all cases are covered. Section 9.2 contains load combination as follows:

\[
U = 1.4(D + F) \quad \text{Eq. (9-1)}
\]

\[
U = 1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R) \quad \text{Eq. (9-2)}
\]

\[
U = 1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.8W) \quad \text{Eq. (9-3)}
\]

\[
U = 1.2D + 1.6W + 1.0L + 0.5(L_r \text{ or } S \text{ or } R) \quad \text{Eq. (9-4)}
\]

\[
U = 1.2D + 1.0E + 1.0L + 0.2S \quad \text{Eq. (9-5)}
\]

\[
U = 0.9D + 1.6W + 1.6H \quad \text{Eq. (9-6)}
\]

\[
U = 0.9D + 1.0E + 1.6H \quad \text{Eq. (9-7)}
\]

where:

- **D** = dead loads, or related internal moments and forces
- **E** = load effects of seismic forces, or related internal moments and forces
- **F** = loads due to weight and pressures of fluids with well-defined densities and controllable maximum heights, or related internal moments and forces
- **H** = loads due to weight and pressure of soil, water in soil, or other materials, or related internal moments and forces
- **L** = live loads, or related internal moments and forces
- **L_r** = roof live load, or related internal moments and forces
- **R** = rain load, or related internal moments and forces
- **S** = snow load, or related internal moments and forces
T = cumulative effect of temperature, creep, shrinkage, differential settlement, and shrinkage-compensating concrete
U = required strength to resist factored loads or related internal moments and forces
W = wind load, or related internal moments and forces

Note that in Eqs. (9-1) through (9-7), the effect of one or more loads not acting simultaneously must also be investigated.

Exceptions to the load combination are as follows:

1. The load factor on L in Eq. (9-3), (9-4), and (9-5) shall be permitted to be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where the live load L is greater than 100 lb/ft².
2. Where wind load W has not been reduced by a directionality factor, it shall be permitted to use 1.3W in place of 1.6W in Eq. (9-4) and (9-6). Note that the wind load equation in ASCE/SEI 7-05 and IBC 2006 includes a factor for wind directionality that is equal to 0.85 for buildings. The corresponding load factor for wind in the load combination equations was increased accordingly (1.3/0.85 = 1.53 rounded up to 1.6). The code allows use of the previous wind load factor of 1.3 when the design wind load is obtained from other sources that do not include the wind directionality factor.
3. Where earthquake load E is based on service-level seismic forces, 1.4E shall be used in place of 1.0E in Eq. (9-5) and (9-7).
4. The load factor on H shall be set equal to zero in Eq. (9-6) and (9-7) if the structural action due to H counteracts that due to W or E. Where lateral earth pressure provides resistance to structural actions from other forces, it shall not be included in H but shall be included in the design resistance.

Other consideration related to load combination are as follows:

1. Resistance to impact effects, where applicable, shall be included with live load (9.2.2).
2. Differential settlement, creep, shrinkage, expansion of shrinkage-compensating concrete, or temperature change shall be based on a realistic assessment of such effects occurring in service (9.2.3).
3. For a structure in a flood zone, the flood load and load combinations of ASCE/SEI 7-05 shall be used (9.2.4).
4. For post-tensioned anchorage zone design, a load factor of 1.2 shall be applied to the maximum prestressing steel jacking force (9.2.5).

For many members, the loads considered are dead, live, wind, and earthquake. Where the F, H, R, S, and T loads are not considered, the seven equations simplify to those given in Table 5-1 below.

<table>
<thead>
<tr>
<th>Loads</th>
<th>Required Strength</th>
<th>Code Eq. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead (D) and Live (L)</td>
<td>1.4D</td>
<td>9-1</td>
</tr>
<tr>
<td></td>
<td>1.2D + 1.6L + 0.5Lr</td>
<td>9-2</td>
</tr>
<tr>
<td></td>
<td>1.2D + 1.6L + 1.0L</td>
<td>9-3</td>
</tr>
<tr>
<td></td>
<td>1.2D + 1.6L + 0.8W</td>
<td>9-3</td>
</tr>
<tr>
<td></td>
<td>1.2D + 1.6L + 1.0L + 0.5Lr</td>
<td>9-4</td>
</tr>
<tr>
<td></td>
<td>0.9D + 1.6W</td>
<td>9-6</td>
</tr>
<tr>
<td>Dead, Live, and Wind (W)</td>
<td>1.2D + 1.0L + 1.0E</td>
<td>9-5</td>
</tr>
<tr>
<td></td>
<td>0.9D + 1.0E</td>
<td>9-7</td>
</tr>
<tr>
<td>Dead, Live, and Earthquake (E)</td>
<td>1.2D + 1.0L + 1.0E</td>
<td>9-5</td>
</tr>
</tbody>
</table>

While considering gravity loads (dead and live), a designer using the code moment coefficients (same coefficients for dead and live loads—8.3.3) has three choices: (1) multiplying the loads by the appropriate load factors, adding them into the total factored load, and then computing the forces and moments due to the total load, (2) comput-
ing the effects of factored dead and live loads separately, and then superimposing the effects, or (3) computing the effects of unfactored dead and live loads separately, multiplying the effects by the appropriate load factors, and then superimposing them. Under the principle of superposition, all three procedures yield the same answer. For designers performing a more exact analysis using different coefficients for dead and live loads (pattern loading for live loads), choice (1) does not exist. While considering gravity as well as lateral loads, load effects (due to factored or unfactored loads), of course, have to be computed separately before any superposition can be made.

In determining the required strength for combinations of loads, due regard must be given to the proper sign (positive or negative), since one type of loading may produce effects that either add to or counteract the effect of another load. Even though Eqs. (9-6) and (9-7) have a positive sign preceding the wind (W) or earthquake (E) load, the combinations are to be used when wind or earthquake forces or effects counteract those due to dead loads. When the effects of gravity loads and wind (W) or earthquake (E) loads are additive, Eqs. (9-4), (9-5), and (9-6) must be used.

Consideration must be given to various combinations of loads in determining the most critical design combination. This is of particular importance when strength is dependent on more than one load effect, such as strength under combined moment and axial load, or the shear strength of members carrying axial load.

9.3 DESIGN STRENGTH

9.3.1 Nominal Strength vs. Design Strength

The design strength provided by a member, its connections to other members, and its cross-section, in terms of flexure, axial load, shear, and torsion, is equal to the nominal strength calculated in accordance with the provisions and assumptions stipulated in the code, multiplied by a strength reduction factor ϕ, which is less than unity. The rules for computing the nominal strength are based generally on conservatively chosen limit states of stress, strain, cracking or crushing, and conform to research data for each type of structural action. An understanding of all aspects of the strengths computed for various actions can only be obtained by reviewing the background to the code provisions.

9.3.2 Strength Reduction Factors

The ϕ factors prescribed for structural concrete in 9.3.2 are listed in Table 5-2. Note, starting with the 2008 Code, ϕ for spirally reinforced compression-controlled sections was increased from 0.70 to 0.75. The reasons for use of strength reduction factors have been given in earlier sections.

<table>
<thead>
<tr>
<th>Table 5-2 Strength Reduction Factors ϕ in the Strength Design Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension-controlled sections</td>
</tr>
<tr>
<td>Compression-controlled sections</td>
</tr>
<tr>
<td>Members with spiral reinforcement conforming to 10.9.3</td>
</tr>
<tr>
<td>Other reinforced members</td>
</tr>
<tr>
<td>Shear and torsion</td>
</tr>
<tr>
<td>Bearing on concrete (except for post-tensioned anchorage zones)</td>
</tr>
<tr>
<td>Post-tensioned anchorage zones</td>
</tr>
<tr>
<td>Struts, ties, nodal zones and shearing areas in strut-and-tie models (Appendix A)</td>
</tr>
</tbody>
</table>

Note that a lower ϕ factor is used for compression-controlled (e.g. columns) sections than for tension-controlled (e.g. beams) sections. This is because compression-controlled sections generally have less ductility and are more sensitive to variations in concrete strength. Additionally, the consequences of failure of a column would generally be more severe than those for failure of a beam. Furthermore, columns with spiral reinforcement are assigned a higher ϕ factor than tied columns because the former have greater toughness and ductility.
Tension-controlled sections and compression-controlled sections are defined in 10.3.3. See Part 6 for detailed discussion.

The code permits a linear transition in ϕ between the limits for tension-controlled and compression-controlled sections. For sections in which the net tensile strain in the extreme tension steel at nominal strength is between the limits for compression-controlled and tension-controlled section, ϕ is permitted to be linearly increased from that for compression-controlled sections to 0.90 as the net tensile strain in the extreme tension steel at nominal strength increases from the compression-controlled strain limit to 0.005. This is best illustrated by Figure 5-2.

![Figure 5-2 Variation of ϕ with Net Tensile Strain ε_t and c/d_t for Grade 60 Reinforcement and for Prestressing Steel](image)

For members subject to flexure and axial load, the design strengths are determined by multiplying both P_n and M_n by the appropriate single value of ϕ.

9.3.3 Development Lengths for Reinforcement

Development lengths for reinforcement, as specified in Chapter 12, do not require a strength reduction modification. Likewise, ϕ factors are not required for splice lengths, since these are expressed in multiples of development lengths.

9.3.5 Structural Plain Concrete

This section specifies that the strength reduction factor $\phi = 0.60$ be used for the nominal strength in flexure, compression, shear, and bearing of plain concrete in Chapter 22 of the code. This is because both the flexural tension strength and the shear strength of plain concrete depend on the tensile strength characteristics of concrete having no reserve strength or ductility in the absence of steel reinforcement. Note, starting with the 2008 Code, ϕ for structural-plain concrete was increased from 0.55 to 0.60.

9.4 DESIGN STRENGTH FOR REINFORCEMENT

An upper limit of 80,000 psi is placed on the yield strength of reinforcing steels other than prestressing steel and spiral transverse reinforcement in 10.9.3 and 21.1.5.4. A steel strength above 80,000 psi is not recommended
because the yield strain of 80,000 psi steel is about equal to the maximum usable strain of concrete in compression. Currently there is no ASTM specification for Grade 80 reinforcement. However, No. 11, No. 14, and No. 18 deformed reinforcing bars with a yield strength of 75,000 psi (Grade 75) are included in ASTM A615. ASTM A1035 prescribes a minimum yield of 100,000 psi. This reinforcement is permitted by 3.5.3.3 for transverse (confining) reinforcement in 21.6.4 or spiral reinforcement in 10.9.3.

In accordance with 3.5.3.2, use of reinforcing bars with a specified yield strength f_y exceeding 60,000 psi requires that f_y be the stress corresponding to a strain of 0.35 percent. ASTM A615 for Grade 75 bars includes the same requirement. The 0.35 percent strain requirement also applies to welded wire reinforcement with wire having a specified yield strength greater than 60,000 psi. Higher-yield-strength wire is available and a value of f_y greater than 60,000 psi can be used in design, provided compliance with the 0.35 percent strain requirement is certified.

There are limitations on the yield strength of reinforcement in other sections of the code:

1. **Sections 11.4.2, 11.5.3.4, and 11.6.6:** The maximum f_y that may be used in design for shear, combined shear and torsion, and shear friction is 60,000 psi, except that f_y up to 80,000 psi may be used only for shear reinforcement consisting of welded deformed wire reinforcement meeting the requirements of ASTM A497.

2. **Sections 19.3.2 and 21.1.5.5:** The maximum specified f_y is 60,000 psi in shells, folded plates and structures governed by the special seismic provisions of Chapter 21.

3. **Section 18.9.3.2** for bonded reinforcement used in the positive moment areas where computed tensile stress in concrete at service load exceeds $2\sqrt{f'_c}$, the maximum f_y that may be used is 60,000 psi.

4. **Section 10.9.3** for spiral reinforcement and **R21.6.4.4** for transverse reinforcement limit $f_{y,t}$ to 100,000 psi when reinforcement conforming to ASTM A1035 is utilized for the confinement reinforcement.

In addition, the deflection provisions of 9.5 and the limitations on distribution of flexural reinforcement of 10.6 will become increasingly critical as f_y increases.

REFERENCES

General Principles of Strength Design

GENERAL CONSIDERATIONS

Historically, ultimate strength was the earliest method used in design, since the ultimate load could be measured by test without a knowledge of the magnitude or distribution of internal stresses. Since the early 1900s, experimental and analytical investigations have been conducted to develop ultimate strength design theories that would predict the ultimate load measured by test. Some of the early theories that resulted from the experimental and analytical investigations are reviewed in Fig. 6-1.

Structural concrete and reinforcing steel both behave inelastically as ultimate strength is approached. In theories dealing with the ultimate strength of reinforced concrete, the inelastic behavior of both materials must be considered and must be expressed in mathematical terms. For reinforcing steel with a distinct yield point, the inelastic behavior may be expressed by a bilinear stress-strain relationship (Fig. 6-2). For concrete, the inelastic stress distribution is more difficult to measure experimentally and to express in mathematical terms.

Studies of inelastic concrete stress distribution have resulted in numerous proposed stress distributions as outlined in Fig. 6-1. The development of our present ultimate strength design procedures has its basis in these early experimental and analytical studies. Ultimate strength of reinforced concrete in American design specifications is based primarily on the 1912 and 1932 theories (Fig. 6-1).

INTRODUCTION TO UNIFIED DESIGN PROVISIONS

The Unified Design Provisions introduced in the main body of the code in 2002 do not alter nominal strengths. The nominal strength of a section subject to flexure, axial load, or combinations thereof is the same as it was in previous codes. However, the Unified Design Provisions do alter the calculations of design strengths, which are reduced from nominal strengths by the strength reduction factor \(\phi \).

The following definitions are related to the Unified Design Provisions, and are given in Chapter 2 of the code. These definitions are briefly explained here, with further detailed discussion under the relevant code sections.

1. Net tensile strain: The tensile strain at nominal strength exclusive of strains due to effective prestress, creep, shrinkage, and temperature. The phrase “at nominal strength” in the definition means at the time the concrete in compression reaches its assumed strain limit of 0.003 (10.2.3). The “net tensile strain” is the strain caused by bending moments and axial loads, exclusive of strain caused by prestressing and by volume changes. The net tensile strain is that normally calculated in nominal strength calculations.

2. Extreme tension steel: The reinforcement (prestressed or nonprestressed) that is the farthest from the extreme compression fiber. The symbol \(d_t \) denotes the depth from the extreme compression fiber to the extreme tensile steel. The net tensile strain in the extreme tension steel is simply the maximum tensile steel strain due to external loads.

3. Compression-controlled strain limit: The net tensile strain at balanced strain conditions; see 10.3.2. The definition of balanced strain conditions in 10.3.2 is unchanged from previous editions of the code. Thus, the concrete reaches a strain of 0.003 as the tension steel reaches yield strain. However, 10.3.3 permits the compression-controlled strain limit for Grade 60 reinforcement and for prestressed reinforcement to be set equal to 0.002.
Figure 6-1 Development of Ultimate Strength Theories of Flexure
4. Compression-controlled section: A cross-section in which the net tensile strain in the extreme tension steel at nominal strength is less than or equal to the compression-controlled strain limit. The strength reduction factor ϕ for compression-controlled sections is set at 0.65 or 0.75 in 9.3.2.2.

5. Tension-controlled section: A cross-section in which the net tensile strain in the extreme tension steel at nominal strength is greater than or equal to 0.005. The strength reduction factor ϕ for tension-controlled sections is set at 0.9 in 9.3.2.1. However, ACI 318-99 and earlier editions of the code permitted a ϕ of 0.9 to be used for flexural members with reinforcement ratios not exceeding 0.75 of the balanced reinforcement ratio ρ_b. For rectangular sections, with one layer of tension reinforcement, $0.75 \rho_b$ corresponds to a net tensile strain ε_t of 0.00376. The use of ϕ of 0.9 is now permitted only for less heavily reinforced sections with $\varepsilon_t \geq 0.005$.

The use of these definitions is described under 8.4, 9.3, 10.3, and 18.8.

10.2 DESIGN ASSUMPTIONS

10.2.1 Equilibrium of Forces and Compatibility of Strains

Computation of the strength of a member or cross-section by the Strength Design Method requires that two basic conditions be satisfied: (1) static equilibrium and (2) compatibility of strains.

The first condition requires that the compressive and tensile forces acting on the cross-section at “ultimate” strength be in equilibrium, and the second condition requires that compatibility between the strains in the concrete and the reinforcement at “ultimate” conditions must also be satisfied within the design assumptions permitted by the code (see 10.2).

The term “ultimate” is used frequently in reference to the Strength Design Method; however, it should be realized that the “nominal” strength computed under the provisions of the code may not necessarily be the actual ultimate value. Within the design assumptions permitted, certain properties of the materials are neglected and other conservative limits are established for practical design. These contribute to a possible lower “ultimate strength” than that obtained by test. The computed nominal strength should be considered a code-defined strength only. Accordingly, the term “ultimate” is not used when defining the computed strength of a member. The term “nominal” strength is used instead.
Furthermore, in discussing the strength method of design for reinforced concrete structures, attention must be called to the difference between loads on the structure as a whole and load effects on the cross-sections of individual members. Elastic methods of structural analysis are used first to compute service load effects on the individual members due to the action of service loads on the entire structure. Only then are the load factors applied to the service load effects acting on the individual cross-sections. Inelastic (or limit) methods of structural analysis, in which design load effects on the individual members are determined directly from the ultimate test loads acting on the whole structure, are not considered. Section 8.4, however, does permit a limited redistribution of negative and positive moments in continuous members. The provisions of 8.4 recognize the inelastic behavior of concrete structures and constitute a move toward “limit design.” This subject is presented in Part 8.

The computed “nominal strength” of a member must satisfy the design assumptions given in 10.2.

10.2.2 Design Assumption #1

Strain in reinforcement and concrete shall be assumed directly proportional to the distance from the neutral axis.

In other words, plane sections normal to the axis of bending are assumed to remain plane after bending. Many tests have confirmed that the distribution of strain is essentially linear across a reinforced concrete cross-section, even near ultimate strength. This assumption has been verified by numerous tests to failure of eccentrically loaded compression members and members subjected to bending only.

The assumed strain conditions at ultimate strength of a rectangular and circular section are illustrated in Fig. 6-3. Both the strain in the reinforcement and in the concrete are directly proportional to the distance from the neutral axis. This assumption is valid over the full range of loading—zero to ultimate. As shown in Fig. 6-3, this assumption is of primary importance in design for determining the strain (and the corresponding stress) in the reinforcement.

![Figure 6-3 Assumed Strain Variation](image_url)
10.2.3 Design Assumption #2

Maximum usable strain at extreme concrete compression fiber shall be assumed equal to $\varepsilon_u = 0.003$.

The maximum concrete compressive strain at crushing of the concrete has been measured in many tests of both plain and reinforced concrete members. The test results from a series of reinforced concrete beam and column specimens, shown in Fig. 6-4, indicate that the maximum concrete compressive strain varies from 0.003 to as high as 0.008. However, the maximum strain for practical cases is 0.003 to 0.004; see stress-strain curves in Fig. 6-5. Though the maximum strain decreases with increasing compressive strength of concrete, the 0.003 value allowed for design is reasonably conservative. The codes of some countries specify a value of 0.0035 for design, which makes little difference in the computed strength of a member.

![Figure 6-4 Maximum Concrete Compressive Strain, ε_u from Tests of Reinforced Concrete Members](image)

10.2.4 Design Assumption #3

Stress in reinforcement f_s below the yield strength f_y shall be taken as E_s times the steel strain ε_s. For strains greater than f_y/E_s, stress in reinforcement shall be considered independent of strain and equal to f_y.

For deformed reinforcement, it is reasonably accurate to assume that below the yield stress, the stress in the reinforcement is proportional to strain. For practical design, the increase in strength due to the effect of strain hardening of the reinforcement is neglected for strength computations; see actual vs. design stress-strain relationship of steel in Fig. 6-2.

The force developed in the tensile or compressive reinforcement is a function of the strain in the reinforcement ε_s, such that:

when $\varepsilon_s \leq \varepsilon_y$ (yield strain):

$$f_s = E_s \varepsilon_s$$

$$A_s f_s = A_s E_s \varepsilon_s$$
where ε_s is the value from the strain diagram at the location of the reinforcement; see Fig. 6-3. For design, the modulus of elasticity of steel reinforcement, E_s, is taken as 29,000,000 psi (see 8.5.2).

10.2.5 Design Assumption #4

Tensile strength of concrete shall be neglected in axial and flexural calculations of reinforced concrete.

The tensile strength of concrete in flexure, known as the modulus of rupture, is a more variable property than the compressive strength, and is about 8% to 12% of the compressive strength. The generally accepted value for design is $7.5 \sqrt{f'_{c}}$ (9.5.2.3) for normalweight concrete. This tensile strength in flexure is neglected in strength design. For practical percentages of reinforcement, the resulting computed strengths are in good agreement with test results. For very small percentages of reinforcement, neglecting the tensile strength of concrete is conservative. It should be realized, however, that the strength of concrete in tension is important in cracking and deflection (serviceability) considerations.

10.2.6 Design Assumption #5

Relationship between concrete compressive stress distribution and concrete strain shall be assumed to be rectangular, trapezoidal, parabolic, or any other shape that results in prediction of strength in substantial agreement with results of comprehensive tests.

This assumption recognizes the inelastic stress distribution in concrete at high stresses. As maximum stress is approached, the stress-strain relationship of concrete is not a straight line (stress is not proportional to strain). The general stress-strain behavior of concrete is shown in Fig. 6-5. The shape of the curves is primarily a function of concrete strength and consists of a rising curve from zero stress to a maximum at a compressive strain between 0.0015 and 0.002, followed by a descending curve to an ultimate strain (corresponding to crushing of the concrete) varying from 0.003 to as high as 0.008. As discussed under Design Assumption #2, the code sets the maximum usable strain at 0.003 for design. The curves show that the stress-strain behavior for concrete becomes notably nonlinear at stress levels exceeding $0.5f'_{c}$.

Figure 6-5 Typical Stress-Strain Curves for Concrete
The actual distribution of concrete compressive stress in a practical case is complex and usually not known. However, research has shown that the important properties of the concrete stress distribution can be approximated closely using any one of several different forms of stress distributions (see Fig. 6.1). The three most common stress distributions are the parabolic, the trapezoidal, and the rectangular, each giving reasonable results. At the theoretical ultimate strength of a member in flexure (nominal strength), the compressive stress distribution should conform closely to the actual variation of stress, as shown in Fig. 6-6. In this figure, the maximum stress is indicated by $k_3 f'_c$, the average stress is indicated by $k_1 k_3 f'_c$, and the depth of the centroid of the approximate parabolic distribution from the extreme compression fiber by $k_2 c$, where c is the neutral axis depth.

![Figure 6-6 Actual Stress-Strain Conditions at Nominal Strength in Flexure](image)

For the stress conditions at ultimate, the nominal moment strength, M_n, may be computed by equilibrium of forces and moments in the following manner:

From force equilibrium (Fig. 6-6):

$$C = T$$

or,

$$k_1 k_3 f'_c b c = A_s f_{su}$$

so that

$$c = \frac{A_s f_{su}}{k_1 k_3 f'_c b}$$

From moment equilibrium:

$$M_n = (C \text{ or } T) (d - k_2 c) = A_s f_{su} \left(d - \frac{k_2}{k_1 k_3} \frac{A_s f_{su}}{f'_c b} \right)$$

The maximum strength is assumed to be reached when the strain in the extreme compression fiber is equal to the crushing strain of the concrete, ε_u. When crushing occurs, the strain in the tension reinforcement, ε_{su}, may be either larger or smaller than the yield strain, $\varepsilon_y = f_y / E_s$, depending on the relative proportion of reinforcement to concrete. If the reinforcement amount is low enough, yielding of the steel will occur prior to crushing of the concrete (ductile failure condition). With a very large quantity of reinforcement, crushing of the concrete will occur first, allowing the steel to remain elastic (brittle failure condition). The code has provisions which are intended to ensure a ductile mode of failure by limiting the amount of tension reinforcement. For the ductile failure condition, f_{su} equals f_y, and Eq. (1) becomes:
\[M_n = A_s f_y \left(d - \frac{k_2}{k_1 k_3} \frac{A_s f_y}{f'_c b} \right) \] (2)

If the quantity \(k_2/(k_1 k_3) \) is known, the moment strength can be computed directly from Eq. (2). It is not necessary to know the values of \(k_1, k_2, \) and \(k_3 \) individually. Values for the combined term, as well as the individual \(k_1 \) and \(k_2 \) values, have been established from tests and are shown in Fig. 6-7. As shown in the figure, \(k_2/(k_1 k_3) \) varies from about 0.55 to 0.63. Computation of the flexural strength based on the approximate parabolic stress distribution of Fig. 6-6 may be done using Eq. (2) with given values of \(k_2/(k_1 k_3) \). However, for practical design purposes, a method based on simple static equilibrium is desirable.

![Figure 6-7 Stress-Block Parameters](image)

During the last century, the Portland Cement Association adopted the parabolic stress-strain relationship shown in Fig. 6-8 for much of its experimental and analytical research work. “More exact” stress distributions such as this one have their greatest application with computers and are not recommended for longhand calculations. Recent PCA publications related to structural concrete design are based entirely on the rectangular stress block.

10.2.7 Design Assumption #6

Requirements of 10.2.6 may be considered satisfied by an equivalent rectangular concrete stress distribution defined as follows: A concrete stress of \(0.85 f'_c \) shall be assumed uniformly distributed over an equivalent compression zone bounded by edges of the cross-section and a straight line located parallel to the neutral axis at a distance \(a = \beta_1 c \) from the fiber of maximum compressive strain. Distance \(c \) from the fiber of maximum compressive strain to the neutral axis shall be measured in a direction perpendicular to that axis. Fraction \(\beta_1 \) shall be taken as 0.85 for strengths \(f'_c \) up to 4000 psi and shall be reduced continuously at a rate of 0.05 for each additional 1000 psi of strength in excess of 4000 psi, but \(\beta_1 \) shall not be taken less than 0.65.

The code allows the use of a rectangular compressive stress block to replace the more exact stress distributions of Fig. 6-6 (or Fig. 6-8). The equivalent rectangular stress block, shown in Fig. 6-9, assumes a uniform stress of \(0.85 f'_c \) over a depth \(a = \beta_1 c \), determined so that \(a/2 = k_2 c \). The constant \(\beta_1 \) is equal to 0.85 for concrete with \(f'_c \leq 4000 \) psi and reduces by 0.05 for each additional 1000 psi of \(f'_c \) in excess of 4000 psi. For high-strength concretes, above 8000 psi, a lower limit of 0.65 is placed on the \(\beta_1 \) factor. Variation in \(\beta_1 \) vs. concrete strength \(f'_c \) is shown in Fig. 6-10.
The need for a β_1 factor is caused by the variation in shape of the stress-strain curve for different concrete strengths, as shown in Fig. 6-5. For concrete strengths up to 4,000 psi, the shape and centroid of the actual concrete stress block can reasonably be approximated by a rectangular stress block with a uniform stress of $0.85f'_c$ and a depth of 0.85 times the depth to the neutral axis. That is to say, with a β_1 of 0.85.

Higher strength concretes have a more linear shape, with less inelastic behavior. For a good approximation of the stress block for concretes with strengths above 4,000 psi, the ratio β_1 of rectangular stress block depth to neutral axis depth needs to be reduced. Thus, the 1963 code required that β_1 “shall be reduced continuously at a rate of 0.05 for each 1,000 psi of strength in excess of 4,000 psi.

As time went by and much higher concrete strengths came into use, it was realized that this reduction in β_1 should not go on indefinitely. Very high strengths have a stress block that approaches a triangular shape. This almost-triangular stress block is best approximated by a rectangular stress block with $\beta_1 = 0.65$. Thus, in the 1977 and later codes, β_1 was set at 0.65 for concrete strengths of 8,000 psi and above.

Using the equivalent rectangular stress distribution (Fig. 6-9), and assuming that the reinforcement yields prior to crushing of the concrete ($\varepsilon_s > \varepsilon_y$), the nominal moment strength M_n may be computed by equilibrium of forces and moments.
From force equilibrium:

\[C = T \]

or, \[0.85 f'_c b a = A_s f_y \]

so that \[a = \frac{A_s f_y}{0.85 f'_c b} \]

From moment equilibrium:

\[M_n = (C \text{ or } T) (d - \frac{a}{2}) = A_s f_y (d - \frac{a}{2}) \]

Substituting \(a \) from force equilibrium,

\[M_n = A_s f_y \left(d - 0.59 \frac{A_s f_y}{f'_c b} \right) \]

\((3) \)

\[\begin{align*}
\text{Figure 6-9 Equivalent Rectangular Concrete Stress Distribution (ACI)}
\end{align*} \]
Note that the 0.59 value corresponds to \(\frac{k_2}{k_1 k_3} \) of Eq. (2). Substituting \(A_s = \rho bd \), Eq. (3) may be written in the following nondimensional form:

\[
\text{let } \omega = \rho \frac{f_y}{f'_c} \rho = \frac{M}{bd^2 f'_c} = \frac{\rho}{f'_c} \left(1 - 0.59 \rho \frac{f_y}{f'_c} \right) = \omega (1 - 0.59 \omega) \tag{4}
\]

As shown in Fig. 6-11, Eq. (4) is “in substantial agreement with the results of comprehensive tests.” However, it must be realized that the rectangular stress block does not represent the actual stress distribution in the compression zone at ultimate, but does provide essentially the same strength results as those obtained in tests. Computation of moment strength using the equivalent rectangular stress distribution and static equilibrium is illustrated in Example 6.1.
10.3 GENERAL PRINCIPLES AND REQUIREMENTS

10.3.1 Nominal Flexural Strength

Nominal strength of a member or cross-section subject to flexure (or to combined flexure and axial load) must be based on equilibrium and strain compatibility using the design assumptions of 10.2. Nominal strength of a cross-section of any shape, containing any amount and arrangement of reinforcement, is computed by applying the force and moment equilibrium and strain compatibility conditions in a manner similar to that used to develop the nominal moment strength of the rectangular section with tension reinforcement only, as illustrated in Fig. 6-9. Using the equivalent rectangular concrete stress distribution, expressions for nominal moment strength of rectangular and flanged sections (typical sections used in concrete construction) are summarized as follows:

a. Rectangular section with tension reinforcement only (see Fig. 6-9):

Expressions are given above under Design Assumption #6 (10.2.7).

b. Flanged section with tension reinforcement only:

When the compression flange thickness is equal to or greater than the depth of the equivalent rectangular stress block \(a \), moment strength \(M_n \) is calculated by Eq. (3), just as for a rectangular section with width equal to the flange width. When the compression flange thickness \(h_f \) is less than \(a \), the nominal moment strength \(M_n \) is (see Fig. 6-12):

\[
M_n = (A_s - A_{sf}) f_y \left(d - \frac{a}{2} \right) + A_{sf} f_y \left(d - \frac{h_f}{2} \right)
\]

(5)

where
\(A_{sf} \) = area of reinforcement required to equilibrate compressive strength of overhanging flanges
\[
A_{sf} = 0.85 f'_c (b - b_w) h_f f_y
\]
\(a = (A_s - A_{sf}) f_y / 0.85 f'_c b_w \)
\(b = \) width of effective flange (see 8.12)
\(b_w = \) width of web
\(h_f = \) thickness of flange

Figure 6-12 Strain and Equivalent Stress Distribution for Flanged Section

c. Rectangular section with compression reinforcement:

For a doubly reinforced section with compression reinforcement \(A'_c \), two possible situations can occur (see Fig. 6-13):

i. Compression reinforcement \(A'_c \) yields:
\[
\begin{align*}
\dot{f'}_c &= f_y \\
\dot{a} &= \frac{(A_s - A'_c) f_y}{0.85f'_c b_w}
\end{align*}
\]
The nominal moment strength is:

\[M_n = (A_s - A_s') f_y \left(d - \frac{a}{2} \right) + A_s' f_y (d - d') \] \hspace{1cm} (7)

Note that \(A_s' \) yields when the following (for Grade 60 reinforcement, with \(\varepsilon_y = 0.00207 = \frac{60}{29,000} \)) is satisfied:

\[\frac{d'}{c} \leq 0.31 \]

where \(c = \frac{a}{\beta_1} \).

ii. Compression reinforcement does not yield:

\[f_s' = E_s \varepsilon_s' = E_s \varepsilon_u \left(\frac{c - d'}{c} \right) < f_y \] \hspace{1cm} (8)

The neutral axis depth \(c \) can be determined from the following quadratic equation:

\[c^2 = \frac{(A_s f_y - 87A_s') c}{0.85\beta_1 f'_c b} - \frac{87A_s' d'}{0.85\beta_1 f'_c b} = 0 \]

where \(f'_c \) and \(f_y \) have the units of ksi. The nominal moment strength is:

\[M_n = 0.85f'_c ab \left(d - \frac{a}{2} \right) + A_s' f_y (d - d') \] \hspace{1cm} (9)

where \(a = \beta_1 c \)

Alternatively, the contribution of compression reinforcement may be neglected and the moment strength calculated by Eq. (3), just as for a rectangular section with tension reinforcement only.

d. For other cross-sections, the nominal moment strength \(M_n \) is calculated by a general analysis based on equilibrium and strain compatibility using the design assumptions of 10.2.

e. Nominal flexural strength \(M_n \) of a cross-section of a composite flexural member consisting of cast-in-place
and precast concrete is computed in a manner similar as that for a regular reinforced concrete section. Since the “ultimate” strength is unrelated to the sequence of loading, no distinction is made between shored and unshored members in strength computations (see 17.2.4).

10.3.2 Balanced Strain Condition

A balanced strain condition exists at a cross-section when the maximum strain at the extreme compression fiber just reaches \(\varepsilon_u = 0.003 \) simultaneously with the first yield strain of \(\varepsilon_s = \varepsilon_y = f_y / E_s \) in the tension reinforcement. This balanced strain condition is shown in Fig. 6-14.

![Figure 6-14 Balanced Strain Condition in Flexure](image)

The ratio of neutral axis depth \(c_b \) to extreme depth \(d_t \) to produce a balanced strain condition in a section with tension reinforcement only may be obtained by applying strain compatibility conditions. Referring to Fig. 6-14, for the linear strain condition:

\[
\frac{c_b}{d_t} = \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_y} = \frac{0.003}{0.003 + f_y / 29,000,000} = 0.003 / 0.003 + \varepsilon_y
\]

Note that for Grade 60 steel, 10.3.3 permits the steel strain \(\varepsilon_y \) to be rounded to 0.002. Substituting into the above equation, the ratio \(c_b/d_t = 0.6 \). This value applies to all sections with Grade 60 steel, not just to rectangular sections.

10.3.3 Compression-Controlled Sections

Sections are compression-controlled when the net tensile strain in the extreme tension steel is equal to or less than the compression-controlled strain limit at the time the concrete in compression reaches its assumed strain limit of 0.003. The compression-controlled strain limit is the net tensile strain in the reinforcement at balanced strain conditions. For Grade 60 reinforcement, and for all prestressed reinforcement, it is permitted to set the compression-controlled strain limit equal to 0.002.
Note that when other grades of reinforcement are used, the compression-controlled strain limit is not 0.002. This changes the compression-controlled strain limit, and that changes the “transition” equations for the strength reduction factor given in Fig. 5-2 in Part 5.

10.3.4 Tension-Controlled Sections and Transition

Sections are tension-controlled when the net tensile strain in the extreme tension steel is equal to or greater than 0.005 just as the concrete in compression reaches its assumed strain limit of 0.003. Sections with net tensile strain in the extreme tension steel between the compression-controlled strain limit and 0.005 constitute a transition region between compression-controlled and tension-controlled sections.

Figure 6-15 shows the stress and strain conditions at the limit for tension-controlled sections. This limit is important because it is the limit for the use of $\phi = 0.9$ (9.3.2.1). Critical parameters at this limit are given a subscript t. Referring to Fig. 6-15, by similar triangles:

\begin{equation}
\varepsilon_{t} = 0.005
\end{equation}

\begin{equation}
\varepsilon_{u} = 0.003
\end{equation}

\begin{equation}
C_t = 0.85f'_c b a_t = 0.319\beta_1 f'_c b d_t
\end{equation}

\begin{equation}
T = A_s f_y = C_t
\end{equation}

\begin{equation}
A_s = 0.319\beta_1 f'_c b d_t / f_y
\end{equation}

\begin{equation}
\rho_t = A_s / (b d_t) = 0.319\beta_1 f'_c / f_y
\end{equation}

\begin{equation}
\omega_t = \frac{\rho_t f_y}{f'_c} = 0.319\beta_1
\end{equation}

\begin{equation}
M_{nt} = \omega_t (1 - 0.59\omega_t) f'_c b d_t^2
\end{equation}

\begin{equation}
R_{nt} = \frac{M_{nt}}{b d_t^2} = \omega_t (1 - 0.59\omega_t) f'_c
\end{equation}

Values for ρ_t, ω_t, and R_{nt} are given in Table 6-1.
Table 6-1 Design Parameters at Strain Limit of 0.005 for Tension-Controlled Sections

<table>
<thead>
<tr>
<th>$t' = 3000$</th>
<th>$t' = 4000$</th>
<th>$t' = 5000$</th>
<th>$t' = 6000$</th>
<th>$t' = 8000$</th>
<th>$t' = 10,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_1 = 0.85$</td>
<td>$\beta_1 = 0.85$</td>
<td>$\beta_1 = 0.80$</td>
<td>$\beta_1 = 0.75$</td>
<td>$\beta_1 = 0.65$</td>
<td>$\beta_1 = 0.65$</td>
</tr>
<tr>
<td>R<sub>nt</sub></td>
<td>683</td>
<td>911</td>
<td>1084</td>
<td>1233</td>
<td>1455</td>
</tr>
<tr>
<td>ϕR_{nt}</td>
<td>615</td>
<td>820</td>
<td>975</td>
<td>1109</td>
<td>1310</td>
</tr>
<tr>
<td>ω_t</td>
<td>0.2709</td>
<td>0.2709</td>
<td>0.2550</td>
<td>0.2391</td>
<td>0.2072</td>
</tr>
<tr>
<td>ρ_t</td>
<td>Grade 40</td>
<td>0.02032</td>
<td>0.02709</td>
<td>0.03187</td>
<td>0.03586</td>
</tr>
<tr>
<td></td>
<td>Grade 60</td>
<td>0.01355</td>
<td>0.01806</td>
<td>0.02125</td>
<td>0.03911</td>
</tr>
<tr>
<td></td>
<td>Grade 75</td>
<td>0.01084</td>
<td>0.01445</td>
<td>0.01700</td>
<td>0.01912</td>
</tr>
</tbody>
</table>

10.3.5 Maximum Reinforcement for Flexural Members

Since 2002, the body of the code defines reinforcement limits in terms of net tensile strain, ε_t, instead of the balanced ratio ρ/ρ_b that was used formerly. For rectangular sections with one layer of Grade 60 steel, a simple relationship between ε_t and ρ/ρ_b exists (see Fig. 6-16):

\[
c = \frac{0.003d_t}{\varepsilon_t + 0.003}
\]

\[a = \beta_1c = \frac{0.003\beta_1d_t}{\varepsilon_t + 0.003}
\]

At balanced:

\[a_b = \frac{0.003\beta_1d_t}{(60/29,000) + 0.003} = 0.592\beta_1d_t
\]

\[\frac{\rho}{\rho_b} = \frac{a}{a_b} = \frac{0.00507}{\varepsilon_t + 0.003}
\]

or,

\[\varepsilon_t = \frac{0.00507}{\rho/\rho_b} - 0.003
\]

![Figure 6-16 Strain and Stress Relationship](image-url)

This relationship is shown graphically in Fig. 6-17.
Since 2002, the code limits the maximum reinforcement in a flexural member (with axial load less than $0.1'f_c'A_g$) to that which would result in a net tensile strain ε_t at nominal strength not less than 0.004. This compares to the former code limit of $0.75\rho_b$, which results in an ε_t of 0.00376. Furthermore, at the net tensile strain limit of 0.004, the ϕ factor is reduced to 0.812. For heavily reinforced members, the overall safety margin (load factor/ϕ) is about the same as by 318-99, despite the reduced load factors. See Fig. 6-18.

The strength of tension-controlled sections is clearly controlled by steel strength, which is less variable than concrete strength and this offers greater reliability. For tension-controlled flexural members, since 2002, the ACI code permits a ϕ of 0.9 to be used, despite the reduced load factors introduced in 2002. As Fig. 6-18 shows, the new code reduces the strength requirement by about 10 percent for tension-controlled sections.

As discussed in Part 7, it is almost always advantageous to limit the net tensile strain in flexural members to a minimum of 0.005, even though the code permits higher amounts of reinforcement producing lower net tensile strains. Where member size is limited and extra strength is needed, it is best to use compression reinforcement to limit the net tensile strain so that the section is tension-controlled.
10.3.6 Maximum Axial Strength

The strength of a member in pure compression (zero eccentricity) is computed by:

\[P_o = 0.85 f'_c A_g + f_y A_{st} \]

where \(A_{st} \) is the total area of reinforcement and \(A_g \) is the gross area of the concrete section. Refinement in concrete area can be considered by subtracting the area of concrete displaced by the steel:

\[P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \] \hspace{1cm} (13)

Pure compression strength \(P_o \) represents a hypothetical loading condition. Prior to the 1977 ACI code, all compression members were required to be designed for a minimum eccentricity of 0.05h for spirally reinforced members or 0.10h for tied reinforced members (\(h \) = overall thickness of the member). The specified minimum eccentricities were originally intended to serve as a means of reducing the axial design load strength of a section in pure compression and were included to: (1) account for accidental eccentricities, not considered in the analysis, that may exist in a compression member, and (2) recognize that concrete strength is less than \(f'_c \) at sustained high loads.

Since the primary purpose of the minimum eccentricity requirement was to limit the axial strength for design of compression members with small or zero computed end moments, the 1977 code was revised to accomplish this directly by limiting the axial strength to 85% and 80% of the axial strength at zero eccentricity (\(P_o \)), for spiral and tied reinforcement columns, respectively.

For spirally reinforced members,

\[P_{n(max)} = 0.85P_o = 0.85 [0.85 f'_c (A_g - A_{st}) + f_y A_{st}] \] \hspace{1cm} (14)

For tied reinforced members,

\[P_{n(max)} = 0.80P_o = 0.80 [0.85 f'_c (A_g - A_{st}) + f_y A_{st}] \] \hspace{1cm} (15)

The maximum axial strength, \(P_{n(max)} \), is illustrated in Fig. 6-19. In essence, design within the cross-hatched portion of the load-moment interaction diagram is not permitted. The 85% and 80% values approximate the axial strengths at \(e/h \) ratios of 0.05 and 0.10 specified in the 1971 code for spirally reinforced and tied reinforced members, respectively (see Example 6.3). The designer should note that R10.3.6 and R10.3.7 state that “Design aids and computer programs based on the minimum eccentricity requirement of the 1963 and 1971 ACI Building Codes may be considered equally applicable for usage.”

The current provisions for maximum axial strength also eliminate the concerns expressed by engineers about the excessively high minimum design moments required for large column sections, and the often asked question as to whether the minimum moments were required to be transferred to other interconnecting members (beams, footings, etc.).

Note that a minimum moment (minimum eccentricity requirement) for slender compression members in a braced frame is given in 10.10.6.5. If factored column moments are very small or zero, the design of these columns must be based on the minimum moment \(P_u \) (0.6 + 0.03h).
10.3.7 Nominal Strength for Combined Flexure and Axial Load

The strength of a member or cross-section subject to combined flexure and axial load, M_n and P_n, must satisfy the same two conditions as required for a member subject to flexure only: (1) static equilibrium and (2) compatibility of strains. Equilibrium between the compressive and tensile forces includes the axial load P_n acting on the cross-section. The general condition of the stress and the strain in concrete and steel at nominal strength of a member under combined flexure and axial compression is shown in Fig. 6-20. The tensile or compressive force developed in the reinforcement is determined from the strain condition at the location of the reinforcement.
Referring to Fig. 6-20,

\[T = A_s f_s = A_s (E_s \varepsilon_s) \quad \text{when } \varepsilon_s < \varepsilon_y \]

or

\[T = A_s f_y \quad \text{when } \varepsilon_s \geq \varepsilon_y \]

\[C_s = A_s' f_s' = A_s' (E_s' \varepsilon_s') \quad \text{when } \varepsilon_s' < \varepsilon_y \]

or

\[C_s = A_s f_y' \quad \text{when } \varepsilon_s' \geq \varepsilon_y \]

\[C_c = 0.85 f_c' b_a \]

The combined load-moment strength \((P_n\) and \(M_n\)) may be computed by equilibrium of forces and moments.

From force equilibrium:

\[P_n = C_c + C_s - T \quad (16) \]

From moment equilibrium about the mid-depth of the section:

\[M_n = P_n e = C_c \left(\frac{h}{2} - \frac{a}{2} \right) + C_s \left(\frac{h}{2} - d' \right) + T \left(d - \frac{h}{2} \right) \quad (17) \]

For a known strain condition, the corresponding load-moment strength, \(P_n\) and \(M_n\), can be computed directly. Assume the strain in the extreme tension steel, \(A_s\), is at first yield \((\varepsilon_s = \varepsilon_y)\). This strain condition with simultaneous strain of 0.003 in the extreme compression fiber defines the “balanced” load-moment strength, \(P_b\) and \(M_b\), for the cross-section.

For the strain at balanced condition:

\[\frac{c_b}{d} = \frac{\varepsilon_u}{\varepsilon_u + \varepsilon_y} = \frac{0.003}{0.003 + f_y / 29,000,000} = \frac{87,000}{87,000 + f_y} \]

so that

\[a_b = \beta_1 c_b = \left(\frac{87,000}{87,000 + f_y} \right) \beta_1 d \]

Also

\[\frac{c_b}{c_b - d'} = \frac{\varepsilon_u}{\varepsilon_s'} \]

so that

\[\varepsilon_s' = 0.003 \left(1 - \frac{d'}{c_b} \right) = 0.003 \left[1 - \frac{d'}{d} \left(\frac{87,000 + f_y}{87,000} \right) \right] \]

and

\[f_{sb} = E_s \varepsilon_s' = 87,000 \left[1 - \frac{d'}{d} \left(\frac{87,000 + f_y}{87,000} \right) \right] \]

but not greater than \(f_y\)
From force equilibrium:

\[P_b = 0.85f'_c b a_b + A'_s f'_s b - A_s f_y \]
(18)

From moment equilibrium:

\[M_b = P_b c_b = 0.85f'_c b a_b \left(\frac{h}{2} - \frac{a}{2} \right) + A'_s f'_s b \left(\frac{h}{2} - d' \right) + A_s f_y \left(\frac{d}{2} - h \right) \]
(19)

The “balanced” load-moment strength defines only one of many load-moment combinations possible over the full range of the load-moment interaction relationship of a cross-section subject to combined flexure and axial load. The general form of a strength interaction diagram is shown in Fig. 6-21. The load-moment combination may be such that compression exists over most or all of the section, so that the compressive strain in the concrete reaches 0.003 before the tension steel yields (\(\varepsilon_s \leq \varepsilon_y \)) (compression-controlled segment); or the load-moment combination may be such that tension exists over a large portion of the section, so that the strain in the tension steel is greater than the yield strain (\(\varepsilon_s > \varepsilon_y \)) when the compressive strain in the concrete reaches 0.003 (transition or tension-controlled segment). The “balanced” strain condition (\(\varepsilon_s = \varepsilon_y \)) divides these two segments of the strength curve. The linear strain variation for the full range of the load-moment interaction relationship is illustrated in Fig. 6-22.

Under pure compression, the strain is uniform over the entire cross-section and equal to 0.003. With increasing load eccentricity (moment), the compressive strain at the “tension face” gradually decreases to zero, then becomes tensile, reaching the yield strain (\(\varepsilon_s = \varepsilon_y \)) at the balanced strain condition. For this range of strain variations, the strength of the section is governed by compression (\(\varepsilon_s = -0.003 \) to \(\varepsilon_y \)). Beyond the balanced strain condition, the steel strain gradually increases up to the state of pure flexure corresponding to an infinite load eccentricity (\(e = \infty \)). For this range of strain variations, strength is governed by tension (\(\varepsilon_s > \varepsilon_y \)). With increasing eccentricity, more and more tension exists over the cross-section. Each of the many possible strain conditions illustrated in Fig. 6-22 describes a point, \(P_n \) and \(M_n \), on the load-moment curve (Fig. 6-21). Calculation of \(P_n \) and \(M_n \) for four different strain conditions along the load-moment strength curve is illustrated in Example 6.4.
Members with cross-sections much larger than required for strength, for architectural or other reasons, could fail suddenly because of small amounts of tensile reinforcement. The computed moment strength of such sections, assuming reinforced concrete behavior and using cracked section analyses, could become less than that of a corresponding unreinforced concrete section computed from its modulus of rupture. To prevent failure in such situations, a minimum amount of tensile reinforcement is specified in 10.5.

The minimum reinforcement ratio \(\rho_{min} = \frac{200}{f_y} \) was originally derived to provide the same 0.5% minimum (for mild steel grade) as required in earlier versions of the ACI code. This minimum reinforcement is adequate for concrete strengths of about 4000 psi and less. The ’95 version of the code recognizes that \(\rho_{min} = \frac{200}{f_y} \) may not be sufficient for \(f'_c \) greater than about 5000 psi. The code has accordingly revised 10.5.1 and 10.5.2 to specify the following minimum amounts of steel:

At every section of flexural members where tensile reinforcement is required,

\[
A_{s,min} = \frac{3\sqrt{f'_c}}{f_y} b_w d \geq \frac{200}{f_y} b_w d
\]

Eq. (10-3)

Note that \(\frac{3\sqrt{f'_c}}{f_y} \) and 200 are equal when \(f'_c = 4444 \) psi. Thus, \(\frac{3\sqrt{f'_c}b_w d}{f_y} \) controls when \(f'_c \geq 4444 \) psi; otherwise, \(200 b_w d / f_y \) controls.

For statically determinate members with a flange in tension, the area \(A_{s,min} \) must be equal to or greater than the value given by Eq. (10-3) with \(b_w \) replaced by either \(2b_w \) or the width of the flange, whichever is smaller (10.5.2).

Note that the requirements of 10.5.1 and 10.5.2 need not be applied if at every section the area of tensile reinforcement provided is at least one-third greater than that required by analysis (see 10.5.3). For structural slabs and footings (10.5.4), the flexural reinforcement must not be less than that required for temperature and shrinkage (7.12).
To increase usable floor space, in particular in the lower stories of high-rise buildings, column cross section is reduced by using higher strength concrete in the columns than in the slabs. Typical construction sequence for concrete frame structures is as follows: (1) the column concrete is placed up to the underside of the slab, (2) after the column concrete hardens, the slab concrete is cast, including over the columns, and (3) after the slab concrete gains strength, the column is formed above the slab up to the underside of the next floor. Then, this sequence is repeated for each floor. As a result, the column has to transmit load through a lower strength concrete at slab-column joints.

When the column concrete strength does not exceed the floor concrete strength by more than 40 percent, no special precautions need be taken in computing the column strength (10.12). For higher column concrete strengths, the Code provides three alternatives to take advantage of the higher column concrete strength:

1. Concrete puddling is used in the slab at, and around the column (10.12.1.) When puddling is used contractor has to pay special attention to avoid cold joints and to ensure that the specified column concrete is placed where it is intended. Minimum criteria for puddling are illustrated in Figure 6-23. When utilized, a procedure for proper placing and blending of the two concrete types should be clearly called out in the project documents.

2. Lower strength slab concrete is used to cast the portion of the column within the floor. To compensate for the reduced concrete strength within the column-slab intersection, vertical dowels enclosed in spirals are added (10.12.2.) The resulting congestion of reinforcement within the slab-column joint should be assessed.

3. For columns laterally supported on four sides by beams of approximately equal depth or by slabs, the code permits the strength of the column to be based on an assumed concrete strength in the column joint equal to 75 percent of column concrete strength plus 35 percent of floor concrete strength (10.12.3). In the application of 10.12.3, the ratio of column concrete strength to slab concrete strength is limited to 2.5 for design. This effectively limits the assumed column strength to a maximum of 2.225 times the floor concrete strength.

The ACI 318 Code does not currently address transmission of wall loads through floor systems. When the provisions of Section 10.12 were first introduced in ACI 318-63 Section 917, it was not anticipated that walls would be built with high-strength concrete. During the last 30 years, however, high-strength concrete has been used in the walls of high-rise structures to increase their lateral stiffness and, thus, reduce drift. Considering the concerns that prompted introduction of the requirements in Section 10.12, until the Code offers guidance for such situations, it would be reasonable to extend the requirements of 10.12 to the transmission of wall loads through floor systems\(^6\). Caution is required where slabs frame in elevator shaft walls where confinement is not available on the core side of the wall.
10.14 BEARING STRENGTH ON CONCRETE

Code-defined bearing strength \(P_{nb} \) of concrete is expressed in terms of an average bearing stress of \(0.85 f'_c \) over a bearing area (loaded area) \(A_1 \). When the supporting concrete area is wider than the loaded area on all sides, the surrounding concrete acts to confine the loaded area, resulting in an increase in the bearing strength of the supporting concrete. With confining concrete, the bearing strength may be increased by the factor \(\sqrt{\frac{A_2}{A_1}} \), but not greater than 2, where \(\sqrt{\frac{A_2}{A_1}} \) is a measure of the confining effect of the surrounding concrete. Evaluation of the strength increase factor \(\sqrt{\frac{A_2}{A_1}} \) is illustrated in Fig. 6-24.

For the usual case of a supporting concrete area considerably greater than the loaded area \(\left(\sqrt{\frac{A_2}{A_1}} > 2 \right) \), the nominal bearing stress is 2 \((0.85 f'_c) \).

Referring to Fig. 6-25,

a. For the supported surface (column):

\[
P_{nb} = 0.85 f'_c A_1
\]

where \(f'_c \) is the specified strength of the column concrete.

b. For supporting surface (footing):

\[
P_{nb} = 0.85 f'_c A_1 \sqrt{\frac{A_2}{A_1}} \quad \text{and} \quad \sqrt{\frac{A_2}{A_1}} \leq 2.0
\]

where \(f'_c \) is the specified strength of the footing concrete.

The design bearing strength is \(\phi P_{nb} \), where, for bearing on concrete, \(\phi = 0.65 \). When the bearing strength is exceeded, reinforcement must be provided to transfer the excess load.

Figure 6-24 Measure of Confinement \(\sqrt{\frac{A_2}{A_1}} \leq 2 \) Provided by Surrounding Concrete
REFERENCES

6.6 Concrete Q&A “Concrete Strength Requirements at the Intersection of Slabs and Shear Walls,” Concrete International, November 2007, pp. 75-76.
Example 6.1—Moment Strength Using Equivalent Rectangular Stress Distribution

For the beam section shown, calculate moment strength based on static equilibrium using the equivalent rectangular stress distribution shown in Fig. 6-9. Assume $f'_c = 4000$ psi and $f_y = 60,000$ psi. For simplicity, neglect hanger bars.

1. Define rectangular concrete stress distribution.

\[
d = d_t = 16 - 2.5 = 13.50 \text{ in.}
\]

\[
A_s = 3 \times 0.79 = 2.37 \text{ in.}^2
\]

Assuming $\varepsilon_s > \varepsilon_y$,

\[
T = A_s f_y = 2.37 \times 60 = 142.2 \text{ kips}
\]

\[
a = \frac{A_s f_y}{0.85 f'_c b} = \frac{142.2}{0.85 \times 4 \times 10} = 4.18 \text{ in.}
\]

2. Determine net tensile strain ε_s and ϕ

\[
c = \frac{a}{\beta_1} = \frac{4.18}{0.85} = 4.92 \text{ in.}
\]

\[
\varepsilon_s = \left(\frac{d_t - c}{c} \right) 0.003 = \left(\frac{13.50 - 4.92}{4.92} \right) 0.003 = 0.00523 > 0.005
\]

Therefore, section is tension-controlled

\[
\phi = 0.9
\]

\[
\varepsilon_s = 0.00523 > 0.004 \text{ which is minimum for flexural members}
\]

This also confirms that $\varepsilon_s > \varepsilon_y$ at nominal strength.
3. Determine nominal moment strength, \(M_n \), and design moment strength, \(\phi M_n \).

\[
M_n = A_s f_y \left(d - \frac{a}{2} \right) = 142.2 \ (13.50 - 2.09) = 1,622.5 \ \text{in.-kips} = 135.2 \ \text{ft-kips}
\]

\[
\phi M_n = 0.9(135.2) = 121.7 \ \text{ft-kips}
\]

4. Minimum reinforcement.

\[
A_{s,\text{min}} = \frac{3 \sqrt{f'_c}}{f_y} b_w d \geq \frac{200 b_w d}{f_y}
\]

Since \(f'_c < 4444 \ \text{psi} \), \(\frac{200 b_w d}{f_y} \) governs:

\[
\frac{200 b_w d}{f_y} = \frac{200 \times 10 \times 13.50}{60,000} = 0.45 \ \text{in.}^2
\]

\(A_s \) (provided) = 2.37 \ in.\^2 \ > \ A_{s,\text{min}} = 0.45 \ \text{in.}^2 \ O.K.
Example 6.2—Design of Beam with Compression Reinforcement

A beam cross-section is limited to the size shown. Determine the required area of reinforcement for a factored moment \(M_u = 516 \text{ ft-kips} \). \(f'_c = 4000 \text{ psi}, f_y = 60,000 \text{ psi} \).

![Beam diagram with dimensions and reinforcement](image)

Calculations and Discussion

1. **Check if compression reinforcement is required, using \(\phi = 0.9 \)**

\[
M_n = M_u / \phi = 516 / 0.9 = 573 \text{ ft-kips}
\]

\[
R_n = \frac{M_n}{bd_t^2} = \frac{573 \times 12 \times 1000}{214 \times 20.5^2} = 1169
\]

This exceeds the maximum \(R_{nt} \) of 911 for tension-controlled sections of 4000 psi concrete. (see Table 6-1.) Also, it appears likely that two layers of tension reinforcement will be necessary. But, for simplicity, assume that \(d_t = d \).

2. **Find the nominal strength moment \(M_{nt} \) resisted by the concrete section, without compression reinforcement, and \(M'_n \) to be resisted by the compression reinforcement.**

\[
M_{nt} = R_n bd_t^2 = 911 \times 14 \times 20.5^2 / (1000 \times 12) = 447 \text{ ft-kips}
\]

\[
M'_n = M_n - M_{nt} = 573 - 447 = 126 \text{ ft-kips}
\]

3. **Determine the required compression steel**

The strain in the compression steel at nominal strength is just below yield strain, as shown in the strain diagram above.
\[f'_s = E_s \varepsilon_s = 29,000 \times 0.00202 = 58.7 \text{ psi} = 58.7 \text{ ksi} \]

\[A'_s = \frac{M'_n}{f'_s (d - d')} = \frac{126 \times 12}{58.7 (20.5 - 2.5)} = 1.43 \text{ in.}^2 \]

4. Determine the required tension steel

\[A_s = \rho_t (bd) + A'_s \left(\frac{f'_s}{f_y} \right) \]

From Table 6-1, \(\rho_t = 0.01806 \), so that

\[A_s = 0.01806(14)(20.5) + 1.43(58.7 / 60) \]

\[= 5.18 + 1.40 = 6.58 \text{ in.}^2 \]

5. Alternative solution

Required nominal strength

\[M_n = \frac{M_u}{\phi} = \frac{516}{0.9} = 573 \text{ ft-kips} \]

a. Determine maximum moment without compression reinforcement \(M_{nt} \), using \(\phi = 0.9 \). This condition corresponds to the tension-controlled limit.

\[c = 0.375d = 0.375 \times 20.5 = 7.69 \text{ in.} \]

\[a = \beta_1c = 0.85 \times 7.69 = 6.54 \text{ in.} \]

\[C = T = 3.4 \times 6.54 \times 14 = 311.3 \text{ kips} \]

\[M_{nt} = T \left(d_t - \frac{a}{2} \right) = 311.3 \left(20.5 - \frac{6.54}{2} \right) = 5363.7 \text{ kip-in.} = 447.0 \text{ kip-ft} \]

b. Required area of tension steel to develop \(M_{nt} \):

\[A_{s,nt} = \frac{311.3}{60} = 5.19 \text{ in.}^2 \]

c. Additional moment (573-447 = 126 ft-kips) must be developed in T-C couple between tension steel and compression steel.

Additional tension steel required:

\[\Delta A_s = \frac{126 \times 12}{(20.5 - 2.5) \times 60} = 1.40 \text{ in.}^2 \]

Total tension steel required:

\[A_s = 5.19 + 1.40 = 6.59 \text{ in.}^2 \]
Example 6.2 (cont’d)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

Compression steel required:

\[
A'_{s} = \frac{126 \times 12}{(20.5 - 2.5) \times 58.7} = 1.43 \text{ in.}^2
\]

6. Comparison to Example 6.2 of *Notes on ACI 318-99* designed by ACI 318-99:

Example 6.2 of *Notes on ACI 318-99* was designed by the 1999 code for an \(M_u\) of 580 ft-kips. By current code, assuming a live-to-dead load ratio of 0.5 for this beam, the beam could be designed as a tension-controlled section for an \(M_u\) of 516 ft-kips. The results for the required reinforcement are

<table>
<thead>
<tr>
<th></th>
<th>by 318-99</th>
<th>Since 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression reinforcement (A'_{s})</td>
<td>1.49 in.²</td>
<td>1.43 in.²</td>
</tr>
<tr>
<td>Tension reinforcement (A_{s})</td>
<td>7.63 in.²</td>
<td>6.58 in.²</td>
</tr>
</tbody>
</table>

The reduction in tension reinforcement is a result of the lower load factors in the current code. However, the compression reinforcement requirement is about the same. This is caused by the need for ductility in order to use the \(\phi\) of 0.9 for flexure. Further, by ACI 318-99 and earlier editions, the basic gravity load combination was 1.4\(D + 1.7L\). Since 2002, the basic gravity load combination is 1.2\(D + 1.6L\).
Example 6.3—Maximum Axial Load Strength vs. Minimum Eccentricity

For the tied reinforced concrete column section shown below, compare the nominal axial load strength P_n equal to $0.80P_o$ with P_n at 0.1h eccentricity. $f'c = 5000$ psi, $f_y = 60,000$ psi.

![Diagram of column section](image)

4 - No. 9
$A_s = 4.0$ in.2

Calculations and Discussion

Prior to ACI 318-77, columns were required to be designed for a minimum eccentricity of 0.1h (tied) or 0.05h (spiral). This required tedious computations to find the axial load strength at these minimum eccentricities. With the 1977 ACI code, the minimum eccentricity provision was replaced with a maximum axial load strength: $0.80P_o$ (tied) or $0.85P_o$ (spiral). The 80% and 85% values were chosen to approximate the axial load strengths at e/h ratios of 0.1 and 0.05, respectively.

1. In accordance with the minimum eccentricity criterion:

 At $e/h = 0.10$: $P_n = 1543$ kips (computer solution)

2. In accordance with maximum axial load strength criterion:

 $P_{n(max)} = 0.80P_o = 0.80 [0.85f'c (A_g - A_{st}) + fyA_{st}]$

 $= 0.80 [0.85 \times 5 (400 - 4.0) + (60 \times 4.0)] = 1538$ kips

Depending on material strengths, size, and amount of reinforcement, the comparison will vary slightly. Both solutions are considered equally acceptable.
Example 6.4—Load-Moment Strength, \(P_n \) and \(M_n \), for Given Strain Conditions

For the column section shown, calculate the load-moment strength, \(P_n \) and \(M_n \), for four strain conditions:

1. Bar stress near tension face of member equal to zero, \(f_s = 0 \)
2. Bar stress near tension face of member equal to 0.5\(f_y \) (\(f_s = 0.5f_y \))
3. At limit for compression-controlled section (\(\varepsilon_t = 0.002 \))
4. At limit for tension-controlled sections (\(\varepsilon_t = 0.005 \)).

Use \(f'_c = 4000 \text{ psi} \), and \(f_y = 60,000 \text{ psi} \).

Calculations and Discussion

Code Reference

1. Load-moment strength, \(P_n \) and \(M_n \), for strain condition 1: \(\varepsilon_s = 0 \)

\[A_s = A'_s = 2(0.79) = 1.58 \text{ in}^2 \]

Strain Condition - 1 Stress
Example 6.4 (cont’d) Calculations and Discussion Code Reference

a. Define stress distribution and determine force values.

\[d' = \text{Cover} + \text{No. 3 tie dia.} + \frac{d_b}{2} = 1.5 + 0.375 + 0.5 = 2.38 \text{ in.} \]

\[d_t = 16 - 2.38 = 13.62 \text{ in.} \]

Since \(\varepsilon_s = 0 \), \(c = d_t = 13.62 \text{ in.} \)

\[a = \beta_1 c = 0.85 (13.62) = 11.58 \text{ in.} \]

where \(\beta_1 = 0.85 \) for \(f'_c = 4000 \text{ psi} \)

\[C_c = 0.85 f'_c ba = 0.85 \times 4 \times 16 \times 11.58 = 630.0 \text{ kips} \]

\[\varepsilon_y = \frac{f_y}{E_s} = \frac{60}{29,000} = 0.00207 \]

From strain compatibility:

\[\varepsilon'_s = \varepsilon_u \left(\frac{c - d'}{c} \right) = 0.003 \left(\frac{13.62 - 2.38}{13.62} \right) = 0.00248 > \varepsilon_y = 0.00207 \]

Compression steel has yielded.

\[C_s = A'_s f_y = 1.58 (60) = 94.8 \text{ kips} \]

b. Determine \(P_n \) and \(M_n \) from static equilibrium.

\[P_n = C_c + C_s = 630.0 + 94.8 = 724.8 \text{ kips} \quad \text{(Eq. (16))} \]

\[M_n = P_n c = C_c \left(\frac{h}{2} - \frac{a}{2} \right) + C_s \left(\frac{h}{2} - d' \right) \quad \text{(Eq. (17))} \]

\[= 630 (8.0 - 5.79) + 94.8 (8.0 - 2.38) = 1925.1 \text{ in.-kips} = 160.4 \text{ ft-kips} \]

\[e = \frac{M_n}{P_n} = \frac{1925.1}{724.8} = 2.66 \text{ in.} \]

Therefore, for strain condition \(\varepsilon_s = 0 \):

Design axial load strength, \(\phi P_n = 0.65 (724.8) = 471.1 \text{ kips} \quad \text{9.3.2.2} \)

Design moment strength, \(\phi M_n = 0.65 (160.4) = 104.3 \text{ ft-kip} \)
Example 6.4 (cont’d) Calculations and Discussion Code Reference

2. Load-moment strength, P_n and M_n, for strain condition 2: $\varepsilon_s = 0.5\varepsilon_y$

![Diagram of beam with labels and calculations]

a. Define stress distribution and determine force values.

\[d' = 2.38 \text{ in.}, \quad d_t = 13.62 \text{ in.} \]

From strain compatibility:

\[c = \frac{0.003d_t}{0.5\varepsilon_y} \left(d' - c \right) - \frac{0.003 \times 13.62}{0.00104 + 0.003} \]

\[c = \frac{0.003 \times 13.62}{0.00104 + 0.003} = 10.13 \text{ in.} \]

Strain in compression reinforcement:

\[\varepsilon_s = \varepsilon_u \left(\frac{c - d'}{c} \right) = 0.003 \left(\frac{10.13 - 2.38}{10.13} \right) = 0.00230 > \varepsilon_y = 0.00207 \]

Compression steel has yielded.

\[a = \beta_1 c = 0.85 \times 10.13 = 8.61 \text{ in.} \]

\[C_c = 0.85 f_c' ba = 0.85 \times 4 \times 16 \times 8.61 = 468.4 \text{ kips} \]

\[C_s = A'_s f_y = 1.58 \times 60 = 94.8 \text{ kips} \]

\[T = A_s f_s = A_s (0.5 f_y) = 1.58 \times 30 = 47.4 \text{ kips} \]

b. Determine P_n and M_n from static equilibrium.
Example 6.4 (cont’d) Calculations and Discussion

\[P_n = C_c + C_s - T = 468.4 + 94.8 - 47.4 = 515.8 \text{ kips} \]
\[M_n = P_n^2 = C_c \left(\frac{h}{2} - \frac{a}{2} \right) + C_s \left(\frac{h}{2} + d' \right) + T \left(d - \frac{h}{2} \right) \]
\[= 468.4 \left(8.0 - 4.31 \right) + 94.8 \left(8.0 - 2.38 \right) + 47.4 \left(13.62 - 8.0 \right) \]
\[= 2527.6 \text{ in.-kips} = 210.6 \text{ ft-kips} \]
\[e = \frac{M_n}{P_n} = \frac{2527.6}{515.8} = 4.90 \text{ in.} \]

Therefore, for strain condition \(\varepsilon_s = 0.5 \varepsilon_y \):

Design axial load strength, \(\phi P_n = 0.65 \times 515.8 = 335.3 \text{ kips} \)

Design moment strength, \(\phi M_n = 0.65 \times 210.6 = 136.9 \text{ ft-kips} \)

3. Load-moment strength, \(P_n \) and \(M_n \), for strain condition 3: \(\varepsilon_s = \varepsilon_y \)

\[\begin{align*}
\text{Strain Condition - 3} \\
\text{b = 16"} \\
h = 16" \\
h/2 \\
\text{1.5" cover} \\
\text{No. 3 ties} \\
\text{4-No. 8 bars} \\
\varepsilon_u = 0.003 \\
\varepsilon_s = 0.00207 \\
\text{T = A}_f \text{f}_y \\
a = \beta_1 \text{c} \\
C_s \\
C_c \\
da' = 2.38 \text{ in., } d_l = 13.62 \text{ in.} \\
\text{From strain compatibility:} \\
\frac{c}{0.003} = \frac{d_l - c}{\varepsilon_y}.
\end{align*} \]
\[c = \frac{0.003d_t}{\varepsilon_y + 0.003} = \frac{0.003 \times 13.62}{0.00207 + 0.003} = 8.06 \text{ in.} \]

Note: The code permits the use of 0.002 as the strain limit for compression-controlled sections with Grade 60 steel. It is slightly conservative, and more consistent, to use the yield strain of 0.00207.

Strain in compression reinforcement:

\[\varepsilon_s' = \varepsilon_u \left(\frac{c-d'}{c} \right) = 0.003 \left(\frac{8.06 - 2.38}{8.06} \right) = 0.00211 > \varepsilon_y = 0.00207 \]

Compression steel has yielded.

\[a = \beta_1 c = 0.85 (8.06) = 6.85 \text{ in.} \]

\[C_c = 0.85 \frac{4}{3} ba = 0.85 \times 4 \times 16 \times 6.85 = 372.7 \text{ kips} \]

\[C_s = A_s f_y = 1.58 (60) = 94.8 \text{ kips} \]

\[T = A_s f_s = A_s f_y = 1.58 (60) = 94.8 \text{ kips} \]

b. Determine \(P_n \) and \(M_n \) from static equilibrium.

\[P_n = C_c + C_s - T = 372.7 + 94.8 - 94.8 = 372.7 \text{ kips} \]

\[M_n = P_ne = C_c \left(\frac{h}{2} - \frac{a}{2} \right) + C_s \left(\frac{h}{2} + d' \right) + T \left(d - \frac{h}{2} \right) \]

\[= 372.7 (8.0 - 3.43) + 94.8 (8.0 - 2.38) + 94.8 (13.62 - 8.0) \]

\[= 2770.5 \text{ in.-kips} = 230.9 \text{ ft-kips} \]

\[e = \frac{M_n}{P_n} = \frac{2770.5}{372.7} = 7.43 \text{ in.} \]

Therefore, for strain condition \(\varepsilon_s = \varepsilon_y \):

Design axial load strength, \(\phi P_n = 0.65 (372.7) = 242.3 \text{ kips} \)

Design moment strength, \(\phi M_n = 0.65 (230.9) = 150.1 \text{ ft-kips} \)
a. Define stress distribution and determine force values.

\[d' = 2.38 \text{ in., } d_t = 13.62 \text{ in.} \]

From strain compatibility:

\[
\frac{c}{0.003} = \frac{d - c}{0.005}
\]

\[
c = \frac{0.003d}{0.005 + 0.003} = \frac{0.003 \times 13.62}{0.005 + 0.003} = 5.11 \text{ in.}
\]

Strain in compression reinforcement:

\[
\varepsilon'_s = \varepsilon_u \left(\frac{c - d'}{c} \right) = 0.003 \left(\frac{5.11 - 2.38}{5.11} \right) = 0.00160 < \varepsilon_y = 0.00207
\]

Compression steel has not yielded.

\[
f'_s = \varepsilon'_s E_s = 0.00160 \times (29,000) = 46.5 \text{ ksi}
\]

\[
a = \beta_1 c = 0.85 \times 5.11 = 4.34 \text{ in.}
\]

\[
C_c = 0.85 f'_c b a = 0.85 \times 4 \times 16 \times 4.34 = 236.2 \text{ kips}
\]

\[
C_s = A_s f'_y = 1.58 \times (46.5) = 73.5 \text{ kips}
\]

\[
T = A_s f'_s = A_s (f_y) = 1.58 \times (60) = 94.8 \text{ kips}
\]
b. Determine P_n and M_n from static equilibrium.

$$P_n = C_c + C_s - T = 236.2 + 73.5 - 94.8 = 214.9 \text{ kips} \tag{16}$$

$$M_n = P_n e = C_c \left(\frac{h}{2} - \frac{a}{2} \right) + C_s \left(\frac{h}{2} + d' \right) + T \left(d - \frac{h}{2} \right) \tag{17}$$

$$= 236.2 (8.0 - 2.17) + 73.5 (8.0 - 2.38) + 94.8 (13.62 - 8.0)$$

$$= 2322.9 \text{ in.-kips} = 193.6 \text{ ft-kips}$$

$$e = \frac{M_n}{P_n} = \frac{2322.9}{214.9} = 10.81 \text{ in.}$$

Therefore, for strain condition $\varepsilon_s = 0.005$:

Design axial load strength, $\phi P_n = 0.9 (214.9) = 193.4 \text{ kips}$ \hspace{1cm} 9.3.2.2

Design moment strength, $\phi M_n = 0.9 (193.6) = 174.2 \text{ ft-kips}$

A complete interaction diagram for this column is shown in Fig. 6-25. In addition, Fig. 6-26 shows the interaction diagram created using the computer program pcaColumn.
Figure 6-26 Interaction Diagram from pcaColumn
GENERAL CONSIDERATIONS—FLEXURE

For design or investigation of members subjected to flexure (beams and slabs), the nominal strength of the member cross-section \(M_n \) must be reduced by the strength reduction factor \(\phi \) to obtain the design strength \(\phi M_n \) of the section. The design strength \(\phi M_n \) must be equal to or greater than the required strength \(M_u \). In addition, the serviceability requirements for deflection control (9.5) and distribution of reinforcement for crack control (10.6) must also be satisfied.

Examples 7.1 through 7.7 illustrate proper application of the various code provisions that govern design of members subject to flexure. The design examples are prefaced by step-by-step procedures for design of rectangular sections with tension reinforcement only, rectangular sections with multiple layers of steel, rectangular sections with compression reinforcement, and flanged sections with tension reinforcement only.

DESIGN OF RECTANGULAR SECTIONS WITH TENSION REINFORCEMENT ONLY

In the design of rectangular sections with tension reinforcement only (Fig. 7-1), the conditions of equilibrium are (Ref. 7.1):

1. Force equilibrium:

 \[
 C = T = T
 \]
 \[
 0.85f'_c ba = A_s f_y = \rho bdf_y
 \]
 \[
 a = \frac{A_s f_y}{0.85f'_c b} = \frac{\rho df_y}{0.85f'_c}
 \]

2. Moment equilibrium:

 \[
 M_n = (C \text{ or } T) \left(d - \frac{a}{2} \right)
 \]
 \[
 M_n = \rho b df_y \left[d - \frac{0.5pd}{0.85 f'_c} \right]
 \]

 (2)
A nominal strength coefficient of resistance R_n is obtained when both sides of Eq. (2) are divided by bd^2:

$$R_n = \frac{M_n}{bd^2} = \rho f_y \left(1 - \frac{0.5 \rho f_y}{0.85 f'_c}\right)$$

(3)

When b and d are preset, ρ is obtained by solving the quadratic equation for R_n:

$$\rho = 0.85 f'_c \left(1 - \sqrt{1 - \frac{2R_n}{0.85 f'_c}}\right)$$

(4)

The relationship between ρ and R_n for Grade 60 reinforcement and various values of f'_c is shown in Fig. 7-2.

Equation (3) can be used to determine the steel ratio ρ given M_u or vice-versa if the section properties b and d are known. Substituting $M_n = M_u/\phi$ into Eq. (3) and dividing each side by f'_c:

$$\frac{M_u}{\phi f'_c bd^2} = \frac{\rho f_y}{f'_c} \left(1 - \frac{0.5 \rho f_y}{0.85 f'_c}\right)$$

Define $\omega = \frac{\rho f_y}{f'_c}$

Substituting ω into the above equation:

$$\frac{M_u}{\phi f'_c bd^2} = \omega (1 - 0.59\omega)$$

(5)

Table 7-1, based on Eq. (5), has been developed in order to serve as a design aid for either design or investigation of sections having tension reinforcement only where b and d are known.
Table 7-1 Flexural Strength $M_u/\phi f_{bd}^2$ or M_n/f_{cbd}^2 of Rectangular Sections with Tension Reinforcement Only

<table>
<thead>
<tr>
<th>ω</th>
<th>0.000</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.010</td>
<td>0.020</td>
<td>0.030</td>
<td>0.040</td>
<td>0.050</td>
<td>0.060</td>
<td>0.070</td>
<td>0.080</td>
<td>0.090</td>
</tr>
<tr>
<td>0.01</td>
<td>0.009</td>
<td>0.019</td>
<td>0.029</td>
<td>0.039</td>
<td>0.049</td>
<td>0.059</td>
<td>0.069</td>
<td>0.079</td>
<td>0.089</td>
<td>0.099</td>
</tr>
<tr>
<td>0.02</td>
<td>0.017</td>
<td>0.027</td>
<td>0.037</td>
<td>0.047</td>
<td>0.057</td>
<td>0.067</td>
<td>0.077</td>
<td>0.087</td>
<td>0.097</td>
<td>0.107</td>
</tr>
<tr>
<td>0.03</td>
<td>0.025</td>
<td>0.032</td>
<td>0.042</td>
<td>0.053</td>
<td>0.063</td>
<td>0.073</td>
<td>0.084</td>
<td>0.095</td>
<td>0.105</td>
<td>0.115</td>
</tr>
<tr>
<td>0.04</td>
<td>0.031</td>
<td>0.041</td>
<td>0.051</td>
<td>0.061</td>
<td>0.072</td>
<td>0.082</td>
<td>0.093</td>
<td>0.104</td>
<td>0.114</td>
<td>0.124</td>
</tr>
<tr>
<td>0.05</td>
<td>0.040</td>
<td>0.049</td>
<td>0.059</td>
<td>0.069</td>
<td>0.079</td>
<td>0.089</td>
<td>0.099</td>
<td>0.110</td>
<td>0.120</td>
<td>0.130</td>
</tr>
<tr>
<td>0.06</td>
<td>0.047</td>
<td>0.056</td>
<td>0.066</td>
<td>0.075</td>
<td>0.085</td>
<td>0.096</td>
<td>0.106</td>
<td>0.117</td>
<td>0.127</td>
<td>0.137</td>
</tr>
<tr>
<td>0.07</td>
<td>0.058</td>
<td>0.067</td>
<td>0.077</td>
<td>0.087</td>
<td>0.098</td>
<td>0.108</td>
<td>0.119</td>
<td>0.130</td>
<td>0.140</td>
<td>0.150</td>
</tr>
<tr>
<td>0.08</td>
<td>0.069</td>
<td>0.078</td>
<td>0.088</td>
<td>0.098</td>
<td>0.109</td>
<td>0.120</td>
<td>0.131</td>
<td>0.142</td>
<td>0.153</td>
<td>0.163</td>
</tr>
<tr>
<td>0.09</td>
<td>0.080</td>
<td>0.089</td>
<td>0.099</td>
<td>0.110</td>
<td>0.120</td>
<td>0.131</td>
<td>0.142</td>
<td>0.153</td>
<td>0.164</td>
<td>0.175</td>
</tr>
<tr>
<td>0.10</td>
<td>0.092</td>
<td>0.101</td>
<td>0.112</td>
<td>0.123</td>
<td>0.134</td>
<td>0.145</td>
<td>0.156</td>
<td>0.167</td>
<td>0.178</td>
<td>0.189</td>
</tr>
<tr>
<td>0.11</td>
<td>0.103</td>
<td>0.114</td>
<td>0.125</td>
<td>0.136</td>
<td>0.147</td>
<td>0.158</td>
<td>0.169</td>
<td>0.180</td>
<td>0.191</td>
<td>0.202</td>
</tr>
<tr>
<td>0.12</td>
<td>0.115</td>
<td>0.126</td>
<td>0.137</td>
<td>0.148</td>
<td>0.159</td>
<td>0.170</td>
<td>0.181</td>
<td>0.192</td>
<td>0.203</td>
<td>0.214</td>
</tr>
<tr>
<td>0.13</td>
<td>0.126</td>
<td>0.137</td>
<td>0.148</td>
<td>0.159</td>
<td>0.170</td>
<td>0.181</td>
<td>0.192</td>
<td>0.203</td>
<td>0.214</td>
<td>0.225</td>
</tr>
<tr>
<td>0.14</td>
<td>0.138</td>
<td>0.149</td>
<td>0.160</td>
<td>0.171</td>
<td>0.182</td>
<td>0.193</td>
<td>0.204</td>
<td>0.215</td>
<td>0.226</td>
<td>0.237</td>
</tr>
<tr>
<td>0.15</td>
<td>0.150</td>
<td>0.161</td>
<td>0.172</td>
<td>0.183</td>
<td>0.194</td>
<td>0.205</td>
<td>0.216</td>
<td>0.227</td>
<td>0.238</td>
<td>0.249</td>
</tr>
<tr>
<td>0.16</td>
<td>0.163</td>
<td>0.174</td>
<td>0.186</td>
<td>0.197</td>
<td>0.208</td>
<td>0.220</td>
<td>0.231</td>
<td>0.243</td>
<td>0.254</td>
<td>0.265</td>
</tr>
<tr>
<td>0.17</td>
<td>0.176</td>
<td>0.187</td>
<td>0.199</td>
<td>0.210</td>
<td>0.222</td>
<td>0.234</td>
<td>0.246</td>
<td>0.258</td>
<td>0.270</td>
<td>0.282</td>
</tr>
<tr>
<td>0.18</td>
<td>0.189</td>
<td>0.201</td>
<td>0.213</td>
<td>0.225</td>
<td>0.237</td>
<td>0.249</td>
<td>0.262</td>
<td>0.274</td>
<td>0.286</td>
<td>0.299</td>
</tr>
<tr>
<td>0.19</td>
<td>0.202</td>
<td>0.214</td>
<td>0.227</td>
<td>0.239</td>
<td>0.251</td>
<td>0.264</td>
<td>0.277</td>
<td>0.290</td>
<td>0.303</td>
<td>0.316</td>
</tr>
<tr>
<td>0.20</td>
<td>0.215</td>
<td>0.228</td>
<td>0.241</td>
<td>0.254</td>
<td>0.267</td>
<td>0.280</td>
<td>0.293</td>
<td>0.306</td>
<td>0.320</td>
<td>0.333</td>
</tr>
<tr>
<td>0.21</td>
<td>0.228</td>
<td>0.241</td>
<td>0.255</td>
<td>0.268</td>
<td>0.281</td>
<td>0.294</td>
<td>0.308</td>
<td>0.321</td>
<td>0.335</td>
<td>0.349</td>
</tr>
<tr>
<td>0.22</td>
<td>0.241</td>
<td>0.255</td>
<td>0.269</td>
<td>0.283</td>
<td>0.296</td>
<td>0.310</td>
<td>0.324</td>
<td>0.338</td>
<td>0.352</td>
<td>0.366</td>
</tr>
<tr>
<td>0.23</td>
<td>0.254</td>
<td>0.268</td>
<td>0.283</td>
<td>0.297</td>
<td>0.311</td>
<td>0.325</td>
<td>0.339</td>
<td>0.354</td>
<td>0.368</td>
<td>0.383</td>
</tr>
<tr>
<td>0.24</td>
<td>0.268</td>
<td>0.283</td>
<td>0.298</td>
<td>0.312</td>
<td>0.327</td>
<td>0.342</td>
<td>0.357</td>
<td>0.372</td>
<td>0.387</td>
<td>0.403</td>
</tr>
<tr>
<td>0.25</td>
<td>0.282</td>
<td>0.298</td>
<td>0.313</td>
<td>0.329</td>
<td>0.344</td>
<td>0.359</td>
<td>0.375</td>
<td>0.391</td>
<td>0.407</td>
<td>0.423</td>
</tr>
<tr>
<td>0.26</td>
<td>0.296</td>
<td>0.313</td>
<td>0.329</td>
<td>0.345</td>
<td>0.361</td>
<td>0.377</td>
<td>0.394</td>
<td>0.410</td>
<td>0.427</td>
<td>0.444</td>
</tr>
<tr>
<td>0.27</td>
<td>0.310</td>
<td>0.329</td>
<td>0.345</td>
<td>0.362</td>
<td>0.379</td>
<td>0.396</td>
<td>0.413</td>
<td>0.430</td>
<td>0.447</td>
<td>0.465</td>
</tr>
<tr>
<td>0.28</td>
<td>0.325</td>
<td>0.345</td>
<td>0.362</td>
<td>0.380</td>
<td>0.398</td>
<td>0.416</td>
<td>0.434</td>
<td>0.452</td>
<td>0.470</td>
<td>0.488</td>
</tr>
<tr>
<td>0.29</td>
<td>0.340</td>
<td>0.361</td>
<td>0.380</td>
<td>0.400</td>
<td>0.418</td>
<td>0.437</td>
<td>0.456</td>
<td>0.475</td>
<td>0.494</td>
<td>0.513</td>
</tr>
<tr>
<td>0.30</td>
<td>0.355</td>
<td>0.377</td>
<td>0.400</td>
<td>0.420</td>
<td>0.440</td>
<td>0.460</td>
<td>0.480</td>
<td>0.501</td>
<td>0.521</td>
<td>0.541</td>
</tr>
</tbody>
</table>

$M_u/f_{bd}^2 = \omega(1 - 0.59\omega)$, where $\omega = \rho f_{y}/f_c'$

For design: Using factored moment M_u, enter table with $M_u/(\phi f_{bd}^2)$; find ω and compute steel percentage $\rho = \omega f_y/f_c'$.

For investigation: Enter table with $\omega = \rho f_y/f_c'$, find value of M_u/f_{bd}^2 and solve for nominal strength, M_n.

For design: Using factored moment M_u, enter table with $M_u/(\phi f_{bd}^2)$; find ω and compute steel percentage $\rho = \omega f_y/f_c'$.
Figure 7-3 shows the effect of the strength reduction factor ϕ. In particular, it shows what happens when the limit for tension-controlled sections with a ϕ of 0.9 is passed. As can be seen from Fig. 7-3, there is no benefit in designing a flexural member that is below the tension-controlled strain limit of 0.005. Any gain in strength with higher reinforcement ratios is offset by the reduction in the strength reduction factor ϕ at higher reinforcement ratios. Therefore, flexural members are more economical when designed as tension-controlled sections.

One might wonder “why even permit higher amounts of reinforcement and lower net tensile strains if there is no advantage?” In many cases, the provided steel is above the optimum at the limit for tension-controlled sections. The “flat” portion of the curve in Fig. 7-3 allows the designer to provide excess reinforcement above that required (considering discrete bar sizes) without being penalized for “being above a code limit.”

Although flexural members should almost always be designed as tension-controlled sections with $\varepsilon_t \geq 0.005$, it often happens that columns with small axial load and large bending moments are in the “transition region” with ε_t between 0.002 and 0.005, and ϕ is somewhere between that for compression-controlled sections and that for tension-controlled sections.

Columns are normally designed using interaction charts or tables. The “breakpoint” for ε_t of 0.005 and $\phi = 0.9$ may fall above or below the zero axial load line on the interaction diagrams.

Figure 7-3 Design Strength Curves (ϕR_n vs. ρ) for Grade 60 Reinforcement

DESIGN PROCEDURE FOR SECTIONS WITH TENSION REINFORCEMENT ONLY

Step 1: Select an approximate value of tension reinforcement ratio ρ equal to or less than ρ_t, but greater than the minimum (10.5.1), where the reinforcement ratio ρ_t is given by:

$$\rho_t = \frac{0.319 \beta \sqrt{f'_c}}{f_y}$$
where $\beta_1 = 0.85$ for $f_c' \leq 4000$ psi

$$= 0.85 - 0.05 \left(\frac{f_c' - 4000}{1000} \right) \text{ for } 4000 \text{ psi} < f_c' < 8000 \text{ psi}$$

$$= 0.65 \text{ for } f_c' \geq 8000 \text{ psi}$$

Values of ρ_t are given in Table 6-1.

Step 2: With ρ preset ($\rho_{\text{min}} \leq \rho \leq \rho_t$) compute b_d^2 required:

$$b_d^2 \text{ (required)} = \frac{M_u}{\phi R_n}$$

where $R_n = \rho f_y \left(1 - \frac{0.5 f_y}{0.85 f_c'} \right)$, $\phi = 0.90$ for flexure with $\rho \leq \rho_t$, and $M_u = \text{applied factored moment (required flexural strength)}$

Step 3: Size the member so that the value of b_d^2 provided is greater than or equal to the value of b_d^2 required.

Step 4: Based on the provided b_d^2, compute a revised value of ρ by one of the following methods:

1. By Eq. (4) where $R_n = M_u/\phi b_d^2$ (exact method)

2. By strength curves such as those shown in Fig. 7-2 and Fig. 7-3. Values of ρ are given in terms of $R_n = M_u/\phi b_d^2$ for Grade 60 reinforcement.

3. By moment strength tables such as Table 7-1. Values of $\omega = \rho f_y / f_c'$ are given in terms of moment strength $M_u/\phi b_d^2$.

4. By approximate proportion

$$\rho = (\text{original } \rho) \left(\frac{\text{(revised } R_n)}{\text{(original } R_n)} \right)$$

Note from Fig. 7-2 that the relationship between R_n and ρ is approximately linear.

Step 5: Compute required A_s:

$$A_s = (\text{revised } \rho) \cdot (b_d \text{ provided})$$

When b and d are preset, the required A_s is computed directly from:

$$A_s = \rho \cdot (b_d \text{ provided})$$

where ρ is computed using one of the methods outlined in Step 4.
DESIGN PROCEDURE FOR SECTIONS WITH MULTIPLE LAYERS OF STEEL

The simple and conservative way to design a beam with two layers of tension steel is to take \(d_t \) equal to \(d \), the depth to the centroid of all the tension steel. However, the code does permit the designer to take advantage of the fact that \(d_t \), measured to the center of the layer farthest from the compression face, is greater than \(d \). The only time this would be necessary is when designing at or very close to the strain limit of 0.005 for tension-controlled sections.

Figure 7-4 shows strain and stress diagrams for a section with multiple layers of steel with the extreme steel layer at the tension-controlled strain limit of 0.005. Let \(\rho_2 \) stand for the maximum \(\rho \) (based on \(d \)) for this section.

\[
\rho_2 = \frac{C}{f_y bd}
\]

However,

\[
\rho_t = \frac{C}{f_y bd_t}
\]

Therefore,

\[
\frac{\rho_2}{\rho_t} = \frac{d_t}{d}
\]

\[
\rho_2 = \rho_t \left(\frac{d_t}{d} \right)
\]

Additional information can be found in the strain diagram of Fig. 7-4. The yield strain of Grade 60 reinforcement is 0.00207. By similar triangles, any Grade 60 steel that is within 0.366 \(d_t \) of the bottom layer will be at yield. This is almost always the case, unless steel is distributed on the side faces. Also, compression steel will be at yield if it is within 0.116\(d_t \) (or, 0.31\(c \)) of the compression face.
DESIGN PROCEDURE FOR RECTANGULAR SECTIONS WITH COMPRESSION REINFORCEMENT (see Part 6)

Steps are summarized for the design of rectangular beams (with b and d preset) requiring compression reinforcement (see Example 7.3).

Step 1. Check to see if compression reinforcement is needed. Compute

\[R_n = \frac{M_n}{bd^2} \]

Compare this to the maximum \(R_n \) for tension-controlled sections given in Table 6-1. If \(R_n \) exceeds this, use compression reinforcement.

If compression reinforcement is needed, it is likely that two layers of tension reinforcement will be needed. Estimate \(d_t/\delta \) ratio.

Step 2. Find the nominal moment strength resisted by a section without compression reinforcement, and the additional moment strength \(M'_n \) to be resisted by the compression reinforcement and by added tension reinforcement.

From Table 6-1, find \(\rho_t \). Then, using Eq. (6);

\[\rho = \rho_t \left(\frac{d_t}{\delta} \right) \]

\[\omega = \rho \frac{f_y}{f'_c} \]

Determine \(M_{nt} \) from Table 7-1.

Compute moment strength to be resisted by compression reinforcement:

\[M'_n = M_n - M_{nt} \]

Step 3. Check yielding of compression reinforcement

If \(d'/\delta < 0.31 \), compressive reinforcement has yielded and \(f'_s = f_y \)

See Part 6 to determine \(f'_s \) when the compression reinforcement does not yield.

Step 4. Determine the total required reinforcement, \(A'_s \) and \(A_s \).

\[A'_s = \frac{M'_n}{(d-d')f'_c} \]

\[A_s = \frac{M'_a}{(d-d')f_y} + pbd \]
Step 5: Check moment capacity

\[\phi M_n = \phi \left[(A - A'_s) f_y \left(d - \frac{a}{2} \right) + A'_s f_y \left(d - d' \right) \right] \geq M_u \]

where

\[a = \frac{(A_s - A'_s) f_y}{0.85f'_c b} \]

DESIGN PROCEDURE FOR FLANGED SECTIONS WITH TENSION REINFORCEMENT
(see Part 6)

Steps are summarized for the design of flanged sections with tension reinforcement only (see Examples 7.4 and 7.5).

Step 1: Determine effective flange width \(b \) according to 8.12.

Using Table 7-1, determine the depth of the equivalent stress block \(a \), assuming rectangular section behavior with \(b \) equal to the flange width (i.e., \(a \leq h_f \)):

\[a = \frac{A_s f_y}{0.85f'_c b} = \frac{\rho df_y}{0.85f'_c} = 1.18\omega d \]

where \(\omega \) is obtained from Table 7-1 for \(M_u / \phi f'_c b d^2 \). Assume tension-controlled section with \(\phi = 0.9 \).

Step 2: If \(a \leq h_f \), determine the reinforcement as for a rectangular section with tension reinforcement only. If \(a > h_f \), go to step 3.

Step 3: If \(a > h_f \), compute the required reinforcement \(A_{sf} \) and the moment strength \(\phi M_{nf} \) corresponding to the overhanging beam flange in compression:

\[A_{sf} = C_f \frac{f_y}{f'_c} = \frac{0.85f'_c}{f_y} \left(b - b_w \right) h_f \]

\[\phi M_{nf} = \phi \left[A_{sf} f_y \left(d - \frac{h_f}{2} \right) \right] \]

Step 4: Compute the required moment strength to be carried by the beam web:

\[M_{uw} = M_u - \phi M_{nf} \]

Step 5: Using Table 7-1, compute the reinforcement \(A_{sw} \) required to develop the moment strength to be carried by the web:

\[A_{sw} = \frac{0.85f'_c b_w a_w}{f_y} \]
where \(a_w = 1.18 \omega_w d \) with \(\omega_w \) obtained from Table 7-1 for \(M_{uw} / \phi f'c b_w d^2 \).

Alternatively, obtain \(A_{sw} \) from the following:

\[
A_{sw} = \frac{\omega_w f'c b_w d}{f_y}
\]

Step 6: Determine the total required reinforcement:
\[
A_s = A_{sf} + A_{sw}
\]

Step 7: Check to see if section is tension-controlled, with \(\phi = 0.9 \).
\[
c = \frac{a_w}{\beta_1}
\]

If \(c/d_t \leq 0.375 \), section is tension-controlled
If \(c/d_t > 0.375 \), add compression reinforcement

Step 8: Check moment capacity:
\[
\phi M_n = \phi \left[(A_s - A_{sf}) f_y \left(d - \frac{a_w}{2} \right) + A_{sf} f_y \left(d - \frac{h_r}{2} \right) \right] \geq M_u
\]

where \(A_{sf} = \frac{0.85 f'c (b - b_w) h_r}{f_y} \)

\[
a_w = \frac{(A_s - A_{sf}) f_y}{0.85 f'c b_w}
\]

GENERAL CONSIDERATIONS—FLEXURE AND AXIAL LOAD

Design or investigation of a short compression member (without slenderess effect) is based primarily on the strength of its cross-section. Strength of a cross-section under combined flexure and axial load must satisfy both force equilibrium and strain compatibility (see Part 6). The combined nominal axial load and moment strength \((P_n, M_n)\) is then multiplied by the appropriate strength reduction factor \(\phi \) to obtain the design strength \((\phi P_n, \phi M_n)\) of the section. The design strength must be equal to or greater than the required strength:

\[
(\phi P_n, \phi M_n) \geq (P_u, M_u)
\]

All members subjected to combined flexure and axial load must be designed to satisfy this basic criterion. Note that the required strength \((P_u, M_u)\) represents the structural effects of the various combinations of loads and forces to which a structure may be subjected; see Part 5 for discussion on 9.2.

A “strength interaction diagram” can be generated by plotting the design axial load strength \(\phi P_n \) against the corresponding design moment strength \(\phi M_n \); this diagram defines the “usable” strength of a section at different eccentricities of the load. A typical design load-moment strength interaction diagram is shown in Fig. 7-5, illustrating the various segments of the strength curve permitted for design. The “flat-top” segment of the design strength curve defines the limiting axial load strength \(P_{n,max} \); see Part 6 for a discussion on 10.3.6. As
the design axial load strength ϕP_n decreases, a transition occurs between the compression-controlled limit and the tension-controlled limit, as shown in the figure. Example 6.4 illustrates the construction of an interaction diagram.

Figure 7-5 Design Load-Moment Strength Diagram (tied column)

GENERAL CONSIDERATIONS—BIAXIAL LOADING

Biaxial bending of columns occurs when the loading causes bending simultaneously about both principal axes. The commonly encountered case of such loading occurs in corner columns. Design for biaxial bending and axial load is mentioned in R10.3.6 and R10.3.7. Section 10.10 addresses moment magnifiers for slenderness consideration of compression members under biaxial loading. Section R10.3.6 states that “corner and other columns exposed to known moments about each axis simultaneously should be designed for biaxial bending and axial load.” Two methods are recommended for combined biaxial bending and axial load design: the Reciprocal Load Method and the Load Contour Method. Both methods, and an extension of the Load Contour Method (PCA Load Contour Method), are presented below.

BIAXIAL INTERACTION STRENGTH

A uniaxial interaction diagram defines the load-moment strength along a single plane of a section under an axial load P and a uniaxial moment M. The biaxial bending resistance of an axially loaded column can be represented schematically as a surface formed by a series of uniaxial interaction curves drawn radially from the P axis (see
Fig. 7-6). Data for these intermediate curves are obtained by varying the angle of the neutral axis (for assumed strain configurations) with respect to the major axes (see Fig. 7-7).

The difficulty associated with the determination of the strength of reinforced columns subject to combined axial load and biaxial bending is primarily an arithmetic one. The bending resistance of an axially loaded column about a particular skewed axis is determined through iterations involving simple but lengthy calculations. These extensive calculations are compounded when optimization of the reinforcement or cross-section is sought.

For uniaxial bending, it is customary to utilize design aids in the form of interaction curves or tables. However, for biaxial bending, because of the voluminous nature of the data and the difficulty in multiple interpolations, the development of interaction curves or tables for the various ratios of bending moments about each axis is impractical. Instead, several approaches (based on acceptable approximations) have been developed that relate the response of a column in biaxial bending to its uniaxial resistance about each major axis.
FAILURE SURFACES

The nominal strength of a section under biaxial bending and compression is a function of three variables P_n, M_{nx} and M_{ny} which may be expressed in terms of an axial load acting at eccentricities $e_x = M_{ny}/P_n$ and $e_y = M_{nx}/P_n$ as shown in Fig. 7-8. A failure surface may be described as a surface produced by plotting the failure load P_n as a function of its eccentricities e_x and e_y, or of its associated bending moments M_{ny} and M_{nx}. Three types of failure surfaces have been defined. The basic surface S_1 is defined by a function which is dependent upon the variables P_n, e_x and e_y, as shown in Fig. 7-9(a). A reciprocal surface can be derived from S_1 in which the reciprocal of the nominal axial load P_n is employed to produce the surface S_2 $(1/P_n, e_x, e_y)$ as illustrated in Fig. 7-9(b). The third type of failure surface, shown in Fig. 7-9(c), is obtained by relating the nominal axial load P_n to the moments M_{nx} and M_{ny} to produce surface S_3 (P_n, M_{nx}, M_{ny}). Failure surface S_3 is the three-dimensional extension of the uniaxial interaction diagram previously described.

A number of investigators have made approximations for both the S_2 and S_3 failure surfaces for use in design and analysis. An explanation of these methods used in current practice, along with design examples, is given below.

![Figure 7-8 Notation for Biaxial Loading](image)

![Figure 7-9 Failure Surfaces](image)

A. Bresler Reciprocal Load Method

This method approximates the ordinate $1/P_n$ on the surface S_2 $(1/P_n, e_x, e_y)$ by a corresponding ordinate $1/P_n'$ on the plane S_2' $(1/P_n', e_x, e_y)$, which is defined by the characteristic points A, B and C, as indicated in Fig. 7-10. For any particular cross-section, the value P_n (corresponding to point C) is the load strength under pure axial compression; P_{ox} (corresponding to point B) and P_{oy} (corresponding to point A) are the load strengths under uniaxial eccentricities e_x and e_y, respectively. Each point on the true surface is approximated by a different plane; therefore, the entire surface is approximated using an infinite number of planes.

The general expression for axial load strength for any values of e_x and e_y is as follows:
Figure 7-10 Reciprocal Load Method

\[\frac{1}{P_n} \approx \frac{1}{P'_n} = \frac{1}{P_{ox}} + \frac{1}{P_{oy}} - \frac{1}{P_o} \]

Rearranging variables yields:

\[P_n = \frac{1}{\frac{1}{P_{ox}} + \frac{1}{P_{oy}} - \frac{1}{P_o}}. \]

(7)

where

- \(P_{ox} = \) Maximum uniaxial load strength of the column with a moment of \(M_{nx} = P_n e_y \)
- \(P_{oy} = \) Maximum uniaxial load strength of the column with a moment of \(M_{ny} = P_n e_x \)
- \(P_o = \) Maximum axial load strength with no applied moments

This equation is simple in form and the variables are easily determined. Axial load strengths \(P_o, P_{ox}, \) and \(P_{oy} \) are determined using any of the methods presented above for uniaxial bending with axial load. Experimental results have shown the above equation to be reasonably accurate when flexure does not govern design. The equation should only be used when:

\[P_n \geq 0.1f'_c A_g. \]

(8)

B. Bresler Load Contour Method

In this method, the surface \(S_3 (P_n, M_{nx}, M_{ny}) \) is approximated by a family of curves corresponding to constant values of \(P_n \). These curves, as illustrated in Fig. 7-11, may be regarded as “load contours.”

The general expression for these curves can be approximated\(^\text{7,6}\) by a nondimensional interaction equation of the form

\[\left(\frac{M_{nx}}{M_{n0x}} \right)^\alpha + \left(\frac{M_{ny}}{M_{n0y}} \right)^\beta = 1.0 \]

(9)
Figure 7-11 Bresler Load Contours for Constant P_n on Failure Surface S_3

where M_{nx} and M_{ny} are the nominal biaxial moment strengths in the direction of the x and y axes, respectively. Note that these moments are the vectorial equivalent of the nominal uniaxial moment M_n. The moment M_{nox} is the nominal uniaxial moment strength about the x-axis, and M_{noy} is the nominal uniaxial moment strength about the y-axis. The values of the exponents α and β are a function of the amount, distribution and location of reinforcement, the dimensions of the column, and the strength and elastic properties of the steel and concrete. Bresler indicates that it is reasonably accurate to assume that $\alpha = \beta$; therefore, Eq. (9) becomes

\[
\left(\frac{M_{nx}}{M_{nox}}\right)^\alpha + \left(\frac{M_{ny}}{M_{noy}}\right)^\alpha = 1.0
\]

which is shown graphically in Fig. 7-12.

When using Eq. (10) or Fig. 7-12, it is still necessary to determine the α value for the cross-section being designed. Bresler indicated that, typically, α varied from 1.15 to 1.55, with a value of 1.5 being reasonably accurate for most square and rectangular sections having uniformly distributed reinforcement.

With α set at unity, the interaction equation becomes linear:

\[
\frac{M_{nx}}{M_{nox}} + \frac{M_{ny}}{M_{noy}} = 1.0
\]

Equation (11), as shown in Fig. 7-12, would always yield conservative results since it underestimates the column capacity, especially for high axial loads or low percentages of reinforcement. It should only be used when

\[
P_n < 0.1f'_cA_g
\]
C. PCA Load Contour Method

The PCA approach described below was developed as an extension of the Bresler Load Contour Method. The Bresler interaction equation [Eq. (10)] was chosen as the most viable method in terms of accuracy, practicality, and simplification potential.

A typical Bresler load contour for a certain P_n is shown in Fig. 7-13(a). In the PCA method, point B is defined such that the nominal biaxial moment strengths M_{nx} and M_{ny} at this point are in the same ratio as the uniaxial moment strengths M_{nox} and M_{noy}. Therefore, at point B

$$\frac{M_{nx}}{M_{ny}} = \frac{M_{nox}}{M_{noy}} \tag{13}$$

When the load contour of Fig. 7-13(a) is nondimensionalized, it takes the form shown in Fig. 7-13(b), and the point B will have x and y coordinates of β. When the bending resistance is plotted in terms of the dimensionless parameters P_n/P_o, M_{nx}/M_{nox}, M_{ny}/M_{noy} (the latter two designated as the relative moments), the generated failure surface $S_4 (P_n/P_o, M_{nx}/M_{nox}, M_{ny}/M_{noy})$ assumes the typical shape shown in Fig. 7-13(c). The advantage of expressing the behavior in relative terms is that the contours of the surface (Fig. 7-13(b))—i.e., the intersection formed by planes of constant P_n/P_o and the surface—can be considered for design purposes to be symmetrical about the vertical plane bisecting the two coordinate planes. Even for sections that are rectangular or have unequal reinforcement on the two adjacent faces, this approximation yields values sufficiently accurate for design.

The relationship between α from Eq. (10) and β is obtained by substituting the coordinates of point B from Fig. 7-13(a) into Eq. (10), and solving for α in terms of β. This yields:

$$\alpha = \log \frac{0.5}{\log \beta}$$
Figure 7-13(a) Load Contour of Failure Surface s_3 along Plane of Constant P_n

Figure 7-13(b) Nondimensional Load Contour at Constant P_n

Figure 7-13(c) Failure Surface S_4
Thus, Eq. (10) may be written as:

\[
\left(\frac{M_{nx}}{M_{nox}} \right) \left(\frac{\log 0.5}{\log \beta} \right) + \left(\frac{M_{ny}}{M_{noy}} \right) \left(\frac{\log 0.5}{\log \beta} \right) = 1.0
\]

For design convenience, a plot of the curves generated by Eq. (14) for nine values of \(\beta \) are given in Fig. 7-14. Note that when \(\beta = 0.5 \), its lower limit, Eq. (14) is a straight line joining the points at which the relative moments equal 1.0 along the coordinate planes. When \(\beta = 1.0 \), its upper limit, Eq. (14) is two lines, each of which is parallel to one of the coordinate planes.

Values of \(\beta \) were computed on the basis of 10.2, utilizing a rectangular stress block and the basic principles of equilibrium. It was found that the parameters \(\gamma \), b/h, and \(f'_c \) had minor effect on the \(\beta \) values. The maximum difference in \(\beta \) was about 5% for values of \(P_n/P_o \) ranging from 0.1 to 0.9. The majority of the \(\beta \) values, especially in the most frequently used range of \(P_n/P_o \), did not differ by more than 3%. In view of these small differences, only envelopes of the lowest \(\beta \) values were developed for two values of \(f_y \) and different bar arrangements, as shown in Figs. 7-15 and 7-16.

As can be seen from Figs. 7-15 and 7-16, \(\beta \) is dependent primarily on the ratio \(P_n/P_o \) and to a lesser, though still significant extent, on the bar arrangement, the reinforcement index \(\omega \) and the strength of the reinforcement.

Figure 7-14, in combination with Figs. 7-15 and 7-16, furnish a convenient and direct means of determining the biaxial moment strength of a given cross-section subject to an axial load, since the values \(P_o, M_{nox}, \) and \(M_{noy} \) can be readily obtained by methods described above.
While investigation of a given section has been simplified, the determination of a section which will satisfy the strength requirements imposed by a load eccentric about both axes can only be achieved by successive analyses of assumed sections. Rapid and easy convergence to a satisfactory section can be achieved by approximating the curves in Fig. 7-14 by two straight lines intersecting at the 45 degree line, as shown in Fig. 7-17.
By simple geometry, it can be shown that the equation of the upper lines is:

\[
\frac{M_{nx}}{M_{nox}} \left(\frac{1-\beta}{\beta} \right) + \frac{M_{ny}}{M_{noy}} = 1 \quad \text{for} \quad \frac{M_{ny}}{M_{nx}} > \frac{M_{noy}}{M_{nox}}
\]

(15)
which can be restated for design convenience as follows:

$$
M_{nx} \left(\frac{M_{noy}}{M_{nox}} \right) \left(\frac{1 - \beta}{\beta} \right) + M_{ny} = M_{noy}
$$

(16)

For rectangular sections with reinforcement equally distributed on all faces, Eq. (16) can be approximated by:

$$
M_{nx} \left(\frac{b}{h_a} \right) \left(\frac{1 - \beta}{\beta} \right) + M_{ny} = M_{noy}
$$

(17)

The equation of the lower line of Fig. 7-17 is:

$$
\frac{M_{nx}}{M_{nox}} + \frac{M_{ny}}{M_{noy}} \left(\frac{1 - \beta}{\beta} \right) = 1 \text{ for } \frac{M_{ny}}{M_{nx}} < \frac{M_{noy}}{M_{nox}}
$$

(18)

$$
M_{nx} + M_{ny} \left(\frac{M_{nox}}{M_{noy}} \right) \left(\frac{1 - \beta}{\beta} \right) = M_{nox}
$$

(19)

or

For rectangular sections with reinforcement equally distributed on all faces,

$$
M_{nx} + M_{ny} \left(\frac{h_a}{b} \right) \left(\frac{1 - \beta}{\beta} \right) = M_{nox}
$$

(20)

In design Eqs. (17) and (20), the ratio b/h_a or h_a/b must be chosen and the value of β must be assumed. For lightly loaded columns, β will generally vary from 0.55 to about 0.70. Hence, a value of 0.65 for β is generally a good initial choice in a biaxial bending analysis.
MANUAL DESIGN PROCEDURE

To aid the engineer in designing columns for biaxial bending, a procedure for manual design is outlined below:

1. Choose the value of β at 0.65 or use Figs. 7-15 and 7-16 to make an estimate.

2. If M_{ny}/M_{nx} is greater than b/h, use Eq. (17) to calculate an approximate equivalent uniaxial moment strength M_{noy}. If M_{ny}/M_{nx} is less than b/h, use Eq. (20) to calculate an approximate equivalent uniaxial moment strength M_{nox}.

3. Design the section using any of the methods presented above for uniaxial bending with axial load to provide an axial load strength P_n and an equivalent uniaxial moment strength M_{noy} or M_{nox}.

4. Verify the section chosen by any one of the following three methods:

 a. **Bresler Reciprocal Load Method**:

 $P_n \leq \frac{1}{P_{ox}} + \frac{1}{P_{oy}} - \frac{1}{P_o}$

 (7)

 b. **Bresler Load Contour Method**:

 $\frac{M_{nx}}{M_{nox}} + \frac{M_{ny}}{M_{noy}} \leq 1.0$

 (11)

 c. **PCA Load Contour Method**: Use Eq. (14) or,

 $\frac{M_{nx}}{M_{nox}} \left(1 - \frac{1}{\beta}\right) + \frac{M_{ny}}{M_{noy}} \leq 1.0$ for $\frac{M_{ny}}{M_{nx}} > \frac{M_{noy}}{M_{nox}}$.

 (15)

 $\frac{M_{nx}}{M_{nox}} + \frac{M_{ny}}{M_{noy}} \left(1 - \frac{1}{\beta}\right) \leq 1.0$ for $\frac{M_{ny}}{M_{nx}} < \frac{M_{noy}}{M_{nox}}$.

 (18)

REFERENCES

7.10 Ramamurthy, L. N., “Investigation of the Ultimate Strength of Square and Rectangular Columns under Biaxially Eccentric Loads,” Symposium on Reinforced Concrete Columns, American Concrete Institute, Detroit, MI, 1966, pp. 263-298.

Example 7.1—Design of Rectangular Beam with Tension Reinforcement Only

Select a rectangular beam size and required reinforcement A_s to carry service load moments $M_D = 56$ ft-kips and $M_L = 35$ ft-kips. Select reinforcement to control flexural cracking.

- $f'_c = 4000$ psi (normal weight)
- $f_y = 60,000$ psi

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To illustrate a complete design procedure for rectangular sections with tension reinforcement only, a minimum beam depth will be computed using the maximum reinforcement permitted for tension-controlled flexural members, ρ_t. The design procedure will follow the method outlined on the preceding pages.</td>
<td>10.3.4</td>
</tr>
<tr>
<td>Step 1. Determine maximum tension-controlled reinforcement ratio for material strengths $f'_c = 4000$ psi and $f_y = 60,000$ psi. $\rho_t = 0.01806$ from Table 6-1</td>
<td></td>
</tr>
<tr>
<td>Step 2. Compute bd^2 required.</td>
<td></td>
</tr>
<tr>
<td>Required moment strength: $M_u = (1.2 \times 56) + (1.6 \times 35) = 123.2$ ft-kips</td>
<td>Eq. (9-2)</td>
</tr>
<tr>
<td>$R_n = R_n = \rho f_y \left(1 - \frac{0.5 f_y}{0.85 f'_c}\right)$</td>
<td></td>
</tr>
<tr>
<td>$= (0.01806 \times 60,000) \left(1 - \frac{0.5 \times 0.01806 \times 60,000}{0.85 \times 4000}\right) = 911$ psi</td>
<td></td>
</tr>
<tr>
<td>bd^2 (required) $= \frac{M_u}{\phi R_n} = \frac{123.2 \times 12 \times 1000}{0.90 \times 911} = 1803$ in.3</td>
<td></td>
</tr>
<tr>
<td>Step 3. Size member so that bd^2 provided $\geq bd^2$ required.</td>
<td></td>
</tr>
<tr>
<td>Set $b = 10$ in. (column width)</td>
<td></td>
</tr>
<tr>
<td>$d = \sqrt{\frac{1803}{10}} = 13.4$ in.</td>
<td></td>
</tr>
<tr>
<td>Minimum beam depth $\approx 13.4 + 2.5 = 15.9$ in.</td>
<td></td>
</tr>
</tbody>
</table>
Example 7.1 (cont’d) Calculations and Discussion

For moment strength, a 10 × 16 in. beam size is adequate. However, deflection is an essential consideration in designing beams by the Strength Design Method. Control of deflection is discussed in Part 10.

Step 4. Using the 16 in. beam depth, compute a revised value of ρ. For illustration, ρ will be computed by all four methods outlined earlier.

d = 16 - 2.5 = 13.5 in.

1. By Eq. (4) (exact method):

\[R_n = \frac{M_u}{\phi bd^2 \text{ provided}} = \frac{123.2 \times 12 \times 1000}{0.90 \left(10 \times 13.5^2\right)} = 901 \text{ psi} \]

\[\rho = \frac{0.85f'_c}{f_y} \left(1 - \sqrt{1 - \frac{2R_n}{0.85f'_c}}\right) \]

\[= \frac{0.85 \times 0.85}{60} \left(1 - \sqrt{1 - \frac{2 \times 901}{0.85 \times 4000}}\right) = 0.0178 \]

2. By strength curves such as shown in Fig. 7-2:

for \(R_n = 901 \text{ psi}, \rho \approx 0.0178 \)

3. By moment strength tables such as Table 7-1:

\[\frac{M_u}{\phi f'_c bd^2} = \frac{123.2 \times 12 \times 1000}{0.90 \times 4000 \times 10 \times 13.5^2} = 0.2253 \]

\[\omega \approx 0.2676 \]

\[\rho = \frac{0.85f'_c}{f_y} \left(1 - \sqrt{1 - \frac{2R_n}{0.85f'_c}}\right) \]

4. By approximate proportion:

\[\rho \approx \left(\frac{\text{original } \rho}{\text{original } R_n}\right) \left(\frac{\text{revised } R_n}{\text{revised } R_n}\right) \]

\[\rho = 0.01806 \times \frac{901}{911} = 0.0179 \]
Step 5. Compute A_s required.

$$A_s = \text{(revised } \rho) \text{ (bd provided)}$$

$$= 0.0178 \times 10 \times 13.5 = 2.40 \text{ in.}^2$$

2. A review of the correctness of the computations can be made by considering statics.

$$T = A_s f_y = 2.40 \times 60 = 144.0 \text{ kips}$$

$$a = \frac{A_s f_y}{0.85 f'_c b} = \frac{144.0}{0.85 \times 4 \times 10} = 4.24 \text{ in.}$$

Design moment strength:

$$\phi M_n = \phi \left[A_s f_y \left(d - \frac{a}{2} \right) \right] = 0.9 \left[144.0 \left(13.5 - \frac{4.24}{2} \right) \right]$$

$$= 1,475 \text{ in.-kips} = 122.9 \text{ ft-kips} \approx \text{ required } M_u = 123.2 \text{ ft-kips} \text{ O.K.}$$

3. Select reinforcement to satisfy distribution of flexural reinforcement requirements of 10.6.

A_s required = 2.40 in.2

For illustrative purposes, select 1-No. 9 and 2-No. 8 bars ($A_s = 2.40 \text{ in.}^2$). For practical design and detailing, one bar size for total A_s is preferable.

$c_c = 1.5 + 0.5 = 2.0 \text{ in.}$

Maximum spacing allowed,
Example 7.1 (cont’d) Calculations and Discussion Code Reference

\[s = 15 \left(\frac{40,000}{f_s} \right) - 2.5c_c \leq 12 \left(\frac{40,000}{f_s} \right) \]

\[\text{Use } f_s = \frac{2}{3} f_y = 40 \text{ ksi} \]

\[s = 15 \left(\frac{40,000}{40,000} \right) - 2.5 \times 2 = 10 \text{ in. (governs)} \]

or, \[s = 12 \left(\frac{40,000}{40,000} \right) = 12 \text{ in.} \]

or, refer to Table 9-1: for \(f_s = 40 \text{ ksi} \) and \(c_c = 2 \), \(s = 10 \text{ in.} \)

Spacing provided \[= \frac{1}{2} \left\{ 10 - 2 \left(1.5 + 0.5 + \frac{1.0}{2} \right) \right\} \]

\[= 2.50 \text{ in. < 10 in.} \quad \text{O.K.} \]
Example 7.2—Design of One-Way Solid Slab

Determine required thickness and reinforcement for a one-way slab continuous over two or more equal spans. Clear span \(l_n = 18 \) ft.

- \(f'_c = 4000 \) psi (normalweight)
- \(f_y = 60,000 \) psi
- Service loads: \(w_d = 75 \) psf (assume 6-in. slab), \(w_l = 50 \) psf

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compute required moment strengths using approximate moment analysis permitted by 8.3.3. Design will be based on end span.</td>
</tr>
<tr>
<td>8.3.3</td>
</tr>
</tbody>
</table>
| Factored load \(q_u = (1.2 \times 75) + (1.6 \times 50) = 170 \) psf
 \[+M_u =
 \frac{q_u l_n^2}{14} = 0.170 \times 18^2/14 = 3.93 \text{ ft-kips/ft} \] |
| 8.3.3 |
| Negative moment at exterior face of first interior support:
 \[-M_u =
 \frac{q_u l_n^2}{10} = 0.170 \times 18^2/10 = 5.51 \text{ ft-kips/ft} \] |
| 10.3.3 |
| 2. Determine required slab thickness. |

Choose a reinforcement percentage \(\rho \) equal to about 0.5\(\rho_t \), or one-half the maximum permitted for tension-controlled sections, to have reasonable deflection control.

From Table 6-1, for \(f'_c = 4000 \) psi and \(f_y = 60,000 \) psi: \(\rho_t = 0.01806 \)

Set \(\rho = 0.5 (0.01806) = 0.00903 \)

Design procedure will follow method outlined earlier:

\[
R_n = \rho f_y \left(1 - \frac{0.5 f_y}{0.85 f'_c} \right) = (0.00903 \times 60,000) \left(1 - \frac{0.5 \times 60,000}{0.85 \times 4000} \right) = 499 \text{ psi}
\]

Required \(d = \sqrt{\frac{M_u}{\phi R_nb}} = \sqrt{\frac{5.51 \times 12,000}{0.90 \times 499 \times 12}} = 3.50 \) in.

Assuming No. 5 bars, required \(h_a = 3.50 + 0.31/2 + 0.75 = 4.41 \) in.

The above calculations indicate a slab thickness of 4.5 in. is adequate. However, Table 9-5(a) indicates a minimum thickness of \(\ell/24 \geq 9 \) in., unless deflections are computed. Also note that Table 9-5(a) is applicable only to “members in one-way construction not supporting or attached...
to partitions or other construction likely to be damaged by large deflections.” Otherwise deflections must be computed.

For purposes of illustration, the required reinforcement will be computed for \(h_a = 4.5 \text{ in.} \), \(d = 3.59 \text{ in.} \).

3. Compute required negative moment reinforcement.

\[
R_n = \frac{M_u \phi}{bd^2} = \frac{5.51 \times 12 \times 1000}{0.9 \times 12 \times 3.59^2} = 475
\]

\[
\rho = 0.00903 \left(\frac{475}{499} \right) = 0.00860
\]

\(-A_s \text{ (required)} = \rho bd = 0.00860 \times 12 \times 3.59 = 0.37 \text{ in.}^2/\text{ft}\)

Use No. 5 @ 10 in. (\(A_s = 0.37 \text{ in.}^2/\text{ft} \))

4. For positive moment, use Table 7-1:

\[
\frac{M_u}{\phi f_c' bd^2} = \frac{3.93 \times 12,000}{0.9 \times 4000 \times 12 \times 3.59^2} = 0.0847
\]

From Table 7-1, \(\omega = 0.090 \)

\[
\rho = \frac{\omega f_c'}{f_y} = 0.090 \times \frac{4}{60} = 0.006
\]

\(+A_s \text{ (required)} = \rho bd = 0.006 \times 12 \times 3.59 = 0.258 \text{ in.}^2/\text{ft}\)

Use No. 4 @ 9 in. (\(A_s = 0.27 \text{ in.}^2/\text{ft} \)) or No. 5 @ 12 in. (\(A_s = 0.31 \text{ in.}^2/\text{ft} \))
Example 7.3—Design of Rectangular Beam with Compression Reinforcement

A beam cross-section is limited to the size shown. Determine the required area of reinforcement for service load moments $M_D = 430$ ft-kips and $M_L = 175$ ft-kips. Check crack control requirements of 10.6.

$f_c' = 4000$ psi (normalweight)

$f_y = 60,000$ psi

1. Determine required reinforcement.

Step 1. Determine if compression reinforcement is needed.

\[
M_u = 1.2M_D + 1.6M_L = 796 \text{ ft-kips}
\]

\[
M_n = \frac{M_u}{\phi} = 796/0.9 = 884 \text{ ft-kips}
\]

\[
R_n = \frac{M_n}{bd^2} = \frac{884 \times 12 \times 1000}{12 \times 30^2} = 982
\]

This exceeds the maximum R_n of 911 for tension-controlled sections of 4000 psi concrete, without compression reinforcement. (see Table 6-1.) Also, it appears likely that two layers of tension reinforcement will be necessary. Estimate $d = d_t - 1.2$ in. = 28.8 in.

Step 2. Find the nominal strength moment resisted by the concrete section, without compression reinforcement.

\[
\rho_t = 0.01806 \text{ from Table 6-1}
\]

\[
\rho = \rho_t \left(\frac{d_t}{d}\right) = 0.01806 \left(\frac{30}{28.8}\right) = 0.01881
\]

\[
\omega = \rho \frac{f_y}{f_c'} = 0.01881 \times \frac{60}{4} = 0.282
\]
Example 7.3 (cont’d) Calculations and Discussion

\[\frac{M_{nt}}{f'_c bd^2} = 0.2351 \text{ from Table 7-1} \]

\[M_{nt} = 0.2351 \times 4 \times 12 \times 28.8^2 = 9,360 \text{ in.-kips} = 780 \text{ ft-kips} \]

resisted by the concrete

Required moment strength to be resisted by the compression reinforcement:

\[M'_n = 884-780 = 104 \text{ ft-kips} \]

Step 3. Determine the compression steel stress \(f'_s \).

Check yielding of compression reinforcement. Since the section was designed at the tension-controlled net tensile strain limit \(\varepsilon_t = 0.005 \), \(c_{a1}/d_t = 0.375 \)

\[c_{a1} = 0.375d_t = 0.375 \times 30 = 11.25 \text{ in.} \]

\[d'/c_{a1} = 2.5/11.25 = 0.22 < 0.31 \]

Compression reinforcement yields at the nominal strength \((f'_s = f_y) \)

Step 4. Determine the total required reinforcement:

\[A'_s = \frac{M'_n}{f_y (d - d')} \]

\[= \frac{104 \times 12 \times 1000}{60,000 (28.8 - 2.5)} = 0.79 \text{ in}^2 \]

\[A_s = 0.79 + \rho bd \]

\[= 0.79 + (0.01881 \times 12 \times 28.8) = 7.29 \text{ in}^2 \]

Step 5. Check moment capacity.

When the compression reinforcement yields:

\[a = \frac{(A_s - A'_s) f_y}{0.85 f'_c} = \frac{6.50 \times 60}{0.85 \times 4 \times 12} = 9.56 \text{ in.} \]

\[\phi M_n = \phi \left[(A_s - A'_s) f_y \left(d - \frac{a}{2} \right) + A'_s f_y \left(d - d' \right) \right] \]

\[= 0.9 \left[6.50 \times 60 \left(28.8 - \frac{9.56}{2} \right) + (0.79 \times 60) (28.8 - 2.5) \right]/12 \]
Example 7.3 (cont’d) Calculations and Discussion

= 796 ft-kips = $M_u = 796$ ft-kips O.K.

2. Select reinforcement to satisfy control of flexural cracking criteria of 10.6.

Compression reinforcement:

Select 2-No. 6 bars ($A'_c = 0.88 \text{ in.}^2 > 0.79 \text{ in.}^2$)

Tension reinforcement:

Select 6-No. 10 bars in two layers ($A_s = 7.62 \text{ in.}^2 > 7.29 \text{ in.}^2$)

Maximum spacing allowed,

$$s = 15 \left(\frac{40,000}{f_s} \right) - 2.5c_c \leq 12 \left(\frac{40,000}{f_s} \right)$$

$$c_c = 1.5 + 0.5 = 2.0 \text{ in.}$$

Use $f_s = \frac{2}{3} f_y = 40 \text{ ksi}$

$$s = 15 \left(\frac{40,000}{40,000} \right) - (2.5 \times 2) = 10 \text{ in. (governs)}$$

or, $s = 12 \left(\frac{40,000}{40,000} \right) = 12 \text{ in.}$

Spacing provided

$$= \frac{1}{2} \left\{ 12 - 2 \left(1.5 + 0.5 + \frac{1.27}{2} \right) \right\}$$

$$= 4.68 \text{ in.} < 10 \text{ in.} \quad \text{O.K.}$$
4. Stirrups or ties are required throughout distance where compression reinforcement is required for strength.

Max. spacing = $16 \times \text{long. bar dia.} = 16 \times 0.75 = 12 \text{ in.}$ (governs)

= $48 \times \text{tie bar dia.} = 48 \times 0.5 = 24 \text{ in.}$

= least dimension of member = 12 in.

Use $s_{\text{max}} = 12$ in. for No. 4 stirrups

Using the simplified assumption of $d = d_t$, the extra steel is only 1.2 percent (calculations are not shown).
Select reinforcement for the T-section shown, to carry service dead and live load moments of
\(M_D = 72 \text{ ft-kips} \) and \(M_L = 88 \text{ ft-kips} \).

- \(f'_c = 4000 \text{ psi} \) (normalweight)
- \(f_y = 60,000 \text{ psi} \)

Calculations and Discussion

1. Determine required flexural strength.

\[
M_u = (1.2 \times 72) + (1.6 \times 88) = 227 \text{ ft-kips} \quad \text{Eq. (9-2)}
\]

2. Using Table 7-1, determine depth of equivalent stress block \(a \), as for a rectangular section.

Assume \(\phi = 0.9 \).

\[
\frac{M_u}{\phi f'_c bd^2} = \frac{227 \times 12}{0.9 \times 4 \times 30 \times 19^2} = 0.0699
\]

From Table 7-1, \(\omega \approx 0.073 \)

\[
a = \frac{A_s f_y}{0.85 f'_c} = \frac{\rho df_y}{0.85 f'_c} = 1.18 \times 1.18 \times 0.073 \times 19 = 1.64 \text{ in.} < 2.5 \text{ in.}
\]

With \(a < h_f \), determine \(A_s \) as for a rectangular section (see Ex. 7.5 for the case when \(a > h_f \)).

Check \(\phi \):

\[
c_{a1} = \frac{a}{\beta_1} = 1.64/0.85 = 1.93 \text{ in.}
\]

\[
c_{a1}/d_t = 1.93/19 = 0.102 < 0.375
\]

Section is tension-controlled, and \(\phi = 0.9 \).
3. Compute A_s required.

$$A_s f_y = 0.85 f'_{cb}$$

$$A_s = \frac{0.85 \times 4 \times 30 \times 1.64}{60} = 2.78 \text{ in}^2$$

Alternatively,

$$A_s = \rho b d = \frac{f'_{cb}}{f_y} b d$$

$$= 0.073 \times \frac{4}{60} \times 30 \times 19 = 2.77 \text{ in}^2$$

Try 3-No. 9 bars ($A_s = 3.0 \text{ in}^2$).

4. Check minimum required reinforcement.

For $f'_{cb} < 4444 \text{ psi}$,

$$\rho_{min} = \frac{200}{f_y} = \frac{200}{60,000} = 0.0033$$

$$\frac{A_s}{b_w d} = \frac{3.0}{10 \times 19} = 0.0158 > 0.0033 \quad \text{O.K.}$$

5. Check distribution of reinforcement.

Maximum spacing allowed,

$$s = 15 \left(\frac{40,000}{f_s} \right) - 2.5 c_c \leq 12 \left(\frac{40,000}{f_s} \right)$$

$$c_c = 1.5 + 0.5 = 2.0 \text{ in.}$$

Use $f_s = \frac{2}{3} f_y = 40 \text{ ksi}$

$$s = 15 \left(\frac{40,000}{40,000} \right) - (2.5 \times 2) = 10 \text{ in.} \quad \text{(governs)}$$

$$s = 12 \left(\frac{40,000}{40,000} \right) = 12 \text{ in.}$$

Spacing provided

$$= \frac{1}{2} \left(10 - 2 \left(1.5 + 0.5 + \frac{1.128}{2} \right) \right)$$

$$= 2.44 \text{ in.} < 10 \text{ in.} \quad \text{O.K.}$$

No. 4 stirrup
Example 7.5—Design of Flanged Section with Tension Reinforcement Only

Select reinforcement for the T-section shown, to carry a factored moment of $M_u = 400$ ft-kips.

$\begin{align*}
f'_c & = 4000 \text{ psi normalweight} \\
f_y & = 60,000 \text{ psi}
\end{align*}$

Calculations and Discussion

1. Determine required reinforcement.

 Step 1. Using Table 7-1, determine depth of equivalent stress block a, as for a rectangular section.

 Assume tension-controlled section, $\phi = 0.9$.

 \[
 M_n = M_u / \phi = 400/0.9 = 444 \text{ ft-kips}.
 \]

 Assume $a < 2.5$ in.

 \[
 \frac{M_n}{f'_c b d^2} = \frac{444 \times 12}{4 \times 30 \times 19^2} = 0.123
 \]

 From Table 7-1, $\omega = 0.134$

 \[
 a = \frac{A_s f_y}{0.85 f'_c b} = 1.18 \text{od}
 \]

 \[
 = 1.18 \times 0.134 \times 19 = 3.0 \text{ in.} > 2.5 \text{ in.}
 \]

 Step 2. Since the value of a as a rectangular section exceeds the flange thickness, the equivalent stress block extends in the web, and the design must be based on T-section behavior. See Example 7.4 when a is less than the flange depth.

 Step 3. Compute required reinforcement A_{sf} and nominal moment strength M_{nf} corresponding to the overhanging beam flange in compression (see Part 6).

Compressive strength of flange
Example 7.5 (cont’d) Calculations and Discussion

\[
C_f = 0.85 f'_c (b - b_w) h_f
\]
\[
= 0.85 \times 4 (30 - 10) 2.5 = 170 \text{ kips}
\]

Required \(A_{sf} \) to equilibrate \(C_f \):

\[
A_{sf} = \frac{C_f}{f_y} = \frac{170}{60} = 2.83 \text{ in.}^2
\]

Nominal moment strength of flange:

\[
M_{nf} = \left[A_{sf} f_y \left(d - \frac{h_f}{2} \right) \right]
\]
\[
= [2.83 \times 60 (19 - 1.25)]/12 = 251 \text{ ft-kips}
\]

Step 4. Required nominal moment strength to be carried by beam web:

\[
M_{nw} = M_n - M_{nf} = 444 - 251 = 193 \text{ ft-kips}
\]

Step 5. Using Table 7-1, compute reinforcement \(A_{sw} \) required to develop moment strength to be carried by the web.

\[
\frac{M_{nw}}{f'_c bd^2} = \frac{193 \times 12}{4 \times 10 \times 19^2} = 0.1604
\]

From Table 7-1, \(\omega_w = 0.179 \)

\[
\rho_w = 0.179 \times \frac{4}{60} = 0.01193
\]

Step 6. Check to see if section is tension-controlled, with \(\phi = 0.9 \):

\[
\rho_t = 0.01806 \text{ from Table 6-1.}
\]

Therefore, \(\rho_w < \rho_t \) and section is tension-controlled (\(\phi = 0.9 \))

\[
A_{sw} = \rho_w bd = 0.01193 \times 10 \times 19 = 2.27 \text{ in.}^2
\]

Step 7. Total reinforcement required to carry factored moment \(M_u = 400 \text{ ft-kips} \):

\[
A_s = A_{sf} + A_{sw} = 2.83 + 2.27 = 5.10 \text{ in.}^2
\]

Step 8. Check moment capacity.

\[
\phi M_n = \phi \left[(A_s - A_{sf}) f_y \left(d - \frac{a_w}{2} \right) + A_{sf} f_y \left(d - \frac{h_f}{2} \right) \right]
\]
Example 7.5 (cont’d) Calculations and Discussion

\[a_w = \frac{(A_s - A_{sf}) f_y}{0.85 f' c b_w} \]

\[= \frac{(5.10 - 2.83) \times 60}{0.85 \times 4 \times 10} = 4.01 \text{ in.} \]

\[\phi M_n = 0.9 [(5.10 - 2.83) 60 \left(19 - \frac{4.01}{2}\right) + (2.83 \times 60) \left(19 - \frac{2.5}{2}\right)]/12 \]

\[= 400 \text{ ft-kips} = M_u = 400 \text{ ft-kips} \quad \text{O.K.} \]

2. Select reinforcement to satisfy crack control criteria.

Try 5-No. 9 bars in two layers \((A_s = 5.00 \text{ in.}^2)\) (2% less than required, assumed sufficient)

- Maximum spacing allowed,

\[s = 15 \left(\frac{40,000}{f_s}\right) - 2.5 c_c \leq 12 \left(\frac{40,000}{f_s}\right) \quad \text{Eq. (10-4)} \]

\[c_c = 1.5 + 0.5 = 2.0 \text{ in.} \]

Use \(f_s = \frac{2}{3} f_y = 40 \text{ ksi}\)

\[s = 15 \left(\frac{40,000}{40,000}\right) - (2.5 \times 2) = 10 \text{ in. (governs)} \]

\[s = 12 \left(\frac{40,000}{40,000}\right) = 12 \text{ in.} \]

Spacing provided

\[= \frac{1}{2} \left[10 - 2 \left(1.5 + 0.5 + \frac{1.128}{2}\right)\right] \]

\[= 2.44 \text{ in.} < 10 \text{ in.} \quad \text{O.K.} \]

Note: Two layers of reinforcement are required, which may not have been recognized when \(d\) was assumed to be 19 in. Also, the provided steel is slightly less than required. Therefore, the overall height should be a little more than \(d + d_{cg} = 22.41\) in., or the steel should be increased.
Example 7.6—Design of One-Way Joist

Determine the required depth and reinforcement for the one-way joist system shown below. The joists are 6 in. wide and are spaced 36 in. o.c. The slab is 3.5 in. thick.

\[f'_c = 4000 \text{ psi normalweight} \]
\[f_y = 60,000 \text{ psi} \]

\[\text{Service DL} = 130 \text{ psf (assumed total for joists and beams plus superimposed dead loads)} \]
\[\text{Service LL} = 60 \text{ psf} \]

Width of spandrel beams = 20 in.
Width of interior beams = 36 in.

Columns: interior = 18 × 18 in.
 exterior = 16 × 16 in.

Story height (typ.) = 13 ft
Example 7.6 (cont’d) Calculations and Discussion

1. Compute the factored moments at the faces of the supports and determine the depth of the joists.

\[w_u = \left[(1.2 \times 0.13) + (1.6 \times 0.06) \right] \times 3 = 0.756 \text{ kips/ft} \hspace{2cm} \text{Eq. (9-2)} \]

Using the approximate coefficients, the factored moments along the span are summarized in the table below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Mu (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End span</td>
<td></td>
</tr>
<tr>
<td>Ext. neg.</td>
<td>(w_u \ell_n^2 / 24 = 0.756 \times 27.5^2 / 24 = 23.8)</td>
</tr>
<tr>
<td>Pos.</td>
<td>(w_u \ell_n^2 / 14 = 0.756 \times 27.5^2 / 14 = 40.9)</td>
</tr>
<tr>
<td>Int. neg.</td>
<td>(w_u \ell_n^2 / 10 = 0.756 \times 27.25^2 / 10 = 56.1)</td>
</tr>
<tr>
<td>Interior span</td>
<td></td>
</tr>
<tr>
<td>Pos.</td>
<td>(w_u \ell_n^2 / 16 = 0.756 \times 27^2 / 16 = 34.4)</td>
</tr>
<tr>
<td>Neg.</td>
<td>(w_u \ell_n^2 / 11 = 0.756 \times 27^2 / 11 = 50.1)</td>
</tr>
</tbody>
</table>

For reasonable deflection control, choose a reinforcement ratio \(\rho \) equal to about one-half \(\rho_t \). From Table 6-1, \(\rho_t = 0.01806 \).

Set \(\rho = 0.5 \times 0.01806 = 0.00903 \)

Determine the required depth of the joist based on \(M_u = 56.1 \text{ ft-kips} \):

\[\omega = \frac{\rho f_y}{f' c} = \frac{0.00903 \times 60}{4} = 0.1355 \]

From Table 7-1, \(M_u / \phi f' c b d^2 = 0.1247 \)

\[d = \sqrt{\frac{M_u}{\phi f' c b_w (0.1247)}} = \sqrt{\frac{56.1 \times 12}{0.9 \times 4 \times 6 \times 0.1247}} = 15.8 \text{ in.} \]

\(h_u = 15.8 + 1.25 = 17.1 \text{ in.} \)

From Table 9-5(a), the minimum required thickness of the joist is

\[h_{\text{min}} = \frac{\ell}{18.5} = \frac{30 \times 12}{18.5} = 19.5 \text{ in.} \]

Use a 19.5-in. deep joist (16 + 3.5).
Example 7.6 (cont’d) Calculations and Discussion

2. Compute required reinforcement.

 a. End span, exterior negative

 \[\frac{M_u}{\phi f'_c b d^2} = \frac{23.8 \times 12}{0.9 \times 4 \times 6 \times 18.25^2} = 0.0397 \]

 From Table 7-1, \(\omega \approx 0.041 \)

 \[A_s = \frac{\omega b d f'_c}{f_y} = \frac{0.041 \times 6 \times 18.25 \times 4}{60} = 0.30 \text{ in.}^2 \]

 For \(f'_c < 4444 \text{ psi} \), use

 \[A_{s, \text{min}} = \frac{200 b_w d}{f_y} = \frac{200 \times 6 \times 18.25}{60,000} = 0.37 \text{ in.}^2 > A_s \quad \text{Eq. (10-3)} \]

 Distribute bars uniformly in top slab:

 \[A_s = \frac{0.37}{3} = 0.123 \text{ in.}^2/\text{ft} \]

 Use No. 3 @ 10 in. \((A_s = 0.13 \text{ in.}^2/\text{ft}) \)

 b. End span, positive

 \[\frac{M_u}{\phi f'_c b d^2} = \frac{40.8 \times 12}{0.9 \times 4 \times 36 \times 18.25^2} = 0.0113 \]

 From Table 7-1, \(\omega \approx 0.012 \)

 \[A_s = \frac{\omega b d f'_c}{f_y} = \frac{0.012 \times 36 \times 18.25 \times 4}{60} = 0.53 \text{ in.}^2 \]

 Check rectangular section behavior:

 \[a = \frac{A_s f_y}{0.85 f'_c b} = \frac{0.53 \times 60}{0.85 \times 4 \times 36} = 0.26 \text{ in.} < 3.5 \text{ in.} \text{ O.K.} \]

 Use 2-No. 5 bars \((A_s = 0.62 \text{ in.}^2) \)

 c. End span, interior negative

 \[\frac{M_u}{\phi f'_c b d^2} = \frac{56.1 \times 12}{0.9 \times 4 \times 6 \times 18.25^2} = 0.0936 \]
Example 7.6 (cont’d) Calculations and Discussion

From Table 7-1, \(\omega \approx 0.100 \)

\[
A_s = \frac{\omega bd f'_c}{f_y} = \frac{0.100 \times 6 \times 18.25 \times 4}{60} = 0.73 \text{ in.}^2
\]

Distribute reinforcement uniformly in slab:

\[
A_s = \frac{0.73}{3} = 0.24 \text{ in.}^2/\text{ft}
\]

Use No. 5 @ 12 in. for crack control considerations in slabs (see Table 9-1).

d. The reinforcement for the other sections is obtained in a similar fashion. The following table summarizes the results. Note that at all sections, the requirements in 10.6 for crack control are satisfied.

<table>
<thead>
<tr>
<th>Location</th>
<th>(M_u) (ft-kips)</th>
<th>(A_s) (in.(^2))</th>
<th>Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>End span</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ext. neg.</td>
<td>23.8</td>
<td>0.37</td>
<td>No. 3@10 in.</td>
</tr>
<tr>
<td>Pos.</td>
<td>40.8</td>
<td>0.53</td>
<td>2-No. 5</td>
</tr>
<tr>
<td>Int. neg.</td>
<td>56.1</td>
<td>0.73</td>
<td>No. 5@12 in.*</td>
</tr>
<tr>
<td>Interior span</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pos.</td>
<td>34.4</td>
<td>0.42</td>
<td>2-No. 5</td>
</tr>
<tr>
<td>Neg.</td>
<td>50.1</td>
<td>0.65</td>
<td>No. 5@12 in.*</td>
</tr>
</tbody>
</table>

*Maximum 12 in. spacing required for crack control in slab.

d. The slab reinforcement normal to the ribs is often located at mid-depth of the slab to resist both positive and negative moments.

Use \(M_u = \frac{w_u l_n^2}{12} = \frac{0.185 \times 2.5^2}{12} = 0.096 \text{ ft-kips} \)

where \(w_u = 1.2 \ (44 + 30) + 1.6 \ (60) \)

\[
= 185 \text{ psf} = 0.185 \text{ kips/ft}^2
\]

\[
\frac{M_u}{\phi f'_c bd^2} = \frac{0.096 \times 12}{0.9 \times 4 \times 12 \times 1.75^2} = 0.0087
\]

From Table 7-1, \(\omega \approx 0.0087 \)

\[
A_s = \frac{\omega bd f'_c}{f_y} = \frac{0.0087 \times 12 \times 1.75 \times 4}{60} = 0.01 \text{ in.}^2/\text{ft}
\]
For slabs, minimum reinforcement is governed by the provisions in 7.12.2.1:

\[A_{s,\text{min}} = 0.0018 \times 12 \times 3.5 = 0.08 \text{ in.}^2/\text{ft} \]

\[s_{\text{max}} = 5h = 5 \times 3.5 = 17.5 \text{ in.} \quad \text{(governs)} \]

\[\leq 18 \text{ in.} \]

Use No. 3 @ 16 in. \((A_s = 0.08 \text{ in.}^2/\text{ft}) \)

3. Shear at supports must be checked. Since the joists meet the requirements in 8.13, the contribution of the concrete to shear strength \(V_c \) is permitted to be 10% more than that specified in Chapter 11.
Example 7.7—Design of Continuous Beams

Determine the required depth and reinforcement for the support beams along the interior column line in Example 7.6. The width of the beams is 36 in.

\[f'_c = 4000 \text{ psi (normal weight)} \]
\[f_y = 60,000 \text{ psi} \]

Service DL = 130 psf (assumed total for joists and beams plus superimposed dead loads)

Service LL = 60 psf

Columns: interior = 18 \times 18 \text{ in.}
exterior = 16 \times 16 \text{ in.}

Story height (typ.) = 13 ft

Calculations and Discussion

1. Compute the factored moments at the faces of the supports and determine the depth of the beam.

\[w_u = [(1.2 \times 0.13) + (1.6 \times 0.06)] \times 30 = 7.56 \text{ kips/ft} \tag{Eq. (9-2)} \]

Using the approximate coefficients, the factored moments along the span are summarized in the table below.

<table>
<thead>
<tr>
<th>Location</th>
<th>Mu (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End span</td>
<td></td>
</tr>
<tr>
<td>Ext. neg.</td>
<td>[\frac{w_u r_n^2}{16} = 7.56 \times \frac{28.58^2}{16} = 385.9]</td>
</tr>
<tr>
<td>Pos.</td>
<td>[\frac{w_u r_n^2}{14} = 7.56 \times \frac{28.58^2}{14} = 441.1]</td>
</tr>
<tr>
<td>Int. neg.</td>
<td>[\frac{w_u r_n^2}{10} = 7.56 \times \frac{28.54^2}{10} = 615.8]</td>
</tr>
<tr>
<td>Interior span</td>
<td></td>
</tr>
<tr>
<td>Pos.</td>
<td>[\frac{w_u r_n^2}{16} = 7.56 \times \frac{28.50^2}{16} = 383.8]</td>
</tr>
</tbody>
</table>

For overall economy, choose a beam depth equal to the joist depth used in Example 7.6.

Check the 19.5-in. depth for \(M_u = 615.8 \text{ ft-kips} \):

From Table 6-1,

\[\phi R_{nt} = 820 = \frac{M_{ut}}{bd^2} \]

\[M_{ut} = 820 \times 36 \times 17^2 /1000 = 8531 \text{ in.-kips} = 711 \text{ ft-kips} \]
Section will be tension-controlled without compression reinforcement.

Check beam depth based on deflection criteria in Table 9.5(a):

\[h_{\text{min}} = \frac{\ell}{18.5} = \frac{30 \times 12}{18.5} = 19.5 \text{ in.} \quad \text{O.K.} \]

Use a 36 \times 19.5 \text{ in. beam.}

2. Compute required reinforcement:

a. End span, exterior negative

\[M_u = \frac{385.9 \times 12}{0.9 \times 4 \times 36 \times 17^2} = 0.1236 \]

From Table 7-1, \(\omega \approx 0.134 \)

\[A_s = \frac{\omega b d f_c}{f_y} = \frac{0.134 \times 36 \times 17 \times 4}{60} = 5.47 \text{ in.}^2 \]

For \(f_c' < 4444 \text{ psi}, \) use

\[A_{s,\text{min}} = \frac{200 b_w d}{f_y} = \frac{200 \times 36 \times 17}{60,000} = 2.04 \text{ in.}^2 \]

Use 7-No. 8 bars (\(A_s = 5.53 \text{ in.}^2 \))

Check distribution of flexural reinforcement requirements of 10.6.

Maximum spacing allowed,

\[s = 15 \left(\frac{40,000}{f_s} \right) - 2.5 c_c \leq 12 \left(\frac{40,000}{f_s} \right) \]

\(c_c = 1.5 + 0.5 = 2.0 \text{ in.} \)

Use \(f_s = \frac{2}{3} f_y = 40 \text{ ksi} \)

\[s = 15 \left(\frac{40,000}{40,000} \right) - 2.5 \times 2 = 10 \text{ in. (governs)} \]

\[s = 12 \left(\frac{40,000}{40,000} \right) = 12 \text{ in.} \]
Example 7.7 (cont’d) Calculations and Discussion

Spacing provided = \[\frac{1}{6} \left\{ 36 - 2 \left(1.5 + 0.5 + \frac{1.0}{2} \right) \right\} \]

= 5.17 in. < 10 in. O.K.

b. End span, positive

\[\frac{M_u}{\phi f'c bd^2} = \frac{441.1 \times 12}{0.9 \times 4 \times 36 \times 17^2} = 0.1413 \]

From Table 7-1, \(\omega = 0.156 \)

\[A_s = \frac{\omega bd f'_c}{f_y} = \frac{0.156 \times 36 \times 17 \times 4}{60} = 6.37 \text{ in.}^2 \]

Use 11-No. 7 bars (\(A_s = 6.60 \text{ in.}^2 \))

Note that this reinforcement satisfies the cracking requirements in 10.6.4, and fits adequately within the beam width. It can also conservatively be used at the midspan section of the interior span.

c. End span, interior negative

\[\frac{M_u}{\phi f'c bd^2} = \frac{615.8 \times 12}{0.9 \times 4 \times 36 \times 17^2} = 0.1973 \]

From Table 7-1, \(\omega = 0.228 \)

\[A_s = \frac{\omega bd f'_c}{f_y} = \frac{0.228 \times 36 \times 17 \times 4}{60} = 9.30 \text{ in.}^2 \]

Use 10-No. 9 bars (\(A_s = 10.0 \text{ in.}^2 \))

This reinforcement is adequate for cracking and spacing requirements as well.
Example 7.8—Design of a Square Column for Biaxial Loading

Determine the required square tied column size and reinforcement for the factored load and moments given. Assume the reinforcement is equally distributed on all faces.

\[
P_u = 1200 \text{ kips, } M_{ux} = 300 \text{ ft-kips, } M_{uy} = 125 \text{ ft-kips}
\]

\[
f'_c = 5000 \text{ psi (normalweight), } f_y = 60,000 \text{ psi}
\]

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine required nominal strengths, assuming compression-controlled behavior:</td>
<td>9.3.2.2(b)</td>
</tr>
</tbody>
</table>
| \[
P_n = \frac{P_u}{\phi} = \frac{1200}{0.65} = 1846 \text{ kips}
\] | |
| \[
M_{nx} = \frac{M_{ux}}{\phi} = \frac{300}{0.65} = 461.5 \text{ ft-kips}
\] | |
| \[
M_{ny} = \frac{M_{uy}}{\phi} = \frac{125}{0.65} = 192.3 \text{ ft-kips}
\] | |
| 2. Assume \(\beta = 0.65 \) | |
| 3. Determine an equivalent uniaxial moment strength \(M_{nox} \) or \(M_{noy} \). | |
| \[
\frac{M_{ny}}{M_{nx}} = \frac{192.3}{465.1} = 0.42 \text{ is less than } \frac{b}{h_a} = 1.0 \text{ (square column)}
\] | |
| Therefore, using Eq. (20) | |
| \[
M_{nox} \approx M_{nx} + M_{ny} \frac{h_a}{b} \left(\frac{1-\beta}{\beta} \right)
\] | |
| \[
= 461.5 + \left[192.3 \times (1.0) \left(\frac{1-0.65}{0.65} \right) \right] = 565.1 \text{ ft-kips}
\] | |
| 4. Assuming a 24 in. square column, determine the reinforcement required to provide an axial load strength \(P_n = 1846 \text{ kips} \) and an equivalent uniaxial moment strength \(M_{nox} = 565.1 \text{ ft-kips} \) | |
| The figure on page 47 is an interaction diagram generated by the pcaColumn program for this column with 4-No. 11 bars. The section is adequate with this reinforcement for \((P_n, M_{nox}) \). | |
5. Selected section will now be checked for biaxial strength by each of the three methods presented in the discussion.

a. Bresler Reciprocal Load Method

Check \(P_n \geq 0.1 f'_c A_g \)

\[
1714 \text{ kips} > 0.1 (5) (576) = 288 \text{ kips} \quad \text{O.K.}
\]

To employ this method, \(P_o, P_{ox}, \) and \(P_{oy} \) must be determined.

\[
P_o = 0.85 f'_c (A_g - A_{st}) + A_{st} f_y
\]

\[
= 0.85 (5) (576 - 6.24) + 6.24 (60) = 2796 \text{ kips}
\]

\(P_{ox} \) is the uniaxial load strength when only \(M_{nx} \) acts on the column. From the interaction diagram, \(P_{ox} = 2225 \) kips when \(M_{nx} = 461.5 \) ft-kips.

Similarly, \(P_{oy} = 2575 \) kips when \(M_{ny} = 192.3 \) ft-kips. Note that both \(P_{ox} \) and \(P_{oy} \) are greater than the balanced axial force, so that the section is compression-controlled.

Using the above values, Eq. (7) can now be evaluated:

\[
P_n = 1846 \text{ kips} \leq \frac{1}{1} + \frac{1}{P_{ox}} + \frac{1}{P_{oy}}
\]
Example 7.8 (cont’d) Calculations and Discussion

\[
< \frac{1}{2225} + \frac{1}{2575} - \frac{1}{2796} = 2083 \text{ kips} \quad \text{O.K}
\]

b. **Bresler Load Contour Method**

Due to a lack of available data, a conservative \(\alpha \) value of 1.0 is chosen. Although \(P_u > 0.1 f'_c A_g \), the necessary calculations will be carried out for example purposes. Since the section is symmetrical, \(M_{nox} \) is equal to \(M_{noy} \).

From the interaction diagram, \(M_{nox} = 680 \) ft-kips for \(P_n = 1846 \) kips.

Using the above value, Eq. (11) can now be evaluated:

\[
\frac{M_{nx}}{M_{nox}} + \frac{M_{ny}}{M_{noy}} = \frac{461.5}{680} + \frac{192.3}{680} = 0.68 + 0.28 = 0.96 < 1.0 \quad \text{O.K.}
\]

c. **PCA Load Contour Method**

To employ this method, \(P_o, M_{nox}, M_{noy} \) and the true value of \(\beta \) must first be found.

\[
P_o = 0.85 f'_c (A_g - A_{st}) + A_{st} f_y
\]

\[
= 0.85 (5) (576 - 6.24) + 6.24 (60) = 2796 \text{ kips}
\]

Since the section is symmetrical, \(M_{nox} \) and \(M_{noy} \) are equal.

From the interaction diagram, \(M_{nox} = 680 \) ft-kips for \(P_n = 1846 \) kips.

Having found \(P_o \) and using \(\rho_g \) (actual), the true \(\beta \) value is determined as follows:

\[
\frac{P_n}{P_o} = \frac{1846}{2796} = 0.66, \omega = \frac{\rho_g f_y}{f'_c} = \frac{6.24 / 24^2}{5} = 0.13
\]

From Fig. 7-15(a), read \(\beta = 0.66 \)

Using the above values, Eq. (13) can now be evaluated:

\[
\left(\frac{M_{nx}}{M_{nox}} \right)^{\log 0.5 \over \log \beta} + \left(\frac{M_{ny}}{M_{noy}} \right)^{\log 0.5 \over \log \beta} \leq 1.0
\]
\[\log 0.5 = -0.3 \]
\[\log 0.66 = -0.181 \]
\[\frac{\log 0.5}{\log 0.66} = 1.66 \]
\[\left(\frac{461.5}{680} \right)^{1.66} + \left(\frac{192.3}{680} \right)^{1.66} = 0.53 + 0.12 = 0.65 < 1.0 \quad \text{O.K.} \]

This section can also be checked using the bilinear approximation.

Since \(\frac{M_{ny}}{M_{nx}} < \frac{M_{noy}}{M_{nox}} \), Eq. (17) should be used.

\[\frac{M_{nx}}{M_{nox}} + \frac{M_{ny}}{M_{noy}} \left(\frac{1 - \beta}{\beta} \right) = \frac{461.5}{680} + \frac{192.3}{680} \left(\frac{1 - 0.66}{0.66} \right) \]
\[= 0.68 + 0.15 = 0.83 < 1.0 \quad \text{O.K.} \]

6. pcaColumn Solution

In Steps 4 and 5 the pcaColumn program was used to generate the P-M interaction diagram for the assumed column geometry and steel reinforcement and obtain the values of \(P_{ox} \) and \(M_{nox} \).

\(M_x \cdot M_y \) contours generated by pcaColumn for the same cross section are given in the figure below. The approximate results obtained by Bresler Load Contour Method (Step 4b) and PCA Load Contour Method (Step 5c) are superimposed for comparison. There is very good agreement between the pcaColumn solution and the PCA curves while the Bresler curve yields straight segments given the conservative assumption of \(\beta = 1.0 \).

The nominal biaxial load \((P_n, M_{nx}, M_{ny}) \) determined in Step 1 is represented by Point 1 shown in the diagram. It is located inside all three curves indicating the column section is adequate according to all three methods. Point 2 represents the equivalent uniaxial strength \((P_n, M_{nox}) \) determined in step 3.
Redistribution of Factored Maximum Moments in Continuous Flexural Members

UPDATE FOR THE '08 CODE

The Code recognized the potential excessive plastic hinging at midspan that could occur from permitting an increase in the maximum factored negative moments at continuity supports. By increasing the negative moment strength, the positive moments can be reduced but the result is that inelastic behavior will occur in the positive moment region of the member and the percentage change in the positive moment section could be much larger than the 20 percent permitted for negative moment sections. The 2008 change placed the same percentage limitations for the maximum allowable reduction on both positive and negative moments.

BACKGROUND

The behavior of a concrete member is affected by its reinforcement layout. For example, consider a three span reinforced concrete beam built monolithically with reinforcement provided only at the bottom of the beam. Prior to cracking, the beam behaves as three continuous spans. After cracking over the interior supports, the three-span beam will behave as three simply supported spans. Therefore, after cracking, redistribution of internal forces occurs in the system. However, the cracks over the interior supports may become large and unacceptable from a serviceability point of view. Section 8.4 sets rules for redistribution of negative moments in continuous beams provided they have sufficient ductility. The redistribution provisions allow for adequate serviceability.

The provisions of 8.4 are beneficial when evaluating existing structures or during the design of new structures. The procedure recognizes that the moment envelope is the result of different transient load patterns (8.11). For example, when considering the pattern that produces the largest factored negative moment, the designer can reduce that negative moment. This reduction, however, will cause an increase of the concurrent positive moments in adjacent midspans. Similarly, consider the load pattern that produces the maximum factored positive moment. Decreasing the positive moment near midspan will increase the negative moment over the supports. By adjusting the maximum positive and maximum negative moments of continuous members, the redistributed negative and positive moments can be reduced and the required amount of flexural reinforcement can be optimized. This procedure is illustrated in Examples 8.1 and 8.2.

8.4 REDISTRIBUTION OF FACTORED MAXIMUM MOMENTS IN CONTINUOUS FLEXURAL MEMBERS

Section 8.4 permits a redistribution of factored maximum positive and negative moments in continuous flexural members if the net tensile strain exceeds a specified limit. This provision recognizes the inelastic behavior of concrete structures and constitutes a move toward “limit design.” Application of redistribution of moments, in many cases, results in substantial decrease in total required reinforcement, which allows avoiding reinforcement congestion and/or reduction of concrete dimensions.
A maximum 10 percent adjustment of factored negative moments was first permitted in the 1963 ACI Code. Experience with the use of that provision, though satisfactory, was still conservative. The 1971 code increased the maximum adjustment percentage up to 20 percent depending on the reinforcement indices. The increase was justified by additional knowledge of ultimate and service load behavior obtained from tests and analytical studies. Redistribution of moments was allowed for both nonprestressed and prestressed members but different specifications were used for each type of member. Starting with the 2002 revision of the code, 8.4 specified the negative moment redistribution factor in terms of the net tensile strain, ε_t. Changes in the 2008 edition of the Code further clarified this redistribution factor to only a decrease in either maximum positive or maximum negative moments, with the appropriate adjustments to all other moments within the span. This unified provision applies equally to both nonprestressed and prestressed members. Former provisions involving reinforcement indices may still be used as prescribed in B.8.4 and B.18.10.4.

According to 8.11, continuous members must be designed to resist more than one configuration of live loads. An elastic analysis is performed for each loading configuration, and an envelope moment value is obtained for the design of each section. Thus, for any of the loading conditions considered, certain sections in a given span will reach the ultimate moment while others will have reserve capacity. Tests have shown that a structure can continue to carry additional loads if the sections that reached their moment capacities continue to rotate as plastic hinges and redistribute the moments to other sections until a collapse mechanism forms.

Recognition of this additional load capacity beyond the intended original design suggests the possibility of redesign with resulting savings in material. Section 8.4 allows a redesign by decreasing the factored elastic negative or positive moments for each loading condition (with the corresponding changes in moments at all other sections within the spans required by statics). These moment changes may be such as to reduce both the maximum positive and negative moments in the final moment envelope. In order to ensure proper rotation capacity, the net tensile strain in sections of maximum positive or negative moments must conform to 8.4. Example 8.1 illustrates this requirement.

Limits of applicability of 8.4 may be summarized as follows:

1. Provisions apply to continuous nonprestressed and prestressed flexural members.
2. Provisions do not apply to members designed by the approximate moments of 8.3.3, or to slab systems designed by the Direct Design Method (13.6.1.7).
3. Bending moments must be determined by linear elastic analytical methods, such as moment distribution, slope deflection, etc. Redistribution is not allowed for moments determined through approximate methods.
4. Redistribution is only permitted when the net tensile strain is not less than 0.0075 (8.4.2).
5. Maximum allowable percentage decrease of negative or positive moment is equal to 1000 ε_t, but not more than 20 percent (8.4.1).
6. Adjustment of moments is made for each loading configuration considered. Members are then proportioned for the maximum adjusted moments resulting from all loading conditions.
7. Adjustment of moments for any span requires adjustment of moments at all other sections within the span (8.4.3). A decrease of a negative support moment requires a corresponding increase in the positive span moment for equilibrium. Similarly, a decrease of positive moment near midspan requires a corresponding increase in the negative moments at the supports.
8. Static equilibrium must be maintained at all joints before and after redistribution of moments.
9. In the case of unequal negative moments on the two sides of a fixed support (i.e., where adjacent spans are unequal), the difference between these two moments is taken into the support. Should either or both of these negative moments be reduced, the resulting difference between the adjusted moments is taken into the support.
10. Moment redistribution may be carried out for additional cycles. After each cycle of redistribution, a new allowable percentage decrease in negative or positive moment is calculated. After the first iteration, the reduction is typically 15 percent off its final value, which is usually reached after three cycles.

The permissible percentage redistribution is defined in terms of the net tensile strain ε_t. In general, the design procedures outlined in Part 7 of the Notes can be used to determine the location of the neutral axis, c, which allows calculating ε_t from the expression:
\[\varepsilon_t = 0.003 \left(\frac{d_t}{c} - 1 \right) \]

(1)

However, in the case of a section with a rectangular compression block and one layer of tension reinforcement only \((d_t = d) \), an explicit relation between the net tensile strain, \(\varepsilon_t \), and the nondimensional coefficient of resistance, \(R_n / f'_c = M_n / (f'_c bd^2) = M_u / (\phi f'_c bd^2) \)

(2)

can be derived as follows (see Fig. 8-1).

\[a = \beta_1 c = \beta_1 rd \]

(3)

\[C = 0.85 f'_c ba = 0.85 f'_c b \beta_1 rd \]

(4)

Substituting Eq. (3) and Eq. (4) into the equilibrium condition for internal and external moments:

\[M_n = C \left(d - \frac{a}{2} \right) \]

(5)

results in:

\[\frac{M_n}{f'_c bd^2} = 0.85 \beta_1 r \left(1 - \frac{\beta_1 r}{2} \right) \]

(6)

with the nondimensional coefficient of resistance [see Eq. (2)] on the left hand side. Solving Eq. (6) with respect to \(r \) yields:

\[r = \frac{1 - \sqrt{1 - \frac{40 R_n}{17 f'_c}}}{\beta_1} \]

(7)
Substituting r into Eq. (1) gives

\[\varepsilon_t = 0.003 \left(\frac{\beta_1}{1 - \frac{40}{17} \frac{R_n}{f'_c}} - 1 \right) \quad (8) \]

Note that Eq. (8) does not involve steel strength and is valid for use with all types of steel, including prestressing steel. Figure 8-2 shows the relationship between permissible redistribution, net tensile strain, and coefficient of resistance.

The following procedure may be utilized to determine the permissible moment redistribution.

1. Determine factored bending moments at supports by analytical elastic methods. Compute coefficients of resistance using Eq (2). Use \(\phi = 0.90 \) because the assumption \(\varepsilon_t \geq 0.0075 \) implies a tension-controlled section.
2. Use Eq. (8) to calculate \(\varepsilon_t \), and if it satisfies \(\varepsilon_t \geq 0.0075 \) then determine the corresponding permissible percent redistribution 1000 \(\varepsilon_t \leq 20\% \).
 Alternatively enter Fig. 8-2 with value of \(\frac{R_n}{f'_c} \). Move up to intersect the appropriate curve, and move left to find the permissible percent redistribution. Interpolate between curves if needed.
3. Adjust moments, and corresponding span moments to satisfy equilibrium.

It usually happens that the steel provided using discrete bar sizes is somewhat more than that required. This reduces \(\varepsilon_t \) and the permissible percent redistribution slightly. However, the excess steel increases the strength far more than the change in percent redistribution. For example, referring to Fig. 8-2, the curve for 4,000 psi concrete shows a coefficient of resistance of 0.112 when \(\varepsilon_t = 0.015 \) and a 15 percent redistribution. If so much extra steel were provided that \(\varepsilon_t \) was reduced to 0.010, with a permissible redistribution of 10 percent, the coefficient of resistance increases from 0.112 to 0.150. Thus, a 5 percent reduction in permissible redistribution is accompanied by a 34 percent increase in strength. Consequently, it is not necessary to calculate the slight reduction in permissible redistribution, because it is offset by a far greater increase in strength.

REFERENCE

Example 8.1—Moment Redistribution

Determine required reinforcement for the one-way joist floor shown, using redistribution of moments to reduce total reinforcement.

Joist-slab: \(10 + 2.5 \times 5 + 20\) (10-in. deep form + 2.5-in. slab, 5-in. wide joist, 20-in. wide form spaced @ 25 in. o.c.)

- \(f'_c = 4000\) psi
- \(f_y = 60,000\) psi
- DL = 80 psf
- LL = 100 psf

For simplicity, fixity at concrete walls is not considered.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

1. Determine factored loads.

\[U = 1.2D + 1.6L \quad Eq. (9-2) \]

\[\begin{align*}
 w_d &= 1.2 \times 0.08 \times 25/12 = 0.200 \text{ kips/ft} \\
 w_f &= 1.6 \times 0.10 \times 25/12 = 0.333 \text{ kips/ft} \\
 w_u &= 0.533 \text{ kips/ft per joist}
\end{align*} \]

2. Obtain moment diagrams by elastic analysis.

Consider three possible load patterns:

- Load Pattern I: Factored DL and LL on both spans.
- Load Pattern II: Factored DL and LL on one span and factored DL only on the other span.
- Load Pattern III: Reverse of load pattern II.

The elastic moment diagrams for these load cases are shown in Fig. 8-3 (moments shown in ft-kips).
3. Redistribution of moments.

a. Load Pattern I:

The intent is to decrease the negative moment at the support to obtain a new moment envelope.

From load pattern I: \(M_u = -33.2 \text{ ft-kips at face of girder.} \)

For \(b = 5 \text{ in.}, \) and \(d = 11.5 \text{ in.}: \)

\[
R_n' = \frac{33.2 \times 12}{0.9 \times 4 \times 5 \times (11.5)^2} = 0.167 \text{ and the permissable reduction} \tag{2}
\]

\[
1000 \, \varepsilon_t = 3 \left(\frac{0.85}{1 - \sqrt{1 - \frac{40}{17} \times 0.167}} - 1 \right) = 8.5\% \tag{8}
\]

Decreasing the negative moment \(M_u = -38.4 \text{ ft-kips in Fig. 8-3(a) by 8.5\%, redistributed moment diagrams are obtained as shown by the dashed lines in Fig. 8-3(a).} \) The reduced moment at the face of the support is computed as follows:

\[
M = -35.1 - 0.533(0.67)^2/2 + 7.86 \times 0.67 = -29.9 \text{ ft-kips}
\]
The maximum span positive moment correspondingly increases to 22.8 ft-kips by satisfying static equilibrium (See calculation in Fig. 8-4).

\[V = 0 @ x = 9.25 \text{ ft} \]
\[M @ x = 9.25 \text{ ft} = (4.93 \times 9.25) - 0.533 \times \frac{9.25^2}{2} = 22.8^{k} \]

Figure 8-4 Maximum Positive Moment after Redistribution for Load Pattern I

b. Load Pattern II:

The intent is to decrease the positive moment near midspan to obtain a new moment envelope.

The elastic moment diagram of Load Pattern II is compared with the redistributed moment diagram of Load Pattern I. For savings in span positive moment reinforcement, it is desirable to reduce the span positive moment of 26.3 ft-kips.

For \(b = 25 \text{ in.} \) (stress block within flange), and \(d = 11.5 \text{ in.} \)

\[\frac{R_n}{f_c'} = \frac{26.3 \times 12}{0.9 \times 4 \times 25 \times (11.5)^2} = 0.027 \]
\[1000 \varepsilon_t = 3 \left(\frac{0.85}{1 - \sqrt{1 - \frac{40}{17} \times 0.027}} - 1 \right) = 77.5\% > 20\% \]

Per 8.4, maximum percent redistribution is limited to 20%. The computed redistribution percent is very high. It is indicative of a high net tensile strain, which reflects a small reinforcement index. As noted in the footnote to Table 8-1, Minimum flexural reinforcement is required for the span positive moment.

The elastic moment diagram of Load Pattern II is compared with the redistributed moment diagram of Load Pattern I. For savings in span moment reinforcement, it is desirable to reduce the span positive moment of Load Pattern II from 26.3 ft-kips to 22.8 ft-kips, i.e. 13.3% redistribution.

4. Design factored moments.

From the redistributed moment envelope, factored moments and required reinforcement are determined as shown in Table 8-1.
Example 8.1 (cont’d)
Calculations and Discussion

Table 8-1 Summary of Final Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Load Pattern</th>
<th>Required Steel</th>
<th>Provided Steel</th>
<th>Redistribution, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>(A_s) (in.(^2))</td>
<td>(\rho)</td>
</tr>
<tr>
<td>Support Moment*</td>
<td>-29.9</td>
<td>—</td>
<td>0.64</td>
<td>0.0111</td>
</tr>
<tr>
<td>(ft-kips)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midspan Moment</td>
<td>—</td>
<td>22.8</td>
<td>0.45</td>
<td>0.0016</td>
</tr>
<tr>
<td>(ft-kips)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Calculated at face of support.

**Check \(\rho_{\text{min}} = \frac{3}{\frac{f_y}{f_t}} \approx 0.0032\)

***\(\rho = \frac{A_s}{b_w d} = \frac{1.04}{25 \times 11.5} = 0.0036 > \rho_{\text{min}}\)

Calculate \(\rho\) for flanged member. See Part 7.

Final note: Moment redistribution has permitted a reduction of 8.5\% in the negative moment and a reduction of 13.3\% in the positive moment.
Example 8.2—Moment Redistribution

Determine the required reinforcement areas for the spandrel beam at an intermediate floor level as shown, using moment redistribution to reduce total reinforcement required.

Columns = 16" × 16" in.
Story height = 10 ft
Spandrel beam = 12" × 16" in.

\(f_c = 4000 \text{ psi} \)
\(f_y = 60,000 \text{ psi} \)
\(DL = 1167 \text{ lb/ft} \)
\(LL = 450 \text{ lb/ft} \)

Calculations and Discussion

1. Determine factored loads.

\[
U = 1.2D + 1.6L
\]
\(Eq. \ (9-2) \)

\[w_d = 1.2 \times 1.167 = 1.4 \text{ kips/ft} \]

\[w_L = 1.6 \times 0.45 = 0.72 \text{ kips/ft} \]

\[w_u = 2.12 \text{ kips/ft} \]

2. Determine the elastic bending moment diagrams for the five load patterns shown in Figs. 8-5 (a) to (e) and the maximum moment envelope values for all load patterns.

Maximum negative moments at column centerlines and column faces, and positive midspan moments were determined by computer analysis using pcaBeam program for each of the five loading configurations. Adjusted moments after redistribution are also shown by dashed lines. The values of the adjusted moments are given in parentheses.
(a) Load Pattern I (moments in ft-kips)

(b) Load Pattern II (moments in ft-kips)

Figure 8-5 Redistribution of Moments for Example 8.2
Example 8.2 (cont'd) Calculations and Discussion

(c) Load Pattern III (moments in ft-kips)

(d) Load Pattern IV (moments in ft-kips)

Figure 8-5 (continued) Redistribution of Moments for Example 8.2
Example 8.2 (cont’d) Calculations and Discussion

(f) Maximum Moment Envelopes for Pattern Loading
(moments in ft-kips)

Figure 8-5 (continued) Redistribution of Moments for Example 8.2
3. Determine maximum allowable percentage decrease in negative moments:

use \(d = 14.0 \) in.; cover = 1.5 in.

Calculate \(\frac{R_n}{f_c} = \frac{M_u}{\phi f'c bd^2} \) and corresponding \(\epsilon_t = 0.003 \left(\frac{\beta_1}{1 - \sqrt{1 - \frac{40 R_n}{17 f'_c}}} - 1 \right) \).

For \(M_u \) use envelope value at support face. Based on \(\epsilon_t \) calculate the adjustment. Iterate until the adjusted moments converge (starts repeating). See Table 8-2.

Table 8-2 Moment Adjustments at Supports

<table>
<thead>
<tr>
<th>Support</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_u) (ft-kips)</td>
<td>83.5</td>
<td>91.9</td>
<td>41.6</td>
<td>33.0</td>
</tr>
<tr>
<td>(\frac{R_n}{f_c})</td>
<td>0.1184</td>
<td>0.1303</td>
<td>0.0589</td>
<td>0.0467</td>
</tr>
<tr>
<td>(\epsilon_t)</td>
<td>0.0139</td>
<td>0.0122</td>
<td>0.0325</td>
<td>0.0421</td>
</tr>
<tr>
<td>Adjustment (%)</td>
<td>13.9</td>
<td>12.2</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Iteration 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_u) (ft-kips)</td>
<td>71.9</td>
<td>80.7</td>
<td>33.3</td>
<td>26.4</td>
</tr>
<tr>
<td>(\frac{R_n}{f_c})</td>
<td>0.1019</td>
<td>0.1143</td>
<td>0.0471</td>
<td>0.0374</td>
</tr>
<tr>
<td>(\epsilon_t)</td>
<td>0.0169</td>
<td>0.0146</td>
<td>0.0417</td>
<td>0.0537</td>
</tr>
<tr>
<td>Adjustment (%)</td>
<td>16.9</td>
<td>14.6</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Iteration 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_u) (ft-kips)</td>
<td>69.4</td>
<td>78.5</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>(\frac{R_n}{f_c})</td>
<td>0.0984</td>
<td>0.1113</td>
<td>0.0177</td>
<td>0.0151</td>
</tr>
<tr>
<td>(\epsilon_t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment (%)</td>
<td>17.7</td>
<td>15.1</td>
<td>15.2</td>
<td>15.2</td>
</tr>
<tr>
<td>Iteration 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_u) (ft-kips)</td>
<td>68.8</td>
<td>78.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>(\frac{R_n}{f_c})</td>
<td>0.0975</td>
<td>0.1106</td>
<td>0.0179</td>
<td>0.0152</td>
</tr>
<tr>
<td>(\epsilon_t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment (%)</td>
<td>17.9</td>
<td>15.2</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Iteration 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_u) (ft-kips)</td>
<td>68.6</td>
<td>77.9</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>(\frac{R_n}{f_c})</td>
<td>0.0972</td>
<td>0.1104</td>
<td>0.0179</td>
<td>0.0153</td>
</tr>
<tr>
<td>(\epsilon_t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment (%)</td>
<td>17.9</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Iteration 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_u) (ft-kips)</td>
<td>77.9</td>
<td>0.1104</td>
<td>0.0153</td>
<td></td>
</tr>
<tr>
<td>(\frac{R_n}{f_c})</td>
<td>0.1104</td>
<td>0.0153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\epsilon_t)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment (%)</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
<td>15.3</td>
</tr>
<tr>
<td>Final Allowable Adjustment (%)</td>
<td>17.9</td>
<td>15.3</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>
4. Adjustment of moments.

Note: Adjustment of moments, is a decision to be made by the engineer. In this example, it was decided to reduce the negative moments on both sides of supports B and C and accept the increase in the corresponding positive moments, and not to adjust the negative moments at the exterior supports A and D.

Referring to Figs. 8-5(a) through (e), the following adjustments in moments are made.

Load Pattern I — Fig. (a)
\[M_{B,\text{Left}} = 109.4 \text{ ft-kips (adjustment = 15.3\%)} \]
Reduction to \[M_{B,\text{Left}} = -109.44 \times 0.153 = 16.7 \text{ ft-kips} \]
Adjusted \[M_{B,\text{Left}} = -109.4 - (-16.7) = -92.7 \text{ ft-kips} \]

Increase in positive moment in span A-B
\[M_A = -99.7 \text{ ft-kips} \]
Adjusted \[M_{B,\text{Left}} = -92.7 \text{ ft-kips} \]

\[\text{Mid-span ordinate on line } M_A \text{ to } M_{B,\text{Left}} = \frac{-99.7 + (-92.7)}{2} = -96.2 \text{ ft-kips} \]

Moment due to uniform load = \[w_u \ell^2 / 8 = 2.12 \times 25^2 / 8 = 165.6 \text{ ft-kips} \]

Adjusted positive moment at mid-span = \[-96.2 + 165.6 = 69.4 \text{ ft-kips} \]

Decrease in negative moment at the left face of support B

\[\text{Ordinate on line } M_A \text{ to } M_{B,\text{Left}} = -99.7 - \frac{-92.7 - (-99.7)}{25.0} \times 24.33 = 92.9 \text{ ft-kips} \]

Moment due to uniform load = \[\frac{1}{2} w_u x (\ell - x) = \frac{1}{2} \times 2.12 \times 24.33 \times (25.0 - 24.33) = -17.2 \text{ ft-kips} \]

Adjusted negative moment at the left face of support B = \[-92.9 + 17.2 = -75.7 \text{ ft-kips} \]

Similar calculations are made to determine the adjusted moment at other locations and for other load patterns. Results of the additional calculations are shown in Table 8-3.

5. After the adjusted moments have been determined analytically, the adjusted bending moment diagrams for each loading pattern can be determined. The adjusted moment curves were determined graphically and are indicated by the dashed lines in Figs. 8-5 (a) to (e).

6. An adjusted maximum moment envelope can now be obtained from the adjusted moment curves as shown in Fig. 8-5 (f) by dashed lines.

7. Final steel ratios \(\rho \) can now be obtained on the basis of the adjusted moments.

From the redistributed moment envelopes of Fig. 8-5 (f), the design factored moments and the required reinforcement area are obtained as shown in Table 8-4.
Example 8.2 (cont’d) Calculations and Discussion

Table 8-3 Moments Before and After Redistribution (moments in ft-kips)

<table>
<thead>
<tr>
<th>Location</th>
<th>Load Pattern I</th>
<th>Load Pattern II</th>
<th>Load Pattern III</th>
<th>Load Pattern IV</th>
<th>Load Pattern IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_u</td>
<td>M_{adj}</td>
<td>M_u</td>
<td>M_{adj}</td>
<td>M_u</td>
</tr>
<tr>
<td>A</td>
<td>-99.7</td>
<td>-99.7</td>
<td>-100.5</td>
<td>-100.5</td>
<td>-65.4</td>
</tr>
<tr>
<td>A Right Face</td>
<td>-82.8</td>
<td>-82.4</td>
<td>-83.5</td>
<td>-83.1</td>
<td>-54.2</td>
</tr>
<tr>
<td>Mid-Span A-B</td>
<td>+61.1</td>
<td>+69.4</td>
<td>+61.6</td>
<td>+69.8</td>
<td>+40.1</td>
</tr>
<tr>
<td>B Left Face</td>
<td>-91.9</td>
<td>-75.7</td>
<td>-90.2</td>
<td>-74.2</td>
<td>-61.8</td>
</tr>
<tr>
<td>B Left Center</td>
<td>-109.4</td>
<td>-92.7</td>
<td>-107.6</td>
<td>-91.2</td>
<td>-73.4</td>
</tr>
<tr>
<td>B Right Center</td>
<td>-52.4</td>
<td>-41.9</td>
<td>-38.4</td>
<td>-30.7</td>
<td>-43.7</td>
</tr>
<tr>
<td>B Right Face</td>
<td>-41.6</td>
<td>-31.2</td>
<td>-31.3</td>
<td>-23.7</td>
<td>-33.5</td>
</tr>
<tr>
<td>Mid-Span B-C</td>
<td>+15.8</td>
<td>+24.5</td>
<td>+6.4</td>
<td>+12.9</td>
<td>+15.8</td>
</tr>
<tr>
<td>C Left Center</td>
<td>-35.7</td>
<td>-28.6</td>
<td>-27.9</td>
<td>-22.3</td>
<td>-43.1</td>
</tr>
<tr>
<td>C Right Center</td>
<td>-48.1</td>
<td>-38.5</td>
<td>-68.9</td>
<td>-55.1</td>
<td>-71.2</td>
</tr>
<tr>
<td>C Right Face</td>
<td>-38.8</td>
<td>-29.5</td>
<td>-55.0</td>
<td>-41.7</td>
<td>-57.2</td>
</tr>
<tr>
<td>Mid-Span C-D</td>
<td>+25.9</td>
<td>+30.6</td>
<td>+40.2</td>
<td>+47.1</td>
<td>+39.6</td>
</tr>
<tr>
<td>D Left Face</td>
<td>-31.5</td>
<td>-31.2</td>
<td>-49.3</td>
<td>-48.8</td>
<td>-48.4</td>
</tr>
<tr>
<td>D</td>
<td>-40.3</td>
<td>-40.3</td>
<td>-62.8</td>
<td>-62.8</td>
<td>-61.7</td>
</tr>
</tbody>
</table>

Final design moments after redistribution

Table 8-4 Summary of Final Design

<table>
<thead>
<tr>
<th>Location</th>
<th>Moment (ft-kips)</th>
<th>Load Case</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_s (in2)</td>
<td>ρ</td>
<td></td>
</tr>
<tr>
<td>Support A</td>
<td>Right Face</td>
<td>-83.1</td>
<td>II</td>
</tr>
<tr>
<td>Midspan A-B</td>
<td></td>
<td>69.8</td>
<td>II</td>
</tr>
<tr>
<td>Support B</td>
<td>Left Face</td>
<td>-75.7</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Right Face</td>
<td>-31.2</td>
<td>I</td>
</tr>
<tr>
<td>Midspan B-C</td>
<td></td>
<td>26</td>
<td>IV</td>
</tr>
<tr>
<td>Support C</td>
<td>Left Face</td>
<td>-24.3</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Right Face</td>
<td>-43.4</td>
<td>III</td>
</tr>
<tr>
<td>Midspan C-D</td>
<td></td>
<td>47.1</td>
<td>II</td>
</tr>
<tr>
<td>Support D</td>
<td>Left Face</td>
<td>-48.8</td>
<td>II</td>
</tr>
</tbody>
</table>

Use $A_{s,min} = 200 \frac{b_w d}{f_y} = 200 \times \frac{12 \times 14}{60,000} = 0.56$ in2.

8-15
Blank
UPDATE FOR THE '08 CODE

A minor editorial change is made in the commentary of 13.3 to clarify the reinforcing steel requirements in the corners of two-way slabs. The reinforcement is provided to control cracking and for resisting moments that result from restraining two-way slab corners as they have a tendency to lift when loaded.

GENERAL CONSIDERATIONS

Provisions of 10.6 require proper distribution of tension reinforcement in beams and one-way slabs to control flexural cracking. Structures built in the past using Working Stress Design methods and reinforcement with a yield strength of 40,000 psi or less had low tensile stresses in the reinforcement at service loads. Laboratory investigations have shown that cracking is generally in proportion to the steel tensile stress. Thus, with low tensile stresses in the reinforcement at service loads, these structures exhibited few flexural cracking problems.

With the advent of high-strength steels having yield stresses of 60,000 psi and higher, and with the use of Strength Design methods which allow higher stresses in the reinforcement, control of flexural cracking has assumed more importance. For example, if a beam were designed using Working Stress Design and a steel yield strength of 40,000 psi, the stress in the reinforcement at service loads would be about 20,000 psi. Using Strength Design and a steel yield strength of 60,000 psi, the stress at service loads could be as high as 40,000 psi. If flexural cracking is indeed proportional to steel tensile stress, then it is quite evident that the criteria for crack control must be included in the design process.

Early investigations of crack width in beams and members subject to axial tension indicated that crack width was proportional to steel stress and bar diameter, but was inversely proportional to reinforcement percentage. More recent research using deformed bars has confirmed that crack width is proportional to steel stress. However, other variables such as the quality of concrete and concrete cover were also found to be important. It should be kept in mind that there are large variations in crack widths, even in careful laboratory-controlled work. For this reason, only a simple crack control expression, designed to give reasonable reinforcement details that are in accord with laboratory work and practical experience, is presented in the Code.

10.6 BEAMS AND ONE-WAY SLABS

10.6.4 Distribution of Tension Reinforcement

There are three perceived reasons that were identified early on for limiting the crack widths in concrete. These are appearance, corrosion, and water tightness. The three seldom apply simultaneously in a particular structure. Appearance is important for concrete exposed to view such as wall panels. Corrosion is important for concrete exposed to aggressive environments. Water tightness may be required for marine/environmental engineering structures. Appearance requires limiting of crack widths on the surface. This can be ensured by locating the
reinforcement as close as possible to the surface (by using small cover) to prevent cracks from widening. Corrosion control, on the other hand, is obtained by using better quality concrete and by increasing the thickness of concrete cover. Water tightness requires stricter limits on crack widths, applicable only to specialty structures. Thus, it should be recognized that a single provision, such as Eq. (10-4) of the Code, may not be sufficient to address the control of cracking for all the three different reasons of appearance, corrosion, and water tightness.

There is a strong correlation between surface crack width and cover \(d_c \), as shown in Fig. 9-1. For a particular magnitude of strain in the steel, the larger the cover, the larger will be the surface crack width affecting the appearance. From 1971 through 1995, the code specified limiting of \(z \)-factors based on the concept that the width of surface cracks needs to be limited. The specified values of \(z \) = 175 and 145 kips/in. for interior and exterior exposures, respectively, corresponded to the limiting crack widths of 0.016 and 0.013 in. It was assumed that by limiting the crack width to these values, one would achieve corrosion protection. But in order to comply with the specified \(z \)-value limits, the method essentially encouraged reduction of the reinforcement cover, which could be detrimental to corrosion protection. Furthermore, the method severely penalized structures with covers more than 2 in. by either reducing the spacing or the service load stress of the reinforcement.

The role of cracks in the corrosion of reinforcement has been found to be controversial. Research [9.1 & 9.2] shows that corrosion is not clearly correlated with surface crack widths in the range normally found with reinforcement stresses at service load level. In fact, it is weakly related to the earlier codes’ surface crack width limits of 0.013 to 0.016 in. Further, it has been found that actual crack widths in structures are highly variable. A scatter of the order of \(\pm 50\% \) is observed. This prompted investigation of alternatives to the \(z \) factor limits for exterior and interior exposure, as given in the 1995 and earlier editions of the code.

Addressing some of the limitations of the previous approach, a simple and more practical equation has been adopted starting with the 1999 code, which directly limits the maximum reinforcement spacing. The new method is intended to control surface cracks to a width that is generally acceptable in practice, but may vary widely in a given structure. The new method, for this reason, does not purport to predict crack widths in the field. According to the new method, the spacing of reinforcement closest to a tension surface shall not exceed that given by

\[
s = 15 \left(\frac{40,000}{f_s} \right) - 2.5c_c \quad \text{Eq. (10-4)}
\]
but not greater than $12 \left(\frac{40,000}{f_s} \right)$

where $s =$ center-to-center spacing of flexural tension reinforcement nearest to the extreme tension face, in. (where there is only one bar or wire nearest to the extreme tension face, s is the width of the extreme tension face).

$f_s =$ calculated stress (psi) in reinforcement at service load computed as the unfactored moment divided by the product of steel area and internal moment arm. It is permitted to take f_s as $\frac{2}{3} f_y$.

$cc =$ clear cover from the nearest surface in tension to the surface of flexural tension reinforcement, in.

Note, in the 1999 and 2002, codes, the default steel stress at service load was $0.6 f_y$. To recognize the increase in service load stress level in the flexural reinforcement resulting from the use of the load combinations introduced in the 2002 code, the default steel stress used in (Eq. 10-4) was adjusted in 2005 by increasing it from $0.6 f_y$ to $\left(\frac{2}{3} \right) f_y$. Note also that contrary to the 1995 provision, this spacing is independent of the exposure condition.

For the usual case of beams with Grade 60 reinforcement with 2 in. clear cover to the tension face and assuming $f_s = \frac{2}{3}(60,000) = 40,000$ psi, the maximum bar spacing is 10 in. Using the upper limit of Eq. (10-4), the maximum spacing allowed, irrespective of the cover, is 12 in. for $f_s = 40,000$ psi. The spacing limitation is independent of the bar size used. Thus for a required amount of flexural reinforcement, this approach would encourage use of smaller bar sizes to satisfy the spacing criteria of Eq. (10-4).

Although Eq. (10-4) is easy to solve, it is convenient to have a table showing maximum spacing of reinforcement for various amounts of clear cover and different service level steel stress f_s, (see Table 9-1 below).

<table>
<thead>
<tr>
<th>Clear Cover (in.)</th>
<th>3/4</th>
<th>1</th>
<th>1-1/4</th>
<th>1-1/2</th>
<th>1-3/4</th>
<th>2</th>
<th>2-1/2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Stress, f_s (psi)</td>
<td>30,000</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>15.63</td>
<td>15</td>
<td>13.75</td>
</tr>
<tr>
<td></td>
<td>40,000</td>
<td>12</td>
<td>12</td>
<td>11.88</td>
<td>11.25</td>
<td>10.63</td>
<td>10</td>
<td>8.75</td>
</tr>
</tbody>
</table>

* Note, maximum reinforcement spacing is 18 in. (7.6.5, 7.12.2.2, 8.12.5.2, 10.5.4, 11.9.9.3, 11.9.9.5, 14.3.5)

10.6.5 Corrosive Environments

As described under 10.6.4, data are not available regarding crack width beyond which a danger of corrosion exists. Exposure tests indicate that concrete quality, adequate compaction, and ample cover may be of greater importance for corrosion protection than crack width at the concrete surface. The requirements of 10.6.4 do not apply to structures subject to very aggressive exposure or designed to be watertight. Special precautions are required and must be investigated for such cases.

10.6.6 Distribution of Tension Reinforcement in Flanges of T-Beams

For control of flexural cracking in the flanges of T-beams, the flexural tension reinforcement must be distributed over a flange width not exceeding the effective flange width (8.12) or 1/10 of the span, whichever is smaller. If the effective flange width is greater than 1/10 the span, some additional longitudinal reinforcement, as illustrated in Fig. 9-2, must be provided in the outer portions of the flange (see Example 9.2). Section 10.6.6 does not specifically quantify the additional amount of reinforcement required. As a minimum, the amount for temperature and shrinkage reinforcement in 7.12 should be provided.
10.6.7 Crack Control Reinforcement in Deep Flexural Members

In the past, several cases of wide cracks developing on side faces of deep beams between the main reinforcement and neutral axis [Fig. 9-3(a)] have been observed. These cracks are attributed to the absence of any skin reinforcement, as a result of which cracks in the web widen more as compared to the cracks at the level of flexural tension reinforcement [Fig. 9-3(a)]. For flexural members with overall height \(h \) exceeding 36 in, the code requires that additional longitudinal skin reinforcement for crack control must be distributed along the side faces of the member. The skin reinforcement must be extended for a distance \(h/2 \) from the tension face of the member. The vertical spacing \(s \) of the skin reinforcement is computed from 10.6.4 (Eq. 10-4). The code does not specify the size of the skin reinforcement. Research [Ref. 9.3] has shown that control of side face cracking can be achieved through proper spacing of the skin reinforcement for selected cover dimension. The research also confirmed that the reinforcement spacing requirements in 10.6.4 are sufficient to control side face cracking. Research has shown that the spacing rather than bar size is of primary importance [Ref. 9.3]. Typically No. 3 to No. 5 bars (or welded wire reinforcement with minimum area of 0.1 in.\(^2\) per foot of depth) is provided.

Figure 9-2 Negative Moment Reinforcement for Flanged Floor Beams

Figure 9-3 Skin Reinforcement

a) Side Face Cracking (Exaggerated)
b) Positive Moment Region
Crack Control Skin Reinforcement for Deep Beams
c) Negative Moment Region
Crack Control Skin Reinforcement for Deep Beams
Note that the provisions of 10.6 do not directly apply to prestressed concrete members, as the behavior of a prestressed member is considerably different from that of a nonprestressed member. Requirements for proper distribution of reinforcement in prestressed members are given in Chapter 18 of the Code and Part 24 of this book.

13.3 TWO-WAY SLABS

Control of flexural cracking in two-way slabs, including flat plates and flat slabs, is usually not a problem, and is not specifically covered in the code. However, 13.3.2 restricts spacing of slab reinforcement at critical sections to 2 times the slab thickness, and the area of reinforcement in each direction for two-way slab systems must not be less than that required for shrinkage and temperature (7.12). Section 13.3.6 gives corner reinforcement requirements primarily for resisting slab moments, but also as a means of crack control. These figures were added in the 2008 commentary of 13.3.6. These requirements of 13.3.6 are further discussed in Part 18. These limitations are intended in part to control cracking. Also, the minimum thickness requirements for two-way construction for deflection control (9.5.3) indirectly serve as a control on excessive cracking.

![Figure 9-4 Special Reinforcement Required at Corners of Beam-Supported Slabs](image)

REFERENCES

Example 9.1—Distribution of Reinforcement for Effective Crack Control

Assume a 16 in. wide beam with A_s (required) = 3.00 in.^2, and f_y = 60,000 psi. Select various bar arrangements to satisfy Eq. (10-4) for control of flexural cracking.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. For 2-No. 11 bars (A_s = 3.12 in.^2)</td>
<td></td>
</tr>
<tr>
<td>(c_c = 1.5 + 0.5 = 2.0) in. (No. 4 stirrup)</td>
<td></td>
</tr>
<tr>
<td>use (f_s = \frac{2}{3} f_y = 40) ksi</td>
<td></td>
</tr>
<tr>
<td>Maximum spacing allowed,</td>
<td></td>
</tr>
<tr>
<td>(s = 15 \left(\frac{40,000}{40,000} \right) - (2.5 \times 2.0) = 10) in. Eq. (10-4)</td>
<td></td>
</tr>
<tr>
<td>(12(40,000/40,000) = 12) in. > 10 in.</td>
<td></td>
</tr>
<tr>
<td>spacing provided = (16 - 2 \left(1.5 + 0.5 + \frac{1.41}{2} \right))</td>
<td></td>
</tr>
<tr>
<td>= 10.6 in. > 10 in. N.G.</td>
<td></td>
</tr>
<tr>
<td>2. For 4-No. 8 bars (A_s = 3.16 in.^2)</td>
<td></td>
</tr>
<tr>
<td>(c_c = 2.0) in. (No. 4 stirrup)</td>
<td></td>
</tr>
<tr>
<td>Maximum spacing allowed,</td>
<td></td>
</tr>
<tr>
<td>(s = 10) in. [Eq. (10-4)]</td>
<td></td>
</tr>
<tr>
<td>spacing provided = (\frac{1}{3} \left(16 - 2 \left(1.5 + 0.5 + \frac{1.0}{2} \right) \right))</td>
<td></td>
</tr>
<tr>
<td>= 3.7 in. < 10 in. O.K.</td>
<td></td>
</tr>
</tbody>
</table>
Example 9.2—Distribution of Reinforcement in Deep Flexural Member with Flanges

Select reinforcement for the T-section shown below.

Span: 50 ft continuous \(f_c' = 4000 \, \text{psi} \)
\(f_y = 60,000 \, \text{psi} \)

Service load moments:

<table>
<thead>
<tr>
<th>Positive Moment</th>
<th>Negative Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_d = +265 , \text{ft-kips})</td>
<td>(M_d = -280 , \text{ft-kips})</td>
</tr>
<tr>
<td>(M_f = +680 , \text{ft-kips})</td>
<td>(M_f = -750 , \text{ft-kips})</td>
</tr>
</tbody>
</table>

Calculations and Discussion

1. Distribution of positive moment reinforcement

a. \(M_u = 1.2(265) + 1.6(680) = 1406 \, \text{ft-kips} \)

 Assuming 5–No. 11 bars in 2 layers with 1.5 in. clear cover and No. 4 stirrups,

 \[
 d_{cg} = \frac{(3 \times 1.56)(2.71) + (2 \times 1.56)(5.12)}{5 \times 1.56} = 3.67 \, \text{in.}
 \]

 \[d = 48 - 3.67 = 44.3 \, \text{in.} \]

 Effective width = 108 in.

 \[A_s \text{ required} = 7.18 \, \text{in.}^2 \]

 Try 5-No. 11 (\(A_s = 7.80 \, \text{in.}^2 \))
b. Clear cover to the tension reinforcement

\[c_c = 1.5 + 0.5 = 2.0 \text{ in.} \]

Stress in reinforcement at service load:

\[f_s = \frac{+M}{\text{jd} A_s} = \frac{(265 + 680)12}{0.87 \times 44.3 \times 7.80} = 37.7 \text{ ksi} \]

Maximum spacing allowed,

\[s = 15 \left(\frac{40,000}{37,700} \right) - 2.5 c_c \]

\[= \frac{600}{37.7} - (2.5 \times 2) = 10.9 \text{ in.} \]

\[12 \left(\frac{40}{f_s} \right) = 12 \left(\frac{40}{37.7} \right) \]

\[= 12.7 \text{ in.} > 10.9 \text{ in.} \quad \text{O.K.} \]

Spacing provided = \(\frac{1}{2} \left[12 - 2 \left(1.5 + 0.5 + \frac{1.41}{2} \right) \right] \)

\[= 3.3 \text{ in.} < 10.9 \text{ in.} \quad \text{O.K.} \]

2. Distribution of negative moment reinforcement

a. \(M_u = 1.2 (280) + 1.6 (750) = 1536 \text{ ft-kips} \)

\(A_s \text{ required} = 8.76 \text{ in}^2 \)

Effective width for tension reinforcement = \(1/10 \times 50 \times 12 = 60 \text{ in.} \) Governors.

\(= 8h + b_w + 8h = 108 \text{ in.} \)

Try 9-No. 9 bars @ 7.5 in. o.c.(\(A_s = 9.0 \text{ in}^2 \))
b. \(c_c = 2.0 \) in.

In lieu of computations for \(f_s \) at service load, use \(f_s = 2/3f_y \) as permitted in 10.6.4

Maximum spacing allowed,

\[
s = 15 \left(\frac{40,000}{40,000} \right) - (2.5 \times 2.0) = 10 \text{ in.} = 10 \text{ in.} \quad \text{Spacing provided 7.5 in.} \quad \text{Eq. (10-4)}
\]

c. Longitudinal reinforcement in slab outside 60-in. width.

For crack control outside the 60-in. width, use shrinkage and temperature reinforcement according to 7.12.

For Grade 60 reinforcement, \(A_s = \frac{0.0018}{12} \times 6 = 0.130 \text{ in.}^2/\text{ft} \)

Use No. 4 bars @ 18 in. (\(A_s = 0.133 \text{ in.}^2/\text{ft} \))

3. Skin reinforcement (\(h > 36 \) in.)

The spacing of the skin reinforcement is provided according to equation Eq.(10-4). The clear cover of the skin reinforcement is the same as the tension reinforcement; therefore the maximum allowed spacing of the skin reinforcement is 10 in.

Use 3-No. 3 bars uniformly spaced along each face of the beam extending a distance > \(h/2 \) beyond the bottom surface of the beam.

Spacing of the skin reinforcement:

\[
s = \frac{(24 - 1.5 - 0.5 - 1.41 - 1 - 1.41/2)}{3} = 6.3 \text{ in.} < 10 \text{ in. OK}
\]

Use skin reinforcement at a spacing of 6.0 in.

Similarly, provide No. 3 @ 6.0 in. in the upper half of the depth in the negative moment region.
Example 9.2 (cont’d) Calculations and Discussion

4. Detail section as shown below.
UPDATE FOR THE '08 CODE

Section 11.2, "Lightweight Concrete" is deleted. The modification factor, λ, accounts for the reduced mechanical properties of lightweight concrete. The introduction of the modifier λ permits the use of the equations for both lightweight and normalweight concrete. The modifier λ is incorporated into the equation for the modulus of rupture of concrete, f_r, used to calculate the effective moment of inertia, I_e for a concrete member (9.5.2.3).

The upper range for the unit weight of lightweight concrete is reduced to 115 pcf when calculating the lightweight concrete multiplier for minimum concrete thicknesses, according to Table 9.5(a) for non-prestressed beams and one-way slabs.

GENERAL CONSIDERATIONS

The ACI code provisions for control of deflections are concerned only with deflections that occur at service load levels under static conditions and may not apply to loads with strong dynamic characteristics such as those due to earthquakes, transient winds, and vibration of machinery. Because of the variability of concrete structural deformations, designers must not place undue reliance on computed estimates of deflections. In most cases, the use of relatively simple procedures for estimating deflections is justified. In-depth treatments of the subject of deflection control, including more refined methods for computing deformations, may be found in Refs. 10.1 and 10.2.

9.5 CONTROL OF DEFLECTIONS

Two methods are given in the code for controlling deflections of one-way and two-way flexural members. Deflections may be controlled directly by limiting computed deflections [see Table 9.5(b)] or indirectly by means of minimum thickness [Table 9.5(a) for one-way systems, and Table 9.5(c) and Eqs. (9-12) and (9-13) for two-way systems.]

9.5.2.1 Minimum Thickness for Beams and One-Way Slabs (Nonprestressed)—Deflections of beams and one-way slabs supporting loads commonly experienced in buildings will normally be satisfactory when the minimum thickness from Table 9.5(a) (reproduced in Table 10-1) are met or exceeded.

The designer should especially note that this minimum thickness requirement is intended only for members not supporting or attached to partitions or other construction likely to be damaged by large deflections. For all other members, deflections need to be computed.

9.5.2.2 Immediate Deflection of Beams and One-Way Slabs (Nonprestressed)—Initial or short-term deflections of beams and one-way slabs occur immediately on the application of load to a structural member. The principal factors that affect the immediate deflection (see Ref. 10.3) of a member are:

a. magnitude and distribution of load,
b. span and restraint condition,
c. section properties and steel percentage,
d. material properties, and
e. amount and extent of flexural cracking.
The following concrete properties strongly influence the behavior of reinforced flexural members under short-time loads: compressive strength (f'_c), modulus of elasticity (E_c) and modulus of rupture (f_r). The modulus of elasticity particularly shows more variation with concrete quality, concrete age, stress level, and rate or duration of load.

The idealized short-term deflection of a typical reinforced concrete beam is shown in Fig. 10-1. There are two distinct phases of behavior: (i) uncracked behavior, when the applied moment (M_a) is less than the cracking moment (M_{cr}); and (ii) cracked behavior, when the applied moment (M_a) is greater than the cracking moment (M_{cr}). Two different values for the moment of inertia would therefore be used for calculating the deflections: the gross moment of inertia (I_g) for the uncracked section, and the reduced moment of inertia for the cracked section (I_{cr}).

For the uncracked rectangular beam shown in Fig. 10-2, the gross moment of inertia is used ($I_g = bh^3/12$). The moment of inertia of a cracked beam with tension reinforcement (I_{cr}) is computed in the following manner:
Taking moment of areas about the neutral axis
\[b \times kd \times \frac{kd}{2} = nA_s \left(d - kd \right) \]

use \[B = \frac{b}{nA_s} \]

\[kd = \frac{\sqrt{2Bd + 1} - 1}{B} \]

Moment of inertia of cracked section about neutral axis,
\[I_{cr} = \frac{b(kd)^3}{3} + nA_s (d - kd)^2 \]

Expressions for computing the cracked moment of inertia for sections with compression reinforcement and flanged sections, which are determined in a similar manner, are given in Table 10-2.

9.5.2.3, 9.5.2.4 Effective Moment of Inertia for Beams and One-Way Slabs (Nonprestressed)—The flexural rigidity EI of a beam may not be constant along its length because of varying amounts of steel and cracking at different sections along the beam. This, and other material related sources of variability, makes the exact prediction of deflection difficult in practice.

The effective moment of inertia of cantilevers, simple beams, and continuous beams between inflection points is given by
\[I_e = (M_{cr}/M_a)^3 I_g + \left[1 - (M_{cr}/M_a)^3 \right] I_{cr} \leq I_g \]

Eq. (9-8)

where \[M_{cr} = f_r I_g/y_t \]

Eq. (9-9)

\[M_a = \text{maximum service load moment (unfactored) at the stage for which deflections are being considered} \]

\[f_r = 7.5 \lambda \sqrt{f'_c} \]

Eq. (9-10)
The effective moment of inertia I_e provides a transition between the well-defined upper and lower bounds of I_g and I_{cr} as a function of the level of cracking represented by M_a/M_{cr}. The equation empirically accounts for the effect of tension stiffening—the contribution of uncracked concrete between cracks in regions of low tensile stress.

For each load combination being considered, such as dead load or dead plus live load, deflections should be calculated using an effective moment of inertia [Eq. (9-8)] computed with the appropriate service load moment, M_a. The incremental deflection caused by the addition of load, such as live load, is then computed as the difference between deflections computed for any two load combinations.

Table 10-2 Gross and Cracked Moment of Inertia of Rectangular and Flanged Section

<table>
<thead>
<tr>
<th>Gross Section</th>
<th>Cracked Transformed Section</th>
<th>Gross and Cracked Moment of Inertia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Section</td>
<td>Cracked Transformed Section</td>
<td>Gross and Cracked Moment of Inertia</td>
</tr>
<tr>
<td>Gross Section</td>
<td>Cracked Transformed Section</td>
<td>Gross and Cracked Moment of Inertia</td>
</tr>
</tbody>
</table>

\[
I_g = bh^3/12
\]

\[
I_{cr} = b(kd)^2/3 + nA_s (d-kd)^2
\]

\[
I_{cr} = b(kd)^2/3 + nA_s (d-kd)^2 + (n-1)A_s'(kd-d')^2
\]

\[
n = \frac{E_s}{E_c}
\]

\[
B = \frac{b}{(nA_s)}
\]

\[
l_g = \frac{bh^3}{12}
\]

\[
I_{cr} = b(kd)^2/3 + nA_s (d-kd)^2
\]

\[
I_{cr} = b(kd)^2/3 + nA_s (d-kd)^2 + (n-1)A_s'(kd-d')^2
\]

\[
k_d = \left(\sqrt{2dB + 1} - 1\right)/B
\]

\[
l_{cr} = b(kd)^2/3 + nA_s (d-kd)^2
\]

\[
l_{cr} = b(kd)^2/3 + nA_s (d-kd)^2 + (n-1)A_s'(kd-d')^2
\]

\[
r = (n - 1)A_s'/nA_s
\]

\[
k_d = \left[\sqrt{2dB(1+r'/d) + (1+r')^2} - (1+r)\right]/B
\]

\[
l_{cr} = b(kd)^2/3 + nA_s (d-kd)^2 + (n-1)A_s'(kd-d')^2
\]

\[
C = b_w/(nA_s), \quad f = h_f(b-b_w)/(nA_s),
\]

\[
y_f = h - 1/2\left[b - b_w\right]h_f^2 + b_w h_f^2/[b - b_w h_f + b_w h]
\]

\[
l_g = (b - b_w)h_f^2/12 + b_w h_f^2/12 + (b - b_w)h_f(h - h_f/2 - y_f)^2 + b_w h_f(y_f - y/2)^2
\]

\[
k_d = \left[\sqrt{C(2d + h_f) + (1+f)^2} - (1+f)\right]/C
\]

\[
l_{cr} = b - b_w h_f^2/12 + b_w h_f^2/12 + (b - b_w)h_f(kd - h_f/2)^2 + nA_s(d - kd)^2
\]

\[
l_{cr} = b - b_w h_f^2/12 + b_w h_f^2/12 + (b - b_w)h_f(kd - h_f/2)^2 + nA_s(d - kd)^2 + (n-1)A_s'(kd-d')^2
\]

10-4
For prismatic members (including T-beams with different cracked sections in positive and negative moment regions), I_e may be determined at the support section for cantilevers and at the midspan section for simple and continuous spans. The use of the midspan section properties for continuous prismatic members is considered satisfactory in approximate calculations primarily because the midspan rigidity has the dominant effect on deflections. Alternatively, for continuous prismatic and nonprismatic members, 9.5.2.4 suggests using the average I_e at the critical positive and negative moment sections. The ’83 commentary on 9.5.2.4 suggested the following approach to obtain improved results:

Beams with one end continuous:

$$\text{Avg. } I_e = 0.85I_m + 0.15(I_{cont.end})$$

Beams with both ends continuous:

$$\text{Avg. } I_e = 0.70I_m + 0.15(I_{e1} + I_{e2})$$

where I_m refers to I_e at the midspan section

I_{e1} and I_{e2} refer to I_e at the respective beam ends.

Moment envelopes based on the approximate moment coefficients of 8.3.3 are accurate enough to be used in computing both positive and negative values of I_e (see Example 10.2). For a single heavy concentrated load, only the midspan I_e should be used.

The initial or short-term deflection Δ_i for cantilevers and simple and continuous beams may be computed using the following elastic equation given in the ’83 commentary on 9.5.2.4. For continuous beams, the midspan deflection may usually be used as an approximation of the maximum deflection.

$$\Delta_i = K \frac{5}{48} \frac{M_a \ell^2}{E_c I_e}$$

where M_a is the support moment for cantilevers and the midspan moment (when K is so defined) for simple and continuous beams

ℓ is the span length

For uniformly distributed loading w, the theoretical values of the deflection coefficient K are shown in Table 10-3.

Since deflections are logically computed for a given continuous span based on the same loading pattern as for maximum positive moment, Eq. (3) is thought to be the most convenient form for a deflection equation.

9.5.2.5 Long-Term Deflection of Beams and One-Way Slabs (Nonprestressed)—Beams and one-way slabs subjected to sustained loads experience long-term deflections. These deflections may be two to three times as large as the immediate elastic deflection that occurs when the sustained load is applied. The long-term deflection is caused by the effects of shrinkage and creep, the formation of new cracks and the widening of earlier cracks. The principal factors that affect long-term deflections (see Ref. 10.3) are:

a. stresses in concrete
b. amount of tensile and compressive reinforcement
c. member size
d. curing conditions
e. temperature
f. relative humidity
g. age of concrete at the time of loading
h. duration of loading
The effects of shrinkage and creep must be approximated because the strain and stress distribution varies across the depth and along the span of the beam. The concrete properties (strength, modulus of elasticity, shrinkage and creep) also vary with mix composition, curing conditions and time. Two approximate methods for estimating long-term deflection appear below.

ACI 318 Method

According to 9.5.2.5, additional long-term deflections due to the combined effects of shrinkage and creep from sustained loads Δ_{cp+sh} may be estimated by multiplying the immediate deflection caused by the sustained load Δ_i by the factor $\lambda \Delta$; i.e.

$$\Delta_{cp+sh} = \lambda \Delta_i$$ \hspace{1cm} (4)

where

$$\lambda = \frac{\xi}{1 + 50 \rho'}$$ \hspace{1cm} Eq. (9-11)

Values for ξ are given in Table 10-4 for different durations of sustained load. Figure R9.5.2.5 in the commentary to the code shows the variation of ξ for periods up to 5 years. The compression steel $\rho' = A'_{cs} / bd$ is computed at the support section for cantilevers and the midspan section for simple and continuous spans. Note that sustained loads include dead load and that portion of live load that is sustained. See R9.5.1.

Table 10-3 Deflection Coefficient K

<table>
<thead>
<tr>
<th>Type of Loading</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantilevers (deflection due to rotation at supports not included)</td>
<td>2.40</td>
</tr>
<tr>
<td>Simple beams</td>
<td>1.0</td>
</tr>
<tr>
<td>Continuous beams</td>
<td>1.2-0.2 M_o/M_a</td>
</tr>
<tr>
<td>Fixed-hinged beams (midspan deflection)</td>
<td>0.80</td>
</tr>
<tr>
<td>Fixed-hinged beams (maximum deflection using maximum moment)</td>
<td>0.74</td>
</tr>
<tr>
<td>Fixed-fixed beams</td>
<td>0.60</td>
</tr>
</tbody>
</table>

For other types of loading, K values are given in Ref. 10.2.

$$M_o = \text{Simple span moment at midspan } \left(\frac{w l^2}{8} \right)$$

$$M_a = \text{Net midspan moment}.$$

Table 10-4 Time-Dependent Factor ξ (9.5.2.5)

<table>
<thead>
<tr>
<th>Sustained Load Duration</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 years and more</td>
<td>2.0</td>
</tr>
<tr>
<td>12 months</td>
<td>1.4</td>
</tr>
<tr>
<td>6 months</td>
<td>1.2</td>
</tr>
<tr>
<td>3 month</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Alternate Method

Alternatively, creep and shrinkage deflections may be computed separately using the following expressions from Refs. 10.2, 10.5, and 10.6. The procedure is summarized in Section 2.6.2 of Ref. 10.4.

\[\Delta_{cp} = \lambda_{cp} (\Delta_i)_{sus} \quad (5) \]

\[\Delta_{sh} = K_{sh} \phi_{sh} \ell^2 \quad (6) \]

where

- \(\lambda_{cp} = k_r C_t \);
- \(k_r = 0.85 / (1 + 50\rho') \);
- \(C_t \) = time dependent creep coefficient (Table 2.1 or Eq. 2.7 of Ref. 10.4)
- \(K_{sh} \) = shrinkage deflection constant (Table 10-5)
- \(\phi_{sh} = A_{sh} (\varepsilon_{sh})_t / h \)
- \(A_{sh} \) = shrinkage deflection multiplier (Figure 10-3 or Eq. 6.1 below)
- \((\varepsilon_{sh})_t \) = time dependent shrinkage strain (Table 2.1 or Eq. 2.8 & 2.9 of Ref. 10.4)
- \(\ell \) = beam span length
- \(h \) = beam depth

The ultimate value of the creep coefficient \(C_t \), denoted as \(C_u \), is dependent on the factors a through h listed above. Likewise, the ultimate value of the time dependent shrinkage strain depends on the varying conditions and is designated \((\varepsilon_{sh})_u \). Typical values for the two properties are discussed in Section 2.3.4 of ACI 435 (Ref. 10.4).

In Ref. 10.4, the ultimate creep coefficient is dependent on six factors:

a. relative humidity
b. age of concrete at load application
c. minimum member dimension
d. concrete consistency
e. fine aggregate content
f. air content

Standard conditions for these six variables are 40% R.H., 3 days (steam cured) or 7 days (moist cured), 6 in. least dimension, 3 in. slump, 50% fine aggregate and 6% air content. For the case of standard conditions, \(C_u \) is equal to 2.35. Correction factors are presented in Fig. 2.1 of Ref. 10.4, to adjust the value of \(C_u \) for non-standard conditions.

Two variations from standard conditions that might be encountered in normal construction are for relative humidity of 70% and load application taking place at an age of 20 days. The correction factor for the relative humidity is given by the following:
\[K_h^e = 1.27 - 0.0067H \]

where \(H \) is the relative humidity in percent. For the case of 70% relative humidity,

\[K_h^e = 1.27 - 0.0067(70) = 0.80 \]

Correction for the time of load application is given in the following two expressions for steam or moist curing conditions:

\[K_{t0}^c = 1.13(t^{-0.095}) \quad \text{(Steam Cured)} \]
\[K_{t0}^c = 1.25(t^{-0.118}) \quad \text{(Moist Cured)} \]

where \(t \) is the age of load application in days. For \(t = 20 \) days the two equations give 0.85 and 0.88 respectively. The average is 0.865.

If it is assumed that all other conditions remain constant the ultimate creep coefficient for the condition of 70% relative humidity and load application at 20 days becomes, according to the methodology indicated:

\[C_u = (0.80)(0.865)(2.35) = 1.63 \]

By comparison, the value for \(C_u \) suggested in the 1978 edition of ACI 435, based on relative humidity of 70%, age at load application of 20 days and minimum dimension of 6 in. (the standard case) was \(C_u = 1.60 \).

An evaluation of ultimate creep strain can also be made. In Ref. 10.4 it is stated that \((\varepsilon_{sh})_u \) is dependent on a set of factors similar to those that affect the ultimate creep coefficient. In particular, the five conditions and their standard values are as follows:

\begin{itemize}
 \item a. relative humidity – 40%
 \item b. minimum member dimension – 6 in.
 \item c. fine aggregate content – 50%
 \item d. cement content – 1200 kg/m\(^3\)
 \item e. air content – 6%
\end{itemize}

For standard conditions, the ultimate shrinkage strain is 780 x 10\(^{-6}\). Keeping all applicable conditions the same as used in evaluation of the ultimate creep and use of a cement factor of 6 bags per cubic yard (335 kg/m\(^3\)), calculation of the appropriate correction factors yields:

\[K_h^s = 1.4 - 0.01H = 1.4 - (0.01)(70) = 0.70 \quad \text{(relative humidity)} \]
\[K_h^s = 0.75 + 0.000214B = 0.75 + (0.000214)(335) = 0.82 \quad \text{(cement content)} \]

Application of the product of the two corrections to the standard value gives:

\[(\varepsilon_{sh})_u = (0.70)(0.82)(780 \times 10^{-6}) = 448 \times 10^{-6} \]

This value compares with 400 x 10\(^{-6}\) suggested in the 1978 edition of ACI 435.

In summary, an estimate of the values of \(C_u \) and \((\varepsilon_{sh})_u \) can be obtained for non-prestressed flexural members using the methodology presented in Section 2.3.4 of Ref. 10.4.
Once the ultimate values for creep and shrinkage are determined, the relationships between these ultimate values and the values at earlier times can be estimated by Eqs. 2.7, 2.8 and 2.9 of ACI 435R10.4. The expressions are reproduced below:

\[
C_t = \left(\frac{t^{0.6}}{10 + t^{0.6}}\right) C_u
\]
\text{Eq. (2.7) of ACI 435R}

Where \(t\) represents time, in days, after application of load.

For moist cured concrete, the shrinkage relationship is:

\[
\left(\varepsilon_{sh}\right)_t = \left(\frac{t}{35 + t}\right) \left(\varepsilon_{sh}\right)_u
\]
\text{Eq. (2.8) of ACI 435R}

\((t \text{ is in days minus 7 after placement})\)

and for steam cured concrete:

\[
\left(\varepsilon_{sh}\right)_t = \left(\frac{t}{55 + t}\right) \left(\varepsilon_{sh}\right)_u
\]
\text{Eq. (2.9) of ACI 435R}

\((t \text{ is in days minus 3 after placement})\)

Comparison of the values for the time dependent creep coefficients and shrinkage strains given in Table 2.1 of ACI 435R and those that result from Eqs. 2.7, 2.8 and 2.9 shows that the values obtained by the two methods vary slightly, particularly for the lower values of time, \(t\). Since the calculation of deflections in concrete structures involves considerable approximation, the use of the time dependent quantities obtained either from the table or from the equations is considered acceptable.

\(A_{sh}\) may be taken directly from Fig. 10-3 or computed by the following set of equations which are given in Section 2.6.2 of ACI 435:

\[
A_{sh} = 0.7 \cdot \left(\rho - \rho'\right) \cdot \left(\frac{\rho - \rho'}{\rho}\right) \cdot \left(\rho - \rho'\right)
\]

for \(\rho - \rho' \leq 3.0\)

\[
= 0.7 \cdot \left(\rho - \rho'\right)
\]

for \(\rho' = 0\) \hspace{1cm} (6.1)

\[
= 1.0
\]

for \(\rho - \rho' \geq 3.0\)

In the above equations, both \(\rho\) and \(\rho'\) are expressed in percent, not in decimal fraction as is usual. The ratios are also expressed in percent for determination of \(A_{sh}\) from Figure 10-3.

Values for the shrinkage deflection coefficient \(K_{sh}\) are given in Table 10-5, assuming equal positive and negative shrinkage curvatures with an inflection point at the quarter-point of continuous spans, which is generally satisfactory for deflection computation.
The reinforcement ratios ρ and ρ' used in determining A_{sh} from Fig. 10-3, refer to the support section of cantilevers and the midspan section of simple and continuous beams. For T-beams, use $\rho = 100(\rho + \rho_w)/2$ and a similar calculation for any compression steel ρ' in determining A_{sh}, where $\rho_w = A_s/bwd$. See Example 10.2.

As to the choice of computing creep and shrinkage deflections by Eq. (9-11) or separately by Eqs. (5) and (6), the combined ACI calculation is simpler but provides only a rough approximation, since shrinkage deflections are only indirectly related to the loading (primarily by means of the steel content). One case in which the separate calculation of creep and shrinkage deflections may be preferable is when part of the live load is considered as a sustained load.

All procedures and properties for computing creep and shrinkage deflections apply equally to normal weight and lightweight concrete.

Deflection Limits

Deflections computed using the preceding methods are compared to the limits given in Table 9.5(b). The commentary gives information for the correct application of these limits, including consideration of deflections occurring prior to installation of partitions.

Two-Way Construction (Nonprestressed)

Deflections of two-way slab systems with and without beams, drop panels, and column capitals need not be computed when the minimum thickness requirements of 9.5.3 are met. The minimum thickness requirements include the effects of panel location (interior or exterior), panel shape, span ratios, beams on panel edges, supporting columns and capitals, drop panels, and the yield strength of the reinforcing steel.
Section 9.5.3.2 provides minimum thickness requirements for two-way slab systems without beams between interior columns (flat plates and flat slabs). The minimum thickness is determined directly as a function of span length using Table 9.5(c). The section also provides minimum values for slabs with and without drop panels. The values given in Table 9.5(c) represent the upper limit of slab thicknesses given by Eqs. (9-12) and (9-13). The minimum thickness requirements of 9.5.3.2 are illustrated in Fig. 10-4.

Section 9.5.3.3 provides minimum thickness requirements for two-way slab systems with beams supporting all sides of a panel. It should be noted that these provisions are intended to apply only to two-way systems, that is, systems in which the ratio of long to short span is not greater than 2. For slabs that do not satisfy this limitation, Eqs. (9-12) and (9-13) may give unreasonable results. For such cases, 9.5.2 should be used.

Figure 10-5 may be used to simplify minimum thickness calculations for two-way slabs. It should be noted in Fig. 10-5 that the difference between the controlling minimum thickness for square panels and rectangular panels having a 2-to-1 panel side ratio is not large.
9.5.3.4 Deflection of Nonprestressed Two-Way Slab Systems—

Initial or Short-Term Deflection: An approximate procedure10.2, 10.7 that is compatible with the Direct Design and Equivalent Frame Methods of code Chapter 13 may be used to compute the initial or short-term deflection of two-way slab systems. The procedure is essentially the same for flat plates, flat slabs, and two-way beam-supported slabs, after the appropriate stiffnesses are computed. The midpanel deflection is computed as the sum of the deflection at midspan of the column strip or column line in one direction, Δ_{cx} or Δ_{cy}, and deflection at midspan of the middle strip in the orthogonal direction, Δ_{mx} or Δ_{my} (see Fig. 10-6). The column strip is the width on each side of column center line equal to 1/4 of the smaller panel dimension. The middle strip is the central portion of the panel which is bounded by two column strips.

For square panels,
\[\Delta = \Delta_{cx} + \Delta_{my} = \Delta_{cy} + \Delta_{mx} \] \hspace{1cm} (7)

For rectangular panels, or for panels that have different properties in the two directions, the average Δ of the two directions is used:
\[\Delta = \left[(\Delta_{cx} + \Delta_{my}) + (\Delta_{cy} + \Delta_{mx}) \right] / 2 \] \hspace{1cm} (8)
The midspan deflection of the column strip or middle strip in an equivalent frame is computed as the sum of three parts: deflection of panel assumed fixed at both ends, plus deflection of panel due to the rotation at the two support lines. In the x direction, the deflections would be computed using the following expressions:

\[
\begin{align*}
\Delta_{cx, \text{column strip}} &= \text{Fixed } \Delta_{cx} + (\Delta\theta_1)_{cx} + (\Delta\theta_2)_{cx} \\
\Delta_{cx, \text{middle strip}} &= \text{Fixed } \Delta_{cx} + (\Delta\theta_1)_{cx} + (\Delta\theta_2)_{cx}
\end{align*}
\]

While these equations and the following discussion address only the computation of deflections in the x direction, similar computations to determine \(\Delta_{cy}\) and \(\Delta_{my}\) would be necessary to compute deflections in the y direction.

The first step in the process of computing Fixed \(\Delta_{cx}\) and Fixed \(\Delta_{mx}\) is to compute the midspan fixed-end deflection of the full-width equivalent frame under uniform loading, given by

\[
\text{Fixed } \Delta_{\text{frame}} = \frac{w\ell^4}{384 E_c I_{\text{frame}}}
\]

where \(w = \text{load per unit area} \times \text{full width}\)

The effect of different stiffnesses in positive and negative moment regions [primarily when using drop panels and/or \(I_e\) in Eq. (9-8)] can be included by using an average moment of inertia as given by Eqs. (1) and (2).
The midspan fixed-end deflection of the column and middle strips is then computed by multiplying Fixed Δ_{frame} (Eq. (10)) by the $\frac{E}{I}$ ratio of the strips (column or middle) to the full-width frame.

$$\text{Fixed } \Delta_{c,m} = (\text{LDF})_{c,m} \cdot \text{Fixed } \Delta_{\text{frame}} \cdot \frac{(E)_{\text{frame}}}{(E)_{c,m}} \quad \text{for column or middle strip}$$

where $$(\text{LDF})_{c,m} = \frac{M_{c,m}}{M_{\text{frame}}},$$

The distribution of the total factored static moment, M_o, to the column and middle strips is prescribed in 13.6.3 and 13.6.4. In particular, 13.6.4.1, 13.6.4.2 and 13.6.4.4 provide tables which allocate fractions of M_o to the interior and exterior negative moment regions and the positive moment region, respectively, for column strips. The percent of the total not designated for the column strips is allocated to the middle strips. That is, for example, if 75 percent of M_o is designated for the interior negative moment of a column strip, the corresponding moment in the middle strip will be required to sustain 25 percent of M_o. The following expressions provide linear interpolation between the tabulated values given in 13.6.4.1, 13.6.4.2 and 13.6.4.4. Note that all expressions are given as percentages of M_o:

$$M_{\text{ext}} = 100 - 10\beta_t + 12\beta_t \left(\frac{l_2}{l_1} \right) \left(1 - \frac{l_2}{l_1} \right) \quad \text{(Exterior negative moment, \% } M_o\text{)}$$

$$M_{\text{int}} = 75 + 30(\alpha_f l_2/l_1) \left(1 - \frac{l_2}{l_1} \right) \quad \text{(Interior negative moment, \% } M_o\text{)}$$

$$M^+ = 60 + 30 \left(\alpha_f l_2/l_1 \right) \left(1.5 - \frac{l_2}{l_1} \right) \quad \text{(Positive moment, \% } M_o\text{)}$$

In application of the above expressions, if the actual value of $\alpha_f l_2/l_1$ exceeds 1.0, the value 1.0 is used. Similarly, if β_t exceeds 2.5, the value 2.5 is used.

In order to calculate the lateral distribution factors (LDF), three cases should be considered:

a. strips for interior panels
b. strips in edge panels parallel to the edge
c. strips in edge panels perpendicular to the edge

Note that in corner panels, Case c is used for strips in either direction as there is an exterior negative moment at each outer panel edge. In all cases, the strip moment, used in determination of the LDFs, is taken as the average of the positive and negative moment. Thus, the following formulas are obtained for the three cases:

Case a: \[\text{LDF} = \frac{1}{2} (M_{\text{int}}^+ + M^+) \]

Case b: \[\text{LDF} = \frac{1}{2} (M_{\text{int}}^+ + M^+) \]

Case c: \[\text{LDF} = \frac{1}{2} \left[\frac{1}{2} (M_{\text{int}}^- + M_{\text{ext}}^-) + M^+ \right] \]

These lateral distribution factors apply to column strips and are expressed in percentages of the total panel moment M_o. The corresponding factors for the middle strips are determined, in general, as follows:

$$\text{LDF}_{\text{mid}} = 100 - \text{LDF}_{\text{col}}$$

The remaining terms in Eq. (9), the midspan deflection of column strip or middle strip caused by rotations at the ends $\left([\Delta \theta_1]_{\text{ex}}, [\Delta \theta_2]_{\text{mx}}, \text{ etc.} \right)$, must now be computed. If the ends of the column at the floor above and below are assumed fixed (usual case for an equivalent frame analysis) or ideally pinned, the rotation of the column at the floor in question is equal to the net applied moment divided by the stiffness of the equivalent column.
\[\theta_{\text{frame}} = \theta_c = \theta_m = \frac{(M_{\text{net}})_{\text{frame}}}{K_{ec}} \]

(12)

where \(K_{ec} \) = equivalent column stiffness (see 13.7.4)

The midspan deflection of the column strip subjected to a rotation of \(\theta_1 \) radians at one end with the opposite end fixed is

\[(\Delta \theta_1)_c = \frac{\theta_1 \ell}{8}. \]

(13)

The additional deflection terms for the column and middle strips would be computed similarly.

Because \(\theta \) in Eq. (12) is based on gross section properties, while the deflection calculations are based on \(I_e \), Eq. (14) may be used instead of Eq. (13) for consistency:

\[(\Delta \theta_1)_c = \theta_1 \left(\frac{\ell}{8} \right) \left(\frac{I_g}{I_e} \right)_{\text{frame}}. \]

(14)

Direct Design Method: The deflection computation procedure described above has been expressed in terms of the equivalent frame method for moment analysis. However, it is equally suited for use with the direct design method in which coefficients are used to calculate moments at critical sections instead of using elastic frame analysis as in case of the equivalent frame method. In the direct design method, design moments are computed using clear spans. When determining deflections due to rotations at the ends of a member, these moments should theoretically be corrected to obtain moments at the center of the columns. However, this difference is generally small and may be neglected. In the case of flat plates and flat slabs, the span measured between the column centerlines is thought to be more appropriate than the clear span for deflection computations.

If all spans are equal and are identically loaded, the direct design method will give no unbalanced moments and rotations except at an exterior column. Therefore, in these cases, rotations need be considered only at the exterior columns. When live load is large compared to the dead load (not usually the case), end rotations may be computed by a simple moment-area procedure in which the effect of pattern loading may be included.

Effective Moment of Inertia: The effective moment of inertia given by Eq. (9-8) is recommended for computing deflections of partially cracked two-way construction. An average \(I_e \) of the positive and negative regions in accordance with Eqs. (1) and (2) may also be used.

For the typical cracking locations found empirically, the following moment of inertia values have been shown to be applicable in most cases.

<table>
<thead>
<tr>
<th>Case</th>
<th>Inertia</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Slabs without beams (flat plates, flat slabs)</td>
<td></td>
</tr>
<tr>
<td>(i) All dead load deflections—</td>
<td>(I_g)</td>
</tr>
<tr>
<td>(ii) Dead-plus-live load deflections:</td>
<td></td>
</tr>
<tr>
<td>For the column strips in both directions—</td>
<td>(I_e)</td>
</tr>
<tr>
<td>For the middle strips in both directions—</td>
<td>(I_g)</td>
</tr>
<tr>
<td>b. Slab with beams (two-way beam-supported slabs)</td>
<td></td>
</tr>
<tr>
<td>(i) All dead load deflections—</td>
<td>(I_g)</td>
</tr>
<tr>
<td>(ii) Dead-plus-live load deflections:</td>
<td></td>
</tr>
<tr>
<td>For the column strips in both directions—</td>
<td>(I_g)</td>
</tr>
<tr>
<td>For the middle strips in both directions—</td>
<td>(I_e)</td>
</tr>
</tbody>
</table>
The I_e of the equivalent frame in each direction is taken as the sum of the column and middle strip I_e values.

Long-Term Deflection: Since the available data on long-term deflections of two-way construction is too limited to justify more elaborate procedures, the same procedures as those used for one-way members are recommended. Equation (9-11) may be used with ξ = 2.5 for sustained loading of five years or longer duration.

9.5.4 Prestressed Concrete Construction

Typical span-depth ratios for general use in design of prestressed members are given in the PCI Design Handbook and summarized in Ref. 10.2 from several sources. Starting with the 2002 edition of ACI 318, the Building Code classifies prestressed concrete flexural members, in 18.3.3, as Class U (uncracked), Class T (transition), or Class C (cracked.) For Class U flexural members, deflections must be calculated based on the moment of inertia of the gross section I_g. For Classes T and C, deflections must be computed based on a cracked transformed section analysis or on a bilinear moment-deflection relationship. Reference 10.9 provides a procedure to compute deflection of cracked prestressed concrete members.

Deflection of Noncomposite Prestressed Members

— The ultimate (in time) camber and deflection of prestressed members may be computed based on a procedure described in Ref. 10.2. The procedure includes the use of I_e for partially prestressed members (Ref. 10.8) as a suggested method of satisfying 9.5.4.2 for deflection analysis when the computed tensile stress exceeds the modulus of rupture, but does not exceed $12 \sqrt{I_e}$. For detailed information on the deflection of cracked prestressed beams and on the deflection of composite prestressed beams, see Refs. 10.2 and 10.9.

The ultimate deflection of noncomposite prestressed members is obtained as (Refs. 10.2 and 10.10):

$\Delta_u = -\Delta_{po} + \Delta_0 - \left[\frac{\Delta P_u}{P_0} + \left(k_r C_u \right) \left(1 - \frac{\Delta P_u}{2P_0} \right) \right] \Delta_{po} + \left(k_r C_u \right) \Delta_0 + \Delta_s$

$+ \left(\beta_s k_r C_u \right) \Delta_s + \Delta_\epsilon + \left(\Delta_{cp} \right) \ell$ \hspace{1cm} (15)

Term (1) is the initial camber due to the initial prestressing moment after elastic loss, P_0ε. For example, $\Delta_{po} = P_0 \varepsilon / 8E_{ci}I_g$ for a straight tendon.

Term (2) is the initial deflection due to self-weight of the beam. $\Delta_0 = 5M_0 \ell^2 / 48E_{ci}I_g$ for a simple beam, where $M_0 = $ midspan self-weight moment.

Term (3) is the creep (time-dependent) camber of the beam due to the prestressing moment. This term includes the effects of creep and loss of prestress; that is, the creep effect under variable stress. Average values of the prestress loss ratio after transfer (excluding elastic loss), $(P_0 - P_e) / P_e$, are about 0.18, 0.21, and 0.23 for normal, sand, and all-lightweight concretes, respectively. An average value of $C_u = 2.0$ might be reasonable for the creep factor due to ultimate prestress force and self-weight. The k_r factor takes into account the effect of any nonprestressed tension steel in reducing time-dependent camber, using Eq. (16). It is also used in the PCI Design Handbook in a slightly different form.

$k_r = 1 / \left[1 + \left(A_s / A_{ps} \right) \right]$ for $A_s / A_{ps} < 2$ \hspace{1cm} (16)
When $k_r = 1$, Terms (1) + (3) can be combined as:

$$\Delta_u = \Delta_i + 1.80k_r \Delta_{ip} + \Delta_{sh} \frac{I_2}{I_c} + \Delta_{ds} + (\Delta_l)_2 + (\Delta_{cp})_{l+2}$$

Term (4) is the creep deflection due to self-weight of the beam. Use the same value of C_u as in Term (3). Since creep due to prestress and self-weight takes place under the combined stresses caused by them, the effect of any nonprestressed tension steel in reducing the creep deformation is included in both the camber Term (3) and the deflection Term (4).

Term (5) is the initial deflection of the beam under a superimposed dead load. $\Delta_s = 5M_s l^2 / 48E_c l_g$ for a simple beam, where M_s = midspan moment due to superimposed dead load (uniformly distributed).

Term (6) is the creep deflection of the beam caused by a superimposed dead load. k_r is the same as in Terms (3) and (4), and is included in this deflection term for the same reason as in Term (4). An average value of $C_u = 1.6$ is recommended, as in Eq. (7) for nonprestressed members, assuming load application at 20 days after placement. β_s is the creep correction factor for the age of the beam concrete when the superimposed dead load is applied at ages other than 20 days (same values apply for normal as well as lightweight concrete): $\beta_s = 1.0$ for age 3 weeks, 0.96 for age 1 month, 0.89 for age 2 months, 0.85 for age 3 months, and 0.83 for age 4 months.

Term (7) is the initial live load deflection of the beam. $\Delta_l = 5M_l l^2 / 48E_c l_g$ for a simple beam under uniformly distributed live load, where M_l = midspan live load moment. For uncropped members, $I_c = I_g$. For partially cracked noncomposite and composite members, see Refs. 10.2 and 10.3. See also Example 10.5 for a partially cracked case.

Term (8) is the live load creep deflection of the beam. This deflection increment may be computed as $(\Delta_{cp})_{l+2} = (M_l / M_l)C_u \Delta_{ip}$ where M_l is the sustained portion of the live load moment and $C_u = 1.6$, for load application at 20 days or multiplied by the appropriate β_s, as in Term (6).

An alternate method of calculation of long-term camber and deflection is the so-called PCI Multiplier Method which is presented in both Ref. 10.4 and Ref.10.8. In that procedure the various instantaneous components of camber or deflection are simply multiplied by the appropriate tabulated coefficients to obtain the additional contributions due to long term effects. The coefficients are given in Table 3.4 of Ref. 10.4 or Table 4.8.2 of Ref. 10.8.

9.5.5 Composite Construction

The ultimate (in time) deflection of unshored and shored composite flexural members may be computed by methods discussed in Refs. 10.2 and 10.10. The methods are reproduced in the following section for both unshored and shored construction. Subscripts 1 and 2 are used to refer to the slab (or effect of the slab, such as under slab dead load) and the precast beam, respectively. Examples 10.6 and 10.7 demonstrate the beneficial effect of shoring in reducing deflections.

9.5.5.1 Shored Construction

For shored composite members, where the dead and live load is resisted by the full composite section, the minimum thicknesses of Table 9.5(a) apply as for monolithic structural members.

The calculation of deflections for shored composite beams is essentially the same as for monolithic beams, except for the deflection due to shrinkage warping of the precast beam, which is resisted by the composite section after the slab has hardened, and the deflection due to differential shrinkage and creep of the composite beam. These effects are represented by Terms (3) and (4) in Eq. (17).
When \(k_r = 0.85 \) (neglecting any effect of slab compression steel) and \(\Delta_{ds} \) is assumed to be equal to \((\Delta_1)_{1+2} \), Eq. (17) reduces to Eq. (18).

\[
\Delta_u = 3.53(\Delta_1)_{1+2} + \frac{I_2}{I_c} + (\Delta_1)_\ell + (\Delta_{cp})_\ell
\]

(18)

Term (1) is the initial or short-term deflection of the composite beam due to slab plus precast beam dead load (plus partitions, roofing, etc.), using Eq. (3), with \(M_a = M_1 + M_2 = \) midspan moment due to slab plus precast beam dead load. For computing \((I_e)_{1+2} \) in Eq. (1), \(M_a \) refers to the moment \(M_1 + M_2 \), and \(M_{cr}, I_g, and I_{cr} \) to the composite beam section at midspan.

Term (2) is the creep deflection of the composite beam due to the dead load in Term (1), using Eq. (5). The value of \(C_u \) to be used must be a combination of that for the slab and that for the beam. In the case of the slab, an adjusted value of \(C_u = 1.74 \), based on the shores being removed at 10 days of age for a moist-cured slab, may be used. The beam may be older than 20 days (the standard condition) when the loads are applied, however \(C_u = 1.60 \) may be used conservatively. An average of the two values may be used as an approximation. For other times of load application, the adjustments can be made in similar fashion using the correction factors, \(\beta_s \), listed previously in the description of Term (6) of Eq. (15). Index \(\rho' \) refers to any compression steel in the slab at midspan when computing \(k_r \).

Term (3) is the shrinkage deflection of the composite beam after the shores are removed, due to the shrinkage of the precast beam concrete, but not including the effect of differential shrinkage and creep which is given by Term (4). Equation (6) may be used to compute \(\Delta_{sh} \). Assume the slab is cast at a precast (steam-cured) beam concrete age of 2 months and that shores are removed about 10 days later. At that time, the shrinkage in the beam is approximately 36% of the ultimate, according to Table 2.1 of ACI 435. The shrinkage strain subsequent to that time will be \((\varepsilon_{sh})_{rem} = (1 - 0.36) (\varepsilon_{sh})_u \). That value should be used in Eq. (6) to calculate the deflection component in this Term.

Term (4) is the deflection due to differential shrinkage and creep. As an approximation, \(\Delta_{ds} = (\Delta_1)_{1+2} \) may be used.

Term (5) is the initial or short-term live load deflection of the composite beam, using Eq. (3). The calculation of the incremental live load deflection follows the same procedure as that for a monolithic beam. This is the same as in the method described in connection with Term (9) of Eq. (19) discussed below.

Term (6) is the creep deflection due to any sustained live load, using Eq. (5). In computing this component of deflection, use of an ultimate creep coefficient, \(C_u = 1.6 \) is conservative. The creep coefficient may be reduced by the factor \(\beta_s \) defined in Term (6) of Eq. (15).

These procedures suggest using midspan values only, which may normally be satisfactory for both simple composite beams and those with a continuous slab as well. See Ref. 10.10 for an example of a continuous slab in composite construction.

9.5.5.2 Unshored Construction—For unshored composite construction, if the thickness of a nonprestressed precast member meets the minimum thickness requirements, deflections need not be computed. Section 9.5.5.2 also states that, if the thickness of an unshored nonprestressed composite member meets the minimum thickness requirements, deflections occurring after the member becomes composite need not be computed, but the long-term deflection of the precast member should be investigated for the magnitude and duration of load prior to beginning of effective composite action.
\[
\Delta_u = (\Delta_i)_2 + 0.77k_r (\Delta_i)_2 + 0.83k_r (\Delta_i)_2 \frac{I_2}{I_c} + 0.36\Delta_{sh} + 0.64\Delta_{sh} \frac{I_2}{I_c}
\]

\[
\Delta_u = (\Delta_i)_2 + 1.22k_r (\Delta_i)_1 \frac{I_2}{I_c} + \Delta_{ds} + (\Delta_i)_l + (\Delta_{cr})_l
\]

With \(k_r = 0.85 \) (no compression steel in the precast beam) and \(\Delta_{ds} \) assumed to be equal to 0.50 \((\Delta_i)_1 \), Eq. (19) reduces to Eq. (20).

\[
\Delta_u = \left[1.65 + 0.71 \frac{I_2}{I_c} \right] (\Delta_i)_2 + \left[0.36 + 0.64 \frac{I_2}{I_c} \right] \Delta_{sh}
\]

\[
\Delta_u = \left[1.50 + 1.04 \frac{I_2}{I_c} \right] (\Delta_i)_1 + (\Delta_i)_l + (\Delta_{cr})_l
\]

In Eqs. (19) and (20), the parts of the total creep and shrinkage occurring before and after slab casting are based on the assumption of a precast beam age of 20 days when its dead load is applied and an age of 2 months when the composite slab is cast.

Term (1) is the initial or short-term dead load deflection of the precast beam, using Eq. (3), with \(M_a = M_2 = \) midspan moment due to the precast beam dead load. For computing \((I_e)_2 \) in Eq. (9-8), \(M_a \) refers to the precast beam dead load, and \(M_{cr}, I_g, \) and \(I_{cr} \) to the precast beam section at midspan.

Term (2) is the dead load creep deflection of the precast beam up to the time of slab casting, using Eq. (5), with \(C_t = 0.48 \times 1.60 = 0.77 \) (for 20 days to 2 months; Table 2.1 of ACI 435; for slabs cast at other than 60 days, the appropriate values from Table 2.1 should be used), and the \(\rho' \) refers to the compression steel in the precast beam at midspan when computing \(k_r \).

Term (3) is the creep deflection of the composite beam following slab casting, due to the precast beam dead load, using Eq. (5), with the long term creep being the balance after the slab is cast, \(C_t = 1.60 - 0.77 = 0.83 \). As indicated in Term (3), if the slab is cast at time other than 2 months, \(C_t \) will be as determined from Table 2.1 of ACI 435 and the value of \(C_t \) to be used for this term will be found as the difference between 1.60 and the value used for Term (2). \(\rho' \) is the same as in Term (2). The ratio \(I_2/I_c \) modifies the initial stress (strain) and accounts for the effect of the composite section in restraining additional creep curvature (strain) after the composite section becomes effective. As a simple approximation, \(I_2/I_c = [(I_2/I_c)_g + (I_2/I_c)_{cr}]/2 \) may be used.

Term (4) is the deflection due to shrinkage warping of the precast beam up to the time of slab casting, using Eq. (6), with \((\varepsilon_{sh})_h = 0.36(\varepsilon_{sh})_u \) at age 2 months for steam cured concrete (assumed to be the usual case for precast beams) The multiplier 0.36 is obtained from Table 2.1 of Ref. 10.4. As in the previous two terms, if the slab
is cast at time different from 2 months after beam manufacture, the percentage of the ultimate shrinkage strain should be adjusted to reflect the appropriate value from Table 2.1 of ACI 435. \((\varepsilon_{sh})_u = 400 \times 10^{-6} \text{ in./in.} \).

Term (5) is the shrinkage deflection of the composite beam following slab casting, due to the shrinkage of the precast beam concrete, using Eq.(6), with \(\varepsilon_{sh} = 0.64 (\varepsilon_{sh})_u \). This term does not include the effect of differential shrinkage and creep, which is given by Term (8). \(I_2/I_c \) is the same as in Term (3).

Term (6) is the initial or short-term deflection of the precast beam under slab dead load, using Eq. (3), with the incremental deflection computed as follows: \((\Delta_i)_1 = (\Delta_i)_{1+2} - (\Delta_i)_{2} \) where \((\Delta_i)_{2} \) is the same as in Term (1). For computing \((I_c)_{1+2} \) and \((\Delta_i)_{1+2} \) in Eqs. (9-8) and (3), \(M_u = M_1 + M_2 \) due to the precast beam plus slab dead load at midspan, and \(M_{cr}, I_c, \) and \(I_{cr} \) refer to the precast beam section at midspan. When partitions, roofing, etc., are placed at the same time as the slab, or soon thereafter, their dead load should be included in \(M_1 \) and \(M_u \).

Term (7) is the creep deflection of the composite beam due to slab dead load using Eq. (5), with \(C_u = \beta_s \times 1.60 \). For loading age of 2 months, \(\beta_s = 0.89 \) is the appropriate correction factor as noted in Term(6) of Eq. (15). For loading at other times, the appropriate value of \(\beta_s \) should be used. In this term, the initial strains, curvatures and deflections under slab dead load were based on the precast section only. Hence the creep curvatures and deflections refer to the precast beam concrete, although the composite section is restraining the creep curvatures and deflections, as mentioned in connection with Term (3). \(k_r \) is the same as in Term (2), and \(I_2/I_c \) is the same as in Term (3).

Term (8) is the deflection due to differential shrinkage and creep. As an approximation, \(\Delta_{ds} = 0.50 (\Delta_i)_1 \), may be used.

Term (9) is the initial or short-term deflection due to live load (and other loads applied to the composite beam and not included in Term (6)) of the composite beam, using Eq. (4), with the incremental deflection estimated as follows: \((\Delta_i)_l = (\Delta_i)_{d + t} - (\Delta_i)_{d} \), based on the composite section. This is thought to be a conservative approximation, since the computed \((\Delta_i)_d \) is on the low side and thus the computed \((\Delta_i)_l \) is on the high side, even though the incremental loads are actually resisted by different sections (members). This method is the same as for Term (5) of Eq. (17), and the same as for a monolithic beam. Alternatively, Eq. (3) may be used with \(M_s = M_1 \) and \(I_c = (I_c)_{cr} \) as a simple rough approximation. The first method is illustrated in Example 10.7 and the alternative method in Example 10.6.

Term (10) is the creep deflection due to any sustained live load applied to the composite beam, using Eq. (5), with \(C_u = \beta_s \times 1.60 \). As in the other cases, \(\beta_s \) is given for various load application times in the explanation of Term (6) of Eq. (15). \(\rho' \) refers to any compression steel in the slab at midspan when computing \(k_r \). This Term corresponds to Term (6) in Eqs. (17) and (18).

REFERENCES

10.1 *Deflections of Concrete Structures*, Special Publication SP 43, American Concrete Institute, Farmington Hills, MI, 1974.

10.4 *Control of Deflection in Concrete Structures*, ACI 435R-95, American Concrete Institute, Farmington Hills, MI, 1995, (Reapproved 2000).
10.5 *Designing for Creep and Shrinkage in Concrete Structures*, Special Publication SP 76, American Concrete Institute, Farmington Hills, MI, 1982.

10.6 *Designing for Effects of Creep, Shrinkage, and Temperature in Concrete Structures*, Special Publication SP 27, American Concrete Institute, Farmington Hills, MI, 1971.

Example 10.1—Simple-Span Nonprestressed Rectangular Beam

Required: Analysis of short-term deflections, and long-term deflections at ages 3 months and 5 years (ultimate value)

Data:

\(f'_c = 3000 \text{ psi} \) (normal weight concrete)
\(f_y = 40,000 \text{ psi} \)
\(A_s = 3\text{-No. 7} = 1.80 \text{ in.}^2 \)
\(E_s = 29,000,000 \text{ psi} \)
\(\rho = A_s/bd = 0.0077 \)
\(A_s' = 3\text{-No. 4} = 0.60 \text{ in.}^2 \)
\(\rho' = A_s'/bd = 0.0026 \)

\((A_s' \text{ not required for strength}) \)
Superimposed dead load (not including beam weight) = 120 lb/ft
Live load = 300 lb/ft (50% sustained)
Span = 25 ft

Calculations and Discussion

1. Minimum beam thickness, for members not supporting or attached to partitions or other construction likely to be damaged by large deflections:

\[
h_{\text{min}} = \left(\frac{\ell}{16} \right)
\]

multiply by 0.8 for \(f_y = 40,000 \text{ psi} \) steel

\[
h_{\text{min}} = \frac{25 \times 12}{16} \times 0.8 = 15 \text{ in.} < 22 \text{ in.} \quad \text{O.K.}
\]

2. Moments:

\[
w_d = 0.120 + (12)(22)(0.150)/144 = 0.395 \text{ kips/ft}
\]

\[
M_d = \frac{w_d \ell^2}{8} = \frac{(0.395)(25)^2}{8} = 30.9 \text{ ft-kips}
\]

\[
M_l = \frac{w_l \ell^2}{8} = \frac{(0.300)(25)^2}{8} = 23.4 \text{ ft-kips}
\]

\[
M_{d+\ell} = 54.3 \text{ ft-kips}
\]

\[
M_{\text{sus}} = M_d + 0.50M_l = 30.9 + (0.50)(23.4) = 42.6 \text{ ft-kips}
\]
Example 10.1 (cont’d) Calculations and Discussion

3. Modulus of rupture, modulus of elasticity, modular ratio:

- \(f_r = 7.5\lambda \sqrt{f_c' = 7.5(1.0)\sqrt{3000} = 411 \text{ psi}} \)
 \(E_c = w_c^{1.5} \sqrt{f_c' = (150)^{1.5} \sqrt{3000} = 3.32 \times 10^6 \text{ psi}} \)

- \(n_s = \frac{E_s}{E_c} = \frac{29 \times 10^6}{3.32 \times 10^6} = 8.7 \)

4. Gross and cracked section moments of inertia, using Table 10-2:

- \(I_g = \frac{bh^3}{12} = \frac{(12)(22)^3}{12} = 10,650 \text{ in}^4 \)

- \(B = \frac{b}{(nA_s)} = \frac{12}{(8.7)(1.80)} = 0.766 \text{ in} \)

- \(r = \frac{(n-1)A_s}{(nA_s)} = \frac{(7.7)(0.60)}{(8.7)(1.80)} = 0.295 \)

- \(kd = \left[\sqrt{2dB(1+rd'/d)+(1+r)^2-(1+r)} \right] / B = \left[\sqrt{(2)(19.5)(0.766)\left[1 + \frac{0.295 \times 2.5}{19.5}\right] + (1.295)^2 - 1.295} \right] / 0.766 = 5.77 \text{ in} \)

- \(I_{cr} = \frac{bk^3d^3}{3} + nA_s \left(d - kd \right)^2 + (n-1)A_s (kd - d')^2 = \frac{(12)(5.77)^3}{3} + (8.7)(1.80)(19.5 - 5.77)^2 + (7.7)(0.60)(5.77 - 2.5)^2 \)

- \(I_{cr} = 3770 \text{ in}^4 \)

- \(\frac{I_g}{I_{cr}} = 2.8 \)

5. Effective moments of inertia, using Eq. (9-8):

- \(M_{cr} = \frac{f_r I_g}{y_t} = [(411)(10,650)/(11)]/(12,000) = 33.2 \text{ ft-kips} \)

 a. Under dead load only
Example 10.1 (cont’d) Calculations and Discussion Code Reference

\[\frac{M_{cr}}{M_d} = \frac{33.2}{30.9} > 1 \]. Hence \((I_e)_d = I_g = 10,650 \text{ in.}^4\)

b. Under sustained load

\[\left(\frac{M_{cr}}{M_{sus}} \right)^3 = \left(\frac{33.2}{42.6} \right)^3 = 0.473 \]

\[(I_e)_{sus} = (M_{cr}/M_a)^3 I_g + [1 - (M_{cr}/M_a)^3] I_{cr} \leq I_g \]

\[= (0.473)(10,650) + (1 - 0.473)(3770) \]

\[= 7025 \text{ in.}^4 \]

c. Under dead + live load

\[\left(\frac{M_{cr}}{M_{d+\ell}} \right)^3 = \left(\frac{33.2}{54.3} \right)^3 = 0.229 \]

\[(I_e)_{d+\ell} = (0.229)(10,650) + (1 - 0.229)(3770) \]

\[= 5345 \text{ in.}^4 \]

6. Initial or short-time deflections, using Eq. (3):

\[(\Delta_i)_{d} = \frac{K \left(\frac{5}{48} \right) M_d \ell^2}{E_c (I_e)_d} = \frac{(1) \left(\frac{5}{48} \right) (30.9)(25)^2 (12)^3}{(3320)(10,650)} = 0.098 \text{ in.} \]

K = 1 for simple spans (see Table 8-3)

\[(\Delta_i)_{sus} = \frac{K \left(\frac{5}{48} \right) M_{sus}\ell^2}{E_c (I_e)_{sus}} = \frac{(1) \left(\frac{5}{48} \right) (42.6)(25)^2 (12)^3}{(3320)(7025)} = 0.205 \text{ in.} \]

\[(\Delta_i)_{d+\ell} = \frac{K \left(\frac{5}{48} \right) M_{d+\ell}\ell^2}{E_c (I_e)_{d+\ell}} = \frac{(1) \left(\frac{5}{48} \right) (54.3)(25)^2 (12)^3}{(3320)(5345)} = 0.344 \text{ in.} \]

\[(\Delta_i)_{\ell} = (\Delta_i)_{d+\ell} - (\Delta_i)_{d} = 0.344 - 0.098 = 0.246 \text{ in.} \]

Allowable Deflections (Table 9.5(b)):

Flat roofs not supporting and not attached to nonstructural elements likely to be damaged by large deflections—

\[(\Delta_i)_{\ell} \leq \frac{\ell}{180} = \frac{300}{180} = 1.67 \text{ in.} > 0.246 \text{ in.} \ O.K. \]
Example 10.1 (cont’d) Calculations and Discussion Reference

Floors not supporting and not attached to nonstructural elements likely to be damaged by large deflections—

\[(\Delta_i)_{\ell} \leq \frac{\ell}{360} = \frac{300}{360} = 0.83 \text{ in.} > 0.246 \text{ in.} \quad \text{O.K.} \]

7. Additional long-term deflections at ages 3 mos. and 5 yrs. (ultimate value):

Combined creep and shrinkage deflections, using Eqs. (9-11) and (4):

<table>
<thead>
<tr>
<th>Duration</th>
<th>(\xi)</th>
<th>(\lambda = \frac{\xi}{1 + 50\rho'})</th>
<th>((\Delta)_{\text{sus}})</th>
<th>((\Delta_i)_{\ell})</th>
<th>(\Delta_{\text{cp}} + \Delta_{\text{sh}} + (\Delta_i)_{\ell})</th>
<th>(\Delta_{\text{cp}} + \Delta_{\text{sh}} + (\Delta_i)_{\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-years</td>
<td>2.0</td>
<td>1.77</td>
<td>0.205</td>
<td>0.246</td>
<td>0.363</td>
<td>0.61</td>
</tr>
<tr>
<td>3-months</td>
<td>1.0</td>
<td>0.89</td>
<td>0.205</td>
<td>0.246</td>
<td>0.182</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Separate creep and shrinkage deflections, using Eqs. (5) and (6):

For \(\rho = 0.0077; \rho' = 0.0026 \)

For \(\rho = 100 \rho = 0.77 \) and \(\rho' = 100 \rho' = 0.26 \), read \(A_{\text{sh}} = 0.455 \) (Fig. 10-3) and \(K_{\text{sh}} = 0.125 \) for simple spans (Table 10-5).

<table>
<thead>
<tr>
<th>Duration</th>
<th>(\xi)</th>
<th>(\lambda = \frac{0.85C_t}{1+50\rho'})</th>
<th>(\Delta_{\text{cp}} = \lambda_{\text{cp}}(\Delta)_{\text{sus}})</th>
<th>(\Delta_{\text{sh}} = K_{\text{sh}}\phi_{\text{sh}}h^2)</th>
<th>(\Delta_{\text{cp}} + \Delta_{\text{sh}} = \lambda(\Delta)_{\text{sus}})</th>
<th>(\Delta_{\text{cp}} + \Delta_{\text{sh}} + (\Delta_i)_{\ell})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-years</td>
<td>1.6</td>
<td>1.20</td>
<td>0.246</td>
<td>0.455\times400\times10^{-6} \times 0.22 \times 8.27\times10^{-6} \times \frac{1}{8} \times (25\times12)^2 = 0.093 \times 4.96\times10^{-6} \times 0.0558 \times 0.14+0.056+0.246 = 0.0558 \times 0.14+0.056+0.246 = 0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-months</td>
<td>0.56 \times 1.6 \times 0.9 = 0.9</td>
<td>0.68</td>
<td>0.14</td>
<td>0.6\times400\times10^{-6} \times 240\times10^{-6} \times 0.246+0.093+0.246 = 0.59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Allowable Deflection Table 9.5(b):

Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections (very stringent limitation).

\[\Delta_{\text{cp}} + \Delta_{\text{sh}} + (\Delta_i)_{\ell} \leq \frac{\ell}{480} = \frac{300}{480} = 0.63 \text{ in.} \quad \text{O.K. by both methods} \]

Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections.

\[\Delta_{\text{cp}} + \Delta_{\text{sh}} + (\Delta_i)_{\ell} \leq \frac{\ell}{240} = \frac{300}{240} = 1.25 \text{ in.} \quad \text{O.K. by both methods} \]
Example 10.2—Continuous Nonprestressed T-Beam

Required: Analysis of short-term and ultimate long-term deflections of end-span of multi-span beam shown below.

\[\rho = \frac{2.37}{90 \times 22.5} = 0.00117 \]

\[\rho' = 0 \]

\[nA_s = (11.3)(2.37) = 26.8 \text{ in.}^2 \]

\[\rho_w = \frac{2.37}{12 \times 22.5} = 0.00878 \]

Data:

\[f'_c = 4000 \text{ psi (sand-lightweight concrete)} \]

\[f_y = 50,000 \text{ psi} \]

\[w_c = 115 \text{ pcf} \]

Beam spacing = 10 ft

Superimposed Dead Load (not including beam weight) = 20 psf

Live Load = 100 psf (30% sustained)

\((A_s' \) is not required for strength)

Beam will be assumed to be continuous at one end only for \(h_{\text{min}} \) in Table 9.5(a), for Avg. \(I_c \) in Eq. (1), and for \(K_{sh} \) in Eq. (6), since the exterior end is supported by a spandrel beam. The end span might be assumed to be continuous at both ends when supported by an exterior column.

Calculations and Discussion

1. Minimum thickness, for members not supporting or attached to partitions or other construction likely to be damaged by large deflections:
Example 10.2 (cont’d) Calculations and Discussion Code Reference

\[h_{\text{min}} = \frac{\ell}{18.5} \]

Table 9.5(a)

Modifying factors = 1.09 for \(w_c = 115 \text{ pcf} \) [footnote (a) Table 9.5(a)]

\[= 0.9 \text{ for } f_y = 50,000 \text{ psi} \] [footnote (b) Table 9.5(a)]

\[h_{\text{min}} = \left(\frac{360}{18.5} \right) (0.90) (1.09) = 19.1 \text{ in.} < h = 25 \text{ in.} \text{ O.K.} \]

2. Loads and moments:

\[w_d = (20 \times 10) + (115) (12 \times 20 + 120 \times 5)/144 = 871 \text{ lb/ft} \]

\[w_\ell = (100 \times 10) = 1000 \text{ lb/ft} \]

In lieu of a moment analysis, the ACI approximate moment coefficients may be used as follows: Pos. \(M = w_\ell^2 n^2 /14 \) for positive \(I_c \) and maximum deflection, Neg. \(M = w_\ell^2 n^2 /10 \) for negative \(I_c \).

a. Positive Moments

\[\text{Pos. } M_d = \frac{w_d \ell n^2}{14} = \frac{(0.871)(30)^2}{14} = 56.0 \text{ ft-kips} \]

\[\text{Pos. } M_\ell = \frac{(1.000)(30)^2}{14} = 64.3 \text{ ft-kips} \]

\[\text{Pos. } M_{d+\ell} = 56.0 + 64.3 = 120.3 \text{ ft-kips} \]

\[\text{Pos. } M_{\text{sus}} = M_d + 0.30M_\ell = 56.0 + (0.30)(64.3) = 75.3 \text{ ft-kips} \]

b. Negative Moments

\[\text{Neg. } M_d = \frac{w_d \ell n^2}{10} = \frac{(0.871)(30)^2}{10} = 78.4 \text{ ft-kips} \]

\[\text{Neg. } M_\ell = \frac{(1.000)(30)^2}{10} = 90.0 \text{ ft-kips} \]

\[\text{Neg. } M_{d+\ell} = 78.4 + 90.0 = 168.4 \text{ ft-kips} \]

\[\text{Neg. } M_{\text{sus}} = M_d + 0.30M_\ell = 78.4 + (0.30)(90.0) = 105.4 \text{ ft-kips} \]

3. Modulus of rupture, modulus of elasticity, modular ratio:

\[f_r = (7.5)(0.85)\sqrt{f_c^\prime} = 6.38\sqrt{4000} = 404 \text{ psi} \] (0.85 for sand lightweight concrete)

Eq. (9-10)
Example 10.2 (cont’d) Calculations and Discussion Reference

\[E_c = w_c^{1/3} \frac{33}{\sqrt{I_c}} = (115)^{1/3} \frac{33}{\sqrt{4000}} = 2.57 \times 10^6 \text{ psi} \]

\[n = \frac{E_b}{E_c} = \frac{29 \times 10^6}{2.57 \times 10^6} = 11.3 \]

4. Gross and cracked section moments of inertia:
 a. Positive moment section
 \[y_t = h - \frac{1}{2} \frac{[(b - b_w) h_f^2 + b_w h^2]}{[(b - b_w) h_f + b_w h]} \]
 \[= 25 - \frac{1}{2} \frac{[(78)(5) + (12)(25)^2]}{[(78)(5) + (12)(25)]} \]
 \[= 18.15 \text{ in.} \]

 \[I_g = (b - b_w) h_f^3/12 + b_w h^3/12 + (b - b_w) h_f (h - h_f/2 - y_t)^2 + b_w h (y_t - h/2)^2 \]
 \[= (78)(5)^3/12 + (12)(25)^3/12 + (78)(5)(25 - 2.5 - 18.15)^2 \]
 \[+ (12)(25)(18.15 - 12.5)^2 = 33,390 \text{ in.}^4 \]

 \[B = \frac{b}{nA_s} = \frac{90}{(10.6)(2.37)} = 3.58/\text{in.} \quad (\text{Table 10-2}) \]

 \[k_d = \frac{\sqrt{2dB + 1} - 1}{B} = \frac{\sqrt{(2)(22.5)(3.58) + 1} - 1}{3.58} \]
 \[= 3.28 < h_f = 5 \text{ in.} \]

 Hence, treat as a rectangular compression area.

 \[I_{cr} = bk^3d^3/3 + nA_s(d - k_d)^2 = (90)(3.28)^3/3 + (10.6)(2.37)(22.5 - 3.28)^2 \]
 \[= 10,340 \text{ in.}^4 \]

 b. Negative moment section
 \[I_g = \frac{12 \times 25^3}{12} = 15,625 \text{ in.}^4 \]

 \[I_{cr} = 11,185 \text{ in.}^4 \] (similar to Example 10.1, for b = 12 in., d = 22.5 in., d’ = 2.5 in., A_s = 3.95 in.², A’s = 1.58 in.²)

5. Effective moments of inertia, using Eqs. (9-8) and (1):
 a. Positive moment section:
 \[M_{cr} = f_r I_g/y_t = \frac{[(404)(33,390)/(18.15)]}{12,000} = 61.9 \text{ ft-kips} \quad \text{Eq. (9-9)} \]
Example 10.2 (cont’d) Calculations and Discussion Reference

\[\frac{M_{cr}}{M_d} = \frac{61.9}{56.0} > 1. \] Hence \((I_e)_d = I_g = 33,390 \text{ in.}^4\]

\[(M_{cr}/M_{sus})^3 = \left(\frac{61.9}{75.3}\right)^3 = 0.556 \]

\[(I_e)_{sus} = (M_{cr}/M_a)^3 I_g + \left[1 - (M_{cr}/M_a)^3\right] I_{cr} \leq I_g\]
\[= (0.556)(33,390) + (1 - 0.556)(10,340) = 23,156 \text{ in.}^4\]

\[(M_{cr}/M_{d+\ell})^3 = \left(\frac{61.9}{120.3}\right)^3 = 0.136 \]

\[(I_e)_{d+\ell} = (0.136)(33,390) + (1 - 0.136)(10,340) = 13,475 \text{ in.}^4\]

b. Negative moment section:

\[M_{cr} = \frac{(404)(15,625)/(12.5)}{12,000} = 42.1 \text{ ft-kips}\]

\[(M_{cr}/M_d)^3 = \left(\frac{42.1}{78.4}\right)^3 = 0.15 \]

\[(I_e)_{d} = (0.15)(15,625) + (1 - 0.15)(11,185) = 11,851 \text{ in.}^4\]

\[(M_{cr}/M_{sus})^3 = \left(\frac{42.1}{105.4}\right)^3 = 0.06 \]

\[(I_e)_{sus} = (0.06)(15,625) + (1 - 0.06)(11,185) = 11,448 \text{ in.}^4\]

\[(M_{cr}/M_{d+\ell})^3 = \left(\frac{42.1}{168.4}\right)^3 = 0.016 \]

\[(I_e)_{d+\ell} = (0.016)(15,625) + (1 - 0.016)(11,185) = 11,256 \text{ in.}^4\]

b. Average inertia values:

\[\text{Avg. } (I_e) = 0.85I_m + 0.15(I_{cont. \text{ end}})\]

\[\text{Avg. } (I_e)_{d} = (0.85)(33,390) + (0.15)(11,851) = 30,159 \text{ in.}^4\]

\[\text{Avg. } (I_e)_{sus} = (0.85)(23,156) + (0.15)(11,448) = 21,400 \text{ in.}^4\]

\[\text{Avg. } (I_e)_{d+\ell} = (0.85)(13,475) + (0.15)(11,256) = 13,142 \text{ in.}^4\]

6. Initial or short-time deflections, with midspan \(I_e\) and with avg. \(I_e\):

\[\left(\Delta_i\right) = K \left(\frac{5}{48}\right) \frac{M_a \ell^2}{E_c I_e}\]

\[K = 1.20 - 0.20M_o/M_a = 1.20 - (0.20)\left(\frac{w \ell_n^2}{8}\right)\left(\frac{w \ell_n^2}{14}\right) = 0.850\]

\[\left(\Delta_i\right)_{d} = K \left(\frac{5}{48}\right) \frac{M_d \ell^2}{E_c (I_e)_{d}} = \frac{(0.85)(5/48)(56.0)(30)^2(12)^3}{(2570)(33,390)} = 0.090 \text{ in.}\]
Example 10.2 (cont’d) Calculations and Discussion Reference

\[
(\Delta_i)_{\text{sus}} = \frac{K(5/48)M_{\text{sus}}\ell^2}{E_c(I_c)_{\text{sus}}} = \frac{(0.85)(5/48)(75.3)(30)^2(12)^3}{(2570)(23,156)} = 0.174 \text{ in.}
\]

\[
(\Delta_i)_{d+\ell} = \frac{K(5/48)M_{d+\ell}\ell^2}{E_c(I_c)_{d+\ell}} = \frac{(0.85)(5/48)(120.3)(30)^2(12)^3}{(2570)(13,475)} = 0.478 \text{ in.}
\]

\[
(\Delta_i)_{\ell} = (\Delta_i)_{d+\ell} - (\Delta_i)_{d} = 0.478 - 0.090 = 0.388 \text{ in.}
\]

\[
(\Delta_i)_{\ell} = 0.491 - 0.100 = 0.391 \text{ in., using avg. } I_e \text{ from Eq. (1)}
\]

Allowable deflections Table 9.5(b):

For flat roofs not supporting and not attached to nonstructural elements likely to be damaged by large deflections — \((\Delta_i)_{\ell} \leq \ell/180 = 2.00 \text{ in.} > 0.391 \text{ in.} \text{ O.K.}\)

For floors not supporting and not attached to nonstructural elements likely to be damaged by large deflections — \((\Delta_i)_{\ell} \leq \ell/360 = 360/360 = 1.00 \text{ in.} \text{ O.K.}\)

7. Ultimate long-term deflections:

Using ACI Method with combined creep and shrinkage effects:

\[
\lambda = \frac{\xi}{1 + 50\rho'} = \frac{2.0 \text{ (ultimate value)}}{1 + 0} = 2.0 \quad \text{Eq. (9-11)}
\]

\[
\Delta_{(cp+sh)} = \lambda (\Delta_i)_{\text{sus}} = (2.0)(0.174) = 0.348 \text{ in.} \quad \text{Eq. (4)}
\]

\[
\Delta_{(cp+sh)} + (\Delta_i)_{\ell} = 0.348 + 0.388 = 0.736 \text{ in.}
\]

\[
= [2(0.189) + 0.391] = 0.769 \text{ using avg. } I_e \text{ from Eq. (1)}.
\]

Using Alternate Method with separate creep and shrinkage deflections:

\[
\lambda_{cp} = \frac{0.85C_u}{1 + 50\rho'} = \frac{(0.85)(1.60)}{1 + 0} = 1.36
\]

\[
\Delta_{cp} = \lambda_{cp}(\Delta_i)_{\text{sus}} = (1.36)(0.174) = 0.237 \text{ in.} \quad \text{Eq. (5)}
\]
Example 10.2 (cont’d) Calculations and Discussion

\[\rho = 100 \left(\frac{\rho + \rho_w}{2} \right) = 100 \left(\frac{2.37}{90 \times 22.5} + \frac{2.37}{12 \times 22.5} \right)/2 \]

\[= 100 \left(\frac{0.00117 + 0.00878}{2} \right) = 0.498\% \]

\[A_{sh} \text{ (from Fig. 10-3)} = 0.555 \]

\[\phi_{sh} = A_{sh} \frac{(e_{sh})u}{h} = \frac{(0.555)(400 \times 10^{-6})}{25} = 8.88 \times 10^{-6}/\text{in.} \]

\[\Delta_{sh} = K_{sh}\phi_{sh}\ell^2 = (0.090)\left(8.88 \times 10^{-6}\right)(30)^2(12)^2 = 0.104 \text{ in.} \quad Eq. (6) \]

\[\Delta_{cp} = \Delta_{sh} + (\Delta_1)_{\ell} = 0.237 + 0.104 + 0.388 = 0.729 \text{ in.} \]

\[= (0.257 + 0.104 + 0.391) = 0.752, \text{ using avg. } I_1 \text{ from Eq. (1).} \]

Allowable deflections Table 9.5(b):

For roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections (very stringent limitation) —

\[\Delta_{cp} + \Delta_{sh} + (\Delta_1)_{\ell} \leq \frac{\ell}{480} = \frac{360}{480} = 0.75 \text{ in.} \]

All results O.K.

For roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections —

\[\Delta_{cp} + \Delta_{sh} + (\Delta_1)_{\ell} \leq \frac{\ell}{240} = \frac{360}{240} = 1.50 \text{ in.} \quad \text{All results O.K.} \]
Example 10.3—Slab System Without Beams (Flat Plate)

Required: Analysis of short-term and ultimate long-term deflections of a corner panel.

Data:

Flat plate with no edge beams, designed by Direct Design Method
Slab $f'_c = 3000$ psi, Column $f'_c = 5000$ psi, (normal weight concrete)
$f_y = 40,000$ psi
Square panels—15 × 15 ft center-to-center of columns
Square columns—14 × 14 in., Clear span, $\ell_n = 15 - 1.17 = 13.83$ ft
Story height = 10 ft., Slab thickness, $h = 6$ in.
The reinforcement in the column strip negative moment regions consists of No. 5 bars at 7.5 in. spacing. Therefore, the total area of steel in a 90-in. strip (half the panel length) is given by:

$$A_s = (90/7.5) (0.31) = 3.72 \text{ sq. in.}$$

The distance from the compressive side of the slab to the center of the steel is:

$$d = 4.62 \text{ in}$$

Middle Strip reinforcement and d values are not required for deflection computations, since the slab remains uncracked in the middle strips.

Superimposed Dead Load = 10 psf
Live Load = 50 psf
Check for 0% and 40% Sustained Live Load

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimum thickness:</td>
<td>9.5.3.2</td>
</tr>
<tr>
<td>From Table 10-6, with Grade 40 steel:</td>
<td></td>
</tr>
<tr>
<td>Interior panel $h_{\text{min}} = \ell_n / 36 = (13.83 \times 12) / 36 = 4.61$ in.</td>
<td></td>
</tr>
<tr>
<td>Exterior panel $h_{\text{min}} = \ell_n / 33 = (13.83 \times 12) / 33 = 5.03$ in.</td>
<td></td>
</tr>
<tr>
<td>Since the actual slab thickness is 6 in., deflection calculations are not required; however, as an illustration, deflections will be checked for a corner panel, to make sure that all allowable deflections per Table 9.5(b) are satisfied.</td>
<td></td>
</tr>
<tr>
<td>2. Comment on trial design with regard to deflections:</td>
<td></td>
</tr>
<tr>
<td>Based on the minimum thickness limitations versus the actual slab thickness, it appears likely that computed deflections will meet most or all of the code deflection limitations. It turns out that all are met.</td>
<td></td>
</tr>
</tbody>
</table>
Example 10.3 (cont’d) Calculations and Discussion

3. Modulus of rupture, modulus of elasticity, modular ratio:

\[f' = 7.5 \sqrt{f_c' \lambda} = 7.5(1.0)\sqrt{3000} = 411\text{psi} \quad \text{Eq. (9-10)} \]

\[E_{cs} = w_c^{1.5} \sqrt{f_c' \lambda} = (150)^{1.5} \sqrt{33/3000} = 3.32 \times 10^6 \text{psi} \quad \text{8.5.1} \]

\[E_{cc} = (150)^{1.5} \sqrt{5000} = 4.29 \times 10^6 \text{psi} \]

\[n = \frac{E_s}{E_{cs}} = \frac{29}{3.32} = 8.73 \]

4. Service load moments and cracking moment:

\[w_d = 10 + (150)(6.0)/12 = 85.0 \text{psf} \]

\[(M_o)_d = w_d \ell n^2 / 8 = (85.0)(15)(13.83)^2/8000 = 30.48 \text{ft-kips} \]

\[(M_o)_{d+\ell} = w_{d+\ell} \ell n^2 / 8 = (85.0 + 50.0)(15)(13.83)^2/8000 = 48.41 \text{ft-kips} \]

\[(M_o)_{sus} = (85 + 0.4 \times 50)(15)(13.83)^2/8000 = 37.65 \text{ft-kips} \]

The moments are distributed to the ends and centers of the column and middle strips according to the coefficients in the tables of Sections 13.6.3.3, 13.6.4.1, 13.6.4.2 and 13.6.4.4. In this case, the span ratio, \(\ell_2/\ell_1 \), is equal to 1.0. The multipliers of the panel moment, \(M_o \), that are used to make the distribution in an end span are given in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Ext. Negative</th>
<th>Positive</th>
<th>Int. Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Panel</td>
<td>0.26</td>
<td>0.52</td>
<td>0.70</td>
</tr>
<tr>
<td>Col. Strip</td>
<td>(1.0)(0.26)</td>
<td>(0.60)(0.52)</td>
<td>(0.75)(0.70)</td>
</tr>
<tr>
<td>Mid. Strip</td>
<td>(1.0-1.0)(0.26)</td>
<td>(1.0-0.60)(0.52)</td>
<td>(1.0-0.75)(0.70)</td>
</tr>
</tbody>
</table>

The resulting moments applied to the external and internal ends and to the center span of the column and middle strips are given in the following tables:

<table>
<thead>
<tr>
<th></th>
<th>Ext. Negative</th>
<th>Positive</th>
<th>Int. Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Panel</td>
<td>7.93</td>
<td>15.85</td>
<td>21.34</td>
</tr>
<tr>
<td>Col. Strip</td>
<td>0</td>
<td>6.34</td>
<td>5.34</td>
</tr>
<tr>
<td>Mid. Strip</td>
<td>7.93</td>
<td>16.00</td>
<td>16.00</td>
</tr>
</tbody>
</table>

Dead Load Moments, ft-kips

10-33
Example 10.3 (cont’d) Calculations and Discussion

Dead Load + Live Load Moments, ft-kips

<table>
<thead>
<tr>
<th></th>
<th>Ext. Negative</th>
<th>Positive</th>
<th>Int. Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Panel</td>
<td>12.59</td>
<td>25.18</td>
<td>33.89</td>
</tr>
<tr>
<td>Col. Strip</td>
<td>12.59</td>
<td>15.10</td>
<td>25.41</td>
</tr>
<tr>
<td>Mid. Strip</td>
<td>0</td>
<td>10.07</td>
<td>8.47</td>
</tr>
</tbody>
</table>

Sustained Load Moments, ft-kips (Dead Load + 40% Live Load)

<table>
<thead>
<tr>
<th></th>
<th>Ext. Negative</th>
<th>Positive</th>
<th>Int. Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Panel</td>
<td>9.79</td>
<td>19.58</td>
<td>26.36</td>
</tr>
<tr>
<td>Col. Strip</td>
<td>9.79</td>
<td>11.75</td>
<td>19.77</td>
</tr>
<tr>
<td>Mid. Strip</td>
<td>0</td>
<td>7.83</td>
<td>6.59</td>
</tr>
</tbody>
</table>

The gross moment of inertia of a panel, referred to as the total equivalent frame moment of inertia is:

\[I_{\text{frame}} = \frac{\ell_s h^3}{12} = \frac{(15 \times 12)(6)^3}{12} = 3,240 \text{ in.}^4 \]

For this case, the moment of inertia of a column strip or a middle strip is equal to half of the moment of inertia of the total equivalent frame:

\[I_g = \frac{1}{2}(3240) = 1,620 \text{ in.}^4 \]

The cracking moment for either a column strip or a middle strip is obtained from the standard flexure formula based on the uncracked section as follows:

\[\frac{(M_{cr})_{c/2}}{(M_{cr})_{m/2}} = \frac{f_r}{f_t}I_g/y_t = \frac{411}{(15 \times 12)} \frac{(6.0)^3}{(4)} \frac{12}{(3.0)}(12,000) \]

\[= 9.25 \text{ ft-kips} \]

5. Effective moments of inertia:

A comparison of the tabulated applied moments with the cracking moment shows that the apportioned moment at all locations, except at the interior support of the column strips for the live load and sustained load cases, is less than the cracking moment under the imposed loads. The cracked section moment of inertia is, therefore, only required for the column strips in the negative moment zones. Formulas for computation of the cracked section moment of inertia are obtained from Table 10-2:

\[B = \frac{b}{nA_s} = \frac{1}{2} \left(\frac{15 \times 12}{8.73 \times 3.72} \right) = 2.77 \left(\frac{1}{\text{in.}} \right) \]

\[kd = \frac{\sqrt{2} dB + 1 - 1}{B} = \frac{\sqrt{2} \times 4.62 \times 2.77 + 1 - 1}{2.77} = 1.50 \text{ in.} \]
Example 10.3 (cont’d) Calculations and Discussion

\[I_{cr} = \frac{b(kd)^3}{3} + nA_s (d - kd)^2 = \frac{90 \times 1.50^3}{3} + 8.73 \times 3.72 \times (4.62 - 1.50)^2 = 417 \text{ in.}^4 \]

To obtain an equivalent moment of inertia for the cracked location, apply the Branson modification to the moments of inertia for cracked and uncracked sections. The approximate moment of inertia in the cracked sections is given by the general formula in Equation (9-8) of ACI 318. From the tables developed in Step 4 above, the ratios of the cracking moment to dead load plus live load and sustained load moments are found as follows:

For dead load plus live load:

\[\frac{M_{cr}}{M_a} = \frac{18.50}{25.41} = 0.728 \]

\[\left(\frac{M_{cr}}{M_a} \right)^3 = 0.386 \]

and for the sustained load case (dead load plus 40% live load):

\[\frac{M_{cr}}{M_a} = \frac{18.50}{19.77} = 0.936 \]

\[\left(\frac{M_{cr}}{M_a} \right)^3 = 0.819 \]

The equivalent moment of inertia for the two cases are now computed by Eq. (9-8) of ACI 318:

For dead load plus live load:

\[I_e = (0.386)1620 + (1-0.386)(417) = 881 \text{ in.}^4 \]

For sustained load (dead load + 40% live load):

\[I_e = (0.819)1620 + (1-0.819)(417) = 1402 \text{ in.}^4 \]

Finally, the equivalent moment of inertia for the uncracked sections is just the moment of inertia of the gross section, \(I_g \).

To obtain an average moment of inertia for calculation of deflection, the “end” and “midspan” values are then combined according to Equation (1):

For dead load plus live load:

\[\text{Avg. } I_e = 0.85(1620) + 0.15(881) = 1509 \text{ in.}^4 \]
Example 10.3 (cont’d) Calculations and Discussion Reference

For sustained load (dead load + 40% live load):

\[\text{Avg. } I_e = 0.85(1620) + 0.15(1402) = 1587 \text{ in.}^4 \]

To obtain the equivalent moment of inertia for the “equivalent frame”, which consists of a column and a middle strip, add the average moments of inertia for the respective strips. For the middle strips, the moment of inertia is that of the gross section, \(I_g \), and for the column strips, the average values computed above are used:

For dead load only:

\[(I_e)_{\text{frame}} = 1620 + 1620 = 3240 \text{ in.}^4 \]

For dead load plus live load:

\[(I_e)_{\text{frame}} = 1620 + 1509 = 3129 \text{ in.}^4 \]

For dead load plus 40% live load:

\[(I_e)_{\text{frame}} = 1620 + 1587 = 3207 \text{ in.}^4 \]

Note: In this case, where a corner panel is considered, there is only half of a column strip along the two outer edges. However, the section properties for half a strip are equal to half of those for a full strip; also, the applied moments to the edge strip are half those applied to an interior strip. Consequently, deflections calculated for either a half or for a full column strip are the same. Strictly, these relationships only apply because all panels are of equal dimensions in both directions. If the panels are not square or if adjacent panels are of differing dimensions, additional calculations would be necessary.

6. Flexural stiffness \((K_{ec})\) of an exterior equivalent column:

\[K_b = 0 \text{ (no beams)} \]

The stiffness of the equivalent exterior column is determined by combining the stiffness of the upper and lower columns at the outer boundary of the floor with the torsional stiffness offered by a strip of the floor slab, parallel to the edge normal to the direction of the equivalent frame and extending the full panel length between columns. In the case of a corner column, the length is, of course, only half the panel length. The width of the strip is equal to the column dimension normal to the direction of the equivalent frame (ACI 318, R13.7.5).

The column stiffness is computed on the basis of the rotation resulting from application of a moment to the simply supported end of a propped cantilever, \(M = 4EI/L \). In this case the result is:

\[K_c = \frac{4E_{cc}I_c}{\ell_c} = \frac{4E_{cc}}{L} = \frac{(14)^4/(12)}{L} = 106.7E_{cc} \]

Since the columns above and below the slab are equal in dimension, the total stiffness of the columns is twice that of a single column:

\[\Sigma K_c = 2K_c = 2(106.7E_{cc}) = 213.4E_{cc} \]
The torsional stiffness of the slab strip is calculated according to the methodology set out in R13.7.5 of ACI 318, \(K_t = \sum 9E_{cs}C/\ell_2(1-c_2/\ell_2)^3 \). The cross-sectional torsional constant, \(C \), is defined in Section 13.6.4.2 of ACI 318.

\[
C = (1 - 0.63 x/y) (x^3y/3) = (1 - 0.63 \times 6.0/14) (6.0^3 \times 14/3) = 735.8 \text{ in.}^4 \quad \text{Eq. (13-6)}
\]

\[
K_t = \frac{\sum 9E_{cs}C}{\ell_2(1-c_2/\ell_2)^3} = \frac{(2) (9) E_{cs} (735.8)}{(15) (12) \left(1 - \frac{14}{15 \times 12} \right)^3} = 93.9 E_{cs}
\]

For Ext. Frame, \(K_t = 93.9 E_{cs}/2 = 47E_{cs}, E_{cc} = (4.29/3.32) E_{cs} = 1.292 E_{cs} \)

The equivalent column stiffness is obtained by treating the column stiffness and the torsional member stiffness as springs in series:

\[
K_{ec} = \frac{1}{\frac{1}{K_c} + \frac{1}{K_t}} = \frac{E_{cs}}{\left(\frac{1}{213.4 \times 1.292} \right) + \left(\frac{1}{93.9} \right)} = 70E_{cs} = 19,370 \text{ ft-kips/rad}
\]

For Ext. Frame,

\[
K_{ec} = \frac{E_{cs}}{\left(213.4 \times 1.292 \right) + \left(47.0 \right)} = 40.1E_{c} = 11,090 \text{ ft-kips/rad}
\]

7. Deflections, using Eqs. (7) to (14):

\[
\text{Fixed } \Delta_{\text{frame}} = \frac{w\ell_2\ell^4}{384E_{cs}I_{\text{frame}}}. \quad \text{Eq. (10)}
\]

\[
(\text{Fixed } \Delta_{\text{frame}})_{d, d+} = \frac{(85.0 \text{ or } 135.0 \text{ or } 105.0) (15)^5 (12)^3}{(384) \left(3.32 \times 10^6 \right) (3240 \text{ or } 3129 \text{ or } 3207)}
\]

\[
= 0.027 \text{ in., } 0.044 \text{ in.; } 0.034
\]

\[
\text{Fixed } \Delta_{c, m} = (\text{LDF})_{c, m} (\text{Fixed } \Delta_{\text{frame}}) (I_{\text{frame}}/I_{c, m}) \quad \text{Eq. (11)}
\]

These deflections are distributed to the column and middle strips in the ratio of the total applied moment to the beam stiffness (M/EI) of the respective strips to that of the complete frame. As shown in Step 4 above, the fraction of bending moment apportioned to the column or middle strips varies between the ends and the midspan. Therefore, in approximating the deflections by this method, the average moment allocation fraction (Lateral Distribution Factor - LDF) is used. In addition, since the equivalent moment of inertia changes whenever the cracking moment is exceeded, an average moment of inertia is utilized. This average moment of inertia is computed on the basis of Equation (9-8) from ACI 318 and Eq. (1) of this chapter. Finally, since the modulus of elasticity is constant throughout the slab, the term \(E \) occurs in both the numerator and the denominator and is, therefore, omitted. The LDFs are calculated as follows:
Example 10.3 (cont’d) Calculations and Discussion

For the column strip:

\[
\text{LDF}_c = \frac{1}{2} \left[\frac{1}{2} (M_{\text{int}} + M_{\text{ext}}) + M^+ \right] = \frac{1}{2} \left[\frac{1}{2} \left(0.75 + 1.00 \right) + 0.60 \right] = 0.738
\]

For the middle strip:

\[
\text{LDF}_m = 1 - \text{LDF}_c = 0.262
\]

(Fixed \(\Delta_c \))\(d \) = (0.738) (0.027) (2) = 0.040 in.

(Fixed \(\Delta_c \))\(d+\ell \) = (0.738) (0.044) (3129/1509) = 0.067 in.

(Fixed \(\Delta_c \))\(\ell \) = 0.067 - 0.040 = 0.027 in.

(Fixed \(\Delta_c \))\(\text{sus} \) = (0.738)(0.034)(3207/1587) = 0.051 in

(Fixed \(\Delta_m \))\(d \) = (0.262) (0.027) (2) = 0.014 in.

(Fixed \(\Delta_m \))\(d+\ell \) = (0.262) (0.044) (3129/1620) = 0.022 in.

(Fixed \(\Delta_m \))\(\ell \) = 0.022 - 0.014 = 0.008 in.

(Fixed \(\Delta_m \))\(\text{sus} \) = (0.262)(0.034)(3207/1587) = 0.018 in

In addition to the fixed end displacement found above, an increment of deflection must be added to each due to the actual rotation that occurs at the supports. The magnitude of the increment is equal to \(qL/8 \). The rotations, \(q \), are determined as the net moments at the column locations divided by the effective column stiffnesses. In this case, the column strip moment at the corner column of the floor is equal to half of 100% of 0.26 \(M_o \) (ACI 318, Sec. 13.6.3.3 and Sec. 13.6.4.2). Because the column strip at the edge of the floor is only half as wide as an interior column strip, only half of the apportioned moment acts. The net moments at other columns are either quite small or zero. Therefore they are neglected. The net moments on a corner column for the three loading cases are:

\[
(M_{\text{net}})d = \frac{1}{2} \times 0.26 \times 1.00 \times (M_o)d = \frac{1}{2} [(0.26)(1.00)](30.48) = 3.96 \text{ ft-kips}
\]

\[
(M_{\text{net}})d+\ell = \frac{1}{2} \times 0.26 \times 1.00 \times (M_o)d+\ell = \frac{1}{2} [(0.26)(1.00)](48.41) = 6.29 \text{ ft-kips}
\]

\[
(M_{\text{net}})\text{sus} = \frac{1}{2} \times 0.26 \times 1.00 \times (M_o)\text{sus} = \frac{1}{2} [(0.26)(1.00)](37.65) = 4.89 \text{ ft-kips}
\]

For both column and middle strips,

\[
\text{End } \theta_d = (M_{\text{net}})d/\text{avg. } K_{ec} = 3.96/11,090 = 0.000357 \text{ rad} \quad \text{Eq. (12)}
\]

\[
\text{End } \theta_{d+\ell} = 6.29/11,090 = 0.000567 \text{ rad}
\]
End $\theta_{sus} = \frac{4.89}{11090} = 0.000441 \text{ rad}$

\[\Delta \theta = (\text{End } \theta) \left(\frac{\ell}{8} \right) \left(\frac{I_g}{I_c} \right)_{\text{frame}} \quad \text{Eq. (14)} \]

\[(\Delta \theta)_d = (0.000357) (15) (12) (1)/8 = 0.008 \text{ in.} \]

\[(\Delta \theta)_{d+\ell} = (0.000567) (15) (12) (1620/1509)/8 = 0.014 \text{ in.} \]

\[(\Delta \theta)_\ell = 0.014 - 0.008 = 0.006 \text{ in.} \]

\[(\Delta \theta)_{sus} = (0.000441)(15)(12)/8 = 0.010 \text{ in.} \]

The deflections due to rotation calculated above are for column strips. The deflections due to end rotations for the middle strips will be assumed to be equal to that in the column strips. Therefore, the strip deflections are calculated by the general relationship:

\[\Delta_{c,m} = \text{Fixed } \Delta_{c,m} + (\Delta \theta) \quad \text{Eq.(9)} \]

\[(\Delta_c)_d = 0.040 + 0.008 = 0.048 \text{ in.} \]

\[(\Delta_m)_d = 0.014 + 0.008 = 0.022 \text{ in.} \]

\[(\Delta_c)_\ell = 0.027 + 0.006 = 0.033 \text{ in.} \]

\[(\Delta_m)_\ell = 0.008 + 0.006 = 0.014 \text{ in.} \]

\[(\Delta_c)_{sus} = 0.051 + (0.010) = 0.061 \text{ in.} \]

\[(\Delta_m)_{sus} = 0.018 + (0.010) = 0.028 \text{ in.} \]

\[\Delta = \Delta_{cx} + \Delta_{my} = \text{midpanel deflection of corner panel} \quad \text{Eq. (7)} \]

\[(\Delta_i)_d = 0.048 + 0.022 = 0.070 \text{ in.} \]

\[(\Delta_i)_\ell = 0.033 + 0.014 = 0.047 \text{ in.} \]

\[(\Delta_i)_{sus} = 0.061 + 0.028 = 0.089 \text{ in.} \]

The long term deflections may be calculated using Eq. (9-11) of ACI 318 (Note: $\rho' = 0$):

For dead load only:

\[(\Delta_{cp+sh})_d = 2.0 \times (\Delta_i)_d = (2)(0.070) = 0.140 \text{ in.} \]
Example 10.3 (cont’d) Calculations and Discussion

For sustained load (dead load + 40% live load)

\[(\Delta_{cp+sh})_{sust} = 2.0 \times (\Delta_i)_{sust} = (2)(0.089) = 0.178 \text{ in.}\]

The long term deflection due to sustained load plus live load is calculated as:

\[(\Delta_{cp+sh})_{sust} + (\Delta_i)_{l} = 0.178 + 0.047 = 0.225 \text{ in.}\]

These computed deflections are compared with the code allowable deflections in Table 9.5(b) as follows:

Flat roofs not supporting and not attached to nonstructural elements likely to be damaged by large deflections—

\[(\Delta_i)_{l} \leq \left(\ell_n \text{ or } \ell\right)/180 = (13.83 \text{ or } 15)(12)/180 = 0.92 \text{ in. or } 1.00 \text{ in.}, \text{ versus } 0.047 \text{ in. O.K.}\]

Floors not supporting and not attached to nonstructural elements likely to be damaged by large deflections—

\[(\Delta_i)_{l} \leq \left(\ell_n \text{ or } \ell\right)/360 = 0.46 \text{ in. or } 0.50 \text{ in.}, \text{ versus } 0.047 \text{ in. O.K.}\]

Roof or floor construction supporting or attached to non-structural elements likely to be damaged by large deflections—

\[(\Delta_{cp+sh}) + (\Delta_i)_{l} \leq \left(\ell_n \text{ or } \ell\right)/480 = 0.35 \text{ in. or } 0.38 \text{ in.}, \text{ versus } 0.265 \text{ in. O.K.}\]

Roof or floor construction supporting or attached to non-structural elements not likely to be damaged by large deflections—

\[(\Delta_{cp+sh}) + (\Delta_i)_{l} \leq \left(\ell_n \text{ or } \ell\right)/240 = 0.69 \text{ in. or } 0.75 \text{ in.}, \text{ versus } 0.265 \text{ in. O.K.}\]

All computed deflections are found to be satisfactory in all four categories.
Example 10.4—Two-Way Beam Supported Slab System

Required: Minimum thickness for deflection control

Data:

\[h = 24" \]
\[b_w = 12" \]
\[h_f = 6.5" \]

\[h - h_f \leq 4h_f \]

\[f_y = 60,000 \text{ psi}, \text{slab thickness} \ h_f = 6.5 \text{ in.} \]

Square panels—22 x 22 ft center-to-center of columns
All beams—\(b_w = 12 \text{ in. and} \ h = 24 \text{ in.} \ \ell_n = 22 - 1 = 21 \text{ ft} \)

It is noted that \(f' c \) and the loading are not required in this analysis.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Effective width (b) and section properties, using Table 10-2:</td>
<td></td>
</tr>
<tr>
<td>a. Interior Beam</td>
<td></td>
</tr>
<tr>
<td>(I_s = (22)(12)(6.5)^3/12 = 6040 \text{ in.}^4)</td>
<td></td>
</tr>
<tr>
<td>(h - h_f = 24 - 6.5 = 17.5 \text{ in.} \leq 4h_f = (4)(6.5) = 26 \text{ in.}) O.K.</td>
<td></td>
</tr>
<tr>
<td>Hence, (b = 12 + (2)(17.5) = 47 \text{ in.})</td>
<td></td>
</tr>
<tr>
<td>(y_t = h - (1/2) [(b - b_w) h_f^2 + b_w h^2]/[(b - b_w) h_f + b_w h])</td>
<td></td>
</tr>
<tr>
<td>[= 24 - (1/2) [(35)(6.5)^2 + (12)(24)^2]/[(35)(6.5) + (12)(24)]]</td>
<td></td>
</tr>
<tr>
<td>[= 15.86 \text{ in.}]</td>
<td></td>
</tr>
<tr>
<td>(I_b = (b - b_w) h_f^3/12 + b_w h^3/12 + (b - b_w) h_f (h - h_f/2 - y_t)^2 + b_w h (y_t - h/2)^2)</td>
<td></td>
</tr>
<tr>
<td>[= (35)(6.5)^3/12 + (12)(24)^3/12 + (35)(6.5)(24 - 3.25 - 15.86)^2 +]</td>
<td></td>
</tr>
<tr>
<td>[(12)(24)(15.86 - 12)^2 = 24,360 \text{ in.}^4]</td>
<td></td>
</tr>
<tr>
<td>(\alpha_f = E_{cb} I_b/E_{cs} I_s = I_b/I_s = 24,360/6040 = 4.03)</td>
<td></td>
</tr>
</tbody>
</table>
Example 10.4 (cont’d) Calculations and Discussion

b. Edge Beam

\[I_s = (11) (12) (6.5)^3/12 = 3020 \text{ in.}^4 \]

\[b = 12 + (24 - 6.5) = 29.5 \text{ in.} \]

\[y_1 = 24 - (1/2) \left[(17.5) (6.5)^2 + (12) (24)^2 \right] / \left[(17.5) (6.5) + (12)(24) \right] = 14.48 \text{ in.} \]

\[I_b = (17.5) (6.5)^3/12 + (12) (24)^3/12 + (17.5) (6.5) (24 - 3.25 - 14.48)^2 + (12) (24) (14.48 - 12)^2 = 20,470 \text{ in.}^4 \]

\[\alpha_f = I_b/I_s = 20,470/3020 = 6.78 \]

\[\alpha_{fm} \text{ and } \beta \text{ values:} \]

\[\alpha_{fm} \text{ (average value of } \alpha_f \text{ for all beams on the edges of a panel):} \]

Interior panel — \(\alpha_{fm} = 4.03 \)

Side panel — \(\alpha_{fm} = [(3) (4.03) + 6.78]/4 = 4.72 \)

Corner panel — \(\alpha_{fm} = [(2) (4.03) + (2) (6.78)]/4 = 5.41 \)

For square panels, \(\beta = \text{ratio of clear spans in the two directions} = 1 \)

2. Minimum thickness:

Since \(\alpha_{fm} > 2.0 \) for all panels, Eq. (9-13) applies.

\[h_{min} = \frac{\ell_n \left(0.8 + \frac{f_y}{200,000} \right)}{36 + 9\beta} \]

\[= \frac{(21 \times 12) \left(0.8 + \frac{60,000}{200,000} \right)}{36 + 9(1)} = 6.16 \text{ in.} \]

Hence, the slab thickness of 6.5 in. > 6.16 in. is satisfactory for all panels, and deflections need not be checked.
Example 10.5—Simple-Span Prestressed Single T-Beam

Required: Analysis of short-term and ultimate long-term camber and deflection.

Data:

Span = 80 ft, beam is partially cracked
\(f'_{ci} = 3500 \text{ psi}, \quad f'_{c} = 5000 \text{ psi} \) (normal weight concrete)
\(f_{pu} = 270,000 \text{ psi} \)
\(E_p = 27,000,000 \text{ psi} \)
14 - 1/2 in. dia. depressed (1 Pt.) strands
4 - 1/2 in. dia. nonprestressed strands
(Assume same centroid when computing \(I_{cr} \))
\(P_i = (0.7) (14) (0.153) (270) = 404.8 \text{ kips} \)
\(P_o = (0.90) (404.8) = 364 \text{ kips} \)
\(P_e = (0.78) (404.8) = 316 \text{ kips} \)
\(e_i = 11.15 \text{ in.}, \quad e_c = 22.51 \text{ in.} \)
\(y_i = 26.01 \text{ in.}, \quad A_g = 570 \text{ in.}^2, \quad I_g = 68,920 \text{ in.}^4 \)
Self weight, \(w_o = 594 \text{ lb/ft} \)
Superimposed DL, \(w_s = (8)(10 \text{ psf}) = 80 \text{ lb/ft} \) is applied at age 2 mos (\(\beta_s = 0.76 \) in Term (6) of Eq. (15))
Live load, \(w_l = (8)(51 \text{ psf}) = 408 \text{ lb/ft} \)
Capacity is governed by flexural strength

1. Span-depth ratios (using PCI Handbook):

Typical span-depth ratios for single T beams are 25 to 35 for floors and 35 to 40 for roofs, versus \((80)(12)/36 = 27 \), which indicates a relatively deep beam. It turns out that all allowable deflections in Table 9.5(b) are satisfied.

2. Moments for computing deflections:

\[
M_o = \frac{w_o \ell^2}{8} = \frac{(0.594)(80)^2}{8} = 475 \text{ ft-kips}
\]
Example 10.5 (cont’d) Calculations and Discussion

\[(M_o \times 0.96 = 456 \text{ ft-kips at } 0.4\ell \text{ for computing stresses and } I_c—\text{tendons depressed at one point})\]

\[\frac{M_s}{8} = \frac{w_s\ell^2}{8} = \frac{(0.080)(80)^2}{8} = 64 \text{ ft-kips (61 ft-kips at } 0.4\ell)\]

\[\frac{M_\ell}{8} = \frac{w_\ell\ell^2}{8} = \frac{(0.408)(80)^2}{8} = 326 \text{ ft-kips (313 ft-kips at } 0.4\ell)\]

3. Modulus of rupture, modulus of elasticity, moment of inertia:

\[f_r = 7.5\lambda\sqrt{f'_c} = 7.5(1.0)\sqrt{5000} = 530 \text{ psi}\] \hspace{2cm} \text{Eq. (9-10)}

\[E_{ci} = wc^{1.5}33\sqrt{f'_c} = (150)^{1.5}33\sqrt{3500} = 3.59 \times 10^6 \text{ psi}\] \hspace{2cm} 8.5.1

\[E_c = wc^{1.5}33\sqrt{f'_c} = (150)^{1.5}33\sqrt{5000} = 4.29 \times 10^6 \text{ psi}\]

\[n = \frac{E_p}{E_c} = \frac{27 \times 10^6}{4.29 \times 10^6} = 6.3\]

The moment of inertia of the cracked section, at 0.4\ell, can be obtained by the approximate formula given in Eq. 4.8.3.3 of the PCI Handbook:

\[I_{cr} = nA_{st}a^2\left(1 - 1.6\sqrt{\frac{n_p}{n}}\right) = (6.3)(18 \times 0.153)(30.23)^2(1 - 1.6\sqrt{6.3 \times 0.000949})\]

\[= 13,890 \text{ in}^4 \text{ (at } 0.4\ell)\]

It may be shown that the cracked section moment of inertia calculated by the formulas given in Table 10-2 is very close to the value obtained by the approximate method shown above. The results differ by approximately 1%; therefore either method is suitable for this case.

4. Determination of classification of beams

In order to classify the beam according to the requirements of ACI Section 18.3.3, the maximum flexural stress is calculated and compared to the modulus rupture to determine its classification.

The classifications are defined as follows:

Class U: \[f_t \leq 7.5\sqrt{f'_c}\]

Class T: \[7.5\sqrt{f'_c} < f_t \leq 12\sqrt{f'_c}\]

Class C: \[f_t > 12\sqrt{f'_c}\]
The three classes refer to uncracked (U), transition (T) and cracked (C) behavior.

The maximum tensile stress due to service loads and prestressing forces are calculated by the standard formula for beams subject to bending moments and axial loads. It may be shown that the maximum bending stresses in a prestressed beam occur at approximately 0.4\(l\). In the following, the bending moments are those that occur at 0.4\(l\). The eccentricity of the prestressing force at 0.4\(l\), \(e = 20.24\) in, is obtained by linear interpolation between the end eccentricity, \(e_e = 11.15\) in and that at the center, \(e_c = 22.51\). The calculation proceeds as follow:

\[
M_{tot} = M_d + M_e \\
f_t = \frac{M_{tot}y_t}{I_g} - \frac{Pe}{I_g} - \frac{Pe}{A_g} \\
= \frac{[(456 + 61 + 313)(12) - (316)(20.24)]}{(26.01)/68920 - 316/570} \\
f_t = 791 \text{ psi}
\]

Check the ratio of calculated tensile stress to the square root of \(f'_c\):

\[
\frac{f_t}{\sqrt{f'_c}} = \frac{791}{\sqrt{5000}} = 11.2
\]

The ratio is between 7.5 and 12, therefore according to the definitions of Section 18.3.3 of ACI 318, the beam classification is T, transition region. Table R18.3.3 requires that deflections for this classification be based on the cracked section properties assuming bi-linear moment deflection behavior; Section 9.5.4.2 of the code allows either a bi-linear moment-deflection approach or calculation of deflections on the basis of an equivalent moment of inertia determined according to Eq. (9-8).

5. Determine live load moment that causes first cracking:

Check the tensile stress due to dead load and prestressing forces only. As noted previously, the maximum tensile stresses occur at approximately: 0.4\(l\)

\[
f_t = \frac{[(456 + 61)(12) - (316)(20.24)]}{(26.01)/68920 - 316/570} = -627 \text{ psi}
\]

Since the sign is negative, compressive stress is indicated. Therefore, the section is uncracked under the dead load plus prestressing forces and dead load deflections can be based on the moment of inertia of the gross concrete cross section. It was shown above that the maximum tensile stress due to combined dead load plus live load equals 791 psi, which exceeds the modulus of rupture, \(f_r = 530\) psi

Therefore, the live load deflections must be computed on the basis of a cracked section analysis because the behavior is inelastic after the addition of full live load. In particular, Table R18.3.3 of ACI 318 requires that bilinear behavior be utilized to determine deflections in such cases, however. Section 9.5.4.2 permits deflections to be computed either on the basis of bilinear behavior or on the basis of an effective moment of inertia.
In order to calculate the deflection assuming bilinear behavior, it is first necessary to determine
the fraction of the total live load that causes first cracking. That is, to find the portion of live
load that will just produce a maximum tensile stress equal to f_r. The desired value of live load
moment can be obtained by re-arranging the equation used above to determine the total tensile
stress (for classification), and setting the tensile stress equal to f_r. The moment value is obtained
as follows (Note: Quantities calculated 0.4ℓ at):

$$\text{Live Load Cracking Moment} = \frac{f_r I_g}{y_t} + P_e e + \frac{P_e I_g}{A_g y_t} - M_d$$

$$= (530)(68,920)/(12,000)(26.01) + 316(20.24/12) +[(316/570)(68,920/26.01)]/12 - 517$$

$$= 117 + 533 +122 - 517$$

$$= 255 \text{ ft-kips}$$

The fraction of the live load cracking moment to the total live load moment is:

$$\frac{255}{313} = 0.815$$

6. Camber and Deflection, using Eq. (15):

$$\Delta_{po} = \frac{P_o \left(e_c - e_e\right)\ell^2}{12E_{ci}I_g} + \frac{P_o e_e\ell^2}{8E_{ci}I_g} \quad \text{(from PCI Handbook for single point depressed strands)}$$

$$= \frac{(3.64)(22.51-11.15)(80)^2(12)^2}{(12)(3590)(68,920)} + \frac{(3.64)(11.15)(80)^2(12)^2}{(8)(3590)(68,920)} = 3.17 \text{ in.}$$

$$\Delta_o = \frac{5M_o\ell^2}{48E_{ci}I_g} = \frac{(5) (475)(80)^2(12)^3}{(48) (3590)(68,920)} = 2.21 \text{ in.}$$

$$k_r = \frac{1}{[1 + (A_g/A_{ps})]} = \frac{1}{[1 + (4/14)]} = 0.78$$

$$\left[-\frac{\Delta P_u}{P_o} + (k_r C_u)\left(1 - \frac{\Delta P_u}{2P_o}\right)\right]\Delta_{po}$$

The increment in prestressing force is:

$$\Delta P_u = P_o - P_e = 364 - 316 = 48 \text{ kips}$$

It follows that:

$$\frac{\Delta P_u}{P_o} = 48/364 = 0.13$$
Therefore, the deflection is:

\[[-0.13 + (0.78 \times 2.0) (1 - 0.065)] (3.17) = 4.21 \text{ in.} \]

Term (4) — \((k_r C_u) \Delta_o = (0.78) (2.0) (2.21) = 3.45 \text{ in.} \)

Term (5) — \(\Delta_s = \frac{5M_k \ell^2}{48E_c I_g} = \frac{(5) (64) (80)^2 (12)^3}{(48) (4290) (68920)} = 0.25 \text{ in.} \)

Term (6) — \((\beta_s k_r C_u) \Delta_s = (0.76) (0.78) (1.6) (0.25) = 0.24 \text{ in.} \)

Term (7) — Initial deflection due to live load.

The ratio of live load cracking moment to total live load moment was found previously. To calculate the deflection according to bi-linear behavior, the deflection due to the portion of the live load below the cracking value is based on the gross moment of inertia; the deflection due to the remainder of the live load is based on the cracked section moment of inertia. Also, the deflections are based on moments at the center of the span even though the moment that caused initial cracking was evaluated at 0.4\(\ell\).

The deflection formula used is the standard expression:

\[\Delta = \frac{5ML^2}{48EI} \]

For the portion of the live load applied below the cracking moment load, the value of \(M\) is the value calculated above, 255 ft-kips and the moment of inertia is that of the gross section:

\[\Delta_{l1} = 5(255)(80)^2(12)^3/48(3590)(68590) = 1.19 \text{ in.} \]

Deflection due to the remainder of the live load is calculated similarly, with a moment of 313-255 = 58 ft-kips and the cracked section moment of inertia, 13,890 in^4:

\[\Delta_{l2} = 5(58)(80)^2(12)^3/48(3590)(13,890) = 1.34 \text{ in.} \]

The total live load deflection is the sum of the previous two components:

\[\Delta_{\ell} = 1.19 + 1.34 = 2.53 \text{ in.} \]

It can be verified by a separate calculation that the deflection based on the full live load moment and the effective moment of inertia, calculated by Eq. 9-8 of ACI 318, is slightly less than that calculated here on the basis of a bi-linear moment-deflection relationship.

Combined results and comparisons with code limitations
Example 10.5 (cont’d) Calculations and Discussion Code Reference

\[
\begin{align*}
\Delta_u = -3.17 + 2.21 - 4.21 + 3.45 + 0.25 + 0.24 + 2.53 &= 1.30 \text{ in.} \\
\text{Eq. (15)}
\end{align*}
\]

Initial Camber = \(\Delta_p - \Delta_o = 3.17 - 2.21 = 0.96 \text{ in.} \uparrow\) versus 1.6 in. at erection in PCI Handbook

Residual Camber = \(\Delta_l - \Delta_u = 2.53 - 0.87 = 1.66 \text{ in.} \uparrow\) versus 1.1 in.

Time-Dependent plus Superimposed Dead Load and Live Load Deflection

\[
\begin{align*}
&= -4.21 + 3.45 + 0.25 + 0.24 + 2.53 = 2.26 \text{ in. or} \\
&= \Delta_u - (\Delta_o - \Delta_p) = 0.87 - (-0.96) = 2.26 \text{ in.} \downarrow.
\end{align*}
\]

These computed deflections are compared with the allowable deflections in Table 9.5(b) as follows:

\[
\begin{align*}
\ell/180 &= (80)(12)/180 = 5.33 \text{ in. versus } \Delta_l = 2.53 \text{ in.} \quad \text{O.K.} \\
\ell/360 &= (80)(12)/360 = 2.67 \text{ in. versus } \Delta_l = 2.53 \text{ in.} \quad \text{O.K.} \\
\ell/480 &= (80)(12)/480 = 2.00 \text{ in. versus } \text{Time-Dep. etc.} = 2.26 \text{ in.} \quad \text{O.K.}
\end{align*}
\]

Note that the long term deflection occurring after attachment of non-structural elements (2.26 in.) exceeds the L/480 limit. It actually meets L/425. Since the L/480 limit only applies in case of nonstructural elements likely to be damaged by large deflections, the particular use of the beam would have to be considered in order to make a judgment on the acceptability of the computed deflections. Refer to the footnotes following Table 9.5(b) of ACI 318.
Example 10.6—Unshored Nonprestressed Composite Beam

Required: Analysis of short-term and ultimate long-term deflections. \(b = b_e/n_c = 76/1.15 = 66.1" \)

Data:

Normal weight concrete
Slab \(f'_c = 3000 \text{ psi} \)
Precast beam \(f'_c = 4000 \text{ psi} \)
\(f_y = 40,000 \text{ psi} \)
\(A_s = 3-\text{No. 9} = 3.00 \text{ in}^2 \)
\(E_s = 29,000,000 \text{ psi} \)
Superimposed Dead Load (not including beam and slab weight) = 10 psf
Live Load = 75 psf (20% sustained)
Simple span = 26 ft = 312 in., spacing = 8 ft = 96 in.
\(b_e = 312/4 = 78.0 \text{ in.}, \text{ or spacing} = 96.0 \text{ in.}, \text{ or } 16(4) + 12 = 76.0 \text{ in.} \)

Calculations and Discussion

1. Minimum thickness for members not supporting or attached to partitions or other construction likely to be damaged by large deflections:

\[
 h_{\text{min}} = \left(\frac{\ell}{16} \right) \left(\frac{0.80 \text{ for } f_y}{16} \right) = \left(\frac{312}{16} \right) \left(0.80 \right) = 15.6 \text{ in.} < h = 20 \text{ in.} \text{ or } 24 \text{ in.}
\]

2. Loads and moments:

\[
 w_1 = (10 \text{ psf})(8) + (150 \text{ pcf})(96)(4)/144 = 480 \text{ lb/ft}
\]

\[
 w_2 = (150 \text{ pcf})(12)(20)/144 = 250 \text{ lb/ft}
\]

\[
 w_\ell = (75 \text{ psf})(8) = 600 \text{ lb/ft}
\]

\[
 M_1 = w_1\ell^2/8 = (0.480)(26)^2/8 = 40.6 \text{ ft-kips}
\]

\[
 M_2 = w_2\ell^2/8 = (0.250)(26)^2/8 = 21.1 \text{ ft-kips}
\]

\[
 M_\ell = w_\ell\ell^2/8 = (0.600)(26)^2/8 = 50.7 \text{ ft-kips}
\]

3. Modulus of rupture, modulus of elasticity, modular ratio:

\[
 (E_c)_1 = w'_c 1.5 \sqrt{f'_c} = (150)^{1.5} \sqrt{3000} = 3.32 \times 10^6 \text{ psi}
\]

\[
 (f'_c) = 7.5\lambda\sqrt{f'_c} = 7.5(1.0)\sqrt{4000} = 474 \text{ psi}
\]

\[
 (E_c)_2 = (150)^{1.5} \sqrt{4000} = 3.83 \times 10^6 \text{ psi}
\]
Example 10.6 (cont’d) Calculations and Discussion Reference

\[n_c = \frac{(E_c)_2}{(E_c)_1} = \frac{3.83}{3.32} = 1.15 \]

\[n = \frac{E_s}{(E_c)_2} = \frac{29}{3.83} = 7.56 \]

4. Gross and cracked section moments of inertia, using Table 10-2:

Precast Section

\[I_g = (12) (20)^3/12 = 8000 \text{ in}^4 \]

\[B = b/(nA_s) = 12/(7.56) (3.00) = 0.529/\text{in.} \]

\[k_d = \left(\frac{\sqrt{2dB + 1} - 1}{B} \right) = \left[\frac{\sqrt{2} (17.5) (0.529) + 1 - 1}{0.529} \right] = 6.46 \text{ in.} \]

\[I_{cr} = b_k d^3/3 + nA_s (d - k_d)^2 = (12) (6.46)^3/3 + (7.56) (3.00) (17.5 - 6.46)^2 = 3840 \text{ in}^4 \]

Composite Section

\[y_t = h - \frac{1}{2} \left[(b - b_w) h_f^2 + b_w h^2 \right]/[(b - b_w) h_f + b_w h] \]

\[= 24 - \left(\frac{1}{2} \right) \left[(54.1) (4)^2 + (12) (24)^2 \right]/[(54.1) (4) + (12) (24)] = 16.29 \text{ in.} \]

\[I_g = (b - b_w) h_f^3/12 + b_w h^3/12 + (b - b_w) h_f (h - h_f/2 - y_t) + b_w h (y_t - h/2)^2 \]

\[= (54.1) (4)^3/12 + (12) (24)^3/12 + (54.1) (4) (24 - 2 - 16.29)^2 \]

\[+ (12) (24) (16.29 - 12)^2 = 26,470 \text{ in}^4 \]

\[B = b/(nA_s) = 66.1/(7.56) (3.00) = 2.914 \]

\[k_d = \left(\frac{\sqrt{2dB + 1} - 1}{B} \right) = \left[\frac{\sqrt{2} (21.5) (2.914) + 1 - 1}{2.914} \right] = 3.51 \text{ in.} < h_f = 4 \text{ in.} \]

Hence, treat as a rectangular compression area.

\[I_{cr} = b_k d^3/3 + nA_s (d - k_d)^2 = (66.1) (3.51)^3/3 + (7.56) (3.00) (21.5 - 3.51)^2 \]

\[= 8295 \text{ in}^4 \]

\[I_2/I_c = [(I_2/I_c)_g + (I_2/I_c)_{cr}]/2 = [(8000/26,470) + (3840/8295)]/2 = 0.383 \]

5. Effective moments of inertia, using Eq. (9-8):

For Term (1), Eq. (19)—Precast Section,

\[M_{cr} = f_y I_g/y_t = (474) (8000)/(10) (12,000) = 31.6 \text{ ft-kips} \]

\[M_{cr}/M_2 = 31.6/21.1 > 1 \text{. Hence } (I_e)_c = I_g = 8000 \text{ in}^4. \]
Example 10.6 (cont’d) Calculations and Discussion

For Term (6), Eq. (19)—Precast Section,

\[
[M_{cr}/(M_1 + M_2)]^3 = [31.6/(40.6 + 21.1)]^3 = 0.134
\]

\[
(I_e)^{1+2} = (M_{cr}/M_a)^3 I_g + [1 - (M_{cr}/M_a)^3] I_{cr} \leq I_g
\]

\[
= (0.134)(8000) + (1 - 0.134)(3840) = 4400 \text{ in.}^4
\]

6. Deflection, using Eq. (19):

Term (1) — \(\Delta_i^2\) \(= K (5/48) M_2 l^2 \)

\[
(\frac{(Em^2)(Ie)}{2})_2 = (1) (5/48) (21.1) (26)^2 (12)^3
\]

\[
(3830) (8000) = 0.084 \text{ in.}
\]

Term (2) — \(k_r = 0.85\) (no compression steel in precast beam).

\[
0.77k_r (\Delta_i^2) = (0.77) (0.85) (0.084) = 0.055 \text{ in.}
\]

Term (3) — \(0.83k_r (\Delta_i^2) \frac{l_2}{I_e} = (0.83) (0.85) (0.084) (0.383) = 0.023 \text{ in.}
\]

Term (4) — \(K_{sh} = 1/8\). Precast Section: \(\rho = (100) (3.00)/(12) (17.5) = 1.43\%

From Fig. 8-3, \(A_{sh} = 0.789\)

\[
\phi_{sh} = A_{sh} (\varepsilon_{sh})_u / h = (0.789) \left(400 \times 10^{-6}\right) / 20 = 15.78 \times 10^{-6} / \text{in.}
\]

\[
\Delta_{sh} = K_{sh} \phi_{sh} l^2 = (1/8) \left(15.78 \times 10^{-6}\right) (26)^2 (12)^2 = 0.192 \text{ in.}
\]

The ratio of shrinkage strain at 2 months to the ultimate is 0.36 per Table 2.1 of Ref. 10.4

Therefore the shrinkage deflection of the precast beam at 2 months is:

\[
0.36 \Delta_{sh} = (0.36) (0.192) = 0.069 \text{ in.}
\]

Term (5) — \(0.64 \Delta_{sh} \frac{l_2}{I_e} = (0.64) (0.192) (0.383) = 0.047 \text{ in.}
\]

Term (6) — \(\Delta_1^1 = \frac{K (5/48) (M_1 + M_2)}{(Em^2)(Ie)} l^2 \)

\[
- (\Delta_i^2)
\]

\[
= (1) (5/48) (40.6 + 21.1) (26)^2 (12)^3
\]

\[
(3830) (4400) - 0.088 = 0.358 \text{ in.}
\]
Term (7) — Creep deflection of the composite beam due to slab dead load. The slab is cast at 2 months. Therefore, the fraction of the creep coefficient, C_u, is obtained by multiplying the value under standard conditions of 1.60 by a b_γ value of 0.89 (See explanation of Term (6) in Eq. (15)). The total creep of the beam is reduced by the ratio of the moment of inertia of the beam to the moment of inertia of the composite section. k_r is, as before, taken as 0.85:

$$(0.89)(1.60)k_r \frac{I_2}{I_c} \Delta_i = (0.89)(1.60)(0.85)(0.358)(0.383) = 0.166 \text{ in.}$$

Term (8) — Due to the fact that the beam and the slab were cast at different times, there will be some contribution to the total deflection due to the tendency of the two parts to creep and shrink at different rates. It is noted in Table 2.1 of ACI 435R-95 (Ref. 10.4) that the creep and shrinkage at a time of 2 months is almost half of the total. Consequently, behavior of the composite section will be affected by this different age. The proper calculation of the resulting deflection is very complex. In this example, the deflection due to differing age concrete is approximated as one-half of the dead load deflection of the beam due to the slab dead load. Readers are cautioned that this procedure results in only a rough estimate. Half of the dead load deflection is

$$\Delta_{ds} = 0.50 \left(\Delta_i \right) = (0.50)(0.358) = 0.179 \text{ in.} \quad \text{(rough estimate)}$$

Term (9) — Using the alternative method

$$\left(\Delta_i \right)_l = \frac{K}{(E_c)_2} \frac{M_l \ell^2}{(I_c)_{cr}} \left(\frac{5}{48} \right) \frac{(50.7)(26)^2(12)^3}{(3830)(8295)} = 0.194 \text{ in.}$$

Term (10) — $k_r = 0.85$ (neglecting the effect of any compression steel in slab)

$$\left(\Delta_{cp} \right)_l = k_r C_u \left[0.20 \left(\Delta_i \right)_l \right]$$

$$= (0.85)(1.60)(0.20 \times 0.194) = 0.053 \text{ in.}$$

In Eq. (19), $\Delta_u = 0.084 + 0.055 + 0.023 + 0.069 + 0.047 + 0.358 + 0.166 + 0.179 + 0.194 + 0.053 = 1.23 \text{ in.}$

Checking Eq. (20) (same solution),

$$\Delta_u = \left(1.65 + 0.71 \frac{I_2}{I_c} \right) \left(\Delta_i \right)_2 + \left(0.36 + 0.64 \frac{I_2}{I_c} \right) \Delta_{sh} +$$
\[
\left(1.05 + 1.21 \frac{I_2}{I_c}\right) \left(\Delta_i\right)_{l} + \left(\Delta_i\right)_{\ell} + \left(\Delta_{cp}\right)_{\ell}.
\]

\[
= (1.65 + 0.71 \times 0.383) (0.084) + (0.36 + 0.64 \times 0.383) (0.192)
\]
\[
+ (1.50 + 1.21 \times 0.383) (0.358) + 0.194 + 0.053
\]
\[
= 1.23 \text{ in. (same as above)}
\]

Assuming nonstructural elements are installed after the composite slab has hardened,

\[
\Delta_{cp} + \Delta_{sh} + \left(\Delta_i\right)_{\ell} = \text{Terms (3) + (5) + (7) + (8) + (9) + (10)}
\]

\[
= 0.023 + 0.047 + 0.166 + 0.179 + 0.194 + 0.053 = 0.66 \text{ in.}
\]

Comparisons with the allowable deflections in Table 9.5(b) are shown at the end of Design Example 10.7.
Example 10.7—Shored Nonprestressed Composite Beam

Required: Analysis of short-term and ultimate long-term deflections, to show the beneficial effect of shoring in reducing deflections.

Data: Same as in Example 10.6, except that shored construction is used.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Effective moments of inertia for composite section, using Eq. (9-8):</td>
<td></td>
</tr>
<tr>
<td>(M_{cr} = f_t I_s / y_t = (474) (26,470) / (16.29) (12,000) = 64.2 \text{ ft-kips})</td>
<td>Eq. (9-9)</td>
</tr>
<tr>
<td>(M_{cr} / (M_1 + M_2) = [64.2 / (40.6 + 21.1)] = 1.04 > 1)</td>
<td></td>
</tr>
<tr>
<td>Hence ((I_e)_{1+2} = I_g = 26,470 \text{ in.}^4)</td>
<td></td>
</tr>
<tr>
<td>In Term (5), Eq. (17)—Composite Section,</td>
<td></td>
</tr>
<tr>
<td>[[M_{cr} / (M_1 + M_2 + M_l)]^3 = [64.2 / (40.6 + 21.1 + 50.7)]^3 = 0.186]</td>
<td></td>
</tr>
<tr>
<td>((I_e){d+\ell} = (M{cr} / M_a)^3 I_g + [1 - (M_{cr} / M_a)^3] I_{cr} \leq I_g)</td>
<td>Eq. (9-8)</td>
</tr>
<tr>
<td>((0.186) (26,470) + (1 - 0.186) (8295) = 11,675 \text{ in.}^4)</td>
<td></td>
</tr>
<tr>
<td>versus the alternative method of Example 10.6 where (I_c = (I_c)_{cr} = 8295 \text{ in.}^4) was used with the live load moment directly.</td>
<td></td>
</tr>
<tr>
<td>2. Deflections, using Eqs. (17) and (18):</td>
<td></td>
</tr>
<tr>
<td>Term (1) — ((\Delta_i){1+2} = K (5/48) (M_1 + M_2) / (E_c){2 (I_e)_{1+2}})</td>
<td></td>
</tr>
<tr>
<td>(= (1) (5/48) (40.6 + 21.1) (26)^2 (12)^3)</td>
<td></td>
</tr>
<tr>
<td>(= 0.074 \text{ in.})</td>
<td></td>
</tr>
<tr>
<td>Term (2) — Creep deflection due to total dead load of beam and slab. The value of (C_u) for the beam is taken to be 1.60. Consider the value of (C_u) for the slab to be slightly higher. For shores removed at 10 days, it may be shown by comparison of the correction factors, (K_{to}^c) for 10 and 20 day load applications (Section 2.3.4, ACI 435, Ref. 10.4) that the ultimate creep coefficient for the slab is approximately 1.74. (k_r) is conservatively assumed to have a value of 0.85.</td>
<td></td>
</tr>
<tr>
<td>The average creep coefficient for the composite section is:</td>
<td></td>
</tr>
<tr>
<td>(\text{Avg. } C_u = \frac{1}{2} (1.60 + 1.74) = 1.67)</td>
<td></td>
</tr>
<tr>
<td>(1.67k_r (\Delta_i)_{1+2} = (1.67) (0.85) (0.074) = 0.105 \text{ in.})</td>
<td></td>
</tr>
</tbody>
</table>
Term (3) — Shrinkage deflection of the precast beam after shores are removed. As indicated in Term 4 of Example 10.6, the fraction of shrinkage of the precast beam at 2 months is 0.36. The shores are assumed to be removed about 10 days after the 2-month point. Therefore, consider the remaining fraction of shrinkage is 1 - 0.36 = 0.64. Recall that the ultimate shrinkage, \((\varepsilon_{sh})_u = 400 \times 10^{-6}\). Utilize the result found for \(\Delta_{sh}\) in Term (4) of Example 10.6:

Remaining \((\varepsilon_{sh}) = (0.64)(400 \times 10^{-6}) = 256 \times 10^{-6}\)

\[
\Delta_{sh} \frac{I_2}{I_c} = \frac{(256/400)(0.192)(0.383)}{0.047 \text{ in.}}
\]

Term (4) — Deflection due to differences in shrinkage and creep in the beam and slab. This is a complex issue. For this example, assume that the magnitude of this component is approximated by the initial dead load deflection of the composite section.

\[
\Delta_{ds} = \left(\Delta_i\right)_{1+2} = 0.074 \text{ in. (rough estimate)}
\]

Term (5) — \((\Delta_i)_{\ell} = \frac{K(5/48)(M_1 + M_2 + M_3)}{(E_c)_{2}(I_c)_{d+\ell}} - \left(\Delta_i\right)_{1+2}

\[
= \frac{(40.6 + 21.1 + 50.7)(26)^2(12)^3}{(3830)(11,675)} - 0.074 \text{ in.} = 0.232 \text{ in.}
\]

Term (6) — \(k_c = 0.85\) (neglecting the effect of any compression steel in slab),

\[
\left(\Delta_{cp}\right)_{\ell} = k_c C_u \left[0.20 \left(\Delta_i\right)_{\ell}\right] = (0.85)(1.60)(0.20 \times 0.232) = 0.063 \text{ in.}
\]

In Eq. (17), \(\Delta_u = 0.074 + 0.105 + 0.047 + 0.074 + 0.232 + 0.063 = 0.60 \text{ in.}

versus 1.23 in. with unshored construction.

This shows the beneficial effect of shoring in reducing the total deflection.

Checking by Eq. (18) (same solution),

\[
\Delta_u = 3.42 \left(\Delta_i\right)_{1+2} + \Delta_{sh} \frac{I_2}{I_c} + \left(\Delta_i\right)_{\ell} + \left(\Delta_{cp}\right)_{\ell}
\]

\[
= (3.42)(0.074) + 0.046 + 0.232 + 0.063 = 0.60 \text{ in. (same as above)}
\]

Assuming that nonstructural elements are installed after shores are removed,

\[
\Delta_{cp} + \Delta_{sh} + \left(\Delta_i\right)_{\ell} = \Delta_u - \left(\Delta_i\right)_{1+2} = 0.60 - 0.07 = 0.53 \text{ in.}
\]
Comparison of Results of Examples 10.6 and 10.7

The computed deflections of \((\Delta_i)_{\ell}\) = 0.19 in. in Example 10.6 and 0.23 in. in Example 10.7; and \(\Delta_{cp} + \Delta_{sh} + (\Delta_i)_{\ell}\) = 0.66 in. in Example 10.6 and 0.53 in. in Example 10.7 are compared with the allowable deflections in Table 9.5(b) as follows:

Flat roofs not supporting and not attached to nonstructural elements likely to be damaged by large deflections—

\[(\Delta_i)_{\ell} \leq \ell/180 = 312/180 = 1.73 \text{ in.} \quad \text{O.K.}\]

Floors not supporting and not attached to nonstructural elements likely to be damaged by large deflections—

\[(\Delta_i)_{\ell} \leq \ell/360 = 312/360 = 0.87 \text{ in.} \quad \text{O.K.}\]

Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections (very stringent limitation)—

\[\Delta_{cp} + \Delta_{sh} + (\Delta_i)_{\ell} \leq \ell/480 = 312/480 = 0.65 \text{ in.}\]

Note that the long term deflection occurring after attachment of non-structural elements (0.66 in) exceeds the L/480 limit. It actually meets L/473. Since the L/480 limit only applies in case of nonstructural elements likely to be damaged by large deflections, the particular use of the beam would have to be considered in order to make a judgment on the acceptability of the computed deflections. Refer to the footnotes following Table 9.5(b) of ACI 318.

Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections—

\[\Delta_{cp} + \Delta_{sh} + (\Delta_i)_{\ell} \leq \ell/240 = 312/240 = 1.30 \text{ in.} \quad \text{O.K.}\]
Design for Slenderness Effects

UPDATE FOR THE ’08 CODE

The slenderness provisions in the 2008 Code are reorganized to reflect the current practice where the second-order effects are considered using computer analysis techniques. As in previous Codes, the 2008 Code recognizes three approaches to account for slenderness effects: nonlinear second-order analysis, elastic second-order analysis, and approximate moment magnification procedure. The following updates are introduced:

- **Section 10.10.1** allows compression members in a story to be considered braced against sidesway if the bracing elements (shearwalls or lateral bracing) in the same story, have a total stiffness, resisting lateral movement at least 12 times the gross stiffness of the columns within the story.

- The total moment including second-order effects in compression members is limited to 1.4 times the moment due to first-order effects (10.10.2.1). This new limit replaces the stability check in 10.13.6 of the 2005 Code and the upper slenderness limit of $k_{ll}u/r = 100$ for the use of the Code approximate moment magnification procedure.

- Two alternate equations to account for the influence of cracking and axial loads on the section moment of inertia (I) are introduced [Eqs. (10-8) and (10-9)].

- The creep ratio to account for the effect of sustained loads is clarified. Two new ratios β_{dls} and β_{dks} are introduced to account for the reduction of column stiffness due to sustained axial load and sustained lateral load, respectively (10.10.6.2 and 10.10.4.2).

BACKGROUND

Design of columns consists essentially of selecting an adequate column cross-section with reinforcement to support required combinations of factored axial loads P_u and factored (primary) moments M_u, including consideration of column slenderness (secondary moments).

Column slenderness is expressed in terms of its slenderness ratio $k\ell_u/r$, where k is an effective length factor (dependent on rotational and lateral restraints at the ends of the column), ℓ_u is the unsupported column length, and r is the radius of gyration of the column cross-section. In general, a column is slender if its applicable cross-sectional dimension is small in comparison to its length.

For design purposes, the term “short column” is used to denote a column that has a strength equal to that computed for its cross-section, using the forces and moments obtained from an analysis for combined bending and axial load. A “slender column” is defined as a column whose strength is reduced by second-order deformations (secondary moments). By these definitions, a column with a given slenderness ratio may be considered a short
column for design under one set of restraints, and a long column under another set. With the use of higher strength concrete and reinforcement, and more accurate analysis and design methods, it is possible to design smaller cross-sections, resulting in members that are more slender. The need for reliable and rational design procedures for slender columns thus becomes a more important consideration in column design.

A short column may fail due to a combination of moment and axial load that exceeds the strength of the cross-section. This type of a failure is known as “material failure.” As an illustration, consider the column shown in Fig. 11-1. Due to loading, the column has a deflection Δ which will cause an additional (secondary) moment in the column. From the free body diagram, it can be seen that the maximum moment in the column occurs at section A-A, and is equal to the applied moment plus the moment due to member deflection, which is $M = P(e + \Delta)$.

Failure of a short column can occur at any point along the strength interaction curve, depending on the combination of applied moment and axial load. As discussed above, some deflection will occur and a “material failure” will result when a particular combination of load P and moment $M = P(e + \Delta)$ intersects the strength interaction curve.

If a column is very slender, it may reach a deflection due to axial load P and a moment P_e such that deflections will increase indefinitely with an increase in the load P. This type of failure is known as a “stability failure,” as shown on the strength interaction curve.

The basic concept on the behavior of straight, concentrically loaded, slender columns was originally developed by Euler more than 200 years ago. It states that a member will fail by buckling at the critical load $P_c = \frac{\pi^2EI}{(k'l)^2}$, where EI is the flexural stiffness of the member cross-section, and l_e is the effective length, which is equal to $k'l_u$. For a “stocky” short column, the value of the buckling load will exceed the direct crushing strength (corresponding to material failure). In members that are more slender (i.e., members with larger $k'l_u/r$ values), failure may occur by buckling (stability failure), with the buckling load decreasing with increasing slenderness (see Fig. 11-2).

![Figure 11-1 Strength Interaction for Slender Columns](image)

![Figure 11-2 Failure Load as a Function of Column Slenderness](image)
As shown above, it is possible to depict slenderness effects and amplified moments on a typical strength interaction curve. Hence, a “family” of strength interaction diagrams for slender columns with varying slenderness ratios can be developed, as shown in Fig. 11-3. The strength interaction diagram for \(k_{ur} = 0 \) corresponds to the combinations of moment and axial load where strength is not affected by member slenderness (short column strength).

SWAY VERSUS NONSWAY COLUMNS

Bracing elements in building structures (shear walls or lateral bracing) help reduce the excessive sway and minimize the secondary effects on columns. The behavior of a compression member differs depending on whether the member is a part of a sway or nonsway frame. Because of this difference in behavior between sway and nonsway columns, the design is treated differently. As a simplified approach, 10.10.1 permits the compression member to be considered braced against sidesway when the bracing elements have a total stiffness, resisting the lateral movement of that story, of at least 12 times the gross stiffness of the columns within the story. Prior to the ‘95 Codes a similar limit of six (6) was in the commentary of the Code. Some concern was raised that the multiplier of six might not be conservative enough. Accordingly, the limit was removed and instead of a clear quantitative limit the commentary stated that “the bracing elements have such substantial lateral stiffness to resist the lateral deflections of the story.” The 2008 Code introduced the more conservative multiplier of 12 in the main body of the Code. For more refined analysis, a column may be assumed nonsway if the increases in column end moments due to second-order effects do not exceed 5 percent of the first order end moments (10.10.5.1). Another alternate to evaluate whether a story within a structure is sway or nonsway, for stories with \(V_{us} > 0 \), is as follows:

The story within a structure may be assumed nonsway if:

\[
Q = \frac{\sum P_u \Delta_o}{V_{us} \ell_c} \leq 0.05
\]

CONSIDERATION OF SLENDERNESS EFFECTS

Slenderness limits are prescribed for both nonsway and sway frames, including design methods permitted. Lower-bound slenderness limits are given, below which secondary moments may be disregarded and only axial
load and primary moment (from first-order analysis) need be considered to select a column cross-section and reinforcement (short column design). It should be noted that for ordinary beam and column sizes and typical story heights of concrete framing systems, effects of slenderness may be neglected for more than 90 percent of columns in nonsway frames and around 40 percent of columns in sway frames. The Code recognizes the following three methods to account for slenderness effects:

1. Nonlinear second-order analysis (10.10.3). In this analysis, consideration must be made for material nonlinearity, member curvature and lateral drift, duration of loads, shrinkage and creep, and interaction with the supporting foundation.
2. Elastic second-order analysis (10.10.4). In this analysis, consideration must be made for the influence of axial loads, the presence of cracked regions along the length of the member, and the effects of load duration.
3. Moment magnification procedure (10.10.5). An approximate analysis of slenderness effects based on a moment magnifier (see 10.10.6 and 10.10.7) is permitted. In this method, moments computed from first order analysis are multiplied by a moment magnifier to account for the second-order effects. The moment magnifier is a function of the factored axial load P_u and the critical buckling load P_c for the column. This method is discussed in details in sections 10.10.6 and 10.10.7, for nonsway and sway columns, respectively.

Section 10.10.2.1 limits the total moment including the second-order effects in compression members, restraining beams and other structural members to 1.4 times the moment due to first order effects. Prior to ‘08 Code, previous Codes included provisions for stability checks. These provisions were intended to prevent the possibility of sidesway instability of the structure as a whole under factored gravity loads. By providing the upper limit of 1.4 on the second-order moment these provisions were eliminated from the Code (See R10.10.2.1). Also eliminated from the Code is the upper limit of $k_{lu}/r = 100$ for the use of the moment magnification procedure.

The slenderness ratio limits in 10.10.1 for nonsway frames and sway frames, and design methods permitted for consideration of column slenderness, are summarized in Fig. 11- 4. The Code slenderness provisions are discussed in the following sections.
10.10 SLENDERNESS EFFECTS IN COMPRESSION MEMBERS

10.10.1 Consideration of Slenderness Effects

For compression members in a nonsway frame, effects of slenderness may be neglected when \(k\ell_u/r \) is less than or equal to 34 - 12 (\(M_1/M_2 \)), where \(M_2 \) is the larger end moment and \(M_1 \) is the smaller end moment. The ratio \(M_1/M_2 \) is positive if the column is bent in single curvature, negative if bent in double curvature. Note that \(M_1 \) and \(M_2 \) are factored end moments obtained by an elastic frame analysis and that the term [34-12(M_1/M_2)] shall not be taken greater than 40. For compression members in a sway frame, effects of slenderness may be neglected when \(k\ell_u/r \) is less than 22 (10.13.2). The moment magnifier method may be used for columns with slenderness ratios exceeding these lower limits. Criteria for consideration of column slenderness are summarized in Fig. 11-4.

The lower slenderness ratio limits will allow a large number of columns to be exempt from slenderness consideration. Considering the slenderness ratio \(k\ell_u/r \) in terms of \(\ell_u/h \) for rectangular columns (Note: in the following \(h \) is the overall column thickness in direction of analysis in inch and \(\ell_u \) is in feet), the effects of slenderness may be neglected in design when \(\ell_u/h \) is less than or equal to 10 for compression members in a nonway frame and with zero moments at both ends. This lower limit increases to 15 for a column in double curvature with equal end moments and a column-to-beam stiffness ratio equal to one at each end. For columns with minimal or zero restraint at both ends, a value of \(k \) equal to 1.0 should be used. For stocky columns restrained by flat slab floors, \(k \) ranges from about 0.95 to 1.0 and can be conservatively estimated as 1.0. For columns in beam-column frames, \(k \) ranges from about 0.75 to 0.90, and can be conservatively estimated as 0.90. If the initial computation of the slenderness ratio based on estimated values of \(k \) indicates that effects of slenderness must be considered in the design, a more accurate value of \(k \) should be calculated and slenderness re-evaluated. For a compression member in a sway frame with a column-to-beam stiffness ratio equal to 1.0 at both ends, effects of slenderness may be neglected when \(\ell_u/h \) is less than 5. This value reduces to 3 if the beam stiffness is reduced to one-fifth of the column stiffness at each end of the column. Thus, beam stiffenes at the top and bottom of a column of a high-rise structure where sidesway is not prevented by structural walls or other means will have a significant effect on the degree of slenderness of the column.

10.10.1.1 Unsupported and Effective Lengths of Compression Members

The unsupported length \(\ell_u \) of a column, defined in 10.10.1.1, is the clear distance between lateral supports as shown in Fig. 11-5. Note that the length \(\ell_u \) may be different for buckling about each of the principal axes of the column cross-section. The basic Euler equation for critical buckling load can be expressed as , where \(\ell_u \) is the effective length \(k\ell_u \). The basic equations for the design of slender columns were derived for hinged ends, and thus, must be modified to account for the effects of end restraint. Effective column length \(k\ell_u \), as contrasted to actual unbraced length \(\ell_u \), is the term used in estimating slender column strength, and considers end restraints as well as nonsway and sway conditions.

![Figure 11-5 Unsupported Length, \(\ell_u \)](image-url)
At the critical load defined by the Euler equation, an originally straight member buckles into a half-sine wave as shown in Fig. 11-6(a). In this configuration, an additional moment $P\Delta$ acts at every section, where Δ is the lateral deflection at the specific location under consideration along the length of the member. This deflection continues to increase until the bending stress caused by the increasing moment ($P\Delta$), plus the original compression stress caused by the applied loading, exceeds the compressive strength of concrete and the member fails. The effective length $l_e = k l_u$ is the length between pinned ends, between zero moments or between inflection points. For the pinned condition illustrated in Fig. 11-6(a), the effective length is equal to the unsupported length l_u. If the member is fixed against rotation at both ends, it will buckle in the shape depicted in Fig. 11-6(b); inflection points will occur at the locations shown, and the effective length l_e will be one-half of the unsupported length. The critical buckling load P_c for the fixed-end condition is four times that for a pin-end condition. Rarely are columns in actual structures either hinged or fixed; they are partially restrained against rotation by members framing into the column, and thus the effective length is between $l_u/2$ and l_u, as shown in Fig. 11-6(c) as long as the lateral displacement of one end of the column with respect to the other end is prevented. The actual value of the effective length depends on the rigidity of the members framing into the top and bottom ends of the column.

A column that is fixed at one end and entirely free at the other end (cantilever) will buckle as shown in Fig. 11-7(a). The upper end will deflect laterally relative to the lower end; this is known as sidesway. The deflected shape of such a member is similar to one-half of the sinusoidal deflected shape of the pin-ended member illustrated in Fig. 11-6(a). The effective length is equal to twice the actual length. If the column is fixed against rotation at both ends but one end can move laterally with respect to the other, it will buckle as shown in Fig. 11-7(b). The effective length l_e will be equal to the actual length l_u with an inflection point (ip) occurring as shown. The buckling load of the column in Fig. 11-7(b), where sidesway is not prevented, is one-quarter that of the column in Fig. 11-6(b), where sidesway is prevented. As noted above, the ends of columns are rarely either completely hinged or completely fixed, but rather are partially restrained against rotation by members framing into the ends of the columns. Thus, the effective length will vary between $l_u/2$ and ∞, as shown in Fig. 11-7(c). If restraining members (beams or slab) are very rigid as compared to the column, the buckling in Fig. 11-7(b) is approached. If, however, the restraining members are quite flexible, a hinged condition is approached at both ends and the column(s), and possibly the structure as a whole, approaches instability. In general, the effective length l_e depends on the degree of rotational restraint at the ends of the column, in this case $l_u < l_e < \infty$.

In typical reinforced concrete structures, the designer is rarely concerned with single members, but rather with rigid framing systems consisting of beam-column and slab-column assemblies. The buckling behavior of a frame that is not braced against sidesway can be illustrated by the simple portal frame shown in Fig. 11-8. Without lateral restraint at the upper end, the entire (unbraced) frame is free to move sideways. The bottom end may be pinned or partially restrained against rotation.
In summary, the following comments can be made:

1. For compression members in a nonsway frame, the effective length l_e falls between $l_u/2$ and l_u, where l_u is the actual unsupported length of the column.

2. For compression members in a sway frame, the effective length l_e is always greater than the actual length of the column l_u, and may be $2l_u$ and higher.

3. Use of the alignment charts shown in Figs. 11-9 and 11-10 (also given in Fig. R10.10.1.1) allows graphical determination of the effective length factors for compression members in nonsway and sway frames, respectively. If both ends of a column in a nonsway frame have minimal rotational stiffness, or approach $\psi = \infty$, then $k = 1.0$. If both ends have or approach full fixity, $\psi = 0$, and $k = 0.5$. If both ends of a column in a sway frame have minimal rotational stiffness, or approach $\psi = \infty$, then $k = \infty$. If both ends have or approach full fixity, $\psi = 0$, then $k = 1.0$.

An alternative method for computing the effective length factors for compression members in nonsway and sway frames is contained in R10.10.1.1. For compression members in a nonsway frame, an upper bound to the effective length factor may be taken as the smaller of the values given by the following two expressions, which are based on the Jackson and Moreland alignment charts (ACI Refs. 10.4 and 10.30).
\[k = 0.7 + 0.05 (\psi_A + \psi_B) \leq 1.0 \]

\[k = 0.85 + 0.05 \psi_{\text{min}} \leq 1.0 \]

where \(\psi_A \) and \(\psi_B \) are the values of \(\gamma \) at the ends of the column and \(\psi_{\text{min}} \) is the smaller of the two values.

For compression members in a sway frame restrained at both ends, the effective length factor may be taken as (ACI Ref. 10.25):

For \(\psi_m < 2 \),
\[k = \frac{20 - \psi_m}{20} \sqrt{1 + \psi_m} \]

For \(\psi_m < 2 \),
\[k = 0.9 \sqrt{1 + \psi_m} \]

where \(\psi_m \) is the average of the \(\psi \) values at the two ends of the column.

For compression members in a sway frame hinged at one end, the effective length factor may be taken as (ACI Refs. 10.38 and 10.39):
\[k = 2.0 + 0.3\psi \]

where \(\psi \) is the column-to-beam stiffness ratio at the restrained end.

In determining the effective length factor \(k \) from Figs. 11-9 and 11-10, or from the Commentary equations, the rigidity (EI) of the beams (or slabs) and columns shall be calculated based on the values given in 10.10.4.1.

Figure 11-10 Effective Length Factors for Compression Members in a Sway Frame

10.10.1.2 Radius of Gyration

In general, the radius of gyration, \(r \), is \(\sqrt{I_g / A_g} \). In particular, \(r \) may be taken as 0.30 times the dimension in the direction of analysis for a rectangular section and 0.25 times the diameter of a circular section, as shown in Fig. 11-11.

Figure 11-11 Radius of Gyration, \(r \)
10.10.2.1 Total Moment in Compression members

Section 10.10.2.1 limits the total moment in compression members including the second-order effects to 1.4 times the moment due to first-order effects for nonsway and sway frames. Prior to 2008 edition of the code, previous Codes required that for sway frames, the strength and stability of the structure as a whole be checked under factored gravity load. The methods used to check structural stability depended on the approach used to determine $\delta_s M_s$. Limitations were imposed on the ratio of second-order lateral deflections to first-order lateral deflections, the stability index Q, or the moment magnification factor δ_s. The maximum value of the stability coefficient θ in the ASCE/SEI 7-05 10.36 is 0.25. The value of the corresponding secondary-to-primary moment ratio is equal to $1/(1-\theta) = 1.33$. For discussion on the upper limit of 1.4 on the secondary-to-primary moment ratio see R10.10.2.1. By introducing an upper limit on the second-order moment in ‘08 Code the stability check in the 2005 Code was eliminated.

SECOND-ORDER ANALYSIS

Generally, the results of a second-order analysis give more realistic values of the moments than those obtained from an approximate analysis by 10.10.6 or 10.10.7. For sway frames, the use of second-order analyses will generally result in a more economical design. The Code recognizes two methods to account for second order effects: nonlinear second-order analysis and elastic second-order analysis.

10.10.3 Nonlinear Second-order Analysis

Non-linear second-order analysis must consider material nonlinearity, member curvature and lateral drift, duration of loads, shrinkage and creep, and interaction with the supporting foundation. Procedures for carrying out a nonlinear second-order analysis are given in Commentary Refs. 10.31-10.33. The reader is referred to R10.10.3, which discusses minimum requirements for an adequate nonlinear second-order analysis under 10.10.3.

10.10.4 Elastic Second-order Analysis

Elastic second-order analysis must consider section properties determined taking into account the influence of axial loads, the presence of cracked regions along the length of the member, and the effects of load duration. The reader is referred to R10.10.4, for discussion on the requirements of elastic second-order analysis under 10.10.4.

10.10.4.1 Section Properties for Frame Analysis

According to 10.10.3 and 10.10.4, the frame analysis must consider section properties determined taking into account the influence of axial loads, the presence of cracked regions along the length of the member, and the effects of load duration. To account for the presence of cracked regions the member stiffness is multiplied by a stiffness reduction factor ϕ_K. Section 10.10.4 provides values for the properties of different members to be considered in analysis. Table 11-1 summarizes these values. It is important to note that for service load analysis of the structure, it is satisfactory to multiply the moments of inertia given in Table 11-1 by $1/0.70 = 1.43$ (R10.10.4.1). As an alternate to the stiffness values in Table 11-1, the Code provides more refined values for EI (Eqs.10-8 and 10-9) to account for axial load, eccentricity, reinforcement ratio and concrete compressive strength. The stiffnesses calculated from these two equations are applicable for all levels of loading including service and ultimate.

For compression members:

$$I = \left(0.80 + 25 \frac{A_{st}}{A_g} \right) \left(1 - \frac{M_u}{P_u h} - 0.5 \frac{P_u}{P_o} \right) I_g \leq 0.875 I_g$$

Eq. (10-8)
Pu and M_u are determined from the load combination under consideration. I need not taken less than 0.35 I_g.

For flexural members:

\[I = (0.10 + 2.5\rho)\left(1.2 - 0.2\frac{b_w}{d}\right)I_g \leq 0.51g \quad \text{Eq. (10-9)} \]

For continuous members, I may be taken as the average values for the critical positive and negative moments. I need not be taken less than 0.25 I_g.

Table 11-1 Section Properties for Frame Analysis

<table>
<thead>
<tr>
<th></th>
<th>Modulus of Elasticity</th>
<th>Moment of Inertia†</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beams</td>
<td>E_c from 8.5.1</td>
<td>0.35 I_g</td>
<td>1.0A_g</td>
</tr>
<tr>
<td>Columns</td>
<td></td>
<td>0.70 I_g</td>
<td></td>
</tr>
<tr>
<td>Walls - uncracked</td>
<td></td>
<td>0.70 I_g</td>
<td></td>
</tr>
<tr>
<td>Walls - cracked</td>
<td></td>
<td>0.35 I_g</td>
<td></td>
</tr>
<tr>
<td>Flat plates and flat slabs</td>
<td></td>
<td>0.25 I_g</td>
<td></td>
</tr>
</tbody>
</table>

To account for the presence of sustained lateral loads, I for compression members should be divided by (1+β_{ds}), where β_{ds} is the ratio of maximum factored sustained shear within a story to the maximum factored shear in that story associated with the same load combination. β_{ds} must not be taken greater than 1.0 (see 10.10.4.2 and R10.10.4.2).

10.10.5 MOMENT MAGNIFICATION PROCEDURE

In this approximate procedure moments calculated from elastic first-order frame analysis are multiplied by a moment magnifier to account for the second order effects. The moment magnifier is a function of the factored axial load P_u and the critical buckling load P_c. In this approach nonsway and sway frames are treated separately.

10.10.6 Moment Magnification—Nonsway Frames

The approximate slender column design equations contained in 10.10.6 for nonsway frames are based on the concept of a moment magnifier δ_{ns} which amplifies the larger factored end moment M_2 on a compression member. The column is then designed for the factored axial load P_u and the amplified moment M_c where M_c is given by:

\[M_c = \delta_{ns}M_2 \quad \text{Eq. (10-11)} \]

where

\[\delta_{ns} = \frac{C_m}{P_u} \left(1 - \frac{0.75P_c}{P_u}\right) \geq 1.0 \quad \text{Eq. (10-12)} \]

\[P_c = \frac{\pi^2EI}{(k\ell)^2} \quad \text{Eq. (10-13)} \]
In defining the critical column load P_c, the difficult problem is the choice of a stiffness parameter EI which reasonably approximates the stiffness variations due to cracking, creep, and the nonlinearity of the concrete stress-strain curve. In lieu of a more exact analysis, EI shall be taken as:

$$EI = \frac{0.2E_c I_g + E_s I_{se}}{1 + \beta_{dns}}$$ \hspace{1cm} \text{Eq. (10-14)}$$

or

$$EI = \frac{0.4E_c I_g}{1 + \beta_{dns}}$$ \hspace{1cm} \text{Eq. (10-15)}$$

The second of these two equations is a simplified approximation to the first. Both equations approximate the lower limits of EI for practical cross-sections and, thus, are conservative. The approximate nature of the EI equations is shown in Fig. 11-12 where they are compared with values derived from moment-curvature diagrams for the case when there is no sustained load ($\beta_{dns} = 0$).

Equation (10-14) represents the lower limit of the practical range of stiffness values. This is especially true for heavily reinforced columns. As noted above, Eq. (10-15) is simpler to use but greatly underestimates the effect of reinforcement in heavily reinforced columns (see Fig. 11-12).

Both EI equations were derived for small e/h values and high P_u/P_o values, where the effect of axial load is most pronounced. The term P_o is the nominal axial load strength at zero eccentricity.

For reinforced concrete columns subjected to sustained loads, creep of concrete transfers some of the load from the concrete to the steel, thus increasing steel stresses. For lightly reinforced columns, this load transfer may cause compression steel to yield prematurely, resulting in a loss in the effective value of EI. This is taken into account by dividing EI by $(1 + \beta_{dns})$. For nonsway frames, β_{dns} is defined as follows (see 10.10.6.2):

$$\beta_{dns} = \frac{\text{Maximum factored axial sustained load}}{\text{Maximum factor axial load associated with the same load combination}} \leq 1$$

For composite columns in which a structural steel shape makes up a large percentage of the total column cross-section, load transfer due to creep is not significant. Accordingly, only the EI of the concrete portion should be reduced by $(1 + \beta_{dns})$ to account for sustained load effects.

The term C_m is an equivalent moment correction factor. For members without transverse loads between supports, C_m is (10.10.6.4):
For members with transverse loads between supports, it is possible that the maximum moment will occur at a section away from the ends of a member. In this case, the largest calculated moment occurring anywhere along the length of the member should be magnified by \(\delta_{ns} \), and \(C_m \) must be taken as 1.0. Figure 11-13 shows some values of \(C_m \), which are a function of the end moments.

If the computed column moment \(M_2 \) in Eq. (10-11) is small or zero, design of a nonsway column must be based on the minimum moment \(M_{2,min} \) (10.10.6.5):

\[
M_{2,min} = P_u (0.6 + 0.03h)
\]

Eq. (10-17)

For members where \(M_{2,min} > M_2 \), the value of \(C_m \) shall either be taken equal to 1.0, or shall be computed by Eq. (10-16) using the ratio of the actual computed end moments \(M_1 \) and \(M_2 \).

10.10.7 Moment Magnification—Sway Frames

The magnified sway moments are added to the unmagnified nonsway moments \(M_{ns} \) at each end of the column:

\[
M_1 = M_{1ns} + \delta_s M_{1s}
\]

Eq. (10-18)

\[
M_2 = M_{2ns} + \delta_s M_{2s}
\]

Eq. (10-19)

The nonsway moments \(M_{ns} \) and the sway moments \(M_s \) are computed using a first-order elastic analysis.

If the column is slender and subjected to high axial loads, it must be checked to see whether moments at points between the column ends are larger than those at the ends. According to 10.13.5, this check is performed using the nonsway magnifier \(\delta_{ns} \) with \(P_c \) computed assuming \(k = 1.0 \) or less.

Calculation of \(\delta_s M_s \)

The Code provides two different methods to compute the magnified sway moments \(\delta_s M_s \).

Section 10.10.7.3 allows an approximate second-order analysis to determine \(\delta_s M_s \). In this case, the solution of the infinite series that represents the iterative P-\(\Delta \) analysis for second-order moments is given as follows:
where

\[Q = \text{stability index for a story} \]

\[\delta_s M_s = \frac{M_s}{1 - Q} \geq M_s \]

\[\text{Eq. (10-20)} \]

Note that Eq. (10-20) closely predicts the second-order moments in a sway frame until \(\delta_s \) exceeds 1.5. For the case when \(\delta_s > 1.5 \), \(\delta_s M_s \) must be computed using Eq. (10-10) or (10.10.7.4).

The code also allows \(\delta_s M_s \) to be determined using the magnified moment procedure that was given in previous ACI codes (10.10.7.4):

\[\delta_s M_s = \frac{M_s}{\Sigma P_u + \frac{0.75}{V_{us} \ell_c}} \]

\[\text{Eq. (10-21)} \]

where

\[\Sigma P_u = \text{summation of all the factored vertical loads in a story} \]

\[\Sigma P_c = \text{summation of the critical buckling loads for all sway-resisting columns in a story} \]

It is important to note that the moment magnification in the columns farthest from the center of twist in a building subjected to significant torsional displacement may be underestimated by the moment magnifier procedure. A three-dimensional second-order analysis should be considered in such cases.

SUMMARY OF DESIGN EQUATIONS

A summary of the equations for the design of slender columns subjected to dead, live and lateral loads, in both nonsway and sway frames is presented in this section. Examples 11.1 and 11.2 illustrate the application of these equations for the design of columns in nonsway and sway frames, respectively.

- **Nonsway Frames**

1. Determine the factored load combinations per 9.2.

 It is assumed in the examples that follow that the load factor for live load is 0.5 (i.e. condition 9.2.1(a) applies) and that the wind load has been reduced by a directionality factor (9.2.1(b)).

 Note that the factored moments \(M_{u,\text{top}} \) and \(M_{u,\text{bot}} \) at the top and bottom of the column, respectively, are to be determined using a first-order frame analysis, based on the cracked section properties of the members.

2. For each load combination, determine \(M_c \), where \(M_c \) is the largest factored column end moment, including slenderness effects (if required). Note that \(M_c \) may be determined by one of the following methods:

 a. Nonlinear second-order (P-\(\Delta \)) analysis (10.10.3)
b. Elastic second-order analysis (10.10.4)

c. Magnified moment method
Determine the required column reinforcement for the critical load combination determined in step (1) above. Each load combination consists of P_u and M_c.

3. Magnified moment method (10.10.6):

Slenderness effects can be neglected when

$$\frac{k\ell_u}{r} \leq 34 - 12 \left(\frac{M_1}{M_2} \right)$$ \hspace{1cm} \text{Eq. (10-7)}$$

where $[34 - 12 \frac{M_1}{M_2}] \leq 40$. The term M_1/M_2 is positive if the column is bent in single curvature, negative if bent in double curvature. If $M_1 = M_2 = 0$, assume $M_2 = M_2, \text{min}$. In this case $k\ell_u/r = 34.0$.

When slenderness effects need to be considered, determine M_c for each load combination:

$$M_c = \delta_{ns} M_2$$ \hspace{1cm} \text{Eq. (10-11)}$$

where

$$M_2 = \text{larger of } M_{u,\text{bot}} \text{ and } M_{u,\text{top}}$$

$\delta_{ns} = \frac{C_m}{1 - \frac{P_u}{0.75P_c}} \geq 1.0$ \hspace{1cm} \text{Eq. (10-12)}$$

$$P_c = \frac{\pi^2 EI}{(k\ell_u)^2}$$ \hspace{1cm} \text{Eq. (10-13)}$$

$$EI = \frac{0.2E_c I_g + E_s I_{sc}}{1 + \beta_{dns}}$$ \hspace{1cm} \text{Eq. (10-14)}$$
or

$$EI = \frac{0.4E_c I_g}{1 + \beta_{dns}}$$ \hspace{1cm} \text{Eq. (10-15)}$$

$$\beta_{dns} = \frac{\text{Maximum factored axial sustained load}}{\text{Maximum factor axial load associated with the same load combination}} \leq 1$$ \hspace{1cm} \text{10.10.6.2}$$

$$C_m = 0.6 + 0.4 \left(\frac{M_1}{M_2} \right) \geq 0.4 \quad \text{for columns without transverse loads}$$ \hspace{1cm} \text{Eq. (10-16)}$$

$$= 1.0 \quad \text{for columns with transverse loads}$$
The effective length factor \(k \) must be taken as 1.0, or may be determined from analysis (i.e., alignment chart or equations given in R10.10.1). In the latter case, \(k \) shall be based on the E and I values determined according to 10.10.4.1 (see 10.10.6.3 and R10.10.6.3).

4. Check if \(M_c \leq 1.4 \) times the moment due to first order effects (10.10.2.1), otherwise, the column dimensions must be modified.

- **Sway Frames**

1. Determine the factored load combinations per 9.2.

 a. Gravity (dead and live) loads

 The moments \((M_{u,bot})_{ns} \) and \((M_{u,top})_{ns} \) at the bottom and top of column, respectively, are to be determined using an elastic first-order frame analysis, based on the cracked section properties of the members.

 The moments \(M_1 \) and \(M_2 \) are the smaller and the larger of the moments \((M_{u,bot})_{ns} \) and \((M_{u,top})_{ns} \), respectively. The moments \(M_{1ns} \) and \(M_{2ns} \) are the factored end moments at the ends at which \(M_1 \) and \(M_2 \) act, respectively.

 b. Gravity (dead and live) plus lateral loads

 The total moments at the top and bottom of the column are \(M_{u,top} = (M_{u,top})_{ns} + (M_{u,top})_{s} \) and \(M_{u,bot} = (M_{u,bot})_{ns} + (M_{u,bot})_{s} \), respectively. The moments \(M_1 \) and \(M_2 \) are the smaller and the larger of the moments \(M_{u,top} \) and \(M_{u,bot} \), respectively. Note that at this stage, \(M_1 \) and \(M_2 \) do not include slenderness effects. The moments \(M_{1ns} \) and \(M_{1s} \) are the factored nonsway and sway moments, respectively, at the end of the column at which \(M_1 \) acts, while \(M_{2ns} \) and \(M_{2s} \) are the factored nonsway and sway moments, respectively, at the end of the column at which \(M_2 \) acts.

 c. Gravity (dead) plus lateral loads

 The definitions for the moments in this load combination are the same as given above for part 1(b).

 d. The effects due to lateral forces acting equal and opposite to the ones in the initial direction of analysis must also be considered in the load combinations given in parts 1(b) and 1(c) above.

2. Determine the required column reinforcement for the critical load combination determined in step (1) above. Each load combination consists of \(P_u \), \(M_1 \), and \(M_2 \), where now \(M_1 \) and \(M_2 \) are the total factored end moments, including slenderness effects. Note that if the critical load \(P_c \) is computed using EI from Eq. (10-14), it is necessary to estimate first the column reinforcement. Moments \(M_1 \) and \(M_2 \) are determined by one of the following methods:

 a. Nonlinear second-order (P-Δ) analysis (10.10.3)

 b. Elastic second-order analysis (10.10.4)

 c. Magnified moment method (see 10.10.7 and step 3 below)

3. Magnified moment method:

 Slenderness effects can be neglected when
When slenderness effects need to be considered:

\[M_1 = M_{1ns} + \delta_s M_{1s} \]
\[M_2 = M_{2ns} + \delta_s M_{2s} \]
\[\text{Eq. (10-18)} \]
\[\text{Eq. (10-19)} \]

The moments \(\delta_s M_{1s} \) and \(\delta_s M_{2s} \) are to be computed by one of the following methods:

a. Approximate second-order analysis (10.10.7.3)

\[\delta_s M_s = \frac{M_s}{1 - Q} \geq M_s, \quad 1.0 \leq \delta_s \leq 1.5 \]
\[\text{Eq. (10-20)} \]

where

\[Q = \frac{\Sigma P_u \Delta_o}{V_{us} c} \]
\[\text{Eq. (10-10)} \]

b. Approximate magnifier method given in ACI code (see 10.10.7.4):

\[\delta_s M_s = \frac{M_s}{1 - \frac{0.75 \Sigma P_c}{\Sigma P_u}} \geq M_s \]
\[\text{Eq. (10-21)} \]

where

\[P_c = \frac{\pi^2 EI}{(k' u)^2} \]
\[\text{Eq. (10-13)} \]

\[EI = \frac{0.2E_c I_g + E_s I_{se}}{1 + \beta_d} \]
\[\text{Eq. (10-14)} \]

or

\[EI = \frac{0.4E_c I_g}{1 + \beta_d} \]
\[\text{Eq. (10-12)} \]

The effective length factor \(k \) must be greater than 1.0 and shall be based on the \(E \) and \(I \) values determined according to 10.10.4.1 (see 10.13.1).

\[\beta_d \] must be taken as:

\[\beta_{ds} = \frac{\text{Maximum factored sustained axial load}}{\text{Maximum factored axial load}} \]

Reference 11.1 gives the derivation of the design equations for the slenderness provisions outlined above.

4. Check if \(M_{ns} + \delta_s M_{1s} \leq 1.4 (M_{ns} + M_{1s}) \), otherwise, the column dimensions and/or structural systems must be modified.
REFERENCES

Example 11.1—Slenderness Effects for Columns in a Nonsway Frame

Design columns A3 and C3 in the first story of the 10-story office building shown below. The clear height of the first story is 21 ft-4 in., and is 11 ft-4 in. for all of the other stories. Assume that the lateral load effects on the building are caused by wind, and that the dead loads are the only sustained loads. Other pertinent design data for the building are as follows:

Material properties:

Concrete:
- Floors: $f'_c = 4000$ psi, $w_c = 150$ pcf
- Columns and walls: $f'_c = 6000$ psi, $w_c = 150$ pcf
- Reinforcement: $f_y = 60$ ksi

Beams: 24×20 in.
Exterior columns: 20×20 in.
Interior columns: 24×24 in.
Shearwalls: 12 in.

Weight of floor joists = 86 psf
Superimposed dead load = 32 psf
Roof live load = 30 psf
Floor live load = 50 psf
Wind loads computed according to ASCE 7.
1. Factored axial loads and bending moments for columns A3 and C3 in the first story

Column A3

<table>
<thead>
<tr>
<th>Load Case</th>
<th>Axial Load (kips)</th>
<th>Bending Moment (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead (D)</td>
<td>718.0</td>
<td>79.0 40.0</td>
</tr>
<tr>
<td>Live (L)*</td>
<td>80.0</td>
<td>30.3 15.3</td>
</tr>
<tr>
<td>Roof live load (Lr)</td>
<td>12.0</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>Wind (W)</td>
<td>±8.0</td>
<td>±1.1 ±4.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eq.</th>
<th>No.</th>
<th>Load Combination</th>
<th>Axial Load (kips)</th>
<th>Bending Moment (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>1</td>
<td>1.4D</td>
<td>1,005.2</td>
<td>110.6 56.0</td>
</tr>
<tr>
<td>9-2</td>
<td>2</td>
<td>1.2D + 1.6L + 0.5Lr</td>
<td>995.6</td>
<td>143.3 72.5</td>
</tr>
<tr>
<td>9-3</td>
<td>3</td>
<td>1.2D + 0.5L + 1.6Lr</td>
<td>920.8</td>
<td>110.0 55.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.2D + 1.6Lr + 0.8W</td>
<td>887.2</td>
<td>95.7 51.4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.2D + 1.6Lr - 0.8W</td>
<td>874.4</td>
<td>93.9 44.6</td>
</tr>
<tr>
<td>9-4</td>
<td>6</td>
<td>1.2D + 0.5L + 0.5Lr + 1.6W</td>
<td>920.4</td>
<td>111.7 62.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.2D + 0.5L + 0.5Lr - 1.6W</td>
<td>894.8</td>
<td>108.2 48.8</td>
</tr>
<tr>
<td>9-6</td>
<td>8</td>
<td>0.9D + 1.6W</td>
<td>659.0</td>
<td>72.9 42.9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.9D - 1.6W</td>
<td>633.4</td>
<td>69.3 29.1</td>
</tr>
</tbody>
</table>

*Includes live load reduction per ASCE 7

Column C3

<table>
<thead>
<tr>
<th>Load Case</th>
<th>Axial Load (kips)</th>
<th>Bending Moment (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead (D)</td>
<td>1,269.0</td>
<td>1.0 0.7</td>
</tr>
<tr>
<td>Live (L)*</td>
<td>147.0</td>
<td>32.4 16.3</td>
</tr>
<tr>
<td>Roof live load (Lr)</td>
<td>24.0</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>Wind (W)</td>
<td>±3.0</td>
<td>±2.5 ±7.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eq.</th>
<th>No.</th>
<th>Load Combination</th>
<th>Axial Load (kips)</th>
<th>Bending Moment (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>1</td>
<td>1.4D</td>
<td>1,776.6</td>
<td>1.4 1.0</td>
</tr>
<tr>
<td>9-2</td>
<td>2</td>
<td>1.2D + 1.6L + 0.5Lr</td>
<td>1,730.0</td>
<td>53.0 26.9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.2D + 0.5L + 1.6Lr</td>
<td>1,634.7</td>
<td>17.4 9.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.2D + 1.6Lr + 0.8W</td>
<td>1,563.6</td>
<td>3.2 7.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.2D + 1.6Lr - 0.8W</td>
<td>1,558.8</td>
<td>-0.8 -5.3</td>
</tr>
<tr>
<td>9-4</td>
<td>6</td>
<td>1.2D + 0.5L + 0.5Lr + 1.6W</td>
<td>1,613.1</td>
<td>21.4 21.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.2D + 0.5L + 0.5Lr - 1.6W</td>
<td>1,603.5</td>
<td>13.4 -3.3</td>
</tr>
<tr>
<td>9-6</td>
<td>8</td>
<td>0.9D + 1.6W</td>
<td>1,146.9</td>
<td>4.9 13.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.9D - 1.6W</td>
<td>1,137.3</td>
<td>-3.1 -11.7</td>
</tr>
</tbody>
</table>

*Includes live load reduction per ASCE 7

Note that Columns A3 and C3 are bent in double curvature with the exception of Load Case 7 for Column C3.

2. Determine if the frame at the first story is nonsway or sway

The results from an elastic first-order analysis using the section properties prescribed in 10.10.4.1 are as follows:

\[\Sigma P_u = \text{total vertical load in the first story corresponding to the lateral loading case for which } \Sigma P_u \text{ is greatest} \]
The total building loads are: \(D = 37,371 \) kips, \(L = 3609 \) kips, and \(L_r = 605 \) kips.
The maximum \(\Sigma P_u \) is determined from Eq. (9-4):

\[
\Sigma P_u = (1.2 \times 37,371) + (0.5 \times 3609) + (0.5 \times 605) + 0 = 46,952 \text{ kips}
\]

\(V_{us} = \) factored story shear in the first story corresponding to the wind loads
\(= 1.6 \times 324.3 = 518.9 \text{ kips} \)

\(\Delta_o = \) first-order relative lateral deflection between the top and bottom of the first story due to \(V_{us} \)
\(= 1.6 \times (0.03-0) = 0.05 \text{ in.} \)

Stability index \(Q = \frac{\Sigma P_u \Delta_o}{V_{us} \ell_c} = \frac{46,952 \times 0.05}{518.9 \times [(23 \times 12) - (20/2)]} = 0.02 < 0.05 \)

Since \(Q < 0.05 \), the frame at the first story level is considered nonsway.

3. Design of column C3

Determine if slenderness effects must be considered.

Using an effective length factor \(k = 1.0 \),

\[
\frac{k\ell_u}{r} = \frac{1.0 \times 21.33 \times 12}{0.3 \times 24} = 35.6
\]

The following table contains the slenderness limit for each load case:

<table>
<thead>
<tr>
<th>Eq.</th>
<th>No.</th>
<th>Axial loads (kips)</th>
<th>Bending Moment (ft-kips)</th>
<th>Curvature</th>
<th>(M_1) (ft-kips)</th>
<th>(M_2) (ft-kips)</th>
<th>(M_1/M_2)</th>
<th>Slenderness* limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>1</td>
<td>1776.6</td>
<td>1.4</td>
<td>1.0</td>
<td>1.0</td>
<td>1.4</td>
<td>-0.70</td>
<td>40.00</td>
</tr>
<tr>
<td>9-2</td>
<td>2</td>
<td>1770.0</td>
<td>53.0</td>
<td>26.9</td>
<td>26.9</td>
<td>53.0</td>
<td>-0.51</td>
<td>40.00</td>
</tr>
<tr>
<td>9-3</td>
<td>3</td>
<td>1634.7</td>
<td>17.4</td>
<td>9.0</td>
<td>9.0</td>
<td>17.4</td>
<td>-0.52</td>
<td>40.00</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1564.2</td>
<td>3.7</td>
<td>8.5</td>
<td>3.7</td>
<td>8.5</td>
<td>-0.43</td>
<td>39.20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1558.2</td>
<td>-1.3</td>
<td>-6.9</td>
<td>1.3</td>
<td>6.9</td>
<td>-0.19</td>
<td>36.27</td>
</tr>
<tr>
<td>9-4</td>
<td>6</td>
<td>1613.1</td>
<td>21.4</td>
<td>21.3</td>
<td>21.3</td>
<td>21.4</td>
<td>-1.00</td>
<td>40.00</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1603.5</td>
<td>13.4</td>
<td>-3.3</td>
<td>3.3</td>
<td>13.4</td>
<td>+0.25</td>
<td>31.02</td>
</tr>
<tr>
<td>9-6</td>
<td>8</td>
<td>1146.9</td>
<td>4.9</td>
<td>13.0</td>
<td>4.9</td>
<td>13.0</td>
<td>-0.38</td>
<td>38.54</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1137.3</td>
<td>-3.1</td>
<td>-11.7</td>
<td>3.1</td>
<td>11.7</td>
<td>-0.27</td>
<td>37.18</td>
</tr>
</tbody>
</table>

\(*\ 34 - 12 \left(\frac{M_1}{M_2} \right) \leq 40 \)

The least value of \(34 - 12 \left(\frac{M_1}{M_2} \right) \) is obtained from load combination no. 7:

\[
34 - 12 \left(\frac{M_1}{M_2} \right) = 34 - 12 \left(\frac{3.3}{13.4} \right) = 31.02 < 40
\]
Example 11.1 (cont’d) Calculations and Discussion

Slenderness effects need to be considered for column C3 since $k\ell_u/r > 34 - 12 \ (M_1/M_2)$.

The following calculations illustrate the magnified moment calculations for load combination no. 7:

\[M_c = \delta_{ns} M_2. \quad \text{Eq. (10-11)} \]

where

\[\delta_{ns} = \frac{C_m}{1 - \frac{P_u}{0.75 P_c}} \geq 1 \quad \text{Eq. (10-12)} \]

\[C_m = 0.6 + 0.4 \left(\frac{M_1}{M_2} \right) \geq 0.40 \quad \text{Eq. (10-16)} \]

\[= 0.6 + 0.4 \left(\frac{3.3}{13.4} \right) = 0.70 \]

\[P_c = \frac{\pi^2 E I}{(k\ell_u)^2} \quad \text{Eq. (10-13)} \]

\[E I = \frac{0.2 E_c I_g + E_s I_c}{1 + \beta_{dns}} \quad \text{Eq. (10-14)} \]

\[E_c = 57,000 \frac{\sqrt{6000}}{1000} = 4415 \ \text{ksi} \]

\[I_g = \frac{24^4}{12} = 27,648 \ \text{in.}^4 \]

\[E_s = 29,000 \ \text{ksi} \]

Assuming 16-No. 7 bars with 1.5" cover to No. 3 ties as shown in the figure.
Example 11.1 (cont’d) Calculations and Discussion Code Reference

\[I_{se} = 2\left[(5 \times 0.6)(21.69 - 12)^2 + (2 \times 0.6)(16.84 - 12)^2 \right] \]

\[= 619.6 \text{ in.}^4 \]

Since the dead load is the only sustained load,

\[\beta_{dns} = \frac{1.2P_D}{1.2P_D + 0.5P_L + 0.5P_{Lr} - 1.6W} \leq 1 \]

\[= \frac{1.2 \times 1269}{(1.2 \times 1269) + (0.5 \times 147) + (0.5 \times 24) - (1.6 \times 3)} \]

\[= 0.95 \]

\[EI = \frac{(0.2 \times 4415 \times 27,648) + (29,000 \times 619.6)}{1 + 0.95} = 21.73 \times 10^6 \text{ kip-in.}^2 \]

\[P_c = \frac{\pi^2 \times 21.73 \times 10^6}{(1 \times 21.33 \times 12)^2} = 3274 \text{ kips} \]

\[\delta_{ms} = \frac{0.7}{1 - \frac{1603.5}{0.75 \times 3274}} = 2.02 \text{ (see “Closing Remarks” at the end of the Example)} \]

Check minimum moment requirement:

\[M_{2, \min} = P_n(0.6 + 0.03h) \]

\[= 1603.5[0.6 + (0.03 \times 24)]/12 \]

\[= 176.4 \text{ ft-kip} > M_2 \]

\[M_2 = 2.02 \times 176.4 = 356.3 \text{ ft-kip} \]

The following table contains results from a strain compatibility analysis, where compressive strains are taken as positive (see Part 6 and 7).

Therefore, since \(\phi M_n > M_u \) for all \(\phi P_n = P_u \), use a 24 \times 24 in. column with 16-No. 7 bars (\(\rho_g = 1.7\% \)).
Example 11.1 (cont’d) Calculations and Discussion

Design for \(P_u \) and \(M_C \) can be performed manually, by creating an interaction diagram as shown in example 6.4. For this example, Figure 11-14 shows the design strength interaction diagram for Column C3 obtained from the computer program pcaColumn. The figure also shows the axial load and moments for load combination 7.

4. Design of column A3

a. Determine if slenderness effects must be considered.

Determine \(k \) from the alignment chart of Fig. 11-9 or from Fig. R10.10.1.1:

\[
I_{col} = 0.7 \left(\frac{20^4}{12} \right) = 9,333 \text{ in.}^4
\]

\[E_c = 57,000 \sqrt{\frac{6000}{1000}} = 4,415 \text{ ksi} \]

For the column below level 2:

\[
\left(\frac{E_c I}{\ell_c} \right) = \frac{4,415 \times 9,333}{(23 \times 12) - (20 / 2)} = 155 \times 10^3 \text{ in.-kips}
\]

For the column above level 2:

\[
\left(\frac{E_c I}{\ell_c} \right) = \frac{4,415 \times 9,333}{13 \times 12} = 264 \times 10^3 \text{ in.-kips}
\]

Design for \(P_u \) and \(M_C \) can be performed manually, by creating an interaction diagram as shown in example 6.4. For this example, Figure 11-14 shows the design strength interaction diagram for Column C3 obtained from the computer program pcaColumn. The figure also shows the axial load and moments for load combination 7.

Table

<table>
<thead>
<tr>
<th>No.</th>
<th>(P_u) (kips)</th>
<th>(M_u) (ft-kips)</th>
<th>(c) (in.)</th>
<th>(\varepsilon_i)</th>
<th>(\phi)</th>
<th>(\phi P_n) (kips)</th>
<th>(\phi M_n) (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1776.6</td>
<td>1.4</td>
<td>25.92</td>
<td>0.00049</td>
<td>0.65</td>
<td>1776.6</td>
<td>367.2</td>
</tr>
<tr>
<td>2</td>
<td>1770.0</td>
<td>53.0</td>
<td>25.83</td>
<td>0.00048</td>
<td>0.65</td>
<td>1770.0</td>
<td>371.0</td>
</tr>
<tr>
<td>3</td>
<td>1634.7</td>
<td>17.4</td>
<td>23.86</td>
<td>0.00027</td>
<td>0.65</td>
<td>1634.7</td>
<td>447.0</td>
</tr>
<tr>
<td>4</td>
<td>1563.6</td>
<td>7.0</td>
<td>22.85</td>
<td>0.00015</td>
<td>0.65</td>
<td>1563.6</td>
<td>480.9</td>
</tr>
<tr>
<td>5</td>
<td>1558.8</td>
<td>5.3</td>
<td>22.78</td>
<td>0.00014</td>
<td>0.65</td>
<td>1558.8</td>
<td>483.2</td>
</tr>
<tr>
<td>6</td>
<td>1613.1</td>
<td>21.4</td>
<td>23.55</td>
<td>0.00024</td>
<td>0.65</td>
<td>1613.1</td>
<td>457.8</td>
</tr>
<tr>
<td>7</td>
<td>1603.5</td>
<td>356.3</td>
<td>23.41</td>
<td>0.00022</td>
<td>0.65</td>
<td>1603.5</td>
<td>462.5</td>
</tr>
<tr>
<td>8</td>
<td>1146.9</td>
<td>13.0</td>
<td>17.25</td>
<td>-0.00077</td>
<td>0.65</td>
<td>1146.9</td>
<td>609.9</td>
</tr>
<tr>
<td>9</td>
<td>1137.3</td>
<td>11.7</td>
<td>17.13</td>
<td>-0.0080</td>
<td>0.65</td>
<td>1137.3</td>
<td>611.7</td>
</tr>
</tbody>
</table>
Figure 11-14 Interaction Diagram for Column C3
Assume \(\psi_B = 1.0 \) (column essentially fixed at base)

From Fig. R10.10.1.1(a), \(k = 0.86 \).

Therefore, for column A3 bent in double curvature, the least \(34 - 12 \left(\frac{M_1}{M_2} \right) \) is obtained from load combination no. 9:

\[
34 - 12 \left(\frac{-29.1}{69.3} \right) = 39.0
\]

\[
\frac{k \ell_u}{r} = \frac{0.86 \times 21.33 \times 12}{0.3 \times 20} = 36.7 < 39.0
\]

For column A3 bent in single curvature, the least \(34 - 12 \left(\frac{M_1}{M_2} \right) \) is obtained from load combination no. 8:

\[
\frac{k \ell_u}{r} = 36.7 > 34 - 12 \left(\frac{42.9}{72.9} \right) = 26.9
\]

Therefore, column slenderness need not be considered for column A3 if bent in double curvature. However, to illustrate the design procedure including slenderness effects for nonsway columns, assume single curvature bending.

b. Determine total moment \(M_c \) (including slenderness effects) for each load combination.

\[
M_c = \delta_{ns} M_2
\]

where

\[
\delta_{ns} = \frac{C_m}{1 - \frac{P_u}{0.75 P_c}} \geq 1.0
\]

The following table summarizes magnified moment computations for column A3 for all load combinations, followed by detailed calculations for combination no. 6 to illustrate the procedure.
Load combination no. 6:

\[U = 1.2D + 0.5L + 0.5L_t + 1.6W \]

\[C_m = 0.6 + 0.4 \left(\frac{M_1}{M_2} \right) \geq 0.4 \]

\[= 0.6 + 0.4 \left(\frac{62.5}{111.7} \right) = 0.82 \]

\[P_c = \frac{\pi^2 EI}{(k \ell_u)^2} \quad \text{Eq. (10-13)} \]

\[EI = \frac{(0.2E_cI_g + E_sI_{se})}{1 + \beta_{dns}} \quad \text{Eq. (10-14)} \]

\[E_c = 57,000 \sqrt{\frac{6,000}{1,000}} = 4,415 \text{ ksi} \]

\[I_g = \frac{20^4}{12} = 13,333 \text{ in.}^4 \]

\[E_s = 29,000 \text{ ksi} \]

Assuming 8-No. 8 bars with 1.5 in. cover to No. 3 ties:

\[I_{se} = 2 \left[(3 \times 0.79) \left(\frac{20}{2} - 1.5 - 0.375 - \frac{1.00}{2} \right)^2 \right] = 276 \text{ in.}^4 \]

Since the dead load is the only sustained load,

\[\beta_{dns} = \frac{1.2P_D}{1.2P_D + 0.5P_L + 0.5P_{Lt} + 1.6P_w} \]

\[= \frac{1.2 \times 718}{(1.2 \times 718) + (0.5 \times 80) + (0.5 \times 12) + (1.6 \times 8)} = 0.94 \]

\[EI = \frac{(0.2 \times 4,415 \times 13,333) + (29,000 \times 276)}{1 + 0.94} = 10.21 \times 10^6 \text{ kip-in.}^2 \]
From Eq. (10-12):

\[
\frac{0.4E_c I_g}{1 + \beta_{dns}} = \frac{0.4 \times 4,415 \times 13,333}{1 + 0.94} = 12.14 \times 10^6 \text{ kip-in}^2
\]

Using \(EI \) from Eq. (10-10), the critical load \(P_c \) is:

\[
P_c = \frac{\pi^2 \times 10.21 \times 10^6}{(0.86 \times 21.33 \times 12)^2} = 2,079 \text{ kips}
\]

Therefore, the moment magnification factor is:

\[
\delta_{ns} = \frac{0.82}{920.4} = 2.01 \text{ (see “Closing Remarks” at the end of the example)}
\]

Check minimum moment requirement:

\[
M_{2,min} = P_u (0.6 + 0.03h)
\]

\[Eq. (10-17) \]

\[
= 920.4 [0.6 + (0.03 \times 20)]/12
\]

The following table contains results from a strain compatibility analysis, where compressive strains are taken as positive (see Parts 6 and 7).
The following table contains results from a strain compatibility analysis, where compressive strains are taken as positive (see Parts 6 and 7).

<table>
<thead>
<tr>
<th>No.</th>
<th>P_u (kips)</th>
<th>M_u (ft-kips)</th>
<th>c (in.)</th>
<th>ε_t</th>
<th>ϕ</th>
<th>ϕP_n (kips)</th>
<th>ϕM_n (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,005.2</td>
<td>265.6</td>
<td>17.81</td>
<td>0.00003</td>
<td>0.65</td>
<td>1,005.2</td>
<td>298.0</td>
</tr>
<tr>
<td>2</td>
<td>995.6</td>
<td>298.6</td>
<td>17.64</td>
<td>0.00000</td>
<td>0.65</td>
<td>995.6</td>
<td>301.1</td>
</tr>
<tr>
<td>3</td>
<td>920.8</td>
<td>215.3</td>
<td>16.42</td>
<td>-0.00022</td>
<td>0.65</td>
<td>920.8</td>
<td>321.4</td>
</tr>
<tr>
<td>4</td>
<td>887.2</td>
<td>185.3</td>
<td>15.88</td>
<td>-0.00033</td>
<td>0.65</td>
<td>887.2</td>
<td>329.3</td>
</tr>
<tr>
<td>5</td>
<td>874.4</td>
<td>174.5</td>
<td>15.67</td>
<td>-0.00037</td>
<td>0.65</td>
<td>874.4</td>
<td>332.1</td>
</tr>
<tr>
<td>6</td>
<td>920.4</td>
<td>224.6</td>
<td>16.41</td>
<td>-0.00022</td>
<td>0.65</td>
<td>920.4</td>
<td>321.6</td>
</tr>
<tr>
<td>7</td>
<td>894.8</td>
<td>201.8</td>
<td>16.00</td>
<td>-0.00030</td>
<td>0.65</td>
<td>894.8</td>
<td>327.6</td>
</tr>
<tr>
<td>8</td>
<td>659.0</td>
<td>107.2</td>
<td>12.36</td>
<td>-0.00128</td>
<td>0.65</td>
<td>659.0</td>
<td>364.8</td>
</tr>
<tr>
<td>9</td>
<td>633.4</td>
<td>92.4</td>
<td>12.00</td>
<td>-0.00141</td>
<td>0.65</td>
<td>633.4</td>
<td>367.2</td>
</tr>
</tbody>
</table>

Therefore, since $\phi M_n > M_u$ for all $\phi P_n = P_u$, use a 20 × 20 in. column with 8-No. 8 bars ($\rho_g = 1.6\%$). Figure 11-15 obtained from pcaColumn 11.2, contains the design strength interaction diagram for Column A3 with the factored axial loads and magnified moments for all load combinations.

Closing Remarks

In the 2008 Code, Section 10.10, Slenderness effects in compression members, was reorganized. A limit of 1.4 was set on the moment magnification for sway and non-sway columns.

The braced column designs in Example 11.1 have a moment magnifier, δ_{ns}, greater than the new limit of 1.4; hence, by ACI 318-08 Section 10.10.2.1, these columns violate ACI 318-08 and would require larger column sizes to reduce the δ_{ns} to the 1.4 limit. ACI 318 committee is considering modifying the requirements for non-sway (braced) columns to allow increased δ_{ns} values to be utilized in design to reflect successful existing practice; however, as this book goes to press, the exact nature of the proposed revision is unknown.
Figure 11-15 Design Strength Interaction Diagram for Column A3
Example 11.2—Slenderness Effects for Columns in a Sway Frame

Design columns C1 and C2 in the first story of the 12-story office building shown below. The clear height of the first story is 13 ft-4 in., and is 10 ft-4 in. for all of the other stories. Assume that the lateral load effects on the building are caused by wind, and that the dead loads are the only sustained loads. Other pertinent design data for the building are as follows:

Material properties:

Concrete:
- 6000 psi for columns in the bottom two stories (w_c = 150 pcf)
- 4000 psi elsewhere (w_c = 150 pcf)

Reinforcement: \(f_y = 60 \text{ ksi} \)

Beams: 24 x 20 in.
Exterior columns: 22 x 22 in.
Interior columns: 24 x 24 in.

Superimposed dead load = 30 psf
Roof live load = 30 psf
Floor live load = 50 psf
Wind loads computed according to ASCE 7
Example 11.2 (cont’d) Calculations and Discussion

Influence coefficients: N = 2.4

1. Factored axial loads and bending moments for columns C1 and C2 in the first story

Since this is a symmetrical frame, the gravity loads will not cause appreciable sidesway.

Column C1

<table>
<thead>
<tr>
<th>Load Case</th>
<th>Axial Load (kips)</th>
<th>Bending moment (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Bottom</td>
</tr>
<tr>
<td>Dead (D)</td>
<td>622.4</td>
<td>34.8</td>
</tr>
<tr>
<td>Live (L)*</td>
<td>73.9</td>
<td>15.4</td>
</tr>
<tr>
<td>Roof live load (Lr)</td>
<td>8.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Wind (W) (N-S)</td>
<td>-48.3</td>
<td>17.1</td>
</tr>
<tr>
<td>Wind (W) (S-N)</td>
<td>48.3</td>
<td>-17.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Load Combination</th>
<th>M1</th>
<th>M2</th>
<th>M1ns</th>
<th>M2ns</th>
<th>M1s</th>
<th>M2s</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>871.4</td>
<td>48.7</td>
<td>24.6</td>
<td>48.7</td>
<td>24.6</td>
<td>48.7</td>
</tr>
<tr>
<td>9-2</td>
<td>869.4</td>
<td>66.4</td>
<td>33.4</td>
<td>66.4</td>
<td>33.4</td>
<td>66.4</td>
</tr>
<tr>
<td>9-3</td>
<td>797.6</td>
<td>49.5</td>
<td>25.0</td>
<td>49.5</td>
<td>25.0</td>
<td>49.5</td>
</tr>
<tr>
<td>9-4</td>
<td>722.0</td>
<td>55.4</td>
<td>131.5</td>
<td>55.4</td>
<td>131.5</td>
<td>55.4</td>
</tr>
<tr>
<td>9-5</td>
<td>793.3</td>
<td>28.1</td>
<td>-89.3</td>
<td>41.8</td>
<td>21.1</td>
<td>13.7</td>
</tr>
<tr>
<td>9-6</td>
<td>710.9</td>
<td>76.8</td>
<td>245.8</td>
<td>76.8</td>
<td>245.8</td>
<td>76.8</td>
</tr>
<tr>
<td>9-7</td>
<td>1,400.1</td>
<td>-10.2</td>
<td>-5.1</td>
<td>-10.2</td>
<td>-5.1</td>
<td>-10.2</td>
</tr>
<tr>
<td>9-8</td>
<td>1,332.6</td>
<td>32.4</td>
<td>162.8</td>
<td>32.4</td>
<td>162.8</td>
<td>32.4</td>
</tr>
<tr>
<td>9-9</td>
<td>1,333.0</td>
<td>-37.2</td>
<td>-165.2</td>
<td>-37.2</td>
<td>-165.2</td>
<td>-37.2</td>
</tr>
<tr>
<td>9-10</td>
<td>1,380.5</td>
<td>59.4</td>
<td>322.9</td>
<td>59.4</td>
<td>322.9</td>
<td>59.4</td>
</tr>
<tr>
<td>9-11</td>
<td>1,381.5</td>
<td>-79.8</td>
<td>-333.1</td>
<td>-79.8</td>
<td>-333.1</td>
<td>-79.8</td>
</tr>
<tr>
<td>9-12</td>
<td>978.4</td>
<td>67.8</td>
<td>327.1</td>
<td>67.8</td>
<td>327.1</td>
<td>67.8</td>
</tr>
<tr>
<td>9-13</td>
<td>979.3</td>
<td>-71.4</td>
<td>-328.9</td>
<td>-71.4</td>
<td>-328.9</td>
<td>-71.4</td>
</tr>
</tbody>
</table>

*Includes live load reduction per ASCE 7

Column C2

<table>
<thead>
<tr>
<th>Load Case</th>
<th>Axial Load (kips)</th>
<th>Bending moment (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Bottom</td>
</tr>
<tr>
<td>Dead (D)</td>
<td>1,087.6</td>
<td>-2.0</td>
</tr>
<tr>
<td>Live (L)*</td>
<td>134.5</td>
<td>-15.6</td>
</tr>
<tr>
<td>Roof live load (Lr)</td>
<td>17.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Wind (W) (N-S)</td>
<td>-0.3</td>
<td>43.5</td>
</tr>
<tr>
<td>Wind (W) (S-N)</td>
<td>0.3</td>
<td>-43.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. Load Combination</th>
<th>M1</th>
<th>M2</th>
<th>M1ns</th>
<th>M2ns</th>
<th>M1s</th>
<th>M2s</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>1,522.6</td>
<td>-2.8</td>
<td>-1.4</td>
<td>-2.8</td>
<td>-1.4</td>
<td>-2.8</td>
</tr>
<tr>
<td>9-2</td>
<td>1,529.0</td>
<td>-27.4</td>
<td>-13.7</td>
<td>-27.4</td>
<td>-13.7</td>
<td>-27.4</td>
</tr>
<tr>
<td>9-3</td>
<td>1,400.1</td>
<td>-10.2</td>
<td>-5.1</td>
<td>-10.2</td>
<td>-5.1</td>
<td>-10.2</td>
</tr>
<tr>
<td>9-4</td>
<td>1,332.6</td>
<td>32.4</td>
<td>162.8</td>
<td>32.4</td>
<td>162.8</td>
<td>32.4</td>
</tr>
<tr>
<td>9-5</td>
<td>1,333.0</td>
<td>-37.2</td>
<td>-165.2</td>
<td>-37.2</td>
<td>-165.2</td>
<td>-37.2</td>
</tr>
<tr>
<td>9-6</td>
<td>1,380.5</td>
<td>59.4</td>
<td>322.9</td>
<td>59.4</td>
<td>322.9</td>
<td>59.4</td>
</tr>
<tr>
<td>9-7</td>
<td>1,381.5</td>
<td>-79.8</td>
<td>-333.1</td>
<td>-79.8</td>
<td>-333.1</td>
<td>-79.8</td>
</tr>
<tr>
<td>9-8</td>
<td>978.4</td>
<td>67.8</td>
<td>327.1</td>
<td>67.8</td>
<td>327.1</td>
<td>67.8</td>
</tr>
<tr>
<td>9-9</td>
<td>979.3</td>
<td>-71.4</td>
<td>-328.9</td>
<td>-71.4</td>
<td>-328.9</td>
<td>-71.4</td>
</tr>
</tbody>
</table>

*Includes live load reduction per ASCE 7

2. Determine if the frame at the first story is nonsway or sway

The results from an elastic first-order analysis using the section properties prescribed in 10.10.4.1 are as follows:

$$\Sigma P_u = \text{total vertical load in the first story corresponding to the lateral loading case for which } \Sigma P_u \text{ is greatest}$$

The total building loads are: D = 17,895 kips, L = 1991 kips, Lr = 270 kips. The maximum $$\Sigma P_u$$ is from Eq. (9-4):

$$\Sigma P_u = (1.2 \times 17,895) + (0.5 \times 1991) + (0.5 \times 270) + 0 = 22,605 \text{ kips}$$
Example 11.2 (cont’d) Calculations and Discussion Code Reference

\[V_{us} = \text{factored story shear in the first story corresponding to the wind loads} \]
\[= 1.6 \times 302.6 = 484.2 \text{ kips} \quad \text{Eq. (9-4), (9-6)} \]

\[\Delta_o = \text{first-order relative deflection between the top and bottom of the first story due to } V_u \]
\[= 1.6 \times (0.28 - 0) = 0.45 \text{ in.} \]

\[\text{Stability index } Q = \frac{\sum P_u \Delta_o}{V_{us} \ell_c} = \frac{22,605 \times 0.45}{484.2 \times [(15 \times 12) - (20 / 2)]} = 0.12 > 0.05 \quad \text{Eq. (10-10)} \]

Since \(Q > 0.05 \), the frame at the first story level is considered sway. \(\text{10.10.5.2} \)

3. Design of column C1

\(a. \) Determine if slenderness effects must be considered.

Determine \(k \) from alignment chart in \(\text{R10.12.1} \).

\[I_{col} = 0.7 \left(\frac{22^4}{12} \right) = 13,665 \text{ in.}^4 \quad \text{10.10.4.1} \]

\[E_c = 57,000 \frac{\sqrt{6000}}{1000} = 4,415 \text{ ksi} \quad \text{8.5.1} \]

For the column below level 2:

\[\frac{E_c I}{\ell_c} = \frac{4,415 \times 13,665}{(15 \times 12) - 10} = 355 \times 10^3 \text{ in.-kips} \]

For the column above level 2:

\[\frac{E_c I}{\ell_c} = \frac{4,415 \times 13,665}{12 \times 12} = 419 \times 10^3 \text{ in.-kips} \]

\[I_{beam} = 0.35 \left(\frac{24 \times 20^3}{12} \right) = 5,600 \text{ in.}^4 \quad \text{10.10.4.1} \]

For the beam:

\[\frac{E_c I}{\ell_c} = \frac{57 \times \sqrt{4,000 \times 5,600}}{24 \times 12} = 70 \times 10^3 \text{ in.-kips} \]

\[\psi_A = \frac{\Sigma E_c I / \ell_c}{\Sigma E_c I / \ell} = \frac{355 + 419}{70} = 11.1 \]

Assume \(\psi_B = 1.0 \) (column essentially fixed at base)
From the alignment chart (Fig. R10.10.1(b)), \(k = 1.9 \).

\[
\frac{k \ell_u}{r} = \frac{1.9 \times 13.33 \times 12}{0.3 \times 22} = 46 > 22
\]

10.10.1

Thus, slenderness effects must be considered.

b. Determine total moment \(M_2 \) (including slenderness effects) and the design load combinations, using the approximate analysis of 10.10.7.

The following table summarizes magnified moment computations for column C1 for all load combinations, followed by detailed calculations for combinations no. 4 and 5 to illustrate the procedure.

<table>
<thead>
<tr>
<th>No.</th>
<th>Load Combination</th>
<th>(\Sigma P_u) (kips)</th>
<th>(\Delta_0) (in.)</th>
<th>(V_{us}) (kips)</th>
<th>(Q)</th>
<th>(\delta_s M_{2s})</th>
<th>(M_{2ns}) (ft-kips)</th>
<th>(M_{2s}) (ft-kips)</th>
<th>(M_2) (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4D</td>
<td>25,053</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.7</td>
<td>48.7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.2D+1.6Lr+0.5L_r</td>
<td>24,795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66.4</td>
<td>66.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.2D+0.5L+1.6L_r</td>
<td>22,903</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49.5</td>
<td>49.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.2D+1.6Lr+0.8W</td>
<td>21,908</td>
<td>0.28</td>
<td>302.6</td>
<td>0.12</td>
<td>1.14</td>
<td>21.1</td>
<td>110.4</td>
<td>147.0</td>
</tr>
<tr>
<td>5</td>
<td>1.2D+1.6Lr-0.8W</td>
<td>21,908</td>
<td>0.28</td>
<td>302.6</td>
<td>0.12</td>
<td>1.14</td>
<td>21.1</td>
<td>-110.4</td>
<td>-104.8</td>
</tr>
<tr>
<td>6</td>
<td>1.2D+0.5L+0.5L_r+1.6W</td>
<td>22,605</td>
<td>0.28</td>
<td>484.2</td>
<td>0.08</td>
<td>1.08</td>
<td>25.0</td>
<td>220.8</td>
<td>264.2</td>
</tr>
<tr>
<td>7</td>
<td>1.2D+0.5L+0.5L_r-1.6W</td>
<td>22,605</td>
<td>0.45</td>
<td>484.2</td>
<td>0.12</td>
<td>1.14</td>
<td>25.0</td>
<td>-220.8</td>
<td>-226.8</td>
</tr>
<tr>
<td>8</td>
<td>0.9D+1.6W</td>
<td>16,106</td>
<td>0.45</td>
<td>484.2</td>
<td>0.09</td>
<td>1.10</td>
<td>15.8</td>
<td>220.8</td>
<td>257.9</td>
</tr>
<tr>
<td>9</td>
<td>0.9D-1.6W</td>
<td>16,106</td>
<td>0.45</td>
<td>484.2</td>
<td>0.09</td>
<td>1.10</td>
<td>15.8</td>
<td>-220.8</td>
<td>-226.2</td>
</tr>
</tbody>
</table>

\[
M_2 = M_{2ns} + \delta_s M_{2s}
\]

\[
\delta_s M_{2s} = \frac{M_{2s}}{I - Q} \geq M_{2s}
\]

For load combinations no. 4 and 5:

\[
U = 1.2D + 1.6L_r \pm 0.8W
\]

\[
\Sigma P_u = (1.2 \times 17,895) + (1.6 \times 270) \pm 0 = 21,906 \text{ kips}
\]

\[
\Delta_0 = 0.8 \times (0.28 - 0) = 0.22 \text{ in.}
\]

\[
V_{us} = 0.8 \times 302.6 = 240.1 \text{ kips}
\]

\[
\ell_c = (15 \times 12) - (20/2) = 170 \text{ in.}
\]

\[
Q = \frac{\Sigma P_u \Delta_0}{V_{us} \ell_c} = \frac{21,906 \times 0.22}{240.1 \times 170} = 0.12
\]
Example 11.2 (cont’d) Calculations and Discussion

\[\delta_s = \frac{1}{1 - Q} = \frac{1}{1 - 0.12} = 1.14 \]

- For sidesway from north to south (load combination no. 4):

\[\delta_s M_{2s} = 1.14 \times 110.4 = 125.9 \text{ ft-kips} \]

\[M_2 = M_{2ns} + \delta_s M_{2s} = 21.1 + 125.9 = 147.0 \text{ ft-kips} \]

\[P_u = 722.0 \text{ kips} \]

- For sidesway from south to north (load combination no. 5):

\[M_{2s} = 0.8 \times 138.0 = 110.4 \text{ ft-kips} \]

\[M_{2su} = 1.2 \times 17.6 + 1.6 \times 0 = 21.1 \text{ ft-kips} \]

\[\delta_s M_{2s} = 1.14 \times (-110.4) = -125.9 \text{ ft-kips} \]

\[M_2 = 21.1 - 125.9 = -104.8 \text{ ft-kips} \]

\[P_u = 799.3 \text{ kips} \]

c. For comparison purposes, recompute \(\delta_s M_{2s} \) using the magnified moment method outlined in 10.10.7.4

\[\delta_s M_{2s} = \frac{M_{2s}}{1 - \frac{\sum P_u}{0.75 \sum P_c}} = \frac{M_{2s}}{0.75 \sum P_c} \]

\text{Eq. (10-21)}

The critical load \(P_c \) is calculated from Eq. (10-13) using \(k \) from 10.10.7.2 and \(EI \) from Eq. (10-14) or (10-15). Since the reinforcement is not known as of yet, use Eq. (10-15) to determine \(EI \).

For each of the 12 exterior columns along column lines 1 and 4 (i.e., the columns with one beam framing into them in the direction of analysis), \(k \) was determined in part 3(a) above to be 1.9.

\[EI = \frac{0.4E_c I}{1 + \beta_{dns}} = \frac{0.4 \times 4415 \times 22^4}{12(1 + 0)} = 34.5 \times 10^6 \text{ in}^2\cdot\text{kips} \]

\text{Eq. (10-15)}

\[\beta_{ds} = 0 \]

\text{10.10.4.2}

\[P_c = \frac{\pi^2 EI}{(k \ell_u)^2} = \left(\frac{\pi^2 \times 34.5 \times 10^6}{(1.9 \times 13.33 \times 12)^2} \right) = 3,686 \text{ kips} \]

\text{Eq. (10-13)}
For each of the exterior columns A2, A3, F2, and F3, (i.e., the columns with two beams framing into them in the direction of analysis):

\[\psi_A = \frac{355 + 419}{2 \times 70} = 5.5 \]
\[\psi_n = 1.0 \]

From the alignment chart, \(k = 1.75 \).

\[P_c = \frac{\pi^2 \times 34.5 \times 10^6}{(1.75 \times 13.33 \times 12)^2} = 4,345 \text{ kips} \quad \text{Eq. (10-13)} \]

For each of the 8 interior columns:

\[I_{col} = 0.7 \left(\frac{24^4}{12} \right) = 19,354 \text{ in.}^4 \]

For the column below level 2:

\[\frac{E_c I}{\ell_c} = \frac{4,415 \times 19,354}{(15 \times 12) - 10} = 503 \times 10^3 \text{ in.-kips} \]

For the column above level 2:

\[\frac{E_c I}{\ell_c} = \frac{4,415 \times 19,354}{12 \times 12} = 593 \times 10^3 \text{ in.-kips} \]

\[\psi_A = \frac{503 + 593}{2 \times 70} = 7.8 \]
\[\psi_A = 1.0 \]

From the alignment chart, \(k = 1.82 \).

\[EI = 0.4 \times 4,415 \times \frac{24^2}{12} = 48.8 \times 10^6 \text{ in.-kips} \quad \text{Eq. (10-13)} \]

\[P_c = \frac{\pi^2 EI}{(k \ell_u)^2} = \frac{\pi^2 \times 48.8 \times 10^6}{(1.82 \times 13.33 \times 12)^2} = 5,683 \text{ kips} \]
Therefore,

\[\Sigma P_c = 12(3,686) + 4(4,345) + 8(5,683) = 107,076 \text{ kips} \]

The following table summarizes magnified moment computations for column C1 using 10.10.7.4 for all load conditions. The table is followed by detailed calculations for combinations no. 4 and 5 to illustrate the procedure.

<table>
<thead>
<tr>
<th>No.</th>
<th>Load Combination</th>
<th>(\Sigma P_u) (kips)</th>
<th>(\delta_s) (in.)</th>
<th>(M_{2ns}) (ft-kips)</th>
<th>(M_{2s}) (ft-kips)</th>
<th>(M_2) (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4D</td>
<td>25,053</td>
<td>- - -</td>
<td>48.7</td>
<td>- - -</td>
<td>48.7</td>
</tr>
<tr>
<td>2</td>
<td>1.2D + 1.6L + 1.6L_r</td>
<td>24,795</td>
<td>- - -</td>
<td>66.4</td>
<td>- - -</td>
<td>66.4</td>
</tr>
<tr>
<td>3</td>
<td>1.2D + 0.5L + 1.6L_r</td>
<td>22,903</td>
<td>- - -</td>
<td>49.5</td>
<td>- - -</td>
<td>49.5</td>
</tr>
<tr>
<td>4</td>
<td>1.2D + 1.6L_r + 0.8W</td>
<td>21,908</td>
<td>1.38</td>
<td>21.1</td>
<td>110.4</td>
<td>173.5</td>
</tr>
<tr>
<td>5</td>
<td>1.2D + 1.6L_r - 0.8W</td>
<td>21,908</td>
<td>1.38</td>
<td>21.1</td>
<td>-110.4</td>
<td>-131.3</td>
</tr>
<tr>
<td>6</td>
<td>1.2D + 0.5L + 0.5L_r + 1.6W</td>
<td>22,605</td>
<td>1.39</td>
<td>25.0</td>
<td>220.8</td>
<td>331.9</td>
</tr>
<tr>
<td>7</td>
<td>1.2D + 0.5L + 0.5L_r - 1.6W</td>
<td>22,605</td>
<td>1.39</td>
<td>25.0</td>
<td>-220.8</td>
<td>-281.9</td>
</tr>
<tr>
<td>8</td>
<td>0.9D + 1.6W</td>
<td>16,106</td>
<td>1.25</td>
<td>15.8</td>
<td>220.8</td>
<td>292.0</td>
</tr>
<tr>
<td>9</td>
<td>0.9D - 1.6W</td>
<td>16,106</td>
<td>1.25</td>
<td>15.8</td>
<td>-220.8</td>
<td>-260.3</td>
</tr>
</tbody>
</table>

For load combinations No. 4 and 5:

\[U = 1.2D + 1.6L_r \pm 0.8W \]

\[\delta_s = \frac{1}{\Sigma P_u} = \frac{1}{21,908} = 0.046 \]

\[M_{2ns} = \delta_s M_{2s} = 1.38 \times 110.4 = 152.4 \text{ ft-kips} \]

\[M_2 = 21.1 + 152.4 = 173.5 \text{ ft-kips} \]

\[P_u = 722.0 \text{ kips} \]

For sidesway from north to south (load combination no. 4):

\[\delta_s M_{2s} = 1.38 \times 110.4 = 152.4 \text{ ft-kips} \]

\[M_2 = 21.1 + 152.4 = 173.5 \text{ ft-kips} \]

\[P_u = 722.0 \text{ kips} \]

For sidesway from south to north (load combination no. 5):

\[\delta_s M_{2s} = 1.38 \times (-110.4) = -152.4 \text{ ft-kips} \]

\[M_2 = 21.1 - 152.4 = -131.3 \text{ ft-kips} \]

\[P_u = 799.3 \text{ kips} \]
A summary of the magnified moments for column C1 for all load combinations is provided in the following table.

<table>
<thead>
<tr>
<th>No.</th>
<th>Load Combination</th>
<th>(P_u) (kips)</th>
<th>(\delta_s)</th>
<th>(M_2) (ft-kips)</th>
<th>(\delta_s)</th>
<th>(M_2) (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4D</td>
<td>871.4</td>
<td>-</td>
<td>48.7</td>
<td>-</td>
<td>48.7</td>
</tr>
<tr>
<td>2</td>
<td>1.2D + 1.6L + 0.5L<sub>r</sub></td>
<td>869.4</td>
<td>-</td>
<td>66.4</td>
<td>-</td>
<td>66.4</td>
</tr>
<tr>
<td>3</td>
<td>1.2D + 0.5L + 1.6L<sub>r</sub></td>
<td>797.6</td>
<td>-</td>
<td>49.5</td>
<td>-</td>
<td>49.5</td>
</tr>
<tr>
<td>4</td>
<td>1.2D + 1.6L<sub>r</sub> + 0.8W</td>
<td>722.0</td>
<td>1.14</td>
<td>147.0</td>
<td>1.38</td>
<td>173.5</td>
</tr>
<tr>
<td>5</td>
<td>1.2D + 1.6L<sub>r</sub> - 0.8W</td>
<td>799.3</td>
<td>1.14</td>
<td>-104.8</td>
<td>1.38</td>
<td>-131.3</td>
</tr>
<tr>
<td>6</td>
<td>1.2D + 0.5L + 0.5L<sub>r</sub> + 1.6W</td>
<td>710.9</td>
<td>1.14</td>
<td>276.7</td>
<td>1.39</td>
<td>331.9</td>
</tr>
<tr>
<td>7</td>
<td>1.2D + 0.5L + 0.5L<sub>r</sub> - 1.6W</td>
<td>865.4</td>
<td>1.14</td>
<td>-226.8</td>
<td>1.39</td>
<td>-281.9</td>
</tr>
<tr>
<td>8</td>
<td>0.9D + 1.6W</td>
<td>482.9</td>
<td>1.10</td>
<td>257.9</td>
<td>1.25</td>
<td>292.0</td>
</tr>
<tr>
<td>9</td>
<td>0.9D - 1.6W</td>
<td>637.4</td>
<td>1.10</td>
<td>-226.2</td>
<td>1.25</td>
<td>-260.3</td>
</tr>
</tbody>
</table>

d. Determine required reinforcement.

For the 22 x 22 in. column, try 8-No. 8 bars. Determine maximum allowable axial compressive force, \(\phi P_{n,max} \):

\[
\phi P_{n,max} = 0.80\phi \left[0.85f_y \left(A_g - A_{st} \right) + f_y A_{st} \right].
\]

\[= (0.80 \times 0.65)\left[(0.85 \times 6) (22^2 - 6.32) + (60 \times 6.32) \right]\]

\[= 1,464.0 \text{ kips} > \text{maximum } P_u = 871.4 \text{ kips} \text{ O.K.}\]

The following table contains results from a strain compatibility analysis, where compressive strains are taken as positive (see Parts 6 and 7). Use \(M_u = M_2 \) from the approximate method in 10.10.7.
Calculations and Discussion

Example 11.2 (cont’d) Calculations and Discussion Reference

<table>
<thead>
<tr>
<th>No.</th>
<th>(P_u) (kips)</th>
<th>(M_u) (ft-kips)</th>
<th>(c) (in.)</th>
<th>(\varepsilon_t)</th>
<th>(\phi)</th>
<th>(\phi P_n) (kips)</th>
<th>(\phi M_n) (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>871.4</td>
<td>48.7</td>
<td>14.85</td>
<td>-0.00096</td>
<td>0.65</td>
<td>871.4</td>
<td>459.4</td>
</tr>
<tr>
<td>2</td>
<td>869.4</td>
<td>66.4</td>
<td>14.82</td>
<td>-0.00097</td>
<td>0.65</td>
<td>869.4</td>
<td>459.7</td>
</tr>
<tr>
<td>3</td>
<td>797.6</td>
<td>49.5</td>
<td>13.75</td>
<td>-0.00128</td>
<td>0.67</td>
<td>797.6</td>
<td>468.2</td>
</tr>
<tr>
<td>4</td>
<td>722.0</td>
<td>147.0</td>
<td>12.75</td>
<td>-0.00162</td>
<td>0.65</td>
<td>722.0</td>
<td>474.1</td>
</tr>
<tr>
<td>5</td>
<td>799.3</td>
<td>-104.8</td>
<td>13.78</td>
<td>-0.00127</td>
<td>0.65</td>
<td>799.3</td>
<td>468.0</td>
</tr>
<tr>
<td>6</td>
<td>710.9</td>
<td>276.7</td>
<td>12.61</td>
<td>-0.00167</td>
<td>0.65</td>
<td>710.9</td>
<td>474.8</td>
</tr>
<tr>
<td>7</td>
<td>865.4</td>
<td>-226.8</td>
<td>14.76</td>
<td>-0.00099</td>
<td>0.65</td>
<td>865.4</td>
<td>460.2</td>
</tr>
<tr>
<td>8</td>
<td>482.9</td>
<td>257.9</td>
<td>7.36</td>
<td>-0.00500</td>
<td>0.90</td>
<td>482.9</td>
<td>557.2</td>
</tr>
<tr>
<td>9</td>
<td>637.4</td>
<td>-226.2</td>
<td>11.68</td>
<td>-0.00204</td>
<td>0.65</td>
<td>637.4</td>
<td>478.8</td>
</tr>
</tbody>
</table>

Therefore, since \(\phi M_n > M_u \) for all \(\phi P_n = P_u \), use a 22 \(\times \) 22 in. column with 8-No. 8 bars (\(rg = 1.3\% \)). The same reinforcement is also adequate for the load combinations from the magnified moment method of 10.10.7.

4. Design of column C2
 a. Determine if slenderness effects must be considered.

 In part 3(c), \(k \) was determined to be 1.82 for the interior columns. Therefore,

 \[
 \frac{k f_u \ell}{r} = \frac{1.82 \times 13.33 \times 12}{0.3 \times 24} = 40.4 > 22
 \]

 Slenderness effects must be considered.

 b. Determine total moment \(M_2 \) (including slenderness effects) and the design load combinations, using the approximate analysis of 10.10.7.

 The following table summarizes magnified moment computation for column C2 for all load combinations, followed by detailed calculations for combinations no. 4 and 5 to illustrate the procedure.

<table>
<thead>
<tr>
<th>No.</th>
<th>Load Combination</th>
<th>(\Sigma P_u) (kips)</th>
<th>(\Delta_o) (in.)</th>
<th>(V_{us}) (kips)</th>
<th>(Q)</th>
<th>(\delta_s)</th>
<th>(M_{2ns}) (ft-kips)</th>
<th>(M_{2s}) (ft-kips)</th>
<th>(M_2) (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4D</td>
<td>25,053</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.8</td>
<td>-</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>1.2D+1.6L+0.5L_r</td>
<td>24,795</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-27.4</td>
<td>-</td>
<td>-27.4</td>
</tr>
<tr>
<td>3</td>
<td>1.2D+0.5L+1.6L_r</td>
<td>22,903</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-10.2</td>
<td>-</td>
<td>-10.2</td>
</tr>
<tr>
<td>4</td>
<td>1.2D+1.6L_r+0.8W</td>
<td>21,908</td>
<td>0.28</td>
<td>302.6</td>
<td>0.12</td>
<td>1.14</td>
<td>-1.2</td>
<td>164.0</td>
<td>185.0</td>
</tr>
<tr>
<td>5</td>
<td>1.2D+1.6L_r-0.8W</td>
<td>21,908</td>
<td>0.28</td>
<td>302.6</td>
<td>0.12</td>
<td>1.14</td>
<td>-1.2</td>
<td>164.0</td>
<td>187.4</td>
</tr>
<tr>
<td>6</td>
<td>1.2D+0.5L+0.5L_r+1.6W</td>
<td>22,605</td>
<td>0.45</td>
<td>484.2</td>
<td>0.12</td>
<td>1.14</td>
<td>-5.1</td>
<td>328.0</td>
<td>368.9</td>
</tr>
<tr>
<td>7</td>
<td>1.2D+0.5L+0.5L_r-1.6W</td>
<td>22,605</td>
<td>0.45</td>
<td>484.2</td>
<td>0.12</td>
<td>1.14</td>
<td>-5.1</td>
<td>328.0</td>
<td>379.1</td>
</tr>
<tr>
<td>8</td>
<td>0.9D+1.6W</td>
<td>16,106</td>
<td>0.45</td>
<td>484.2</td>
<td>0.09</td>
<td>1.10</td>
<td>0.9</td>
<td>328.0</td>
<td>358.6</td>
</tr>
<tr>
<td>9</td>
<td>0.9D-1.6W</td>
<td>16,106</td>
<td>0.45</td>
<td>484.2</td>
<td>0.09</td>
<td>1.10</td>
<td>0.9</td>
<td>-328.0</td>
<td>-360.4</td>
</tr>
</tbody>
</table>

\[
M_2 = M_{2ns} + M_{2s}
\]

\[
\delta_s M_{2s} = \frac{M_{2s}}{I - Q} \geq M_{2s}
\]

\(Eq. (10-19) \)

\(Eq. (10-20) \)
For load combinations no. 4 and 5:

\[U = 1.2D + 1.6L_r \pm 0.8W \]

From part 3(b), \(\delta_s \) was determined to be 1.14.

- For sidesway from north to south (load combination no. 4):

\[
M_{2s} = 0.8 \times 205.0 = 164.0 \text{ ft-kips}
\]

\[
M_{2ns} = 1.2(-1.0) + 1.6 \times 0 = 1.2 \text{ ft-kips}
\]

\[
\delta_s M_{2s} = 1.14 \times 164 = 187.0 \text{ ft-kips}
\]

\[
M_2 = M_{2ns} + \delta_s M_{2s} = -1.2 + 187.0 = 185.8 \text{ ft-kips}
\]

\[
P_u = 1,332.6 \text{ kips}
\]

- For sidesway from south to north (load combination no. 5):

\[
\delta_s M_{2s} = 1.14 \times (-164) = -187.0 \text{ ft-kips}
\]

\[
M_2 = -1.2 - 187.0 = -188.2 \text{ ft-kips}
\]

\[
P_u = 1,333.0 \text{ kips}
\]

c. For comparison purposes, recompute using the magnified moment method outlined in 10.10.7.4. Use the values of \(\delta_s \) computed in part 3(c).

<table>
<thead>
<tr>
<th>No.</th>
<th>Load Combination</th>
<th>(\Sigma P_u) (kips)</th>
<th>(\delta_s) (in.)</th>
<th>(M_{2ns}) (ft-kips)</th>
<th>(M_{2s}) (ft-kips)</th>
<th>(M_2) (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4D</td>
<td>25,053</td>
<td>--</td>
<td>-2.8</td>
<td>--</td>
<td>-2.8</td>
</tr>
<tr>
<td>2</td>
<td>1.2D + 1.6L + 0.5L_r</td>
<td>24,795</td>
<td>--</td>
<td>-27.4</td>
<td>--</td>
<td>-27.4</td>
</tr>
<tr>
<td>3</td>
<td>1.2D + 0.5L + 1.6L_r</td>
<td>22,903</td>
<td>--</td>
<td>-10.2</td>
<td>--</td>
<td>-10.2</td>
</tr>
<tr>
<td>4</td>
<td>1.2D + 1.6L_r + 0.8W</td>
<td>21,908</td>
<td>1.38</td>
<td>-1.2</td>
<td>164.0</td>
<td>225.1</td>
</tr>
<tr>
<td>5</td>
<td>1.2D + 1.6L_r - 0.8W</td>
<td>21,908</td>
<td>1.38</td>
<td>-1.2</td>
<td>-164.0</td>
<td>-227.5</td>
</tr>
<tr>
<td>6</td>
<td>1.2D + 0.5L + 0.5L_r + 1.6W</td>
<td>22,605</td>
<td>1.39</td>
<td>-5.1</td>
<td>328.0</td>
<td>451.4</td>
</tr>
<tr>
<td>7</td>
<td>1.2D + 0.5L + 0.5L_r - 1.6W</td>
<td>22,605</td>
<td>1.39</td>
<td>-5.1</td>
<td>-328.0</td>
<td>-461.6</td>
</tr>
<tr>
<td>8</td>
<td>0.9D + 1.6W</td>
<td>16,106</td>
<td>1.25</td>
<td>-0.9</td>
<td>328.0</td>
<td>409.4</td>
</tr>
<tr>
<td>9</td>
<td>0.9D - 1.6W</td>
<td>16,106</td>
<td>1.25</td>
<td>-0.9</td>
<td>-328.0</td>
<td>-411.2</td>
</tr>
</tbody>
</table>

\[U = 1.2D + 1.6L_r \pm 0.8W \]

\[\delta_s = 1.38 \text{ from part 3(c)} \]

- For sidesway from north to south (load combination no. 4):
\(\delta_s M_{2s} = 1.38 \times 164.0 = 226.3 \text{ ft-kips}\)

\(M_2 = -1.2 + 226.3 = 225.1 \text{ ft-kips}\)

\(P_u = 1,332.6 \text{ kips}\)

- For sidesway from south to north (load combination no. 5):

\(\delta_s M_{2s} = 1.38 \times (-164.0) = -226.3 \text{ ft-kips}\)

\(M_2 = -1.2 - 226.3 = -227.5 \text{ ft-kips}\)

\(P_u = 1,333.0 \text{ kips}\)

A summary of the magnified moments for column C2 under all load combinations is provided in the following table.

<table>
<thead>
<tr>
<th>No.</th>
<th>Load Combination</th>
<th>(P_u) (kips)</th>
<th>10.10.7.3</th>
<th>10.10.7.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\delta_s)</td>
<td>(M_2) (ft-kips)</td>
</tr>
<tr>
<td>1</td>
<td>1.4D</td>
<td>1,522.6</td>
<td>-</td>
<td>-2.8</td>
</tr>
<tr>
<td>2</td>
<td>1.2D + 1.6L + 0.5L_{r}</td>
<td>1,529.0</td>
<td>-</td>
<td>-27.4</td>
</tr>
<tr>
<td>3</td>
<td>1.2D + 0.5L + 1.6L_{r}</td>
<td>1,400.1</td>
<td>-</td>
<td>-10.2</td>
</tr>
<tr>
<td>4</td>
<td>1.2D + 1.6L_{r} + 0.8W</td>
<td>1,332.6</td>
<td>1.14</td>
<td>185.8</td>
</tr>
<tr>
<td>5</td>
<td>1.2D + 1.6L_{r} - 0.8W</td>
<td>1,333.0</td>
<td>1.14</td>
<td>-188.2</td>
</tr>
<tr>
<td>6</td>
<td>1.2D + 0.5L + 0.5L_{r} + 1.6W</td>
<td>1,380.5</td>
<td>1.14</td>
<td>368.8</td>
</tr>
<tr>
<td>7</td>
<td>1.2D + 0.5L + 0.5L_{r} - 1.6W</td>
<td>1,381.5</td>
<td>1.14</td>
<td>-379.0</td>
</tr>
<tr>
<td>8</td>
<td>0.9D + 1.6W</td>
<td>979.3</td>
<td>1.10</td>
<td>-360.4</td>
</tr>
<tr>
<td>9</td>
<td>0.9D - 1.6W</td>
<td>978.4</td>
<td>1.10</td>
<td>-358.6</td>
</tr>
</tbody>
</table>

\(\phi p_{n,max}\):

\[
\phi p_{n,max} = 0.80\phi \left[0.85f'_c\left(A_g - A_{st}\right) + f_y A_{st}\right]
\]

\[= (0.80 \times 0.65)[(0.85 \times 6) (242 - 6.32) + (60 \times 6.32)]\]

\[= 1,708 \text{ kips} > \text{maximum } P_u = 1,529.0 \text{ kips} \quad \text{O.K.}\]

The following table contains results from a strain compatibility analysis, where compressive strains are taken as positive (see Parts 6 and 7). Use \(M_u = M_2\) from the approximate method in 10.10.7.
Therefore, since $\phi M_n > M_u$ for all $\phi P_n = P_u$, use a 24×24 in. column with 8-No. 8 bars ($\rho_g = 1.1\%$).
UPDATE FOR THE ‘08 CODE

In the 2008 Code, the provisions for the shear strength of lightweight concrete have been clarified by the addition of the lightweight modifier, λ, into each equation for V_c. The 2008 Code provides a more detailed method for determining the lightweight modifier, λ, for concrete densities which fall between those of all lightweight and normalweight (controlled density) concrete (8.6.1).

In the 2008 Code, special conditions involving hollow-core units and beams constructed of steel fiber-reinforced normalweight concrete are now excluded from the minimum shear requirements when V_u exceeds $0.5\phi V_c$ (11.4.6.1).

BACKGROUND

The relatively abrupt nature of a failure in shear, as compared to a ductile flexural failure, makes it desirable to design members so that strength in shear is relatively equal to, or greater than, strength in flexure. To ensure that a ductile flexural failure precedes a shear failure, the code (1) limits the minimum and maximum amount of longitudinal reinforcement and (2) requires a minimum amount of shear reinforcement in all flexural members if the factored shear force V_u exceeds one-half of the shear strength provided by the concrete, $(V_u > 0.5\phi V_c)$, except for certain types of construction (11.4.6.1), (3) specifies a lower strength reduction for shear ($\phi = 0.75$) than for tension-controlled section under flexure ($\phi = 0.90$).

The determination of the amount of shear reinforcement is based on a modified form of the truss analogy. The truss analogy assumes that shear reinforcement resists the total transverse shear. Considerable research has indicated that shear strength provided by concrete V_c can be assumed equal to the shear causing inclined cracking; therefore, shear reinforcement need be designed to carry only the excess shear.

Only shear design for nonprestressed members with clear-span-to-overall-depth ratios greater than 4 is considered in Part 12. Also included is horizontal shear design in composite concrete flexural members, which is covered separately in the second half of Part 12. Shear design for deep flexural members, which have clear-span-to-overall-depth ratios less than 4, is presented in Part 17. Shear design of prestressed members is discussed in Part 25. The alternate shear design method of Appendix A, Strut-and-Tie Models, is discussed in Part 17.

11.1 SHEAR STRENGTH

Design provisions for shear are presented in terms of shear forces (rather than stresses) to be compatible with the other design conditions for the strength design method, which are expressed in terms of loads, moments, and forces.
Accordingly, shear is expressed in terms of the factored shear force V_u, using the basic shear strength requirement:

$$ \phi V_n \geq V_u. $$ \hspace{1cm} \text{Eq. (11-1)}

The nominal shear strength V_n is computed by:

$$ V_n = V_c + V_s $$ \hspace{1cm} \text{Eq. (11-2)}

where V_c is the nominal shear strength provided by concrete and V_s is the nominal shear strength provided by shear reinforcement.

Equation (11-2) can be substituted into Eq. (11-1) to obtain:

$$ \phi V_c + \phi V_s \geq V_u $$

The required shear strength at any section is computed using Eqs. (11-1) and (11-2), where the factored shear force V_u is obtained by applying the load factors specified in 9.2. The strength reduction factor, $\phi = 0.75$, is specified in 9.3.2.3.

11.1.1.1 Web Openings

Often it is necessary to modify structural components of buildings to accommodate necessary mechanical and electrical service systems. Passing these services through openings in the webs of floor beams within the floor-ceiling sandwich eliminates a significant amount of dead space and results in a more economical design. However, the effect of the openings on the shear strength of the floor beams must be considered, especially when such openings are located in regions of high shear near supports. In 11.1.1.1, the code requires the designer to consider the effect of openings on the shear strength of members.

The existence of openings through a beam, changes the simple mode of behavior to a more complex one. Therefore, the design of such beams needs special treatment, which currently falls beyond the direct scope of the Code. An extensive discussion of the behavior, analysis and design of reinforced concrete beams with openings can be found in Ref. 12.1 and additional references are given for design guidance in R11.1.1.1.

Generally, it is desirable to provide additional vertical stirrups adjacent to both sides of a web opening, except for small isolated openings. The additional shear reinforcement can be proportioned to carry the total shear force at the section where an opening is located. Example 12.5 illustrates application of a design method recommended in Ref. 12.2.

11.1.2 Limit on $\sqrt{f_c}$

Concrete shear strength equations presented in Chapter 11 of the Code are a function of $\sqrt{f_c}$, and had been verified experimentally for members with concrete compressive strength up to 10,000 psi. Due to a lack of test data for members with $f'_c > 10,000$ psi, 11.1.2 limits the value of $\sqrt{f_c}$ to 100 psi, except as allowed in 11.1.2.1.

Section 11.1.2 does not prohibit the use of concrete with $f'_c > 10,000$ psi; it merely directs the engineer not to count on any strength in excess of 10,000 psi when computing V_c, unless minimum shear reinforcement is provided in accordance with 11.1.2.1.

It should be noted that prior to the 2002 Code, minimum area of transverse reinforcement was independent of the concrete strength. However, tests indicated that an increase in the minimum amount of transverse reinforcement is required for members with high-strength concrete to prevent sudden shear failures when inclined cracking occurs. Thus, to account for this, minimum transverse reinforcement requirements are a function of $\sqrt{f_c}$.
11.1.3 Computation of Maximum Factored Shear Force

Section 11.1.3 describes three conditions that shall be satisfied in order to compute the maximum factored shear force V_u in accordance with 11.1.3.1 for nonprestressed members:

1. Support reaction, in direction of applied shear force, introduces compression into the end regions of the member.
2. Loads are applied at or near the top of the member.
3. No concentrated load occurs between the face of the support and the location of the critical section, which is a distance d from the face of the support (11.1.3.1).

When the conditions of 11.1.3 are satisfied, sections along the length of the member located less than a distance d from the face of the support are permitted to be designed for the shear force V_u computed at a distance d from the face of the support. See Fig. 12-1 (a), (b), and (c) for examples of support conditions where 11.1.3 would be applicable.

Conditions where 11.1.3 cannot be applied include: (1) members framing into a supporting member in tension, see Fig. 12-1 (d); (2) members loaded near the bottom, see Fig. 12-1 (e); and (3) members subjected to an abrupt change in shear force between the face of the support and a distance d from the face of the support, see Fig. 12-1 (f). In all of these cases, the critical section for shear must be taken at the face of the support. Additionally, in the case of Fig. 12-1 (d), the shear within the connection must be investigated and special corner reinforcement should be provided.

One other support condition is noteworthy. For brackets and corbels, the shear at the face of the support V_u must be considered, as shown in Fig. 12-2. However, these elements are more appropriately designed for shear using the shear-friction provisions of 11.7 described in Part 14. See Part 15 for design of brackets and corbels.

![Figure 12-1 Typical Support Conditions for Locating Factored Shear Force V_u](image)
8.6 LIGHTWEIGHT CONCRETE

Since the shear strength of lightweight aggregate concrete may be less than that of normalweight concrete with equal compressive strength, adjustments in the value of V_c, as computed for normalweight concrete, are necessary.

To account for the use of lightweight concrete, where appropriate, a modification factor λ appears in the Code equations as a multiplier of $\sqrt{f_{c^{'}}}$, where $\lambda = 0.85$ for sand-lightweight concrete, 0.75 for all-lightweight concrete and 1.0 for normalweight concrete. Linear interpolation shall be permitted, on the basis of volumetric fractions (8.6.1). If the average splitting tensile strength of lightweight concrete, f_{ct}, is specified, $\lambda = f_{ct}/(6.7\sqrt{f_{c^{'}}}) \leq 1.0$.

11.2 SHEAR STRENGTH PROVIDED BY CONCRETE FOR NONPRESTRESSED MEMBERS

When computing the shear strength provided by concrete for members subject to shear and flexure only, designers have the option of using either the simplified equation, $V_c = 2\lambda\sqrt{f_{c^{'}}}bwd$ [Eq. (11-3)], or the more elaborate expression given by Eq. (11-5). In computing V_c from Eq. (11-5), it should be noted that V_u and M_u are the values which occur simultaneously at the section considered. A maximum value of 1.0 is prescribed for the ratio $V_u/d/M_u$ to limit V_c near points of inflection where M_u is zero or very small.

For members subject to shear and flexure with axial compression, a simplified V_c expression is given in 11.2.1.2, with an optional more elaborate expression for V_c available in 11.2.2.2. For members subject to shear, flexure and significant axial tension, 11.2.1.3 requires that shear reinforcement must be provided to resist the total shear unless the more detailed analysis of 11.2.2.3 is performed. Note that N_u represents a tension force in Eq. (11-8) and is therefore taken to be negative.

No precise definition is given for “significant axial tension.” If there is uncertainty about the magnitude of axial tension, it may be desirable to carry all applied shear by shear reinforcement.

Figure 12-3 shows the variation of shear strength provided by concrete, V_c as function of $\sqrt{f_{c^{'}}}$, $V_u/d/M_u$, and reinforcement ratio ρ_w.
Figure 12-4 shows the approximate range of values of V_c for sections under axial compression, as obtained from Eqs. (11-5) and (11-6). Values correspond to a 6 x 12 in. beam section with an effective depth of 10.8 in. The curves corresponding to the alternate expressions for V_c given by Eqs. (11-4) and (11-7), as well as that corresponding to Eq. (11-8) for members subject to axial tension, are also indicated.

Figure 12-5 shows the variation of V_c with N_u/A_g and f'_c for sections subject to axial compression, based on Eq. (11-4). For the range of N_u/A_g values shown, V_c varies from about 49% to 57% of the value of V_c as defined by Eq. (11-7).
11.4 SHEAR STRENGTH PROVIDED BY SHEAR REINFORCEMENT

11.4.1 Types of Shear Reinforcement

Several types and arrangements of shear reinforcement permitted by 11.4.1.1 and 11.4.1.2 are illustrated in Fig. 12-6. Spirals, circular ties, or hoops are explicitly recognized as types of shear reinforcement starting with the 1999 code. Vertical stirrups are the most common type of shear reinforcement. Inclined stirrups and longitudinal bent bars are rarely used as they require special care during placement in the field.

![Figure 12-5 Variation of $V_c/b_w d$ with \dot{f}_c and N_u/A_g using Eq. (11-4) ($\lambda=1.0$)](image)

11.4.4 Anchorage Details for Shear Reinforcement

To be fully effective, shear reinforcement must extend as close to full member depth as cover requirements and proximity of other reinforcement permit (12.13.1), and be anchored at both ends to develop the design yield.
strength of the shear reinforcement. The anchorage details prescribed in 12.13 are presumed to satisfy this development requirement.

11.4.5 Spacing Limits for Shear Reinforcement

Spacing of stirrups and welded wire reinforcement, placed perpendicular to axis of member, must not exceed one-half the effective depth of the member (d/2), nor 24 in. When the quantity \(\phi V_s = (V_u - \phi V_c) \) exceeds \(\phi 4\sqrt{f_c} b_w d \), maximum spacing must be reduced by one-half to (d/4) or 12 in. Note also that the value of (\(\phi V_s \)) shall not exceed \(\phi 8\sqrt{f_c} b_w d \) (11.4.7.9). For situations where the required shear strength exceeds this limit, the member size or the strength of the concrete may be increased to provide additional shear strength provided by concrete.

11.4.6 Minimum Shear Reinforcement

When the factored shear force \(V_u \) exceeds one-half the shear strength provided by concrete \((V_u > \phi V_c/2) \), a minimum amount of shear reinforcement must be provided in concrete flexural members, except for solid slabs and footings, joists defined by 8.13, and wide, shallow beams, and other special cases (11.4.6.1). When required, the minimum shear reinforcement for nonprestressed members is:

\[
A_{v,min} = 0.75 \frac{\sqrt{f_c} b_w s}{f_{yt}} \quad \text{Eq. (11-13)}
\]

but not less than \(\frac{50 b_w s}{f_{yt}} \).

Minimum shear reinforcement is a function of the concrete compressive strength starting with the 2002 Code. Equation (11-13) provides a gradual increase in the minimum required \(A_{v,min} \), while maintaining the previous minimum value of 50 \(b_w s / f_{yt} \).

Note that spacing of minimum shear reinforcement must not exceed the smaller of d/2 and 24 in.

11.4.7 Design of Shear Reinforcement

When the factored shear force \(V_u \) exceeds the shear strength provided by concrete, \(\phi V_c \), shear reinforcement must be provided to carry the excess shear. The code provides an equation that defines the required shear strength \(V_s \) provided by reinforcement in terms of its area \(A_v \), yield strength \(f_{yt} \), and spacing \(s \). [Eq. (11-15)]. The equation is based on a truss model with the inclination angle of compression diagonals equal to 45 degree.

To assure correct application of the strength reduction factor, \(\phi \), equations for directly computing required shear reinforcement \(A_v \) are developed below. For shear reinforcement placed perpendicular to the member axis, the following method may be used to determine the required area of shear reinforcement \(A_v \), spaced at a distance \(s \):

\[
\phi V_n \geq V_u \quad \text{Eq. (11-1)}
\]

where \(V_n = V_c + V_s \) \quad \text{Eq. (11-2)}

and \(V_s = \frac{A_v f_{yt} d}{s} \) \quad \text{Eq. (11-15)}

Substituting \(V_s \) into Eq. (11-2) and \(V_n \) into Eq. (11-1), the following equation is obtained:

\[
\phi V_c + \frac{\phi A_v f_{yt} d}{s} \geq V_u
\]
Solving for A_v,

$$A_v = \frac{(V_u - \phi V_c) s}{\phi f_{yt} d}$$

Similarly, when inclined stirrups are used as shear reinforcement,

$$A_v = \frac{(V_u - \phi V_c) s}{\phi f_{yt} (\sin \alpha + \cos \alpha) d}$$

where α is the angle between the inclined stirrup and longitudinal axis of member (see Fig. 12-6).

When shear reinforcement consists of a single bar or group of parallel bars, all bent-up at the same distance from the support,

$$A_v = \frac{(V_u - \phi V_c)}{f_y \sin \alpha}$$

where α is the angle between the bent-up portion and longitudinal axis of member, but not less than 30 degree (see Fig. 12-6). For this case, the quantity $(V_u - \phi V_c)$ must not exceed $\phi 3\sqrt{f_c b_w d}$ (11.4.7.5).

Design Procedure for Shear Reinforcement

Design of a nonprestressed concrete beam for shear involves the following steps:

1. Determine maximum factored shear force V_u at critical sections of the member defined in 11.1.3 (see Fig. 12-1).
2. Determine shear strength provided by the concrete ϕV_c per Eq. (11-3):
 $$\phi V_c = \phi 2\lambda \sqrt{f_c b_w d}$$
 where $\phi = 0.75$ (9.3.2.3).
3. Compute $V_u - \phi V_c$ at the critical section. If $V_u - \phi V_c > \phi 8\sqrt{f_c b_w d}$, increase the size of the section or the concrete compressive strength.
4. Compute the distance from the support beyond which minimum shear reinforcement is required (i.e., where $(V_u = \phi V_c)$, and the distance from the support beyond which the concrete can carry the total shear force (i.e., where $V_u = \phi V_c/2$).
5. Use Table 12-1 to determine the required area of vertical stirrups A_v or stirrup spacing s at a few controlling sections along the length of the member, which includes the critical sections.

Where stirrups are required, it is usually more expedient to select a bar size and type (e.g., No. 3 U-stirrups (2 legs)) and determine the required spacing. Larger stirrup sizes at wider spacings are usually more cost effective than smaller stirrup sizes at closer spacings because the latter requires disproportionately high costs for fabrication and placement. Changing the stirrup spacing as few times as possible over the required length also results in cost savings. If possible, no more than three different stirrup spacings should be specified, with the first stirrup located 2 in. from the face of the support.
Table 12-1 Provisions for Shear Design of Beams

<table>
<thead>
<tr>
<th>provision</th>
<th>expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_u \leq \phi V_c/2$</td>
<td>$\phi V_c/2 < V_u \leq \phi V_c$</td>
</tr>
<tr>
<td>Required area of stirrups, A_v</td>
<td>none</td>
</tr>
<tr>
<td>Stirrup spacing, s</td>
<td>Required</td>
</tr>
<tr>
<td>Maximum</td>
<td>$0.75 \sqrt{f_{ct}' b_w}$ and $50 b_w$</td>
</tr>
</tbody>
</table>

The shear strength requirements are illustrated in Fig. 12-7.

The expression for shear strength provided by shear reinforcement ϕV_s can be assigned specific force values for a given stirrup size and strength of reinforcement. The selection and spacing of stirrups can be simplified if the spacing is expressed as a function of the effective depth d instead of numerical values. Practical limits of stirrup spacing generally vary from $s = d/2$ to $s = d/4$, since spacing closer than $d/4$ is not economical. With one intermediate spacing at $d/3$, a specific value of ϕV_s can be derived for each stirrup size and spacing as follows:
For vertical stirrups:

\[\phi V_s = \frac{\phi A_v f_{yt} d}{s} \quad Eq. (11-15) \]

Substituting \(d/n \) for \(s \), where \(n = 2, 3, \) and \(4 \)

\[\phi V_s = \phi A_v f_{yt} n \]

Thus, for No. 3 U-stirrups @ \(s = d/2 \), \(f_{yt} = 60 \) ksi and \(\phi = 0.75 \)

\[\phi V_s = 0.75 \times (2 \times 0.11) 	imes 60 \times 2 = 19.8 \text{ kips, say 19 kips} \]

Values of \(\phi V_s \) given in Table 12-2 may be used to select shear reinforcement. Note that the \(\phi V_s \) values are independent of member size and concrete strength. Selection and spacing of stirrups using the design values for \(\phi V_s = (V_u - \phi V_c) \) can be easily solved by numerical calculation or graphically. See Example 12.1.

Table 12-2 Shear Strength \(\phi V_s \) for Given Bar Sizes and Spacings

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Shear Strength (\phi V_s) (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 3 U-Stirrups*</td>
</tr>
<tr>
<td></td>
<td>Grade 40</td>
</tr>
<tr>
<td>(d/2)</td>
<td>13.2</td>
</tr>
<tr>
<td>(d/3)</td>
<td>19.8</td>
</tr>
<tr>
<td>(d/4)</td>
<td>26.4</td>
</tr>
</tbody>
</table>

* Stirrups with 2 legs (double values for 4 legs, etc.)

CHAPTER 17 — COMPOSITE CONCRETE FLEXURAL MEMBERS

17.4 VERTICAL SHEAR STRENGTH

Section 17.4.1 of the Code permits the use of the entire composite flexural member to resist the design vertical shear as if the member were monolithically cast. Therefore, the requirements of Code Chapter 11 apply.

Section 17.4.3 permits the use of vertical shear reinforcement to serve as ties for horizontal shear reinforcement, provided that the vertical shear reinforcement is extended and anchored in accordance with applicable provisions.

17.5 HORIZONTAL SHEAR STRENGTH

In composite flexural members, horizontal shear forces are caused by the moment gradient resulting from vertical shear force. These horizontal shear forces act over the interface of interconnected elements that form the composite member.

Section 17.5.1 requires full transfer of the horizontal shear forces by friction at the contact surface, properly anchored ties, or both. Unless calculated in accordance with 17.5.4, the factored applied horizontal shear force \(V_u \leq \phi V_{nh} \), where \(\phi V_{nh} \) is the horizontal shear strength (17.5.3).
The horizontal shear strength is \(\phi V_{nh} = 80b_v d \) for intentionally roughened contact surfaces without the use of ties (friction only), and for surfaces that are not intentionally roughened with the use of minimum ties provided in accordance with 17.6 (17.5.3.1 and 17.5.3.2). When ties per 17.6 are provided, and the contact surface is intentionally roughened to a full amplitude of approximately 1/4 in., the nominal horizontal shear strength is given in 17.5.3.3 as:

\[
V_{nh} = (260 + 0.6\rho_v f_{y_t}) \lambda b_v d \leq 500b_v d
\]

The expression for \(V_{nh} \) in 17.5.3.3 accounts for the effect of the quantity of reinforcement crossing the interface by including \(\rho_v \), which is the ratio of tie reinforcement area to area of contact surface, or \(\rho_v = \frac{A_v}{b_v s} \). It also incorporates the correction factor \(\lambda \) to account for lightweight aggregate concrete per 11.6.4.3. It should also be noted that for concrete compressive strength \(f' c \leq 4444 \) psi, the minimum tie reinforcement per Eq. (11-13) is \(\rho_v f_{y_t} = 50 \) psi; substituting this into the above expression, \(V_{nh} = 290\lambda b_v d \). The upper limit of \(500b_v d \) corresponds to \(\rho_v f_{y_t} = 400 \) psi in the case of normal-weight concrete (i.e., \(\lambda = 1 \)).

When in computing the horizontal shear strength of a composite flexural member, the following apply:

1. When \(V_u > \phi(500b_v d) \), the shear friction method of 11.6.4 must be used (17.5.3.4). Refer to Part 14 for further details on the application of 11.6.4.
2. No distinction shall be made between shored or unshored members (17.2.4). Tests have indicated that the strength of a composite member is the same whether or not the first element cast is shored or not.
3. Composite members must meet the appropriate requirements for deflection control per 9.5.5.
4. The contact surface shall be clean and free of laitance. Intentionally roughened surface may be achieved by scoring the surface with a stiff bristled broom. Heavy raking or grooving of the surface may be sufficient to achieve “full 1/4 in. amplitude.”
5. The effective depth \(d \) is defined as the distance from the extreme compression fiber for the entire composite section to the centroid of the tension reinforcement. For prestressed member, the effective depth need not be taken less than 0.80 \(h \) (17.5.2).

The code also presents an alternative method for horizontal shear design in 17.5.4. The horizontal shear force that must be transferred across the interface between parts of a composite member is taken to be the change in internal compressive or tensile force, parallel to the interface, in any segment of a member. When this method is used, the limits of 17.5.3.1 through 17.5.3.4 apply, with the contact area \(A_c \) substituted for the quantity \(b_v d \) in the expressions. Section 17.5.4.1 also requires that the reinforcement be distributed to approximately reflect the variation in shear force along the member. This requirement emphasizes the difference between the design of composite members on concrete and on steel. Slip between the steel beam and composite concrete slab at maximum strength is large, which permits redistribution of the shear force along the member. In concrete members with a composite slab, the slip at maximum strength is small and redistribution of shear resistance along the member is limited. Therefore, distribution of horizontal shear reinforcement must be based on the computed distribution of factored horizontal shear in concrete composite flexural members.

17.6 TIES FOR HORIZONTAL SHEAR

According to 17.6.3, ties are required to be “fully anchored” into interconnected elements “in accordance with 12.13.” Figure 12-8 shows some tie details that have been used successfully in testing and design practice. Figure 12-8(a) shows an extended stirrup detail used in tests of Ref. 12.3. Use of an embedded “hairpin” tie, as illustrated in Fig. 12-8(b), is common practice in the precast, prestressed concrete industry. Many precast products are manufactured in such a way that it is difficult to position tie reinforcement for horizontal shear before concrete is placed. Accordingly, the ties are embedded in the plastic concrete as permitted by 16.7.1.

Shear reinforcement that extends from previously-cast concrete and is adequately anchored into the composite portion of a member (Fig. 12-8(c)) may be used as reinforcement (ties) to resist horizontal shear (17.4.3). Therefore, this reinforcement may be used to satisfy requirements for both vertical and horizontal shear.
Example 12.6 illustrates design for horizontal shear.

![Diagram of Ties for Horizontal Shear]

Figure 12-8 Ties for Horizontal Shear

REFERENCES

Example 12.1—Design for Shear - Members Subject to Shear and Flexure Only

Determine required size and spacing of vertical U-stirrups for a 30-foot span, simply supported normalweight reinforced concrete beam.

\[b_w = 13 \text{ in.} \]
\[d = 20 \text{ in.} \]
\[f'_c = 3000 \text{ psi} \]
\[f_{yt} = 40,000 \text{ psi} \]
\[w_u = 4.5 \text{ kips/ft (includes self weight)} \]

Calculations and Discussion

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
</table>

For the purpose of this example, the live load will be assumed to be present on the full span, so that design shear at centerline of span is zero. (A design shear greater than zero at midspan is obtained by considering partial live loading of the span.) Using design procedure for shear reinforcement outlined in this part:

1. Determine factored shear forces

 \[V_u = 4.5 \times (15) = 67.5 \text{ kips} \]
 \[V_u = 67.5 - 4.5 \times (20/12) = 60 \text{ kips} \]

2. Determine shear strength provided by concrete

 \[\phi V_c = \phi 2\lambda \sqrt{f'_c} b_w d \]
 \[\lambda = 1.0 \]
 \[\phi = 0.75 \]
 \[\phi V_c = 0.75 \times 2 \times 1.0 \times \sqrt{3000} \times 13 \times 20 / 1000 = 21.4 \text{ kips} \]

 \[V_u = 60 \text{ kips} > \phi V_c = 21.4 \text{ kips} \]

 Therefore, shear reinforcement is required.

3. Compute \(V_u - \phi V_c \) at critical section.

 \[V_u - \phi V_c = 60 - 21.4 = 38.6 \text{ kips} < \phi 8 \sqrt{f'_c} b_w d = 85.4 \text{ kips} \quad \text{O.K.} \]
4. Determine distance x_c from support beyond which minimum shear reinforcement is required ($V_u = \phi V_c$):

$$x_c = \frac{V_u @ support - \phi V_c}{w_u} = \frac{67.5 - 21.4}{4.5} = 10.2 \text{ ft}$$

Determine distance x_m from support beyond which concrete can carry total shear force ($V_u = \phi V_c / 2$):

$$x_m = \frac{V_u @ support - (\phi V_c / 2)}{w_u} = \frac{67.5 - (21.4 / 2)}{4.5} = 12.6 \text{ ft}$$

5. Use Table 12-1 to determine required spacing of vertical U-stirrups.

At critical section, $V_u = 60$ kips > $\phi V_c = 21.4$ kips

$$s(\text{req'd}) = \frac{\phi A_v f_{ytd}}{V_u - \phi V_c} \quad \text{Eq. (11-15)}$$

Assuming No. 4 U-stirrups ($A_v = 0.40$ in.2),

$$s(\text{req'd}) = \frac{0.75 \times 0.40 \times 40 \times 20}{38.6} = 6.2 \text{ in.}$$

Check maximum permissible spacing of stirrups:

$$s(\text{max}) \leq d/2 = 20/2 = 10 \text{ in.} \quad (\text{governs})$$

$$\leq 24 \text{ in.} \quad \text{since } V_u - \phi V_c = 38.6 \text{ kips} < \phi 4\sqrt{f'_{c}} b_w d = 42.7 \text{ kips}$$

Maximum stirrup spacing based on minimum shear reinforcement:

$$s(\text{max}) \leq \frac{A_v f_{ytd}}{0.75 \sqrt{f'_{c}} b_w} = \frac{0.4 \times 40,000}{0.75 \times 3000(13)} = 30 \text{ in.}$$

$$\leq \frac{A_v f_{ytd}}{50 b_w} = \frac{0.4 \times 40,000}{50 \times 13} = 24.6 \text{ in.}$$

Determine distance x from support beyond which 10 in. stirrup spacing may be used:

$$10 = \frac{0.75 \times 0.4 \times 40 \times 20}{V_u - 21.4}$$

$$V_u - 21.4 = 24 \text{ kips or } V_u = 24 + 21.4 = 45.4 \text{ kips}$$

$$x = \frac{67.5 - 45.4}{4.5} = 4.9 \text{ ft}$$
Example 12.1 (cont’d) Calculations and Discussion

Stirrup spacing using No. 4 U-stirrups:

6. As an alternate procedure, use simplified method presented in Table 12-2 to determine stirrup size and spacing.

At critical section,

\[\phi V_s = V_u - \phi V_c = 60 - 21.4 = 38.6 \text{ kips} \]

From Table 12-2 for Grade 40 stirrups:

- No. 4 U-stirrups @ d/4 provides \(\phi V_s = 48 \text{ kips} \)
- No. 4 U-stirrups @ d/3 provides \(\phi V_s = 36 \text{ kips} \)

By interpolation, No. 4 U-stirrups @ d/3.22 = 38.6 kips

Stirrup spacing = d/3.22 = 20/3.22 = 6.2 in.

Stirrup spacing along length of beam is determined as shown previously.
Example 12.2—Design for Shear - with Axial Tension

Determine required spacing of vertical U-stirrups for a beam subject to axial tension.

\[f'_c = 3600 \text{ psi (sand-lightweight concrete, } f_{ct} \text{ not specified)} \]
\[f_{yt} = 40,000 \text{ psi} \]
\[b_w = 10.5 \text{ in.} \]
\[h = 18 \text{ in.} \]
\[d = 16 \text{ in.} \]
\[M_u = 43.5 \text{ ft-kips} \]
\[M_r = 32.0 \text{ ft-kips} \]
\[V_d = 12.8 \text{ kips} \]
\[V_r = 9.0 \text{ kips} \]
\[N_d = -2.0 \text{ kips (tension)} \]
\[N_r = -15.2 \text{ kips (tension)} \]

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine factored loads</td>
<td>9.2.1</td>
</tr>
<tr>
<td>[M_u = 1.2 (43.5) + 1.6 (32.0) = 103.4 \text{ ft-kips}]</td>
<td>[Eq. (9-2)]</td>
</tr>
<tr>
<td>[V_u = 1.2 (12.8) + 1.6 (9.0) = 29.8 \text{ kips}]</td>
<td></td>
</tr>
<tr>
<td>[N_u = 1.2 (-2.0) + 1.6 (-15.2) = -26.7 \text{ kips (tension)}]</td>
<td></td>
</tr>
<tr>
<td>2. Determine shear strength provided by concrete</td>
<td>8.6.1</td>
</tr>
<tr>
<td>Since average splitting tensile strength (f_{ct}) is not specified, (\lambda = 0.85) (sand-lightweight concrete)</td>
<td>[Eq. (11-8)]</td>
</tr>
<tr>
<td>[\phi V_c = \phi 2 \left[1 + \frac{N_u}{500A_g} \right] 0.85 \sqrt{f'_c} b_w d]</td>
<td></td>
</tr>
<tr>
<td>[\phi = 0.75]</td>
<td>[9.3.2.3]</td>
</tr>
<tr>
<td>[\phi V_c = (0.75) 2 \left[1 + \frac{(-26,700)}{500 (18 \times 10.5)} \right] 0.85 \sqrt{3600} (10.5) 16/1000 = 9.2 \text{ kips}]</td>
<td></td>
</tr>
<tr>
<td>3. Check adequacy of cross-section.</td>
<td>11.4.7.9</td>
</tr>
<tr>
<td>[(V_u - \phi V_c) = 29.8 - 9.2 = 20.6 \text{ kips}]</td>
<td></td>
</tr>
<tr>
<td>[\phi 8(0.85)\sqrt{f'_c} b_w d = 0.75 \times 8 \times 0.85 \sqrt{3600} \times 10.5 \times 16/1000 = 51.4 \text{ kips} > 20.6 \text{ kips} \text{ O.K.}]</td>
<td></td>
</tr>
</tbody>
</table>
Example 12.2 (cont’d) Calculations and Discussion

4. Determine required spacing of U-stirrups

Assuming No. 3 U-stirrups ($A_v = 0.22 \text{ in.}^2$),

\[
s(\text{req’d}) = \frac{\phi A_v f_y t_d}{(V_u - \phi V_c)} = \frac{0.75 \times 0.22 \times 40 \times 16}{20.6} = 5.1 \text{ in.}
\]

5. Determine maximum permissible spacing of stirrups

\[
V_u - \phi V_c = 20.6 \text{ kips}
\]

\[
\phi 4\lambda \sqrt{f_y t_{bw}} d = 25.7 \text{ kips} > 20.6 \text{ kips}
\]

Therefore, provisions of 11.4.5.1 apply.

\[
s(\text{max}) \leq d/2 = 8 \text{ in.} \text{ (governs)}
\]

or \leq 24 in.

\[
s(\text{max}) \text{ of No. 3 U-stirrups corresponding to minimum reinforcement area requirements:}
\]

\[
s(\text{max}) = \frac{A_v f_y t}{0.75 (0.85) \sqrt{f_y t_{bw}}} = \frac{0.22 \times 40,000}{0.75 \times 0.85 \times \sqrt{3600 \times 10.5}} = 21.9 \text{ in.}
\]

\[
s(\text{max}) = \frac{A_v f_y t}{50 b_{bw}} = \frac{0.22 (40,000)}{50 (10.5)} = 16.8 \text{ in.}
\]

\[
s(\text{max}) = 8 \text{ in.} \text{ (governs)}
\]

Summary:

Use No. 3 vertical stirrups @ 5.0 in. spacing.
Example 12.3—Design for Shear - with Axial Compression

A tied compression member has been designed for the given load conditions. However, the original design did not take into account the fact that under a reversal in the direction of lateral load (wind), the axial load, due to the combined effects of gravity and lateral loads, becomes $P_u = 10$ kips, with essentially no change in the values of M_u and V_u. Check shear reinforcement requirements for the normalweight R/C column under (1) original design loads and (2) reduced axial load.

\[
M_u = 86 \text{ ft-kips} \\
P_u = 160 \text{ kips} \\
V_u = 20 \text{ kips} \\
f'_c = 4000 \text{ psi} \\
f_{yt} = 40,000 \text{ psi}
\]

Calculations and Discussion

Condition 1: $P_u = N_u = 160$ kips

1. Determine shear strength provided by concrete

\[
d = 16 - [1.5 + 0.375 + (0.750/2)] = 13.75 \text{ in.}
\]

\[
\phi V_c = \phi 2 \left[1 + \frac{N_u}{2000A_g} \right] \lambda \sqrt{f'_c b_w d}
\]

\[
\lambda = 1.0 \\
\phi = 0.75 \\
\phi V_c = 0.75 \times 2 \left(1 + \frac{160,000}{2000(16 \times 12)} \right) (1.0) \sqrt{4000 (12)(13.75) / 1000} = 22.2 \text{ kips}
\]

$\phi V_c = 22.2 \text{ kips} > V_u = 20 \text{ kips}$

2. Since $V_u = 20 \text{ kips} > \phi V_c/2 = 11.1 \text{ kips}$, minimum shear reinforcement requirements must be satisfied.

No. 3 stirrups ($A_v = 0.22 \text{ in.}^2$)

\[
\frac{A_v f_{yt}}{0.75 \sqrt{f'_c b_w}} = \frac{0.22(40,000)}{0.75 \sqrt{4000 (12)}}
\]

\[
s(\text{max}) = \frac{A_v f_{yt}}{50 b_w} = \frac{0.22 (40,000)}{50 (12)} = 14.7 \text{ in.}
\]

$s (\text{max}) = d/2 = 13.75/2 = 6.9 \text{ in.} \quad \text{(governs)}$
Therefore, use of $s = 6.75$ in. is satisfactory.

Condition 2: $P_u = N_u = 10$ kips

1. Determine shear strength provided by concrete.

$$\phi V_c = 0.75 \left[1 + \frac{(10,000)}{2000(16 \times 12)} \right] \times (1.0)\sqrt{4000(12)(13.75) / 1000} = 16.1 \text{ kips}$$

$\phi V_c = 16.1 \text{ kips} < V_u = 20 \text{ kips}$

Shear reinforcement must be provided to carry excess shear.

2. Determine maximum permissible spacing of No. 3 ties

$$s_{\text{max}} = \frac{d}{2} = \frac{13.75}{2} = 6.9 \text{ in.}$$

Maximum spacing, $d/2$, governs for Conditions 1 and 2.

3. Check total shear strength with No. 3 @ 6.75 in.

$$\phi V_s = \phi A_v f_{yt} \frac{d}{s} = \frac{0.75 (0.22) (40) (13.75)}{6.75} = 13.4 \text{ kips}$$

$$\phi V_c + \phi V_s = 16.1 + 13.4 = 29.5 \text{ kips} > V_u = 20 \text{ kips} \text{ O.K.}$$
Check shear requirements in the uniformly loaded floor joist shown below.

- $f'_c = 4000$ psi
- $f_{yt} = 40,000$ psi
- $w_d = 77$ psf (including self-weight)
- $w_e = 120$ psf

Assumed longitudinal reinforcement:

Bottom bars: 2 – No. 5
Top bars: No. 5 @ 9 in.

Calculations and Discussion

1. Determine factored load.
 \[w_u = [1.2 (77) + 1.6 (120)] 35/12 = 830 \text{ lb/ft} \]
 \[Eq. \ (9-2) \]

2. Determine factored shear force.
 \[V_u = 0.83 (10) - 0.83 (13.4/12) = 7.4 \text{ kips} \]
 \[11.1.3.1 \]

3. Determine shear strength provided by concrete.
 According to 8.13.8, V_c may be increased by 10 percent.
Example 12.4 (cont’d) Calculations and Discussion

Average width of joist web \(b_w = (6.67 + 5) / 2 = 5.83 \) in.

\[
\phi V_c = 1.1\phi 2\lambda\sqrt{f_c'}b_w d
\]

\[
\lambda = 1.0
\]

\[
\phi = 0.75
\]

\[
\phi V_c = 1.1(0.75)2(1)\sqrt{4000}(5.83)(13.4)/1000 = 8.2 \text{ kips}
\]

\[
\phi V_c = 8.2 \text{ kips} > V_u = 7.4 \text{ kips} \text{ O.K.}
\]

Per 11.4.6.1(c), minimum shear reinforcement is not required for joist construction defined by 8.13.

Alternatively, calculate \(V_c \) using Eq. (11-5)

Compute \(\rho_w \) and \(V_u d/M_u \) at distance \(d \) from support:

\[
\rho_w = \frac{A_s}{b_w d} = \frac{(2 \times 0.31)}{(5.83)(13.4)} = 0.0079
\]

\[
M_u \text{ @ face of support} = \frac{w_u \ell_n}{11} = \frac{0.83(20)^2}{11} = 30.2 \text{ ft-kips}
\]

\[
M_u \text{ @} d = \frac{w_u \ell_n}{11} + \frac{w_u d}{2} - \frac{w_u f_n d}{2}
\]

\[
\frac{V_u d}{M_u} = \frac{7.4(13.4/12)}{21.5} = 0.38 < 1.0 \text{ O.K.}
\]

\[
\phi V_c = \phi 1.1\left(1.9\lambda\sqrt{f_c'} + 2500\rho_w\frac{V_u d}{M_u}\right)b_w d \leq \phi (1.1)3.5\sqrt{f_c'}b_w d
\]

\[
= 0.75(1.1)\left[1.9(1.0)\sqrt{4000} + 2500(0.0079)(0.38)\right](5.83)(13.4)/1000
\]

\[
= 8.2 \text{ kips} < 0.75(1.1)(3.5)\sqrt{4000}(5.83)(13.4)/1000 = 14.3 \text{ kips O.K.}
\]

\[
\phi V_c = 8.2 \text{ kips} > V_u = 7.4 \text{ kips} \text{ O.K.}
\]
Example 12.5—Design for Shear - Shear Strength at Web Openings

The simply supported prestressed double tee beam shown below has been designed without web openings to carry a factored load $w_u = 1520$ lb/ft. Two 10-in.-deep by 36-in.-long web openings are required for passage of mechanical and electrical services. Investigate the shear strength of the beam at web opening A.

This design example is based on an experimental and analytical investigation reported in Ref. 12.2.

Beam $f'_c = 6000$ psi (normal weight)
Topping $f'_c = 3000$ psi
$f_{pu} = 270,000$ psi
$f_{yt} = 60,000$ psi

Calculations and Discussion

This example treats only the shear strength considerations for the web opening. Other strength considerations need to be investigated, such as: to avoid slip of the prestressing strand, openings must be located outside the required strand development length, and strength of the struts to resist flexure and axial loads must be checked. The reader is referred to the complete design example in Ref. 12.2 for such calculations. The design example in Ref. 12.2 also illustrates procedures for checking service load stresses and deflections around the openings.

1. Determine factored moment and shear at center of opening A. Since double tee is symmetric about centerline, consider one-half of double tee section, i.e. one stem.

 \[w_u = \frac{1520}{2} = 760 \text{ lb/ft per tee} \]

 \[M_u = 0.760 \times (36/2) \times (8.5) - 0.760 \times (8.5)^2/2 = 88.8 \text{ ft-kips} \]

 \[V_u = 0.760 \times (36/2) - 0.760 \times (8.5) = 7.2 \text{ kips} \]
2. Determine required shear reinforcement adjacent to opening. Vertical stirrups must be provided adjacent to both sides of web opening. The stirrups should be proportioned to carry the total shear force at the opening.

\[
A_v = \frac{V_u}{\phi f_{yt}} = \frac{7200}{0.75 \times 60,000} = 0.16 \text{ in.}^2
\]

Use No. 3 U-stirrup, one on each side of opening \((A_v = 0.22 \text{ in.}^2)\)

3. Using a simplified analytical procedure developed in Ref. 12.2, the axial and shear forces acting on the “struts” above and below opening A are calculated. Results are shown in the figure below. The reader is referred to the complete design example in Ref. 12.2 for the actual force calculations. Axial forces should be accounted for in the shear design of the struts.

4. Investigate shear strength for tensile strut.

\[
V_u = 6.0 \text{ kips}
\]

\[
N_u = -10.8 \text{ kips}
\]

\[
d = 0.8h = 0.8 (12) = 9.6 \text{ in.}
\]

\[
b_w = \text{average width of tensile strut} = [3.75 + (3.75 + 2 \times 12/22)]/2 = 4.3 \text{ in.}
\]

\[
V_c = 2 \left[1 + \frac{N_u}{500A_g} \right] \lambda \sqrt{f_{ct} b_w d}
\]

\[
= 2 \left(1 - \frac{10,800}{500 \times 4.3 \times 12} \right) 1.0 \sqrt{6000 (4.3)(9.6)}/1000 = 3.72 \text{ kips}
\]
Example 12.5 (cont’d) Calculations and Discussion

\[\phi V_c = 0.75(3.72) = 2.8 \text{ kips} \]

\[V_u = 6.0 \text{ kips} > \phi V_c = 2.8 \text{ kips} \]

Therefore, shear reinforcement is required in tensile strut.

\[A_v = \frac{(V_u - \phi V_c) s}{\phi f_yt d} \]

\[= \frac{(6.0 - 2.8) 9}{0.75 \times 60 \times 9.6} = 0.07 \text{ in.}^2 \]

where \(s = 0.75h = 0.75 \times 12 = 9 \text{ in.} \) 11.4.5.1

Use No. 3 single leg stirrups at 9-in. centers in tensile strut, \((A_v = 0.11 \text{ in.}^2) \). Anchor stirrups around prestressing strands with 180 degree bend at each end.

5. Investigate shear strength for compressive strut.

\[V_u = 5.4 \text{ kips} \]

\[N_u = 60 \text{ kips} \]

\[d = 0.8h = 0.8 (4) = 3.2 \text{ in.} \]

\[b_w = 48 \text{ in.} \]

\[V_c = 2 \left(1 + \frac{N_u}{2000A_g}\right) \lambda \sqrt{f'_c} b_w d \]

\[= 2 \left(1 + \frac{60,000}{2000 \times 48 \times 4}\right) \frac{1.0 \sqrt{3000}(48)(3.2)}{1000} = 19.5 \text{ kips} \]

\[\phi V_c = 0.75(19.5) = 14.6 \text{ kips} \]

\[V_u = 5.4 \text{ kips} < \phi V_c = 14.6 \text{ kips} \]

Therefore, shear reinforcement is not required in compressive strut.

6. Design Summary - See reinforcement details below.

a. Use U-shaped No. 3 stirrup adjacent to both edges of opening to contain cracking within the struts.
b. Use single-leg No. 3 stirrups at 9-in. centers as additional reinforcement in the tensile strut.

A similar design procedure is required for opening B.
Example 12.6—Design for Horizontal Shear

For the composite slab and precast beam construction shown, design for transfer of horizontal shear at contact surface of beam and slab for the three cases given below. Assume the beam is simply supported with a span of 30 feet.

Precast Beam

Cast-in-place Slab

\[b_e = 36" \]

\[f'_c = 3000 \text{ psi (normalweight concrete)} \]

\[f_{yt} = 60,000 \text{ psi (for Extended Simple-U Stirrups)} \]

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

Case I: Service dead load = 315 lb/ft
Service live load = 235 lb/ft
Factored load = 1.2(315) + 1.6 (235) = 754 lb/ft

1. Determine factored shear force \(V_u \) at a distance \(d \) from face of support:

\[V_u = (0.754 \times 30/2) - (0.754 \times 19/12) = 10.1 \text{ kips} \]

2. Determine horizontal shear strength.

\[V_u \leq \phi V_{nh} \]

\[\phi V_{nh} = \phi (80bvd) \]

\[= 0.75 (80 \times 10 \times 19)/1000 = 11.4 \text{ kips} \]

\[V_u = 10.1 \text{ kips} \leq \phi V_{nh} = 11.4 \text{ kips} \]

Therefore, design in accordance with either 17.5.3.1 or 17.5.3.2:

Note: For either condition, top surface of precast beam must be cleaned and free of laitance prior to placing slab concrete.

If top surface of precast beam is intentionally roughened, no ties are required.

If top surface of precast beam is not intentionally roughened, minimum ties are required in accordance with 17.6.

3. Determine required minimum area of ties.
Example 12.6 (cont’d) Calculations and Discussion Reference

\[A_v = \frac{0.75 \sqrt{f_c^2 b_w s}}{f_yt} \geq \frac{50 b_w s}{f_yt} \]

where \(s \) (max) = 4 (3.5) = 14 in. < 24 in.
\[A_v = \frac{0.75 \sqrt{3000(10)(14)}}{60,000} = 0.096 \text{in.}^2 \text{ at 14 in. o.c.} \]

Min. \(A_v = \frac{50 \times 10 \times 14}{60,000} = 0.117 \text{in.}^2 \text{ at 14 in. o.c.} \) or 0.10 in.\(^2/\text{ft} \)

Case II: Service dead load = 315 lb/ft
Service live load = 1000 lb/ft
Factored load = 1.2(315) + 1.6 (1000) = 1978 lb/ft

1. Determine factored shear force \(V_u \) at a distance \(d \) from face of support.
\[V_u = (1.98 \times 30/2) - (1.98 \times 19/12) = 26.6 \text{kips} \]

2. Determine horizontal shear strength.
\[V_u = 26.6 \text{kips} > \phi V_{nh} = \phi (80b_v d) = 11.4 \text{kips} \]

Therefore, 17.5.3.3 must be satisfied. Minimum ties are required as computed above \((A_v = 0.10 \text{in.}^2/\text{ft})\).
\[V_{nh} = \phi (260 + 0.6 \rho_v f_yt) \lambda b_v d \]

where \(\rho_v = \frac{A_v}{b_v s} = \frac{0.10 \text{in.}^2}{10 \text{in.} (12 \text{ in.})} = 0.00083 \)
\(\lambda = 1.0 \) (normalweight concrete)

\[\phi V_{nh} = 0.75 (260 + 0.6 \times 0.00083 \times 60,000) (1.0 \times 10 \times 19) \]

\[= 0.75 (290) (190) = 41.3 \text{kips} \]
\[\phi V_{nh} = 41.3 \text{kips} < \phi (500 b_v d)/1000 = 71.3 \text{kips} \quad \text{O.K.} \]
Example 12.6 (cont’d) Calculations and Discussion

\[V_u = 26.6 \text{ kips} < \phi V_{nh} = 41.3 \text{ kips} \]

Therefore, design in accordance with 17.5.3.3:

Contact surface must be intentionally roughened to “a full amplitude of approximately 1/4-in.,” and minimum ties provided in accordance with 17.6.

3. Compare tie requirements with required vertical shear reinforcement at distance \(d \) from face of support.

\[V_u = 26.6 \text{ kips} \]

\[V_c = 2\lambda \sqrt{f'_{cc}b_wd} = 2\sqrt{3000 \times 10 \times 19/1000} = 20.8 \text{ kips} \quad \text{Eq. (11-3)} \]

\[V_u \leq \phi (V_c + V_s) = \phi V_c + \phi A_v f_{yt} \frac{d}{s} \quad \text{Eq. (11-15)} \]

Solving for \(A_v/s \):

\[\frac{A_v}{s} = \frac{V_u - \phi V_c}{\phi f_{yt} d} = \frac{26.6 - (0.75 \times 20.8)}{0.75 \times 60 \times 19} = 0.013 \text{ in.}^2 / \text{in.} \]

\[s_{\max} = \frac{19}{2} = 9.5 \text{ in.} < 24 \text{ in.} \quad 11.4.5.1 \]

\[A_v = 0.013 \times 9.5 = 0.12 \text{ in.}^2 \]

Provide No. 3 U-stirrups @ 9.5 in. o.c. (\(A_v = 0.28 \text{ in.}^2/\text{ft} \)). This exceeds the minimum ties required for horizontal shear (\(A_v = 0.10 \text{ in.}^2/\text{ft} \)) so the No. 3 U-stirrups @ 9.5 in. o.c. are adequate to satisfy both vertical and horizontal shear reinforcement requirements. Ties must be adequately anchored into the slab by embedment or hooks. See Fig. 12-8.

Case III: Service dead load = 315 lb/ft
 Service live load = 3370 lb/ft
 Factored load = 1.2(315) + 1.6 (3370) = 5770 lb/ft 9.2

1. Determine factored shear force \(V_u \) at distance \(d \) from support.

\[V_u = (5.77 \times 30/2) - (5.77 \times 19/12) = 77.4 \text{ kips} \quad 11.1.3.1 \]

\[V_u = 77.4 \text{ kips} > \phi (500b_vd) = 0.75 (500 \times 10 \times 19)/1000 = 71.3 \text{ kips} \quad 17.5.3.4 \]

Since \(V_u \) exceeds \(\phi (500b_vd) \), design for horizontal shear must be in accordance with 11.6.4 - Shear-Friction. Shear along the contact surface between beam and slab is resisted by shear-friction reinforcement across and perpendicular to the contact surface.

As required by 17.5.3.1, a varied tie spacing must be used, based on the actual shape of the horizontal shear distribution. The following method seems reasonable and has been used in the past:
Converting the factored shear force to a unit stress, the factored horizontal shear stress at a distance \(d \) from span end is:

\[
v_{uh} = \frac{V_u}{b_v d} = \frac{77.4}{10 \times 19} = 0.407 \text{ ksi}
\]

The shear “stress block” diagram may be shown as follows:

Assume that the horizontal shear is uniform per foot of length, then the shear transfer force for the first foot is:

\[
V_{uh} = 0.407 \times 10 \times 12 = 48.9 \text{ kips}
\]

Required area of shear-friction reinforcement is computed by Eqs. (11-1) and (11-25):

\[
A_{vf} = \frac{V_{uh}}{f_{yvl}}
\]

If top surface of precast beam is intentionally roughened to approximately 1/4 in., \(\mu = 1.0 \).

\[
A_{vf} = \frac{48.9}{0.75 \times 60 \times 1.0} = 1.09 \text{ in.}^2 / \text{ft}
\]

With No. 5 double leg stirrups, \(A_{vf} = 0.62 \text{ in.}^2 \)

\[
s = \frac{0.62 \times 12}{1.09} = 6.8 \text{ in.}
\]

Use No. 5 U-stirrups @ 6.5 in. o.c. for a minimum distance of \(d + 12 \) in. from span end.

If top surface of precast beam is not intentionally roughened, \(\mu = 0.6 \).
Avf = \frac{48.9}{0.75 \times 60 \times 0.6} = 1.81 \text{ in.}^2 / \text{ft}

\therefore s = \frac{0.62 \times 12}{1.81} = 4.1 \text{ in.}

Use No. 5 U-Stirrups @ 4 in. o.c. for a minimum distance of d + 12 in. from span end.

This method can be used to determine the tie spacing for each successive one-foot length. The shear force will vary at each one-foot increment and the tie spacing can vary accordingly to a maximum of 14 in. toward the center of the span.

Note: Final tie details are governed by vertical shear requirements.
UPDATE FOR THE ‘08 CODE

In the 2008 code, the provisions for torsion design remain essentially unchanged except for insertion of the lightweight modifier, λ, in design equations where $\sqrt{f'_c}$ concerns concrete tensile strength.

BACKGROUND

The 1963 code included one sentence concerning torsion detailing. It prescribed use of closed stirrups in edge and spandrel beams and one longitudinal bar in each corner of those closed stirrups. Comprehensive design provisions for torsion were first introduced in the 1971 code. With the exception of a change in format in the 1977 document, the requirements have remained essentially unchanged through the 1992 code. These first generation provisions applied only to reinforced, nonprestressed concrete members. The design procedure for torsion was analogous to that for shear. Torsional strength consisted of a contribution from concrete (T_c) and a contribution from stirrups and longitudinal reinforcement, based on the skew bending theory.

The design provisions for torsion were completely revised in the 1995 code and remain essentially unchanged since then. The new procedure, for solid and hollow members, is based on a thin-walled tube, space truss analogy. This unified approach applies equally to reinforced and prestressed concrete members. Background of the torsion provisions has been summarized by MacGregor and Ghoneim. Design aids and design examples for structural concrete members subject to torsion are presented in Ref. 13.2.

For design purposes, the center portion of a solid beam can conservatively be neglected. This assumption is supported by test results reported in Ref. 13.1. Therefore, the beam is idealized as a tube. Torsion is resisted through a constant shear flow q (force per unit length of wall centerline) acting around the centerline of the tube as shown in Fig. 13-1(a). From equilibrium of external torque T and internal stresses:

$$T = 2A_o q = 2A_o \tau$$

(1)

Rearranging Eq. (1)

$$q = \tau = \frac{T}{2A_o}$$

(2)

where

- $\tau = \text{shear stress, assumed uniform, across wall thickness}$
- $t = \text{wall thickness}$
- $T = \text{applied torque}$
- $A_o = \text{area enclosed within the tube centerline [see Fig. 13-1(b)]}$
When a concrete beam is subjected to a torsional moment causing principal tension larger than $4\lambda \sqrt{f'_c}$, diagonal cracks spiral around the beam. After cracking, the tube is idealized as a space truss as shown in Fig. 13-2. In this truss, diagonal members are inclined at an angle θ. Inclination of the diagonals in all tube walls is the same. Note that this angle is not necessarily 45 degree. The resultant of the shear flow in each tube wall induces forces in the truss members. A basic concept for structural concrete design is that concrete is strong in compression, while steel is strong in tension. Therefore, in the truss analogy, truss members that are in tension consist of steel reinforcement or “tension ties.” Truss diagonals and other members that are in compression consist of concrete “compression struts.” Forces in the truss members can be determined from equilibrium conditions. These forces are used to proportion and detail the reinforcement.

Figure 13-2 Space Truss Analogy

Figure 13-3 depicts a free body extracted from the front vertical wall of the truss of Fig. 13-2. Shear force V_2 is equal to the shear flow q (force per unit length) times the height of the wall y_0. Stirrups are designed to yield when the maximum torque is reached. The number of stirrups intersected is a function of the stirrup spacing s and the horizontal projection $y_0 \cot \theta$ of the inclined surface. From vertical equilibrium:

$$V_2 = \frac{A_t f_{yt}}{s} (y_0 \cot \theta) \quad (3)$$

As the shear flow (force per unit length) is constant over the height of the wall,

$$V_2 = q y_0 = \frac{T}{2A_o} y_0 \quad (4)$$
Substituting for V_2 in Eqs. (3) and (4),

\[
T = \frac{2A_o A_{fy}}{s} \cot \theta
\]

(5)

A free body diagram for horizontal equilibrium is shown in Fig. 13-4. The vertical shear force V_i in Wall “i” is equal to the product of the shear flow q times the length of the wall y_i. Vector V_i can be resolved into two components: a diagonal component with an inclination θ equal to the angle of the truss diagonals, and a horizontal component equal to:

\[
N_i = V_i \cot \theta
\]

Force N_i is centered at the midheight of Wall “i” since q is constant along the side of the element. Top and bottom chords of the free body of Fig. 13-4 are subject to a force $N_i/2$ each. Internally, it is assumed that the longitudinal steel yields when the maximum torque is reached. Summing the internal and external forces in the chords of all the space truss walls results in:

\[
\sum A_{fy} = \sum N_i = \sum V_i \cot \theta = \sum qy_i \cot \theta = \frac{\sum T}{2A_o} \sum y_i \cot \theta = \frac{T}{2A_o} \cot \theta \sum y_i
\]

where A_{fy} is the yield force in all longitudinal reinforcement required for torsion distributed around the perimeter of the shear flow.

Rearranging the above equation,

\[
T = \frac{2A_o A_{fy}}{2(x_o + y_o) \cot \theta}
\]

(6)

where $2(x_o + y_o)$ is the perimeter of the shear flow. For non-rectangular sections, $2(x_o + y_o)$ is substituted with the outermost centerline of closed stirrups or hoops resisting torsion.
11.5.1 Threshold Torsion

Torsion can be neglected if the factored torque T_u is less than $\phi T_{cr}/4$, where T_{cr} is the cracking torque. The cracking torque corresponds to a principal tensile stress of $4\lambda \sqrt{f'_c}$. Prior to cracking, thickness of the tube wall “t” and the area enclosed by the wall centerline “A_o” are related to the uncracked section geometry based on the following assumptions approximating observed behavior:

$$t = \frac{3A_{cp}}{4P_{cp}}$$ (7)

$$A_o = \frac{2A_{cp}}{3} \text{ (before cracking)}$$ (8)

where $A_{cp} = \text{area enclosed by outside perimeter of uncracked concrete cross-section resisting torsion, in.}^2$

$P_{cp} = \text{outside perimeter of uncracked concrete cross-section, in.}$

$A_o = \text{area within centerline of the thin-wall tube, in.}^2$

Equations (7) and (8) apply to the uncracked section. For spandrel beams and other members cast monolithically with a slab, parts of the slab overhangs contribute to torsional resistance. Size of effective portion of slab to be considered with the beam is illustrated in Fig. R13.2.4.

Substituting for t from Eq. (7), A_o from Eq. (8), and taking $\tau = 4\lambda \sqrt{f'_c}$ in Eq. (1), the cracking torque for non-prestressed members can be derived:

$$T_{cr} = 4\lambda \sqrt{f'_c} \left(A_{cp}^2 \frac{1}{P_{cp}} \right)$$ (9)

For prestressed concrete members, based on a Mohr’s Circle analysis, the principal tensile stress of $4\lambda \sqrt{f'_c}$ is reached at $\sqrt{1 + \frac{f_{pc}}{4\lambda \sqrt{f'_c}}}$ times the corresponding torque for nonprestressed members. Therefore, the cracking torque for prestressed concrete members is computed as:

$$T_{cr} = 4\lambda \sqrt{f'_c} \left(A_{cp}^2 \frac{1}{P_{cp}} \right) \sqrt{1 + \frac{f_{pc}}{4\lambda \sqrt{f'_c}}}$$ (10)

where $f_{pc} = \text{compressive stress in concrete, due to prestress, at centroid of section (also see 2.1)}$

Similarly, for nonprestressed members subjected to an applied axial force, the principal tensile stress of $4\lambda \sqrt{f'_c}$ is reached at $\sqrt{1 + \frac{N_u}{4A_g \lambda \sqrt{f'_c}}}$ times the corresponding torque, so that the cracking torque is:

$$T_{cr} = 4\lambda \sqrt{f'_c} \left(A_{cp}^2 \frac{1}{P_{cp}} \right) \sqrt{1 + \frac{N_u}{4A_g \lambda \sqrt{f'_c}}}$$ (11)
where $N_u =$ factored axial force normal to the cross-section (positive for compression)

$A_g =$ gross area of section. For a hollow section, A_g is the area of the concrete only and does not include the area of the void(s) (see 11.5.1).

According to 11.5.1, design for torsion can be neglected if $T_u < \frac{\phi T_{cr}}{4}$, i.e.:

For nonprestressed members:

$$T_u < \phi \lambda \sqrt{t_c} \left(\frac{A_{cp}^2}{P_{cp}} \right)$$

(12)

For prestressed members:

$$T_u < \phi \lambda \sqrt{t_c} \left(\frac{A_{cp}^2}{P_{cp}} \right) \sqrt{1 + \frac{f_{pc}}{4\lambda \sqrt{t_c}}}$$

(13)

For nonprestressed members subjected to an axial tensile or compressive force:

$$T_u < \phi \lambda \sqrt{t_c} \left(\frac{A_{cp}^2}{P_{cp}} \right) \sqrt{1 + \frac{N_u}{4A_g \lambda \sqrt{t_c}}}$$

(14)

It is important to note that A_g is to be used in place of A_{cp} in Eqs. (12) through (14) for hollow sections, where for torsion, a hollow section is defined as having one or more longitudinal voids such that $A_g/A_{cp} < 0.95$ (see R11.5.1). The quantity A_g in this case is the area of the concrete only (i.e., the area of the void(s) are not included), based on the outer boundaries prescribed in 13.2.4. The threshold torsion provisions of 11.5.1 were modified in the 2002 code to apply to hollow sections, since results of tests in Ref. 11.32 indicate that the cracking torque of a hollow section is approximately (A_g/A_{cp}) times the cracking torque of a solid section with the same outside dimensions. Multiplying the cracking torque by (A_g/A_{cp}) a second time reflects the transition from the circular interaction between the inclined cracking loads in shear and torsion for solid members, to the approximately linear interaction for thin-walled hollow sections.

11.5.2 Equilibrium and Compatibility - Factored Torsional Moment T_u

Whether a reinforced concrete member is subject to torsion only, or to flexure combined with shear, the stiffness of that member will decrease after cracking. The reduction in torsional stiffness after cracking is much larger than the reduction in flexural stiffness after cracking. If the torsional moment T_u in a member cannot be reduced by redistribution of internal forces in the structure, that member must be designed for the full torsional moment T_u (11.5.2.1). This is referred to as “equilibrium torsion.” See Fig. R11.5.2.1. If redistribution of internal forces can occur, as in indeterminate structures, the design torque can be reduced. This type of torque is referred to as “compatibility torsion.” See Fig. R11.5.2.2. Members subject to compatibility torsion need not be designed for a torque larger than the product of the cracking torque times the strength reduction factor ϕ (0.75 for torsion, see 9.3.2.3). For cases of compatibility torsion where $T_u > \phi T_{cr}$ the member can be designed for ϕT_{cr} only, provided redistribution of internal forces is accounted for in the design of the other members of the structure (11.5.2.2). Cracking torque T_{cr} is computed by Eq. (9) for nonprestressed members, by Eq. (10) for prestressed members, and by Eq. (11) for nonprestressed members subjected to an axial tensile or compressive force. For hollow sections, A_{cp} shall not be replaced with A_g in these equations (11.5.2.2).
11.5.2.4-11.5.2.5 Critical Section—In nonprestressed members, the critical section for torsion design is at distance “d” (effective depth) from the face of support. Sections located at a distance less than d from the face of support must be designed for the torque at distance d from the support. Where a cross beam frames into a girder at a distance less than d from the support, a concentrated torque occurs in the girder within distance d. In such cases, the design torque must be taken at the face of support. The same rule applies to prestressed members, except that h/2 replaces distance d, where h is the overall height of member. In composite members, h is the overall height of the composite section.

11.5.3 Torsional Moment Strength

The design torsional strength should be equal to or greater than the required torsional strength:

\[\phi T_n \geq T_u \] \hspace{1cm} \text{Eq. (11-20)}

The nominal torsional moment strength in terms of stirrup yield strength was derived above [see Eq.(5)]:

\[T_n = \frac{2A_o A_t f_{yt}}{s} \cot \theta \] \hspace{1cm} \text{Eq. (11-21)}

where \(A_o = 0.85A_{oh} \) (this is an assumption for simplicity, see 11.5.3.6)

\[A_{oh} = \text{area enclosed by centerline of the outermost closed transverse torsional reinforcement as illustrated in Fig. 13-5} \]

\[\theta = \text{angle of compression diagonal, ranges between 30 and 60 degree. It is suggested in 11.5.3.6 to use 45 degree for nonprestressed members and 37.5 degree for prestressed members with prestress force greater than 40 percent of tensile strength of the longitudinal reinforcement.} \]

Note that the definition of \(A_o \) used in Eq. (8) was for the uncracked section. Also note that nominal torsional strength \(T_n \) is reached after cracking and after the concrete member has undergone considerable twisting rotation. Under these large deformations, part of the concrete cover may have spalled. For this reason, when computing area \(A_o \) corresponding to \(T_n \), the concrete cover is ignored. Thus, parameter \(A_o \) is related to \(A_{oh} \), the area enclosed by centerline of the outermost closed transverse torsional reinforcement. Area \(A_o \) can be determined through rigorous analysis (Ref. 13.3) or simply assumed equal to 0.85\(A_{oh} \) (see 11.5.3.6).

Substituting for \(T \) from Eq. (5) into Eq. (6) and replacing \(2(x_o + y_o) \) with \(p_h \) (perimeter of centerline of outermost closed transverse torsional reinforcement), the longitudinal reinforcement required to resist torsion is computed as a function of the transverse reinforcement:
Note that term \((A_t/s)\) used in Eq. (11-22) is that due to torsion only, and is computed from Eq. (11-21). In members subject to torsion combined with shear, flexure or axial force, the amount of longitudinal and transverse reinforcement required to resist all actions must be determined using the principle of superposition (see 11.5.3.8 and R11.5.3.8). In members subject to flexure, area of longitudinal torsion reinforcement in the flexural compression zone may be reduced to account for the compression due to flexure (11.5.3.9). In prestressed members, the longitudinal reinforcement required for torsion may consist of tendons with a tensile strength \(A_{ps}f_{ps}\) equivalent to the yield force of mild reinforcement, \(A_{lfy}f_{y}/f_{t}\), computed by Eq. (11-22).

To reduce unsightly cracking and safeguard against crushing of the concrete compression struts, 11.5.3.1 prescribes an upper limit for the maximum stress due to shear and torsion, analogous to that due to shear only. In solid sections, stresses due to shear act over the full width of the section, while stresses due to torsion are assumed resisted by a thin-walled tube. See Fig. R11.5.3.1(b). Thus, 11.5.3.1 specifies an elliptical interaction between stresses due to shear and those due to torsion for solid sections as follows:

\[
\sqrt{\left(\frac{V_u}{b_wd}\right)^2 \left(\frac{T_u}{1.7A_{oh}}\right)^2} \leq \phi \left(\frac{V_c}{b_wd} + 8\sqrt{f'_c}\right)
\]

Eq. (11-18)

For hollow sections, the stresses due to shear and torsion are directly additive on one side wall [see Fig. R11.5.3.1(a)]. Thus, the following linear interaction is specified:

\[
\left(\frac{V_u}{b_wd}\right) + \left(\frac{T_u}{1.7A_{oh}}\right) \leq \phi \left(\frac{V_c}{b_wd} + 8\sqrt{f'_c}\right)
\]

Eq. (11-19)

In Eqs. (11-18) and (11-19), \(V_u\) is the contribution of concrete to shear strength of nonprestressed (see 11.3) or prestressed (see 11.4) concrete members. Further, starting with the 2005 Code 11.4.3 clarifies that for prestressed members \(d\) should be taken as the distance from extreme compression fiber to centroid of the prestressed and nonprestressed longitudinal tension reinforcement, if any, but need not be taken less than 0.8h.

When applying Eq. (11-19) to a hollow section, if the actual wall thickness \(t\) is less than \(A_{oh}/Ph\), the actual wall thickness should be used instead of \(A_{oh}/Ph\) (11.5.3.3).

11.5.4 Details of Torsional Reinforcement

Longitudinal and transverse reinforcement are required to resist torsion. Longitudinal reinforcement may consist of mild reinforcement or prestressing tendons. Transverse reinforcement may consist of stirrups, hoops, welded wire reinforcement, or spiral reinforcement. To control widths of diagonal cracks, the design yield strength of longitudinal and transverse torsional reinforcement must not exceed 60,000 psi (11.5.3.4).

In the truss analogy illustrated in Fig. 13-2, the diagonal compression strut forces bear against the longitudinal corner reinforcement. In each wall, the component of the diagonal struts, perpendicular to the longitudinal reinforcement is transferred from the longitudinal reinforcement to the transverse reinforcement. It has been observed in torsional tests of beams loaded to destruction that as the maximum torque is reached, the concrete cover spalls. The forces in the compression struts outside the stirrups, i.e. within the concrete cover, push out the concrete shell. Based on this observation, 11.5.4.2 specifies that the stirrups should be closed, with 135 degree hooks or seismic hooks as defined in 2.2. Stirrups with 90 degree hooks become ineffective when the concrete cover spalls. Similarly, lapped U-shaped stirrups have been found to be inadequate for resisting torsion due to lack of support when the concrete cover spalls. For hollow sections, the distance from the centerline of the transverse torsional reinforcement to the inside face of the wall of the hollow section must not be less than 0.5A_{oh}/Ph (11.5.4.4).
11.5.5 Minimum Torsion Reinforcement

In general, to ensure ductility of nonprestressed and prestressed concrete members, minimum reinforcement is specified for flexure (10.5) and for shear (11.4.6). Similarly, minimum transverse and longitudinal reinforcement is specified in 11.5.5 whenever $T_u > \phi T_{cr}/4$. Usually, a member subject to torsion will also be simultaneously subjected to shear. The minimum area of stirrups for shear and torsion is computed from:

$$ (A_v + 2A_t) - 0.75\sqrt{\frac{f_c'}{f_{yt}}} \frac{b_{ws}}{f_{yt}} \geq \frac{50b_{ws}}{f_{yt}} $$

which now accounts for higher strength concretes (see 11.5.5.2).

The minimum area of longitudinal reinforcement is computed from:

$$ A_{l_{min}} = \frac{5\sqrt{f_c' A_{cp}}}{f_y} - \left(\frac{A_t}{s}\right) \frac{f_{yt}}{f_y} $$

but A_t/s (due to torsion only) must not be taken less than $25b_{w}/f_{yt}$.

11.5.6 Spacing of Torsion Reinforcement

Spacing of stirrups must not exceed the smaller of $p_h/8$ and 12 in. For a square beam subject to torsion, this maximum spacing is analogous to a spacing of about $d/2$ in a beam subject to shear (11.5.6.1).

The longitudinal reinforcement required for torsion must be distributed around the perimeter of the closed stirrups, at a maximum spacing of 12 in. In the truss analogy, the compression struts push against the longitudinal reinforcement which transfers the transverse forces to the stirrups. Thus, the longitudinal bars should be inside the stirrups. There should be at least one longitudinal bar or tendon in each corner of the stirrups to help transmit the forces from the compression struts to the transverse reinforcement. To avoid buckling of the longitudinal reinforcement due to the transverse component of the compression struts, the longitudinal reinforcement must have a diameter not less than $1/24$ of the stirrup spacing, but not less than 3/8 in. (11.5.6.2).

11.5.7 Alternative Design for Torsion

Section 11.5.7 introduced in the 2005 code allows using alternative torsion design procedures for solid sections with h/b_t ratio of three or more. According to 2.1, h is defined as overall thickness of height of members, and b_t is width of that part of cross section containing the closed stirrup resisting torsion. This criterion would be easy to apply to rectangular sections. For other cross sections see discussion below.

An alternative procedure can only be used if its adequacy has been proven by comprehensive tests. Commentary R11.5.7 suggests an alternative procedure, which has been described in detail by Zia and Hsu in Ref 13.4. This procedure is briefly outlined below and its application is also illustrated in Example 13.1.

ZIA-HSU ALTERNATIVE DESIGN PROCEDURE FOR TORSION

Zia-Hsu method for torsion design applies to solid rectangular, box, and flanged sections of prestressed and non-prestressed members. In this procedure L-, T-, inverted T-, and I-shaped sections are subdivided into rectangles, provided that these rectangles include closed stirrups and longitudinal reinforcement required for torsion. Equally important is that the stirrups must overlap adjacent rectangles. This alternative method is most appropriate for precast spandrel beams with a tall stem and a small ledge at the bottom of the stem. In this case, the h/b_t ratio is checked for the vertical stem.
The following steps summarize the procedure of Ref. 13.4. If lightweight concrete is used, appropriate adjustment is necessary to account for the modifier λ (8.6).

1. Determine the factored shear force V_u and the factored torsional moment T_u

2. Calculate the shear and torsional constant

$$C_t = \frac{b_w d}{\sum x^2 y} \quad (15)$$

where b_w is the web width and d is the distance from extreme compression fiber to centroid of longitudinal prestressed and nonprestressed tension reinforcement, if any, but need not be less than 0.80h for prestressed members. The section has to be divided into rectangular components of dimensions x and y ($x < y$) in such a way that the sum of x^2y terms is maximum. For overhanging flanges, however, the width shall not be taken more than three times the flange thickness (i.e. height).

3. Check the threshold (minimum) torsional moment

$$T_{\text{min}} = \phi 0.5 \sqrt{f'_c \gamma \sum x^2 y} \quad (16)$$

where $\gamma = \sqrt{1 + \frac{10f_{pc}}{f'_c}}$ is a prestressing factor and f_{pc} is the average prestressing force in the member after losses. If $T_u \leq T_{\text{min}}$, then torsion design is not required. Otherwise proceed to Step 4.

4. Check the maximum permissible torsional moment

$$T_{\text{max}} = \frac{1}{3} \frac{C \sqrt{f'_c \gamma \sum x^2 y}}{\sqrt{1 + \left(\frac{C \gamma V_u}{30C_t T_u} \right)^2}} \quad (17)$$

where $C = 12 - 10 \frac{f_{pc}}{f'_c}$. If $T_u > T_{\text{max}}$, then the section is not adequate and needs to be redesigned. Options are to use a larger cross section, or increase f'_c or f_{pc}.

5. Calculate nominal torsional moment strength provided by concrete under pure torsion

$$T'_c = 0.8 \sqrt{f'_c \gamma \sum x^2 y (2.5 \gamma - 1.5)} \quad (18)$$

6. Calculate the nominal shear strength provided by concrete without torsion $V'_c = 2 \sqrt{f'_c b_w d}$ for nonprestressed members and the smaller of V_{ci} and V_{cw} for prestressed members, where V_{ci} and V_{cw} are defined by Eqs. (11-10) and (11-12), respectively.

7. Calculate the nominal torsional moment strength provided by concrete under combined loading

$$T_c = \frac{T'_c}{\sqrt{1 + \left(\frac{T'_c V_u}{V_c T_u} \right)^2}} \quad (19)$$
8. Calculate the nominal shear strength provided by concrete under combined loading

\[V_c = \frac{V_c'}{\sqrt{1 + \left(\frac{V_c'}{V_c} \frac{T_u}{T_c} \right)^2}} \]

(20)

9. Compute transverse reinforcement for torsion

If \(T_u > \phi T_c \), then the area of transverse torsional reinforcement required over distance \(s \) equals

\[\frac{A_t}{s} = \frac{T_s}{\alpha_t x_1 y_1 f_{yt}} \]

(21)

where:

- \(A_t \) = area of one leg of a closed stirrup resisting torsion
- \(T_s = \frac{T_u}{\phi} - T_c \)
- \(\alpha_t = 0.66 + 0.33 \left(\frac{y_1}{x_1} \right) \), but no more than 1.5
- \(x_1 \) = shorter center-to-center dimension of a closed stirrup
- \(y_1 \) = longer center-to-center dimension of a closed stirrup

10. Compute transverse reinforcement for shear

If \(V_u > \phi V_c \), then the area of transverse shear reinforcement required over distance \(s \) equals

\[\frac{A_v}{s} = \frac{V_s}{d f_{yt}} \]

(22)

where:

- \(A_v \) = the area of a stirrup (all legs) in section,
- \(V_s = \frac{V_u}{\phi} - V_c \)

11. Calculate the total transverse reinforcement

The total transverse reinforcement required for shear and torsion is equal to

\[\frac{A_v}{s} + 2 \frac{A_t}{s} \]

but should not be taken less than \(\left(\frac{A_v}{s} + 2 \frac{A_t}{s} \right)_{\text{min}} \), which is equal to the smaller of

\[50 \left(1 + 12 \frac{f_{pc}}{f_c} \right) \frac{b_w}{f_{yt}} \text{ and } 200 \frac{b_w}{f_{yt}}. \]
12. Calculate longitudinal torsional reinforcement

The area of longitudinal torsional reinforcement required is equal to the larger of

\[A_{\ell} = 2A_t \left(\frac{x_1 + y_1}{s} \right) \] \hspace{1cm} (23)

and

\[A_{\ell} = \left[\frac{400xs}{f_y} \left(\frac{T_u}{T_u + \frac{V_u}{3C_t}} \right) - 2A_t \right] \left[\frac{x_1 + y_1}{s} \right] \] \hspace{1cm} (24)

However, the value calculated from Eq (24) need not exceed the value obtained when the smaller of

\[50 \left(1 + 12 \frac{f_{pc}}{f_c} \right) \frac{b_\omega}{f_y} \] and \[200 \frac{b_\omega}{f_y} \] is substituted for \(2A_t \).

Application of the ACI procedure (11.5) and the Zia-Hsu procedure (Ref. 13.4) is illustrated in Example 13.1

REFERENCES

13.5 pcaBeam-Analysis, design, and investigation of reinforced concrete beams and one-way slab systems, Portland Cement Association, Skokie, IL, 2008.
Example 13.1—Precast Spandrel Beam Design for Combined Shear and Torsion

Design a precast, nonprestressed normalweight concrete spandrel beam for combined shear and torsion. Roof members are simply supported on spandrel ledge. Spandrel beams are connected to columns to transfer torsion. Continuity between spandrel beams is not provided.

Compare torsional reinforcement requirements using ACI 318-05 provisions, Zia-Hsu alternative design for torsion, and pcaBeam (Ref 13.5) software.

Design Criteria:

- **Live load** = 30 lb/ft²
- **Dead load** = 90 lb/ft² (double tee + topping + insulation + roofing)
- **f’c** = 5000 psi (w_c = 150 pcf)
- **f_y** = 60,000 psi

Roof members are 10 ft wide double tee units, 30 in. deep with 2 in. topping. Design of these units is not included in this design example. For lateral support, alternate ends of roof members are fixed to supporting beams.

Calculations and Discussion

A. **ACI 318 Procedure (11.5)**

1. The load from double tee roof members is transferred to the spandrel beam as concentrated forces and torques. For simplicity assume double tee loading on spandrel beam as uniform. Calculate factored loading M_u, V_u, T_u for spandrel beam.
Dead load:
Superimposed = (0.090) (70)/2 = 3.15 kips/ft
Spandrel = [(1.33) (4.00) + (1.33) (0.67)] 0.150 = 0.93 kips/ft
Total = 4.08 kips/ft

Live load = (0.030) (70)/2 = 1.05 kips/ft

Factored load = (1.2) (4.08) + (1.6) (1.05) = 6.58 kips/ft

At center of span, \(M_u = \frac{6.58 \times 40^2}{8} = 1316 \text{ ft-kips} \)
End shear \(V_u = \frac{6.58 \times 40}{2} = 131.6 \text{ kips} \)

Torsional factored load = \(1.2 (3.15) + 1.2 \left(\frac{16}{12} \times \frac{8}{12} \times 0.150 \right) + 1.6 (1.05) = \frac{5.62}{12} \text{ kips/ft} \)

Eccentricity of double tee reactions relative to centerline of spandrel beam = 8 + 4 = 12 in.

End torsional moment \(T_u = 5.62 \left(\frac{40}{2} \right) \left(\frac{12}{12} \right) = 112.4 \text{ ft-kips} \)
Assume \(d = 45.5 \text{ in.} \)

Critical section for torsion is at the face of the support because of concentrated torques applied by the double tee stems at a distance less than \(d \) from the face of the support.
<table>
<thead>
<tr>
<th>Example 13.1 (cont’d)</th>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical section for shear is also at the face of support because the load on the spandrel beam is not applied close to the top of the member and because the concentrated forces transferred by the double tee stems are at a distance less than d from the face of the support.</td>
<td></td>
<td>11.1.3.(b)</td>
</tr>
<tr>
<td>Therefore, critical section is 8 in. from column centerline.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At critical section: (20.0 - (8.0/12) = 19.33) ft from midspan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_u = 131.6 \times (19.33/20.0) = 127.20) kips</td>
<td></td>
<td>11.1.3.(c)</td>
</tr>
<tr>
<td>(T_u = 112.4 \times (19.33/20.0) = 108.6) ft-kips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The spandrel beam must be designed for the full factored torsional moment since it is required to maintain equilibrium.</td>
<td></td>
<td>11.5.2.1</td>
</tr>
<tr>
<td>2. Check if torsion may be neglected</td>
<td></td>
<td>11.5.1</td>
</tr>
<tr>
<td>Torsion may be neglected if (T_u < \frac{\phi T_{cr}}{4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi = 0.75)</td>
<td></td>
<td>9.3.2.3</td>
</tr>
<tr>
<td>(T_{cr} = 4\lambda \sqrt{f_c} \left(\frac{A_{cp}^2}{P_{cp}}\right))</td>
<td></td>
<td>Eq. (9)</td>
</tr>
<tr>
<td>(A_{cp} =) area enclosed by outside perimeter of spandrel beam, including the ledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= (16) (48) + (16) (8) = 768 + 128 = 896 in.(^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{cp} =) outside perimeter of spandrel beam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>= 2 (16 + 48) + 2 (8) = 144 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The limiting value to ignore torsion is:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi \lambda \sqrt{f_c} \left(\frac{A_{cp}^2}{P_{cp}}\right) = 0.75(1.0) \sqrt{5000} \left(\frac{896^2}{144}\right) \frac{1}{12,000} = 24.6) ft-kips < 108.6 ft-kips</td>
<td></td>
<td>Eq.(12)</td>
</tr>
<tr>
<td>Torsion must be considered.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Determine required area of stirrups for torsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design torsional strength must be equal to or greater than the required torsional strength:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi T_n \geq T_u)</td>
<td></td>
<td>Eq. (11-20)</td>
</tr>
</tbody>
</table>
Example 13.1 (cont’d) Calculations and Discussion Code Reference

where

\[T_n = \frac{2A_o A_{o f yt}}{s} \cot \theta \]

\[A_o = 0.85A_{oh} \]

\[A_{oh} = \text{area enclosed by centerline of the outermost closed transverse torsional reinforcement} \]

Assuming 1.25 in. cover (precast concrete exposed to weather) and No. 4 stirrup

\[A_{oh} = (13) (45) + (8) (13) = 689 \text{ in.}^2 \]

\[A_o = 0.85 (689) = 585.6 \text{ in.}^2 \]

For nonprestressed member, use \(\theta = 45 \) degree

Substituting in Eqs. (11-20) and (11-21)

\[\frac{A_t}{s} = \frac{T_u}{2\phi A_{o f yt} \cot \theta} \]

\[\frac{A_t}{s} = \frac{(108.6) (12,000)}{2 (0.75) (585.6) (60,000) (1.0)} = 0.025 \text{ in.}^2 / \text{in./leg} \]

4. Calculate required area of stirrups for shear

\[V_c = 2\lambda \sqrt{f_{c'}'}b_wd \]

\[= 2(1.0) \sqrt{5000} (16) (45.5) / 1000 \]

\[= 102.95 \text{ kips} \]

From Eqs. (11-1) and (11-2)

\[V_s = \frac{V_u}{\phi} - V_c = \frac{127.2}{0.75} - 102.95 = 66.65 \text{ kips} \]

\[\frac{A_v}{s} = \frac{V_s}{f_{y t d}} = \frac{66.65}{60 (45.5)} = 0.024 \text{ in.}^2 / \text{in.} \]

5. Determine combined shear and torsion stirrup requirements

\[\frac{A_t}{s} + \frac{A_v}{2s} = 0.025 + \frac{0.024}{2} = 0.037 \text{ in.}^2 / \text{in./leg} \]
Example 13.1 (cont’d) Calculations and Discussion

Try No. 4 bar, \(A_b = 0.20 \text{ in.}^2 \)

\[
\begin{align*}
 s &= \frac{0.20}{0.037} = 5.40 \text{ in.} \quad \text{Use 5 in. minimum spacing.}
\end{align*}
\]

6. Check maximum stirrup spacing

For torsion spacing must not exceed \(p_h/8 \) or 12 in.:

\[
\begin{align*}
 p_h &= 2 (13 + 45) + 2 (8) = 132 \text{ in.} \\
 \frac{p_h}{8} &= \frac{132}{8} = 16.5 \text{ in.}
\end{align*}
\]

For shear, spacing must not exceed \(d/2 \) or 24 in. (\(V_s = 66.65 \text{ kips} < 4 \sqrt{f_c'b_w'd} = 205.9 \text{ kips} \)):

\[
\begin{align*}
 \frac{d}{2} &= \frac{45.5}{2} = 22.75 \text{ in.}
\end{align*}
\]

Use 5 in. minimum and 12 in. maximum spacing.

7. Check minimum stirrup area

\[
\begin{align*}
 (A_v + 2A_t) &= 0.75 \sqrt{f_c'b_w's} = 0.75 \sqrt{5000 \left(\frac{16(12)}{60,000} \right)} = 0.17 \text{ in.}^2 \\
 \text{> } \frac{50b_w's}{f_yt} &= \frac{50 (16) (12)}{60,000} = 0.16 \text{ in.}^2
\end{align*}
\]

Area provided = 2 (0.20) = 0.40 in.\(^2\) > 0.17 in.\(^2\) O.K.

8. Determine stirrup layout

Since both shear and torsion are zero at the center of span, and are assumed to vary linearly to the maximum value at the critical section, the start of maximum stirrup spacing can be determined by simple proportion.

\[
\begin{align*}
 \frac{s \text{ (critical)}}{s \text{ (maximum)}} &= \frac{5}{12} \left(19.33 \right) = 8.05 \text{ ft}, \text{say 8 ft from midspan.}
\end{align*}
\]

9. Check for crushing of the concrete compression struts

\[
\begin{align*}
 \sqrt{\left(\frac{V_u}{b_w'd} \right)^2 + \left(\frac{T_u p_h}{1.7A_{oh}} \right)^2} &\leq \phi \left(\frac{V_c}{b_w'd} + 8\sqrt{f_c'} \right) \\
 \text{Eq. (11-18)}
\end{align*}
\]
Example 13.1 (cont’d) Calculations and Discussion

\[
\sqrt{\left(\frac{127,200}{(16)(45.5)}\right)^2 + \left(\frac{(108,600 \times 12)(132)}{1.7(689)^2}\right)^2} = 275.6 \text{ psi} < 10\phi \sqrt{f'_c} = 530 \text{ psi} \ O.K.
\]

10. Calculate longitudinal torsion reinforcement

\[A_\ell = \left(\frac{A_t}{s}\right) p_h \left(\frac{f_{yt}}{f_y}\right) \cot^2 \theta\]

\[A_\ell = (0.025)(132) \left(\frac{60}{60}\right)(1.0) = 3.30 \text{ in.}^2\]

Check minimum area of longitudinal reinforcement

\[A_{\ell, \text{min}} = \frac{5\sqrt{f'_c} A_{cp}}{f_y} - \left(\frac{A_t}{s}\right) p_h \frac{f_{yt}}{f_y}\]

\(\left(\frac{A_t}{s}\right)\) must not be less than \(\frac{25b_w}{f_y} = \frac{25(16)}{60,000} = 0.007 \text{ in.}^2 \text{ / in.}\)

\[A_{\ell, \text{min}} = \frac{5\sqrt{5000}(896)}{60,000} - (0.025)(132) = 1.98 \text{ in.}^2 < 3.30 \text{ in.}^2\]

The longitudinal reinforcement required for torsion must be distributed around the perimeter of the closed stirrups, at a maximum spacing of 12 in. The longitudinal bars should be inside the stirrups. There should be at least one longitudinal bar in each corner of the stirrups. Select 12 bars.

Area of each longitudinal bar = \(\frac{3.3}{12} = 0.275 \text{ in.}^2\) Use No. 5 bars

No. 4 closed stirrups @ 5"

5 - No. 11 bars

Design of ledge reinforcement not shown here. See Part 15 for design of beam ledges.
11. Size combined longitudinal reinforcement

Use No. 5 bars in sides and top corners of spandrel beam. Note that two of the twelve longitudinal bars (bars at the bottom of the web) required for torsion are to be combined with the required ledge flexural reinforcement. Design of the ledge reinforcement is not shown here. See Part 15 of this document for design of beam ledges.

Determine required flexural reinforcement, assuming tension-controlled behavior.

\[\phi = 0.90 \]

From Part 7,

\[R_n = \frac{M_u}{\phi bd^2} = \frac{1316 \times 12,000}{0.9 \times 16 \times 45.5^2} = 530 \text{ psi} \]

\[\rho = \frac{0.85 f'_c}{f_y} \left(1 - \sqrt{1 - \frac{2R_n}{0.85 f'_c}} \right) \]

\[= \frac{0.85 \times 5}{60} \left(1 - \sqrt{1 - \frac{2 \times 530}{0.85 \times 5000}} \right) = 0.0095 \]

\[A_s = \rho bd = 0.0095 \times 16 \times 45.5 = 6.92 \text{ in.}^2 \]

As bottom reinforcement at midspan, provide \(\frac{2}{12} \) of the longitudinal torsion reinforcement in addition to the flexural reinforcement.

\[\left(\frac{2}{12} \right) (3.30) + 6.92 = 7.47 \text{ in.}^2 \]

As bottom reinforcement at end of span, provide \(\frac{2}{12} \) of the longitudinal torsion reinforcement plus at least \(\frac{1}{3} \) the positive reinforcement for flexure:

\[\left(\frac{2}{12} \right) (3.30) + \left(\frac{6.92}{3} \right) = 2.86 \text{ in.}^2 \]

Use 5-No. 11 bars \((A_s = 7.80 \text{ in.}^2 > 7.47 \text{ in.}^2) \)

Check if section is tension-controlled, based on provided reinforcement.

From a strain compatibility analysis, conservatively assuming that the section is subjected to flexure only and includes one layer of flexural reinforcement (see Eq. (8) in Part 8),
\[
\left(\frac{\beta_1}{1 - \frac{1}{\sqrt{1 - \frac{40R_n}{17I_c}}} - 1} \right) = 0.003 \left(\frac{0.80}{1 - \frac{40}{530} - 1} \right) = 0.015 > 0.005
\]

Therefore, section is tension-controlled, and \(\phi = 0.90 \).

Note that for strain compatibility analysis including the effects of torsion, see Ref. 13.3.

Extend 2-No. 11 bars to end of girder \((A_s = 3.12 \text{ in.}^2 > 2.84 \text{ in.}^2) \)

Note that the longitudinal torsion reinforcement must be adequately anchored.

B. Zia-Hsu Alternative Torsion Design (Ref. 13-4)

For comparison torsional reinforcement requirements will be determined according to Zia-Hsu alternative design procedure for torsion design. Since a non-prestressed member is considered then \(f_{pc} = 0 \) will be used.

1. Determine the factored shear force \(V_u \) and the factored torsional moment \(T_u \)

 Based on calculations in A (ACI 318 Procedure):
 \[
 V_u = 127.2 \text{ kips}
 \]
 \[
 T_u = 108.6 \text{ ft-kips} = 1303.2 \text{ in.-kips}
 \]

2. Calculate the shear and torsional constant
 Compute the largest \(\Sigma x^2y \) value. Consider Options A and B.

 Option A

 \[
 \Sigma x^2y = (16^2 \times 48) + (8^2 \times 16) = 13,312 \text{ in.}^3
 \]

 Option B
Example 13.1 (cont’d) Calculations and Discussion

For Option B:

\[\sum x^2y = (16^2 \times 32) + (16^2 \times 24) = 14,336 \text{ in.}^3 \]

\[C_t = \frac{b wd}{\sum x^2y} = \frac{16 \times 45.5}{14,336} = 0.05078 \text{ in.} \]

\[\text{Eq. (15)} \]

3. Check the minimum torsional moment

\[T_{\text{min}} = \phi 0.5 \sqrt{f'_c} \gamma \sum x^2y \]
\[= 0.75 \times 0.5 \times \sqrt{5000} \times 1.0 \times 14,336/12,000 = 31.68 \text{ ft-kips} \]

\[\text{Eq. (16)} \]

where \(\gamma = \sqrt{1 + \frac{10f_{pc}}{f'_c}} = \sqrt{1 + \frac{10 \times 0}{5000}} = 1.0 \)

Since \(T_u > T_{\text{min}} \) torsion design is required.

4. Check the maximum torsional moment

\[T_{\text{max}} = \frac{1}{3} C \gamma f'_c \sqrt{\sum x^2y} \]
\[\sqrt{1 + \left(\frac{C \gamma V_u}{30C_tT_u} \right)^2} \]
\[= \frac{1}{3} \times 12.0 \times 1.0 \times \sqrt{5000} \times 14,336 \times \frac{1}{12,000} = 267.88 \text{ ft-kips} \]

\[\text{Eq. (17)} \]

where \(C = 12 - 10 \frac{f_{pc}}{f'_c} = 12 - 10 \frac{0}{f'_c} = 12.0 \)

This section is adequate for torsion as \(T_u < T_{\text{max}} \).

5. Calculate nominal torsional moment strength provided by concrete under pure torsion

\[T'_c = 0.8 \sqrt{f'_c} \sum x^2y (2.5 \gamma - 1.5) \]
\[= 0.8 \times \sqrt{5000} \times 14,336 \times (2.5 \times 1.0 - 1.5) \times \frac{1}{12,000} = 67.58 \text{ ft-kips} \]

\[\text{Eq. (18)} \]

6. Calculate the nominal shear strength provided by concrete without torsion
Example 13.1 (cont’d) Calculations and Discussion

\[V_c' = 2 \sqrt{f'_c b_w d} = 2 \times \sqrt{5000 \times 16 \times 45.5/1000} = 102.95 \text{ kips} \]

7. Calculate the nominal torsional moment strength \(T_c \) under combined loading

\[
T_c = \frac{T'_c}{\sqrt{1 + \left(\frac{T'_c}{V'_c} \frac{T'_u}{V'_u} \right)^2}} = \frac{67.58}{\sqrt{1 + \left(\frac{67.58}{102.95} \frac{127.2}{108.6} \right)^2}} = 53.58 \text{ ft-kips}
\]

\[
\text{Eq. (19)}
\]

8. Calculate the nominal shear strength \(V_c \) under combined loading

\[
V_c = \frac{V'_c}{\sqrt{1 + \left(\frac{V'_c}{T'_c} \frac{T'_u}{V'_u} \right)^2}} = \frac{102.95}{\sqrt{1 + \left(\frac{102.95}{67.58} \frac{108.6}{127.2} \right)^2}} = 62.75 \text{ kips}
\]

\[
\text{Eq. (20)}
\]

9. Compute transverse reinforcement for torsion

\[T_u = 108.6 \text{ ft-kips} > \phi T_c = 0.75 \times 53.58 = 40.19 \text{ ft-kips} \]

Area of transverse torsional reinforcement required over distance \(s \) equals

\[
\frac{A_t}{s} = \frac{T_s}{\alpha_t x_1 y_1 f_{yt}} = \frac{1094.7}{1.50 \times 13 \times 45 \times 60} = 0.0208 \text{ in.}^2 / \text{in. leg}
\]

\[
\text{Eq. (21)}
\]

where:

\[T_s = \frac{T_u}{\phi} - T_c = \frac{108.6}{0.75} - 53.58 = 91.22 \text{ ft-kips} = 1094.7 \text{ in.-kips} \]

\[\alpha_t = 0.66 + 0.33 \left(\frac{y_1}{x_1} \right) = 0.66 + 0.33 \left(\frac{45}{13} \right) = 1.80 > 1.50, \text{ use 1.50} \]

\[x_1 = 13 \text{ (shorter center-to-center dimension of a closed stirrup),} \]
\[y_1 = 45 \text{ (longer center-to-center dimension of a closed stirrup)} \]

10. Compute transverse reinforcement for shear

\[V_u = 127.2 \text{ kips} > \phi V_c = 0.75 \times 62.75 = 47.06 \text{ kips} \]
Area of transverse shear reinforcement required over distance s equals

$$\frac{A_v}{s} = \frac{V_s}{d f_y} = \frac{106.85}{45.5 \times 60} = 0.0391 \text{ in.}^2$$

where:

$$V_s = \frac{V_u}{\phi} - V_c = \frac{127.2}{0.75} - 62.75 = 106.85 \text{ kips}$$

11. Calculate the total transverse reinforcement

The total transverse reinforcement required for shear and torsion is equal to

$$\frac{A_v}{s} + 2 \frac{A_t}{s} = 0.0391 + 2 \times 0.0208 = 0.0807 \text{ in.}^2$$

which is more than the required minimum of

$$\left(\frac{A_v}{s} + 2 \frac{A_t}{s}\right)_{\min} = 50 \left(1 + \frac{f_{pc}}{f_c}\right) \frac{b_w}{f_y} = 50 \left(1 + \frac{12}{f_c}\right) \frac{16}{60,000} = 0.0133 \text{ in.}^2$$

$$\frac{200b_w}{f_y} = \frac{200 \times 16}{60,000} = 0.00533 \text{ in.}^2 / \text{in.}$$

The smaller minimum value of 0.0133 in.²/in. governs

Assuming a two leg stirrup, the area of one leg should be

$$\frac{A_v}{2s} + \frac{A_t}{s} = 0.0391/2 + 0.0208 = 0.0404 \text{ in.}^2 / \text{leg}$$

12. Calculate longitudinal torsional reinforcement

The area of longitudinal torsional reinforcement required is equal to

$$A_t = 2 A_t \left(\frac{x_1 + y_1}{s}\right) = 2 \frac{A_t}{s} (x_1 + y_1) = 2 \times 0.0208 \times (13+45) = 2.41 \text{ in.}^2$$

which is greater than the smaller of the following two values
Example 13.1 (cont’d) Calculations and Discussion

\[A_{\ell} = \left[\frac{400x}{f_y} \left(\frac{T_u}{T_u + \frac{V_u}{3C_t}} \right) - \frac{2A_t}{s} \right] (x_1 + y_1) \]

\[= \left[\frac{400 \times 16}{60,000} \left(\frac{1303.2}{1303.2 + \frac{127.2}{3 \times 0.05078}} \right) - 2 \times 0.0208 \right] (13 + 45) = 1.36 \text{ in.}^2 \]

\[A_{\ell} = \left[\frac{400x}{f_y} \left(\frac{T_u}{T_u + \frac{V_u}{3C_t}} \right) - \frac{50b_w}{f_yt} \right] (x_1 + y_1) \]

\[= \left[\frac{400 \times 16}{60,000} \left(\frac{1303.2}{1303.2 + \frac{127.2}{3 \times 0.05078}} \right) - 0.0133 \right] (13 + 45) = 3.00 \text{ in.}^2 \quad \text{Eq. (24)} \]
C. pcaBeam Solution

Torsional reinforcement requirements obtained from pcaBeam program are presented graphically in Fig. 13-6. The diagram represents combined shear and torsion capacity in terms of required and provided reinforcement area. The upper part of the diagram is related to the transverse reinforcement and shows that at the face of the support the required reinforcement is

\[\frac{A_v}{s} + 2 \frac{A_t}{s} = 0.074 \text{ in.}^2 \]

The lower part of the diagram is related to the torsional longitudinal reinforcement and shows that \(A_l = 3.30 \text{ in.}^2 \) is required for torsional reinforcement at the face of the support. As shown in Fig. (13-6), close to the supports, Eq. (11-22) governs the required amount of longitudinal torsional reinforcement. As expected, as \(T_u \) decreases, so does \(A_l \). However, where Eq. (11-24) for \(A_{l,\text{min}} \) starts to govern, the amount of longitudinal reinforcement increases, although \(T_u \) decreases toward the midspan. This anomaly occurs where the minimum required transverse reinforcement governs.

Torsional reinforcement requirements are compared in Table 13-1. Transverse reinforcement requirements are in good agreement. Higher differences are observed for longitudinal reinforcement.

<table>
<thead>
<tr>
<th>Required reinforcement</th>
<th>ACI 318-05</th>
<th>Zia-Hsu</th>
<th>pcaBeam</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(\frac{A_v}{s} + 2 \frac{A_t}{s} \right) \text{ in.}^2 \text{ in.})</td>
<td>0.074</td>
<td>0.081</td>
<td>0.074</td>
</tr>
<tr>
<td>(A_\ell \text{ in.}^2)</td>
<td>3.20</td>
<td>2.41</td>
<td>3.30</td>
</tr>
</tbody>
</table>

Table 13-1 Comparison of required torsional reinforcement
Figure 13-6 Torsional Reinforcement Requirements Obtained from pcaBeam Program
Update for the '08 Code

The upper limit on shear transfer strength is increased based on experimental evidence (11.6.5). The 2008 Code also provides a more detailed method for determining the lightweight modifier λ for concrete densities which fall between those of all lightweight and normalweight (controlled density) concrete.

Background

Provisions for shear friction were introduced in ACI 318-71. With the publication of ACI 318-83, the shear friction section was completely rewritten to expand the shear-friction concept to include applications (1) where the shear-friction reinforcement is placed at an angle other than 90 degrees to the shear plane, (2) where concrete is cast against concrete not intentionally roughened, and (3) with lightweight concrete. In addition, a performance statement was added to allow “any other shear-transfer design methods” substantiated by tests. Starting with the 2008 Code, the provisions for shear-friction design are updated to include higher potential maximum limits on the shear transfer strength than earlier editions. The new limits apply to normalweight concrete placed monolithically or placed against hardened concrete with the surface intentionally roughened. Test data have shown that a higher upper limit, than was allowed prior to the 2008 Code, can be used to compute the shear friction strength for concrete with f'_c greater than 4000 psi. It is noteworthy that 11.8 refers to 11.6 for the direct shear-transfer in brackets and corbels; see Part 15.

11.6 Shear-Friction

The shear-friction concept provides a convenient tool for the design of members for direct shear where it is inappropriate to design for diagonal tension, as in precast connections, and in brackets and corbels. The concept is simple to apply and allows the designer to visualize the structural action within the member or joint. The approach is to assume that a crack has formed at an expected location, as illustrated in Fig. 14-1. As slip begins to occur along the crack, the roughness of the crack surface forces the opposing faces of the crack to separate. This separation is resisted by reinforcement (A_{vf}) across the assumed crack. The tensile force ($A_{vf}f_y$) developed in the reinforcement by this strain induces an equal and opposite normal clamping force, which in turn generates a frictional force ($\mu A_{vf}f_y$) parallel to the crack to resist further slip.
11.6.1 Applications

Shear-friction design is to be used where direct shear is being transferred across a given plane. Situations where shear-friction design is appropriate include the interface between concretes cast at different times, an interface between concrete and steel, and connections of precast constructions, etc. Example locations of direct shear transfer and potential cracks for application of the shear-friction concept are shown in Fig. 14-2 for several types of members. Successful application of the concept depends on proper selection of location of the assumed slip or crack. In typical end or edge bearing applications, the crack tends to occur at an angle of about 20 degrees to the vertical (see Example 14.2).

![Figure 14-2 Applications of the Shear-Friction Concept and Potential Crack Locations](image)

11.6.3 Shear-Transfer Design Methods

The shear-friction design method presented in 11.6.4 is based on the simplest model of shear-transfer behavior, resulting in a conservative prediction of shear-transfer strength. Other more comprehensive shear-transfer relationships provide closer predictions of shear-transfer strength. The performance statement of 11.6.3 “…any other shear-transfer design methods…” includes the other methods within the scope and intent of 11.6. However, it should be noted that the provisions of 11.6.6 through 11.6.10 apply to whatever shear-transfer method is used. One of the more comprehensive methods is outlined in R11.6.3. Application of the “Modified Shear-Friction Method” is illustrated in Part 15, Example 15.2. The 1992 edition of the code introduced in Chapter 17 a modified shear-friction equation (17.5.3.3). It applies to the interface shear between precast concrete and cast-in-place concrete.

11.6.4 Shear-Friction Design Method

As with the other shear design applications, the code provisions for shear-friction are presented in terms of the nominal shear-transfer strength V_n for direct application in the basic shear strength relation:
Design shear-transfer strength \(\geq \) Required shear-transfer strength
\[
\phi V_n \geq V_u \hspace{1cm} \text{Eq. (11-1)}
\]

Note that \(\phi = 0.75 \) for shear and torsion (9.3.2.3). Furthermore, it is recommended that \(\phi = 0.75 \) be used for all design calculations involving shear-friction, where shear effects predominate. For example, 11.8.3.1 specifies the use of \(\phi = 0.75 \) for all design calculations in accordance with 11.8 (brackets and corbels). The nominal shear strength \(V_n \) is computed as:
\[
V_n = A_{vf} f_y \mu \hspace{1cm} \text{Eq. (11-25)}
\]

Combining Eqs. (11-1) and (11-25), the required shear-transfer strength for shear-friction reinforcement perpendicular to the shear plane is:
\[
V_u \leq \phi A_{vf} f_y \mu
\]

The required area of shear-friction reinforcement, \(A_{vf} \), can be computed directly from:
\[
A_{vf} = \frac{V_u}{f_y \mu}
\]

The condition where shear-friction reinforcement crosses the shear-plane at an angle \(\alpha \) other than 90 degrees is illustrated in Fig. 14-3. The tensile force \(A_{vf} f_y \) is inclined to the crack and must be resolved into two components: (1) a clamping component \(A_{vf} f_y \sin \alpha \) with an associated frictional force \(\mu A_{vf} f_y \sin \alpha \), and (2) a component parallel to the crack that directly resists slip equal to \(A_{vf} f_y \cos \alpha \). Adding the two components resisting slip, the nominal shear-transfer strength becomes:
\[
V_n = \mu A_{vf} f_y \sin \alpha + A_{vf} f_y \cos \alpha = A_{vf} f_y (\mu \sin \alpha + \cos \alpha) \hspace{1cm} \text{Eq. (11-26)}
\]

Substituting this into Eq. (11-1):
\[
V_u \leq \phi [\mu A_{vf} f_y \sin \alpha + A_{vf} f_y \cos \alpha]
\]

For shear reinforcement inclined to the crack, the required area of shear-friction reinforcement, \(A_{vf} \), can be computed directly from:
\[
A_{vf} = \frac{V_u}{f_y \mu (\mu \sin \alpha + \cos \alpha)}
\]
Note that Eq. (11-26) applies only when the shear force V_u produces tension in the shear-friction reinforcement.

The shear-friction method assumes that all shear resistance is provided by friction between crack faces. The actual mechanics of resistance to direct shear are more complex, since dowel action and the apparent cohesive strength of the concrete both contribute to direct shear strength. It is, therefore, necessary to use artificially high values of the coefficient of friction μ in the direct shear-friction equations so that the calculated shear strength will be in reasonable agreement with test results. Use of these high coefficients gives predicted strengths that are a conservative lower bound to test data, as shown in Fig. 14-4. The modified shear-friction design method given in R11.6.3 is one of several more comprehensive methods which provide closer estimates of the shear-transfer strength.

Figure 14-4 Effect of Shear-Friction Reinforcement on Shear Transfer Strength ($f'_c = 3000$ psi)

11.6.4.3 Coefficient of Friction—
The “effective” coefficients of friction, μ, for the various interface conditions include a parameter λ which accounts for the somewhat lower shear strength of all-lightweight and sand-lightweight concretes. For example, the μ value for all lightweight concrete ($\lambda = 0.75$) placed against hardened concrete not intentionally roughened is 0.6 (0.75) = 0.45. The coefficient of friction for different interface conditions is as follows:

- Concrete placed monolithically ... 1.4λ
- Concrete placed against hardened concrete with surface intentionally roughened as specified in 11.6.9 1.0λ
- Concrete placed against hardened concrete not intentionally roughened ... 0.6λ
- Concrete anchored to as-rolled structural steel by headed studs or by reinforcing bars (see 11.6.10) 0.7λ

where $\lambda = 1.0$ for normalweight concrete, 0.75 for “all lightweight” concrete. Otherwise λ shall be determined based on volumetric proportions of lightweight and normalweight aggregates as specified in 8.6.1, but must not exceed 0.85.
11.6.5 Maximum Shear Transfer Strength

For normalweight concrete either placed monolithically or placed against hardened concrete with the surface intentionally roughened, as specified in 11.6.9, the shear transfer strength \(V_n \) cannot exceed the smallest of \(0.2 f'_c \), \((480 + 0.08 f'_c) \), and 1600 psi times the area of concrete section resisting the shear transfer. The upper bound limit on \(V_n \) versus \(f'_c \) is indicated in Fig. 14-5. In higher-strength concretes, additional effort may be required to achieve the roughness specified in 11.6.9.

For all other cases, the shear transfer strength \(V_n \) cannot exceed the smaller of \(0.2 f'_c \) and 800 psi times the area of concrete section resisting the shear transfer. Also, for lightweight concretes, 11.8.3.2.2 limits the shear transfer strength \(V_n \) along the shear plane for design applications with low shear span-to-depth ratios \(a_v/d \), such as brackets and corbels. This further restriction on lightweight concrete is illustrated in Example 14.1.

Where concretes of different strengths are cast against each other, the value for \(f'_c \) used to evaluate \(V_n \) shall be that of the lower-strength concrete.

\[\begin{align*}
V_n(\text{max}) & = \min(0.2 f'_c, 800 \times \text{area}) \\
V_n(\text{max}) & = \min(0.2 f'_c, (480 + 0.08 f'_c)) \\
V_n(\text{max}) & = \min(0.2 f'_c, 1600 \times \text{area})
\end{align*} \]

\[\begin{align*}
\text{Start at } f'_c & = 2500 \text{ psi} \\
\text{Limit} & = 1600 \text{ psi}
\end{align*} \]

11.6.7 Normal Forces

Equations (11-25) and (11-26) assume that there are no forces other than shear acting on the shear plane. A certain amount of moment is almost always present in brackets, corbels, and other connections due to eccentricity of loads or applied moments at connections. In case of moments acting on a shear plane, the flexural tension stresses and flexural compression stresses are in equilibrium. There is no change in the resultant compression \(A_{nf} f'_y \) acting across the shear plane and the shear-transfer strength is not changed. It is therefore not necessary to provide additional reinforcement to resist the flexural tension stresses, unless the required flexural tension reinforcement exceeds the amount of shear-transfer reinforcement provided in the flexural tension zone.

Joints may also carry a significant amount of tension due to restrained shrinkage or thermal shortening of the connected members. Friction of bearing pads, for example, can cause appreciable tensile forces on a corbel supporting a member subject to shortening. Therefore, it is recommended, although not generally required, that the member be designed for a minimum direct tensile force of at least \(0.2 V_u \) in addition to the shear. This minimum force is required for design of connections such as brackets or corbels (see 11.8.3.4), unless the actual force is accurately known. Reinforcement must be provided for direct tension according to 11.6.7, from
As \[A_s = \frac{N_{uc}}{\phi f_y} \]

where \(N_{uc} \) is the factored tensile force.

Since direct tension perpendicular to the assumed crack (shear plane) detracts from the shear-transfer strength, it follows that compression will add to the strength. Section 11.6.7 acknowledges this condition by allowing a “permanent net compression” to be added to the shear-friction clamping force, \(A_v f_y \). It is recommended, although not required, to use a reduction factor of 0.9 for strength contribution from such compressive loads.

11.6.8 — 11.6.10 Additional Requirements

Section 11.6.8 requires that the shear-friction reinforcement be “appropriately placed” along the shear plane. Where no moment acts on the shear plane, uniform distribution of the bars is proper. Where a moment exists, the reinforcement should be distributed in the flexural tension zone.

Reinforcement should be adequately embedded on both sides of the shear plane to develop the full yield strength of the bars. Since space is limited in thin walls, corbels, and brackets, it is often necessary to use special anchorage details such as welded plates, angles, or cross bars. Reinforcement should be anchored in confined concrete. Confinement may be provided by beam or column ties, “external” concrete, or special added reinforcement.

In 11.6.9, if coefficient of friction \(\mu \) is taken equal to 1.0, concrete at the interface must be roughened to a full amplitude of approximately 1/4 in. This can be accomplished by raking the plastic concrete, or by bushhammering or chiseling hardened concrete surfaces.

A final requirement of 11.6.10, often overlooked, is that structural steel interfaces must be clean and free of paint. This requirement is based on tests to evaluate the friction coefficient for concrete anchored to unpainted structural steel by studs or reinforcing steel (\(\mu = 0.7 \)). Data are not available for painted surfaces. If painted surfaces are to be used, a lower value of \(\mu \) would be appropriate.

DESIGN EXAMPLES

In addition to Examples 14.1 and 14.2 of this part, shear-friction design is also illustrated for direct shear-transfer in brackets and corbels (see Part 15), horizontal shear transfer between composite members (see Part 12) and at column/footing connections (see Part 22).
Example 14.1—Shear-Friction Design

A tilt-up wall panel is subject to the factored seismic shear forces shown below. Design the shear anchors assuming lightweight concrete, $w_c = 95$ pcf. $f'_c = 4000$ psi and $f_y = 60,000$ psi.

![Diagram showing shear forces and anchor design](image)

Calculations and Discussion

1. Design anchor steel using shear-friction method.

 Center plate is most heavily loaded. Try 2 in. × 4 in. × 1/4 in. plate.

 \[V_u = 3570 \text{ lb} \]

 \[V_u \leq \phi V_n \quad \text{Eq. (11-1)} \]

 \[V_u \leq \phi (A_v f_y \mu) \quad \text{Eq. (11-25)} \]

 For unpainted steel in contact with all lightweight concrete (95 pcf):

 \[\mu = 0.7 \lambda = 0.7 \times 0.75 = 0.525 \quad \text{11.6.4.3} \]

 \[\phi = 0.75 \quad \text{9.3.2.3} \]

 Solving for $A_v = \frac{V_u}{\phi f_y \mu} = \frac{3570}{0.75 \times 60,000 \times 0.525} = 0.15 \text{ in}^2$

 Use 2-No. 3 bars per plate \(A_v = 0.22 \text{ in}^2 \)

 Note: Weld bars to plates to develop full f_y. Length of bar must be adequate to fully develop bar.
Check maximum shear-transfer strength permitted for connection. For lightweight aggregate concrete:

\[
V_{n,max} = \left[0.2 - 0.07 \left(\frac{a_v}{d} \right) \right] f'_c b_w d \quad \text{or} \quad \left[800 - 280 \left(\frac{a_v}{d} \right) \right] b_w d
\]

For the purposes of the above equations, assume \(a_v = \) thickness of plate = 0.25 in., and \(d = \) distance from edge of plate to center of farthest attached rebar = 2.5 in.:

\[
\frac{a_v}{d} = \frac{0.25}{2.5} = 0.1
\]

Assume, for the purposes of the above equations, that \(b_w d = A_c = \) contact area of plate:

\[
b_w d = A_c = 2 \times 4 = 8 \text{ in.}^2
\]

\[
V_{n,max} = [0.2 - 0.07 (0.1)] (4000) (8) = 6176 \text{ lb}
\]

or \(V_n = [800 - (280 \times 0.1)] (8) = 6176 \text{ lb} \)

\[
\phi V_{n,max} = 0.75 (6176) = 4632 \text{ lb}
\]

\[
V_u = 3570 \text{ lb} \leq \phi V_{n,max} = 4632 \text{ lb} \quad \text{O.K.}
\]

Use 2 in. \(\times \) 4 in. \(\times \) \(\frac{1}{4} \) in. plates, with 2-No. 3 bars.
Example 14.2—Shear-Friction Design (Inclined Shear Plane)

For the normalweight reinforced concrete pilaster beam support shown, design for shear transfer across the potential crack plane. Assume a crack at an angle of about 20 degrees to the vertical, as shown below. Beam reactions are \(D = 25 \) kips, \(L = 30 \) kips. Use \(T = 20 \) kips as an estimate of shrinkage and temperature change effects. \(f'_c = 3500 \) psi and \(f_y = 60,000 \) psi.

![Diagram showing the pilaster beam support and potential crack plane.]

Calculations and Discussion

1. Factored loads to be considered:

 Beam reaction \(R_u = 1.2D + 1.6L = 1.2 (25) + 1.6 (30) = 30 + 48 = 78 \) kips \(Eq. \ (9-2) \)

 Shrinkage and temperature effects \(T_u = 1.6 \) (20) = 32 kips (governs)
 but not less than \(0.2 \) \(R_u \) = 0.2 (78) = 15.6 kips \(11.8.3.4 \)

 Note that the live load factor of 1.6 is used with \(T \), due to the low confidence level in determining shrinkage and temperature effects occurring in service. Also, a minimum value of 20 percent of the beam reaction is considered (see 11.8.3.4 for corbel design).

2. Evaluate force conditions along potential crack plane.

 Direct shear transfer force along shear plane:
 \[
 V_u = R_u \sin \alpha + T_u \cos \alpha = 78 \, (\sin70^\circ) + 32 \, (\cos70^\circ) \\
 = 73.3 + 11.0 = 84.3 \text{ kips}
 \]

 Net tension (or compression) across shear plane:
 \[
 N_u = T_u \sin \alpha - R_u \cos \alpha = 32 \, (\sin70^\circ) - 78 \, (\cos70^\circ) \\
 = 30.1 - 26.7 = 3.4 \text{ kips (net tension)}
 \]
Example 14.2 (cont’d) Calculations and Discussion

If the load conditions were such as to result in net compression across the shear plane, it still should not have been used to reduce the required A_{vf}, because of the uncertainty in evaluating the shrinkage and temperature effects. Also, 11.6.7 permits a reduction in A_{vf} only for “permanent” net compression.

3. Shear-friction reinforcement to resist direct shear transfer. Use μ for concrete placed monolithically.

$$A_{vf} = \frac{V_u}{\phi f_y (\mu \sin \alpha + \cos \alpha)}$$

$$\mu = 1.4 \lambda = 1.4 \times 1.0 = 1.4$$

$$A_{vf} = \frac{84.3}{0.75 \times 60 (1.4 \sin 70^\circ + \cos 70^\circ)} = 1.13 \text{ in.}^2$$

[\mu from 11.6.4.3]

4. Reinforcement to resist net tension.

$$A_n = \frac{N_u}{\phi f_y \sin \alpha} = \frac{3.4}{0.75 \times 60 \sin 70^\circ} = 0.08 \text{ in.}^2$$

Since failure is primarily controlled by shear, use $\phi = 0.75$ (see 11.8.3.1 for corbel design).

5. Add A_{vf} and A_n for total area of required reinforcement. Distribute reinforcement uniformly along the potential crack plane.

$$A_s = 1.13 + 0.08 = 1.21 \text{ in.}^2$$

Use No. 3 closed ties (2 legs per tie)

Number required = $1.21 / [2 (0.11)] = 5.5$, say 6.0 ties

Ties should be distributed along length of potential crack plane; approximate length = $5/(\tan 20^\circ) = 14$ in.

![Wall reinforcement diagram]
Example 14.2 (cont’d) Calculations and Discussion

6. Check reinforcement requirements for dead load only plus shrinkage and temperature effects. Use 0.9 load factor for dead load to maximize net tension across shear plane.

\[R_u = 0.9D = 0.9 \times 25 = 22.5 \text{ kips}, \quad T_u = 32 \text{ kips} \]

\[V_u = 22.5 \times \sin(70^\circ) + 32 \times \cos(70^\circ) = 21.1 + 11.0 = 32.1 \text{ kips} \]

\[N_u = 32 \times \sin(70^\circ) - 22.5 \times \cos(70^\circ) = 30.1 - 7.7 = 22.4 \text{ kips (net tension)} \]

\[A_{vf} = \frac{32.1}{0.75 \times 60 \times (1.4 \times \sin(70^\circ) + \cos(70^\circ))} = 0.43 \text{ in.}^2 \]

\[A_n = \frac{22.4}{0.75 \times 60 \times \sin(70^\circ)} = 0.53 \text{ in.}^2 \]

\[A_s = 0.43 + 0.53 = 0.96 \text{ in.}^2 < 1.21 \text{ in.}^2 \]

Therefore, original design for full dead load + live load governs.

7. Check maximum shear-transfer strength permitted

\[V_{n(max)} \text{ must not exceed the smallest of:} \]

\[\left[0.2f_c' A_c \right], \quad \left[(480 + 0.08f_c') A_c \right], \quad \text{and} \quad 1600 A_c \]

\[11.6.5 \]

Taking the width of the pilaster to be 16 in.:

\[A_c = \frac{5}{\sin(20^\circ)} \times 16 = 234 \text{ in.}^2 \]

\[V_{n(max)} = 0.2 \times (3500) \times (234) / 1000 = 164 \text{ kips} \quad \text{(governs)} \]

\[V_{n(max)} = (480 + (0.08)(3500))(234) / 1000 = 178 \text{ kips} \]

\[V_{n(max)} = 1600 (234) / 1000 = 374 \text{ kips} \]

\[\phi V_{n(max)} = 0.75 (164) = 123 \text{ kips} \]

\[V_u = 84.3 \text{ kips} \leq \phi V_{n(max)} = 123 \text{ kips} \quad \text{O.K.} \]

\[\text{Eq. (11-1)} \]
Blank
Brackets, Corbels and Beam Ledges

UPDATE FOR ’08 CODE

In the 2008 code, the provisions for brackets and corbels are updated to recognize higher permissible maximum limits on the shear strength, V_n, for normalweight concrete.

GENERAL CONSIDERATIONS

Provisions for the design of brackets and corbels were introduced in ACI 318-71. These provisions were derived based on extensive test results. The 1977 edition of the code permitted design of brackets and corbels based on shear friction, but maintained the original design equations. The provisions were completely revised in ACI 318-83, eliminating the empirical equations of the 1971 and 1977 codes, and simplifying design by using the shear-friction method exclusively for nominal shear-transfer strength V_n. From 1971 through 1999 code, the provisions were strictly limited to shear span-to-depth ratio a_v/d less than or equal to 1.0. Since 2002, the code allows the use of the provisions of Appendix A, Strut-and-tie models, to design brackets and corbels with a_v/d ratios less than 2.0, while the provisions of 11.8 continue to apply only for a_v/d ratios less than or equal to 1.0.

11.8 PREVISIONS FOR BRACKET AND CORBELS

The design procedure for brackets and corbels recognizes the deep beam or simple truss action of these short-shear-span members, as illustrated in Fig. 15-1. Four potential failure modes shown in Fig. 15-1 shall be prevented: (1) Direct shear failure at the interface between bracket or corbel and supporting member; (2) Yielding of the tension tie due to moment and direct tension; (3) Crushing of the internal compression “strut;” and (4) Localized bearing or shear failure under the loaded area.

![Figure 15-1 Structural Action of Corbel](image-url)
For brackets and corbels with a shear span-to-depth ratio a_v/d less than 2, the provision of Appendix A may be used for design. The provisions of 11.8.3 and 11.8.4 are permitted with $a_v/d \leq 1$ and the horizontal force $N_{uc} \leq V_u$.

Regardless which design method is used, the provisions of 11.8.2, 11.8.3.2.1, 11.8.3.2.2, 11.8.5, 11.8.6, and 11.8.7 must be satisfied.

When a_v/d is greater than 2.0, brackets and corbels shall be designed as cantilevers subjected to the applicable provisions of flexure and shear.

11.8.1 - 11.8.5 Design Provisions

The critical section for design of brackets and corbels is taken at the face of the support. This section should be designed to resist simultaneously a shear V_u, a moment $M_u = V_u a_v + N_{uc} (h - d)$, and a horizontal tensile force N_{uc} (11.8.3). The value of N_{uc} must be not less than $0.2V_u$, unless special provisions are made to avoid tensile forces (11.8.3.4). This minimum value of N_{uc} is established to account for the uncertain behavior of a slip joint and/or flexible bearings. Also, the tension force N_{uc} typically is due to indeterminate causes such as restrained shrinkage or temperature stresses. In any case it shall be treated as a live load with the appropriate load factor (11.8.3.4). Since corbel and bracket design is predominantly controlled by shear, 11.8.3.1 specifies that the strength reduction factor ϕ shall be taken equal to 0.75 for all design conditions.

For normalweight concrete, shear strength V_n is limited to the smallest of $0.2f'_c b_w d$, $(480 + 0.08f'_c) b_w d$, and $1600b_w d$ (11.8.3.2.1). For lightweight or sand-lightweight concrete, V_n is limited by the provisions of 11.8.3.2.2, which are more restrictive than those for normal weight concrete. Tests show that for lightweight concrete, V_n is a function of both f'_c and a_v/d.

For brackets and corbels, the required reinforcement is:

- $A_{vf} =$ area of shear-friction reinforcement to resist direct shear V_u, computed in accordance with 11.6 (11.8.3.2).
- $A_f =$ area of flexural reinforcement to resist moment $M_u = V_u a_v + N_{uc} (h - d)$, computed in accordance with 10.2 and 10.3 (11.8.3.3).
- $A_n =$ area of tensile reinforcement to resist direct tensile force N_{uc}, computed in accordance with 11.8.3.4.

Actual reinforcement is to be provided as shown in Fig. 15-2 and includes:

- $A_{sc} =$ primary tension reinforcement
- $A_h =$ shear reinforcement (closed stirrups or ties)

This reinforcement is provided such that total amount of reinforcement $A_{sc} + A_h$ crossing the face of support is the greater of (a) $A_{vf} + A_n$, and (b) $3A_f/2 + A_n$ to satisfy criteria based on test results.15.1

If case (a) controls (i.e., $A_{vf} > 3A_f/2$):

- $A_{sc} = A_{vf} + A_n - A_h$
- $= A_{vf} + A_n - 0.5 (A_{sc} - A_n)$

and $A_{sc} = 2A_{vf}/3 + A_n$ (primary tension reinforcement)

then $A_h = (0.5) (A_{sc} - A_n) = A_{vf}/3$ (closed stirrups or ties)
If case (b) controls (i.e., $3A_f/2 > A_{yf}$):

$$A_{sc} = 3A_f/2 + A_n - A_h$$

$$= 3A_f/2 + A_n - 0.5 (A_{sc} - A_n)$$

and $A_{sc} = A_f + A_n$ (primary tension reinforcement)

then $A_h = (0.5) (A_{sc} - A_n) = A_f/2$ (closed stirrups or ties)

In both cases (a) and (b), $A_h = (0.5) (A_{sc} - A_n)$ determines the amount of shear reinforcement to be provided as closed stirrups parallel to A_{sc} and uniformly distributed within $(2/3)d$ adjacent to A_{sc} per 11.8.4.

A minimum ratio of primary tension reinforcement $\rho_{min} = 0.04f'_c/f_y$ is required to ensure ductile behavior after cracking under moment and direct tensile force (11.8.5).

BEAM LEDGES

Beam with ledges must be designed for the overall member effects of flexure, shear, axial forces, and torsion, as well as for local effects in the vicinity of the ledge (Refs. 15.2-15.6). The design of beam ledges is not specifically addressed by the code. This section addresses only local failure modes and reinforcement requirements to prevent such failure. Design for global effects (flexure, shear, and torsion) must also be considered, and is addressed in other Parts of this document.

Design of beam ledges is somewhat similar to that of a bracket or corbel with respect to loading conditions. Additional design considerations and reinforcement details need to be considered in beam ledges. Accordingly, even though not specifically addressed by the code, special design of beam ledges is included in this Part. Some failure modes discussed above for brackets and corbels are also shown for beam ledges in Fig. 15-3. However, with beam ledges, two additional failure modes must be considered (see Fig. 15-3): (5) separation between ledge and beam web near the top of the ledge in the vicinity of the ledge load and (6) punching shear. The vertical load applied to the ledge is resisted by a compression strut. In turn, the vertical component of the inclined compression strut must be picked up by the web stirrups (stirrup legs A_v adjacent to the side face of the web) acting as “hanger” reinforcement to carry the ledge load to the top of beam. At the reentrant corner of the ledge to web intersection, a diagonal crack would extend to the stirrup and run downward next to the stirrup. Accordingly, a slightly larger shear span, a_y, is used to compute the moment due to V_u. Therefore, the critical section for moment is taken at center of beam stirrups, not at face of beam. Also, for beam ledges, the internal moment arm should not be taken greater than $0.8h$ for flexural strength.
The design procedure described in this section is based on investigations performed by Mirza and Furlong (Refs. 15.3 to 15.5). The key information needed by the designer is establishing the effective width of ledge for each of the potential failure modes. These effective widths were determined by Mirza and Furlong through analytical investigations, with results verified by large scale testing. Design of beam ledges can also be performed by the strut-and-tie procedure (refer to Part 17 for discussion).

Design to prevent local failure modes requires consideration of the following actions:

1. Shear V_u
2. Horizontal tensile force N_{uc} greater or equal to $0.2V_u$, but not greater than V_u.
3. Moment $M_u = V_uaf + N_{uc}(h-d)$

Reinforcement for the different failure modes is determined based on the effective widths or critical sections discussed below. In all cases, the required strengths (V_u, M_u, or N_{uc}) should be less than or equal to the design strengths (ϕV_n, ϕM_n, or ϕN_{nc}). The strength reduction factor ϕ is taken equal to 0.75 for all actions, as for brackets and corbels.

a. Shear Friction

Parameters affecting the determination of the shear friction reinforcement are illustrated in Fig. 15-4. As of 2008 the upper bound limits on shear friction have increased.

For normalweight concrete (similar to 11.8.3.2.1):

$$V_u \leq \phi(0.2f_c')(W_{eff})d$$
$$\leq \phi(480+0.08f_c')(W_{eff})d$$
$$\leq \phi1600(W_{eff})d$$
$$\leq \phi\mu A_{fy}f_y$$

For all-lightweight or sand-lightweight concrete (similar to 11.8.3.2.2):

$$V_u \leq \phi(0.2-0.07a_v/d)(f_c')(W_{eff})d$$
$$\leq \phi(800-200a_v/d)(f_c')(W_{eff})d$$
$$\leq \phi\mu A_{fy}f_y$$
Where
\[d = \text{effective depth of ledge from centroid of top layer of ledge transverse reinforcement to the bottom of the ledge (see Fig. 15-4)} \]
\[\mu = \text{coefficient of friction per 11.6.4.3} \]
\[W_{\text{eff}} = \text{effective width of ledge per supported load} \]

For typical conditions:
\[W_{\text{eff}} \leq (W + 4a_v) \]
\[\leq S \]

For ledge end conditions:
\[W_{\text{eff}} \leq 2c \]
\[\leq (W + 4a_v) \]
\[\leq S \]

Where \(c \) is the distance from center of end bearing to the end of the ledge and \(S \) is the distance between centers of adjacent bearings on the same ledge.

At ledge ends, \(c \) is the distance from center of end bearing to the end of the ledge; however, \(2c \) must be less than or equal to the smaller of \(W_{\text{eff}} \) and \(S \).

![Figure 15-4 Shear Friction](image)

b. Flexure

Conditions for flexure and direct tension are shown in Figure 15-5.
\[V_u a_f + N_{uc} (h-d) \leq \phi A_f f_y (jd) \]
\[N_{uc} \leq \phi A_f f_y \]

The primary tension reinforcement \(A_{sc} \) should equal the greater of \((A_f + A_n) \) or \((2A_v f_y / 3 + A_n) \). If \((W + 5a_f) > S \), reinforcement should be placed over distance \(S \). At ledge ends, reinforcement should be placed over distance \((2c) \), where \(c \) is the distance from the center of the end bearing to the end of the ledge, but not more than \(1/2 (W + 5a_f) \). Reference 15.5 recommends taking \(jd = 0.8d \).
c. Punching Shear

Critical perimeter for punching shear design is illustrated in Fig. 15-6.

\[V_u \leq 4\phi \lambda \sqrt{f_c} (W + 2L + 2d_f) d_f \]

where \(d_f \) = effective depth of ledge from top of ledge to center of bottom transverse reinforcement (see Fig. 15-6)

\(\lambda \) = modification factor per 8.6.1

Truncated pyramids from adjacent bearings should not overlap. At ledge ends,

\[V_u \leq 4\phi \lambda \sqrt{f_c} (W + L + d_f) d_f \]

Figure 15-6 Punching Shear

d. Hanger Reinforcement

Hanger reinforcement should be proportioned to satisfy strength. Furthermore, serviceability criteria should be considered when the ledge is subjected to a large number of live load repetitions, as in parking garages and bridges. As shown in Figure 15-7, strength is governed by

\[V_u \leq \phi \frac{A_v f_y}{s} S \]
where \(A_v \) = area of one leg of hanger reinforcement

\[S = \text{distance between ledge loads} \]

\[s = \text{spacing of hanger reinforcement} \]

Serviceability is governed by

\[V \leq \frac{A_v \left(0.5f_y\right)}{s} \left(W + 3a_v\right) \]

where \(V \) is the reaction due to service dead load and live load.

\[\text{Figure 15-7 Hanger Reinforcement to Prevent Separation of Ledge from Stem} \]

In addition, hanger reinforcement in inverted tees is governed by consideration of the shear failure mode depicted in Figure 15-8:

\[2V_u \leq 2 \left[2\phi \lambda \sqrt{f_c} b_f d_f'\right] + \phi \frac{A_v f_y}{s} \left(W + 2d_f'\right) \]

where \(d_f' = \text{flange depth from top of ledge to center of bottom longitudinal reinforcement} \) (see Fig. 15-8)

\[\text{Figure 15-8 Hanger Reinforcement to Prevent Partial Separation of Ledge from Stem and Shear of the Ledge} \]

11.8.6 Development and Anchorage of Reinforcement

All reinforcement must be fully developed on both sides of the critical section. Anchorage within the support is usually accomplished by embedment or hooks. Within the bracket or corbel, the distance between load and support face is usually too short, so that special anchorage must be provided at the outer ends of both primary reinforce-
ment A_{sc} and shear reinforcement A_h. Anchorage of A_{sc} is normally provided by welding an anchor bar of equal size across the ends of A_{sc} [Fig. 15-9(a)] or welding to an armor angle. In the former case, the anchor bar must be located beyond the edge of the loaded area. Where anchorage is provided by a hook or a loop in A_{sc}, the load must not project beyond the straight portion of the hook or loop [Fig. 15-9(b)]. In beam ledges, anchorage may be provided by a hook or loop, with the same limitation on the load location (Fig. 15-10). Where a corbel or beam ledge is designed to resist specific horizontal forces, the bearing plate should be welded to A_{sc}.

![Figure 15-9 Anchorage Details Using (a) Cross-Bar Weld and (b) Loop Bar Detail](image)

The closed stirrups or ties used for A_h must be similarly anchored, usually by engaging a “framing bar” of the same diameter as the closed stirrups or ties (see Fig. 15-2).

![Figure 15-10 Bar Details for Beam Ledge](image)

15-8
REFERENCES

Example 15.1—Corbel Design

Design a corbel with minimum dimensions to support a beam as shown below. The corbel is to project from a 14-in. square column. Restrained creep and shrinkage create a horizontal force of 20 kips at the welded bearing.

\[f'_{c} = 5000 \text{ psi (normalweight)} \]
\[f_{y} = 60,000 \text{ psi} \]

Beam reactions:

DL = 24 kips
LL = 37.5 kips
T = 20 kips

Calculations and Discussion

\[V_{u} = 1.2 (24) + 1.6 (37.5) = 88.8 \text{ kips} \]

\[V_{u} = \phi P_{nb} = \phi (0.85 f'_{c} A_{1}) \]

\[\phi = 0.65 \]

\[88.8 = 0.65 (0.85 \times 5 \times A_{1}) = 2.763 A_{1} \]

\[A_{1} = \frac{88.8}{2.763} = 32.14 \text{ in}^2 \]

Bearing length = \(\frac{32.14}{14} = 2.30 \text{ in.} \)

Use 2.5 in. \times 14 in. bearing plate.

2. Determine shear span ‘a_v’ with 1 in. max. clearance at beam end. Beam reaction is assumed at third point of bearing plate to simulate rotation of supported girder and triangular distribution of stress under bearing pad.

\[a_{v} = \frac{2}{3} (2.5) + 1.0 = 2.67 \text{ in.} \]

Use a_v = 3 in. maximum.

Detail cross bar just outside outer bearing edge.
3. Determine total depth of corbel based on limiting shear-transfer strength V_n.

$$V_n = \text{min}(1600b_wd, (480 + 0.08 \times 5000) b_wd)$$

Thus, $V_u \leq \phi V_n = \phi(880b_wd)$

Required $d = \frac{88000}{0.75 \times 880 \times 14} = 9.6\text{ in.}$

Assuming No. 8 bar, 3/8 in. steel plate, plus tolerance,

$h = 9.6 + 1.0 = 10.6\text{ in.}$ \quad Use $h = 12\text{ in.}$

For design, $d = 12.0 - 1.0 = 11.0\text{ in.}$

$$\frac{a_v}{d} = 0.27 < 1 \quad \text{O.K.}$$

Also, $N_{uc} = 1.6 \times 20 = 32.0\text{ kips}$ (treat as live load)

$N_{uc} < V_u = 88.8\text{ kips} \quad \text{O.K.}$

4. Determine shear-friction reinforcement A_{vf}.

$$A_{vf} = \frac{V_u}{\phi f_y \mu} = \frac{88.8}{0.75 \times 60 \times (1.4 \times 1)} = 1.41\text{ in.}^2$$

5. Determine direct tension reinforcement A_n.

$$A_n = \frac{N_{uc}}{\phi f_y} = \frac{32.0}{0.75 \times 60} = 0.71\text{ in.}^2$$

6. Determine flexural reinforcement A_f.

$$M_u = V_u a_v + N_{uc} (h - d) = 88.8 (3) + 32 (12 - 11) = 298.4\text{ in.-kips}$$

Find A_f using conventional flexural design methods or conservatively use $jd = 0.9d$.

$$A_f = \frac{298.4}{0.75 \times 60 \times (0.9 \times 11)} = 0.67\text{ in.}^2$$

Note that for all design calculations, $\phi = 0.75$
Example 15.1 (cont’d)
Calculations and Discussion

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Determine primary tension reinforcement A_s.</td>
<td>11.8.3.5</td>
</tr>
<tr>
<td>$\frac{2}{3} A_{vf} = \frac{2}{3} (1.41) = 0.94 \text{ in.}^2 > A_f = 0.67 \text{ in.}^2$, Therefore, $\frac{2}{3} A_{vf}$ controls design</td>
<td></td>
</tr>
<tr>
<td>$A_{sc} = \frac{2}{3} A_{vf} + A_n = 0.94 + 0.71 = 1.65 \text{ in.}^2$</td>
<td></td>
</tr>
<tr>
<td>Use 2-No. 9 bars, $A_{sc} = 2.0 \text{ in.}^2$</td>
<td></td>
</tr>
<tr>
<td>Check minimum reinforcement:</td>
<td>11.8.5</td>
</tr>
<tr>
<td>$\rho_{min} = 0.04 \left(\frac{f'c}{f_y} \right) = 0.04 \left(\frac{5}{60} \right) = 0.0033$</td>
<td></td>
</tr>
<tr>
<td>$A_{sc(min)} = 0.0033 (14) (11) = 0.51 \text{ in.}^2 < A_{sc} = 2.0 \text{ in.}^2 \quad \text{O. K.}$</td>
<td></td>
</tr>
<tr>
<td>8. Determine shear reinforcement A_h</td>
<td>11.8.4</td>
</tr>
<tr>
<td>$A_h = 0.5 \left(A_{sc} - A_n \right) = 0.5 \left(2.0 - 0.71 \right) = 0.65 \text{ in.}^2$</td>
<td></td>
</tr>
<tr>
<td>Use 3-No. 3 stirrups, $A_h = 0.66 \text{ in.}^2$</td>
<td></td>
</tr>
<tr>
<td>Distribute stirrups in two-thirds of effective corbel depth adjacent to A_{sc}.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of corbel and reinforcement](image_url)
Example 15.2—Corbel Design . . . Using Lightweight Concrete and Modified Shear-Friction Method

Design a corbel to project from a 14-in.-square column to support the following beam reactions:

Dead load = 32 kips
Live load = 30 kips
Horizontal force = 24 kips

\(f'_c = 4000 \text{ psi (all-lightweight)} \)
\(f_y = 60,000 \text{ psi} \)

Calculations and Discussion

Code Reference

1. Size bearing plate

\[V_u = 1.2(32) + 1.6(30) = 86.4 \text{ kips} \]
\[V_u = \phi P_{nb} = \phi(0.85f'_cA_1) \]
\[\phi = 0.65 \]
\[86.4 = 0.65(0.85 \times 4 \times A_1) \]

Solving, \(A_1 = 39.1 \text{ in}^2 \)
Length of bearing required = \(\frac{39.1}{14} = 2.8 \text{ in.} \)

Use 14 in. \(\times \) 3 in. bearing plate.

2. Determine \(a_v \).

Assume beam reaction to act at outer third point of bearing plate, and 1 in. gap between back edge of bearing plate and column face. Therefore:

\[a_v = 1 + \frac{2}{3}(3) = 3 \text{ in.} \]

3. Determine total depth of corbel based on limiting shear-transfer strength \(V_{n'} \). For easier placement of reinforcement and concrete, try \(h = 15 \text{ in.} \). Assuming No. 8 bar:

\[d = 15 - 0.5 - 0.375 = 14.13 \text{ in.}, \text{ say 14 in.} \]

\[\frac{a_v}{d} = \frac{3}{14} = 0.21 < 1.0 \]

\[N_{uc} = 1.6 \times 24 = 38.4 \text{ kips} < V_u = 86.4 \text{ kips} \quad \text{O.K.} \]
For lightweight concrete and $f'_c = 4000$ psi, V_n is the least of:

$$V_n = \left(800 - 280 \frac{a_v}{d} \right) b_w d = \left[800 - (280 \times 0.21) \right] \times \frac{14}{1000} = 145.3 \text{ kips}$$

$$V_n = \left(0.2 - 0.07 \frac{a_v}{d} \right) f'_c b_w d = \left[0.2 - 0.07 (0.21) \right] (4000) \times \frac{14}{1000} = 145.3 \text{ kips}$$

$$\phi V_n = 0.75 (145.3) = 109.0 \text{ kips} > V_u = 86.4 \text{ kips} \quad \text{O.K.}$$

4. Determine shear-friction reinforcement A_{vf}.

Using a Modified Shear-Friction Method as permitted by R11.6.3 (see R11.6.3):

$$V_n = 0.8 A_{vf} f_y + K_1 b_w d, \quad \text{with} \quad \frac{A_{vf} f_y}{b_w d} \geq 200 \text{ psi}$$

For all lightweight concrete, $K_1 = 200$ psi

$$V_u \leq \phi V_n = \phi (0.8 A_{vf} f_y + 0.2 b_w d)$$

Solving for A_{vf}:

$$A_{vf} = \frac{V_u - \phi (0.2 b_w d)}{\phi (0.8 f_y)}$$

$$= \frac{86.4 - (0.75 \times 0.2 \times 14 \times 14)}{0.75 \times (8 \times 60)} = 1.58 \text{ in.}^2 \quad \text{(governs)}$$

but not less than $0.2 \times \frac{b_w d}{f_y} = 0.2 \times \frac{14 \times 14}{60} = 0.65 \text{ in.}^2$

For comparison, compute A_{vf} by Eq. (11-25):

For all-lightweight concrete,

$$\mu = 1.4, \quad \lambda = 1.4 (0.75) = 1.05$$

$$A_{vf} = \frac{V_u}{\phi f_y \mu} = \frac{86.4}{0.75 \times 60 \times 1.05} = 1.83 \text{ in.}^2 > 1.58 \text{ in.}^2$$

Note: Modified shear-friction method presented in R11.6.3 would give a closer estimate of shear-transfer strength than the conservative shear-friction method in 11.6.4.1.

5. Determine flexural reinforcement A_f.

$$M_u = V_u a_v + N_{uc} (h - d) = 86.4 (3) + 38.4 (15 - 14.0) = 297.6 \text{ in.-kips}$$

Find A_f using conventional flexural design methods, or conservatively use $ja = 0.9 d$
Example 15.2 (cont’d) Calculations and Discussion

\[A_f = \frac{M_u}{\phi f_y j d} = \frac{297.6}{0.75 \times 60 \times 0.9 \times 14} = 0.53 \text{ in.}^2 \]

Note that for all design calculations, \(\phi = 0.75 \) 11.8.3.1

6. Determine direct tension reinforcement \(A_n' \)

\[A_n = \frac{N_{uc}}{\phi f_y} = \frac{38.4}{0.75 \times 60} = 0.85 \text{ in.}^2 \] 11.8.3.4

7. Determine primary tension reinforcement \(A_{sc} \)

\[\left(\frac{2}{3}\right)A_{vf} = \left(\frac{2}{3}\right)1.83 = 1.22 \text{ in.}^2 > A_f = 0.53 \text{ in.}^2; \text{ Therefore, } \left(\frac{2}{3}\right)A_{vf} \text{ controls design.} \]

\[A_{sc} \left(\frac{2}{3}\right)A_{vf} + A_n = 1.22 + 0.85 = 2.07 \text{ in.}^2 \]

Use 3-No. 8 bars, \(A_{sc} = 2.37 \text{ in.}^2 \)

Check \(A_{sc(min)} = 0.04 \left(\frac{4}{60}\right)14 \times 14 = 0.52 \text{ in.}^2 < A_{sc} = 2.37 \text{ in.}^2 \) O.K. 11.8.5

8. Determine shear reinforcement \(A_h \)

\[A_h = 0.5 (A_{sc} - A_n) = 0.5 (2.37 - 0.85) = 0.76 \text{ in.}^2 \]

Use 4-No. 3 stirrup, \(A_h = 0.88 \text{ in.}^2 \) 11.8.4

The shear reinforcement is to be placed within two-thirds of the effective corbel depth adjacent to \(A_{sc} \).

\[S_{max} = \left(\frac{2}{3}\right)\frac{14}{4} = 2.33 \text{ in.} \text{ Use } 2\frac{3}{4} \text{ in. o.c. stirrup spacing.} \]

9. Corbel details

Corbel will project \((1 + 3 + 2) = 6 \text{ in. from column face.} \)

Use 6-in. depth at outer face of corbel, then depth at outer edge of bearing plate will be

\[6 + 3 = 9 \text{ in.} > \frac{14}{2} = 7.0 \text{ in.} \text{ O.K.} \] 11.8.2

\(A_{sc} \) to be anchored at front face of corbel by welding a No. 8 bar transversely across ends of \(A_{sc} \) bars. 11.8.6

\(A_{sc} \) must be anchored within column by standard hook.
Example 15.2 (cont’d) Calculations and Discussion

No. 8 Cross Bar Welded

3-No. 8 Bars Welded to Bearing Plate

Standard Hook

1" Max.

6"

3"

2"

6"

15"

3"

2"

4-No. 3 ties @ 2 1/4" o.c. and No. 3 framing bar as shown

Code Reference
Example 15.3—Beam Ledge Design

\[f'_c = 5000 \text{ psi (normalweight)} \]
\[f_y = 60,000 \text{ psi} \]

The L-beam shown is to support a double-tee parking deck spanning 64 ft. Maximum service loads per stem are: DL = 11.1 kips; LL = 6.4 kips; total load = 17.5 kips. The loads may occur at any location on the L-beam ledge except near beam ends. The stems of the double-tees rest on 4.5 in. × 4.5 in. × 1/4 in. neoprene bearing pads (1000 psi maximum service load).

Design in accordance with the code provisions for brackets and corbels may require a wider ledge than the 6 in. shown. To maintain the 6-in. width, one of the following may be necessary: (1) Use of a higher strength bearing pad (up to 2000 psi); or (2) Anchoring primary ledge reinforcement \(A_{sc} \) to an armor angle.

This example will be based on the 6-in. ledge with 4.5-in.-square bearing pad. At the end of the example an alternative design will be shown.

Note: This example illustrates design to prevent potential local failure modes. In addition, ledge beams should be designed for global effects, not considered in this example. For more details see References 15.2 to 15.6.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Check 4.5 × 4.5 in. bearing pad size (1000 psi maximum service load).</td>
</tr>
<tr>
<td></td>
<td>Capacity = 4.5 × 4.5 × 1.0 = 20.3 kips > 17.5 kips O.K.</td>
</tr>
<tr>
<td>2.</td>
<td>Determine shear spans and effective widths for both shear and flexure [Ref. 15.3 to 15.5].</td>
</tr>
<tr>
<td></td>
<td>The reaction is considered at outer third point of the bearing pad.</td>
</tr>
<tr>
<td>a.</td>
<td>For shear friction</td>
</tr>
<tr>
<td></td>
<td>[a_v = 4.5 \left(\frac{2}{3} \right) + 1.0 = 4 \text{ in.}]</td>
</tr>
<tr>
<td></td>
<td>Effective width for shear friction = (W + 4a_v = 4.5 + 4 (4) = 20.5 \text{ in.})</td>
</tr>
</tbody>
</table>
Example 15.3 (cont’d) Calculations and Discussion

b. For flexure, critical section is at center of the hanger reinforcement (A_v)

Assume 1 in. cover and No. 4 bar stirrups

$$a_f = 4 + 1 + 0.25 = 5.25 \text{ in.}$$

Effective width for flexure and direct tension = $W + 5a_f = 4.5 + 5(5.25) = 30.75 \text{ in.}$

3. Check concrete bearing strength.

$$V_u = 1.2 (11.1) + 1.6 (6.4) = 23.6 \text{ kips}$$

$$\phi P_{nb} = \phi (0.85f'_c A_1)$$

$$\phi = 0.65$$

$$\phi P_{nb} = 0.65 (0.85 \times 5 \times 4.5 \times 4.5) = 55.9 \text{ kips} > 23.6 \text{ kips} \text{ O.K.}$$

4. Check effective ledge section for maximum nominal shear-transfer strength V_n.

For $f'_c = 5000 \text{ psi}$: $V_n(\max) = (480 + 0.08 \times 5000) b_wd = 880 b_wd$,

where $b_w = (W + 4a_v) = 20.5 \text{ in.}$

$$V_n = \frac{880(20.5)(10.75)}{1000} = 193.9 \text{ kips}$$

$$\phi = 0.75$$

$$\phi V_n = 0.75 (193.9) = 145.4 \text{ kips} > 23.6 \text{ kips} \text{ O.K.}$$

5. Determine shear-friction reinforcement A_{vf}.

$$A_{vf} = \frac{V_u}{\phi f_y \mu} = \frac{23.6}{0.75 (60) 1.4} = 0.37 \text{ in.}^2 \text{ / per effective width of 20.5 in.}$$

where $\mu = 1.4$

6. Check for punching shear

$$V_u = 4\phi \sqrt{f'_c} (W + 2L + 2d_f) d_f$$

$W = L = 4.5 \text{ in.}$

$d_f \approx 10 \text{ in. (assumed)}$

$$4\phi \sqrt{f'_c} (3W + 2d_f) d_f = 4 \times 0.75 \sqrt{5000} \left[(3 \times 4.5) + (2 \times 10)\right] \times 10/1000$$

$$= 71.1 \text{ kips} > 23.6 \text{ kips}$$
7. Determine reinforcement to resist direct tension \(A_n \). Unless special provisions are made to reduce direct tension, \(N_u \) should be taken not less than 0.2\(V_u \) to account for unexpected forces due to restrained long-time deformation of the supported member, or other causes. When the beam ledge is designed to resist specific horizontal forces, the bearing plate should be welded to the tension reinforcement \(A_{sc} \).

\[
N_u = 0.2V_u = 0.2(23.6) = 4.7 \text{ kips}
\]

\[
A_n = \frac{N_u}{\phi f_y} = \frac{4.7}{0.75(60)} = 0.10 \text{ in.}^2 / \text{per effective width of 30.75 in. (0.003 in.}^2 / \text{in.})
\]

8. Determine flexural reinforcement \(A_f \).

\[
M_u = V_u a_f + N_u (h - d) = 23.6(5.25) + 4.7(12 - 10.75) = 129.8 \text{ in.-kips}
\]

Find \(A_f \) using conventional flexural design methods. For beam ledges, Ref. 15.5 recommends to use \(j_d = 0.8d \).

\[
\phi = 0.75
\]

\[
A_f = \frac{129.8}{0.75(60)(0.8 \times 10.75)} = 0.34 \text{ in.}^2 / \text{per 30.75 in. width = 0.011 in.}^2 / \text{in.}
\]

9. Determine primary tension reinforcement \(A_{sc} \).

\[
\left(\frac{2}{3} \right) A_{vf} = \left(\frac{2}{3} \right) 0.37 = 0.25 \text{ in.}^2 / \text{per 20.5 in. width = 0.012 in.}^2 / \text{in.}
\]

\[
A_{sc} = \left(\frac{2}{3} \right) A_{vf} + A_n = 0.012 + 0.003 = 0.015 \text{ in.}^2 / \text{in.} \quad \text{(governs)}
\]

\[
A_{sc} = A_f + A_n = 0.011 + 0.003 = 0.014 \text{ in.}^2 / \text{in.}
\]

Check \(A_{sc(min)} = 0.04 \left(\frac{f'_c}{f_y} \right) d \text{ per in. width} \]

\[
= 0.04 \left(\frac{5}{60} \right) 10.75 = 0.036 \text{ in.}^2 / \text{in. > 0.015 in.}^2 / \text{in.}
\]

For typical shallow ledge members, minimum \(A_{sc} \) by 11.8.5 will almost always govern.

10. Determine shear reinforcement \(A_h \).

\[
A_h = 0.5 (A_{sc} - A_n) = 0.5 (0.036 - 0.003) = 0.017 \text{ in.}^2 / \text{in.}
\]
11. Determine final size and spacing of ledge reinforcement.

For $A_{sc} = 0.036$ in.2/in.:

Try No. 5 bars ($A = 0.31$ in.2)

$$s_{\text{max}} = \frac{0.31}{0.036} = 8.6 \text{ in.}$$

Use No. 5 @ 8 in.

$A_h = 0.017$ in.2/in. For ease of constructability, provide reinforcement A_h at same spacing of 8 in.

Provide No. 4 ($A = 0.2$ in.2) @ 8 in. within 2/3d adjacent to A_{sc}.

12. Check required area of hanger reinforcement.

For strength

$$A_v = \frac{V_u s}{\phi f_y S}$$

For $s = 8$ in. and $S = 48$ in.

$$A_v = \frac{23.6 \times 8}{0.75 \times 60 \times 48} = 0.09 \text{ in.}^2$$

For serviceability

$$A_v = \frac{V}{0.5f_y} \times \frac{s}{(W + 3a_v)}$$

$V = 11.1 + 6.4 = 17.5$ kips (service)

$W + 3a_v = 4.5 + (3 \times 4) = 16.5$ in.

$$A_v = \frac{17.5}{0.5 \times 60} \times \frac{8}{16.5} = 0.28 \text{ in.}^2 \text{ (governs)}$$

No. 5 hanger bars @ 8 in. are required

13. Reinforcement Details

In accordance with 11.8.7, bearing area (4.5 in. pad) must not extend beyond straight portion of beam ledge reinforcement, nor beyond inside edge of transverse anchor bar. With a 4.5 in. bearing pad, this requires that the width of ledge be increased to 9 in. as shown below. Alternately, a 6 in. ledge with a 3 in. medium strength pad (1500 psi) and the ledge reinforcement welded to an armor angle would satisfy the intent of 11.8.7.
Example 15.3 (cont’d) Calculations and Discussion

Hanger Bar

No. 5
No. 4 @ 8"

Bar continued [Ref. 15.3 - 15.5]

End of Bearing as Described in 11.8.7

Steel Guard Angle

No. 5 @ 8"

3" Pad

No. 4 @ 8"

No. 3 Framing Bar

9 in. Ledge Detail

6 in. Ledge Detail (Alternate)
UPDATE FOR THE ‘08 CODE

Section 11.2, “Lightweight Concrete” is deleted. The new modification factor, λ (2.1 and 8.6), accounts for the reduced mechanical properties of lightweight concrete. The introduction of the modifier λ permits the use of the equations for both lightweight and normalweight concrete. The term $\sqrt{f'_c}$ is replaced by $\lambda \sqrt{f'_c}$ in the equations for nominal shear strength provided by concrete V_c. When shear reinforcement is used in the slab, the modification factor λ is not applied when calculating the upper limit for the nominal shear strength V_n (11.11.3.2, 11.11.4.8 and 11.11.5.1).

Shear caps used to increase the critical section for shear at slab-column joint is recognized in the Code (2.1). Section 13.2.6 is added to specify the minimum requirements for the shear cap (See part 18).

The 2008 Code permits the headed shear stud reinforcement as an alternative to stirrups or shearheads as shear reinforcement in slabs (3.5.5, 3.8.1 and 11.11.5). Tests show that studs mechanically anchored close to the top and bottom of the slabs are effective in resisting punching shear (see 7.7.5 and Figure R7.7.5).

11.11 SPECIAL PROVISIONS FOR SLABS AND FOOTINGS

The provisions of 11.11 must be satisfied for shear design in slabs and footings. Included are requirements for critical shear sections, nominal shear strength of concrete, and shear reinforcement.

11.11.1 Critical Shear Section

In slabs and footing, shear strength in the vicinity of columns, concentrated loads, or reactions is governed by the more severe of two conditions:

- Wide-beam action, or one-way shear, as evaluated by provisions 11.1 through 11.4.
- Two-way action, as evaluated by 11.11.2 through 11.11.7.

Analysis for wide-beam action considers the slab to act as a wide beam spanning between columns. The critical section extends in a plane across the entire width of the slab and is taken at a distance d from the face of the support (11.11.1.1); see Fig. 16-1. In this case, the provisions of 11.1 through 11.4, must be satisfied. Except for long, narrow slabs, this type of shear is seldom a critical factor in design, as the shear force is usually well below the shear capacity of the concrete. However, it must be checked to ensure that shear strength is not exceeded.

![Fig. 16-1 Tributary Area and Critical Section for Wide-Beam Shear](image-url)
Two-way or “punching” shear is generally the more critical of the two types of shear in slab systems supported directly on columns. Depending on the location of the column, concentrated load, or reaction, failure can occur along two, three, or four sides of a truncated cone or pyramid. The perimeter of the critical section b_0 is located in such a manner that it is a minimum, but need not approach closer than a distance $d/2$ from edges or corners of columns, concentrated loads, or reactions, or from changes in slab thickness such as edges of capitals, drop panels, or shear caps (11.11.1.2); see Fig. 16-2. In this case the provisions of 11.11.2 through 11.11.7 must be satisfied. It is important to note that it is permissible to use a rectangular perimeter b_n to define the critical section for square or rectangular columns, concentrated loads, or reaction areas (11.11.1.3).
11.11.2 Shear Strength Requirement for Two-Way Action

In general, the factored shear force V_u at the critical shear section shall be less than or equal to the shear strength ϕV_n:

$$\phi V_n \geq V_u$$ \hspace{1cm} \text{Eq. (11-1)}

where the nominal shear strength V_n is:

$$V_n = V_c + V_s$$ \hspace{1cm} \text{Eq. (11-2)}

and

V_c = nominal shear strength provided by concrete, computed in accordance with 11.11.2.1 if shear reinforcement is not used or 11.11.3.1 if shear reinforcement is used.

V_s = nominal shear strength provided by reinforcement, if required, computed in accordance with 11.11.3 if bars, wires, or stirrups are used, 11.11.4 if shearheads are used or 11.11.5 if headed shear reinforcement is used. Where moment is transferred between the slab and the column in addition to direct shear, 11.11.7 shall apply.

11.11.2.1 Nominal shear strength provided by concrete V_c for slabs without shear reinforcement

The shear stress provided by concrete at a section, v_c, is a function of the concrete compressive stress f'_c, and is limited to $4\lambda f'_c$ for square columns. λ is a modification factor to account for the reduced mechanical properties of lightweight concrete relative to normalweight concrete of the same compressive strength (for normalweight concrete $\lambda = 1$, for sand-lightweight concrete and all-lightweight concrete λ is equal to 0.85 and 0.75 respectively). The nominal shear strength provided by concrete V_c is obtained by multiplying v_c by the area of concrete section resisting shear transfer, which is equal to the perimeter of the critical shear section b_o multiplied by the effective depth of the slab d:

$$V_c = 4\lambda \sqrt{f'_c} b_o d$$ \hspace{1cm} \text{Eq. (11-33)}

Tests have indicated that the value of $4\lambda \sqrt{f'_c}$ is unconservative when the ratio of the long and short sides of a rectangular column or loaded area β is larger than 2.0. In such cases, the shear stress on the critical section varies as shown in Fig. 16-3. Equation (11-31) accounts for the effect of on β the concrete shear strength:

$$V_c = \left(2 + \frac{4}{\beta}\right) \lambda \sqrt{f'_c} b_o d$$ \hspace{1cm} \text{Eq. (11-31)}

From Fig. 16-3, it can be seen that for $\beta \leq 2.0$ (i.e., square or nearly square column or loaded area), two-way shear action governs, and the maximum concrete shear stress v_c is $4\lambda \sqrt{f'_c}$. For values of β value larger than 2.0, the concrete stress decreases linearly to a minimum $2\lambda \sqrt{f'_c}$, which is equivalent to shear stress for one-way shear.
Other tests have indicated that v_c decreases as the ratio b_o/d increases. Equation (11-32) accounts for the effect of b_o/d on the concrete shear strength:

$$V_c = \alpha \lambda \beta \sqrt{f_c b_o d}$$

Eq. (11-32)

Figure 16-4 illustrates the effect of b_o/d for interior, edge, and corner columns, where α equals 40, 30, and 20, respectively. For an interior column with $b_o/d \leq 2.0$, the maximum permissible shear stress is $4\lambda \sqrt{f_c}$; see Fig. 16-4. Once $b_o/d > 2.0$, the shear stress decreases linearly to $2\lambda \sqrt{f_c}$ at b_o/d equal to infinity.
Note that reference to interior, edge, and corner column does not suggest column location in a building, but rather refers to the number of sides of the critical section available to resist the shear stress. For example, a column that is located in the interior of a building, with one side at the edge of an opening, shall be evaluated as an edge column.

The concrete nominal shear strength for two-way shear action of slabs without shear reinforcement is the least of Eqs. (11-31), (11-32), and (11-33) (11.11.2.1).

11.11.3 Shear Strength Provided by Bars, Wires, and Single or Multiple-Leg Stirrups

The use of bars, wires, or single or multiple-leg stirrups as shear reinforcement in slabs is permitted provided that the effective depth of the slab is greater than or equal to 6 inches, but not less than 16 times the shear reinforcement bar diameter (11.11.3). Suggested rebar shear reinforcement consist of properly anchored single-leg, multiple-leg, or closed stirrups that are engaging longitudinal reinforcement at both the top and bottom of the slab (11.11.3.4); see Fig. R11.11.3 (a), (b), (c).

With the use of shear reinforcement, the nominal shear strength provided by concrete V_c shall not be taken greater than $2\sqrt{f'_c}b_od$ (11.11.3.1), and nominal shear strength V_n is limited to $6\sqrt{f'_c}b_od$ (11.11.3.2).
The area of shear reinforcement A_v is computed from Eq. (11-15), and is equal to the cross-sectional area of all legs of reinforcement on one peripheral line that is geometrically similar to the perimeter of the column section (11.11.3.1):

$$A_v = \frac{V_s s}{f_y d}$$ \hspace{1cm} \textit{Eq. (11-15)}

The spacing limits of 11.11.3.3 correspond to slab shear reinforcement details that have been shown to be effective. These limits are as follows (see Fig. 16-5):

\begin{equation}
V_u \leq 2\lambda \sqrt{f'_c b_d d}
\end{equation}
where b_d is perimeter of critical section at $d/2$ from closed stirrups

\begin{equation}
V_u \leq 2\lambda \sqrt{f'_c b_d d} + \phi A_v f_y d/s \leq \phi 6\sqrt{f'_c b_d d}
\end{equation}

where b_d is perimeter of critical section at $d/2$ from face of column

\begin{itemize}
 \item \hspace{1cm} \textit{(a) Interior Column}
 \item \hspace{1cm} \textit{(b) Edge Column}
 \item \hspace{1cm} \textit{(b) Corner Column}
\end{itemize}

\textit{Fig. 16-5 Design and Detailing Criteria for Slabs with Stirrups}
1. The first line of stirrups surrounding the column shall be placed at distance not exceeding $d/2$ from the column face.
2. The spacing between adjacent legs in the first line of shear reinforcement shall not exceed $2d$.
3. The spacing between successive lines of shear reinforcement that surround the column shall not exceed $d/2$.
4. The shear reinforcement can be terminated when $V_u \leq \phi 2\lambda \sqrt{f_c b_o d}$ (11.11.3.1).

Proper anchorage of the shear reinforcement is achieved by satisfying the provisions of 12.13 (11.11.3.4). Refer to Fig. R11.11.3 and Part 4 for additional details on stirrup anchorage. It should be noted that anchorage requirements of 12.13 may be difficult for slabs thinner than 10 inches. Application of shear reinforcement design using bars or stirrups is illustrated in Example 16.3.

Where moment transfer is significant between the column and the slab, it is recommended to use closed stirrups in a pattern as symmetrical as possible around the column (R11.11.3).

11.11.4 Shear Strength Provided by Shearheads

The provisions of 11.11.4 permit the use of structural steel sections such as I- or channel-shaped sections (shearheads) as shear reinforcement in slabs, provided the following criteria are satisfied:

1. Each arm of the shearhead shall be welded to an identical perpendicular arm with full penetration welds and each arm must be continuous within the column section (11.11.4.1); see Fig. 16-6 (a).
2. Shearhead depth shall not exceed 70 times the web thickness of the steel shape (11.11.4.2); see Fig. 16-6 (b).
3. Ends of each shearhead arm is permitted to be cut at angles not less than 30 deg with the horizontal, provided the tapered section is adequate to resist the shear force at that location (11.11.4.3); see Fig. 16-6 (b).
4. All compression flanges of steel shapes shall be located within 0.3d of compression surface of slab, which in the case of direct shear, is the distance measured from the bottom of the slab (11.11.4.4); see Fig. 16-6 (b).
5. The ratio α_v of the flexural stiffness of the steel shape to surrounding composite cracked slab section of width $c_2 + d$ shall not be less than 0.15 (11.11.4.5); see Fig. 16-6 (c).
6. The required plastic moment strength M_p is computed from the following equation (11.11.4.6):

$$\phi M_p = \frac{V_u}{2n} \left[h_v + \alpha_v (\ell_v - 0.5c_1) \right]$$

where:
- $M_p =$ plastic moment strength for each shearhead arm required to ensure that the ultimate shear is attained as the moment strength of the shearhead is reached.
- $\phi =$ strength reduction factor for tension-controlled members, equal to 0.9 per 9.3.2.3.
- $n =$ number of shearhead arms; see Fig. R11.11.4.7.
- $\ell_v =$ minimum required length of shearhead arm per 11.11.4.7 and 11.11.4.8; see Fig. R11.11.4.7.
- $h_v =$ depth of shearhead cross-section; see Fig. 16-6 (b).

7. The critical section for shear shall be perpendicular to the plane of the slab and shall cross each shearhead arm at three-quarters of the distance $(\ell_v - 0.5c_1)$ from the column face to the end of the shearhead arm. The critical section shall be located per 11.11.1.2(a) (11.11.4.7); see Fig. R11.11.4.7.
V_u \leq \phi \sqrt[4]{f_{b_0} d}

where \(b_0 \) is perimeter of critical section at \(d/2 \) from face of column

Steel I- or Channel Shape

V_u \leq \phi \sqrt[4]{f_{b_0} d}

where \(b_0 \) is perimeter of critical section defined in 11.11.4.7

(a) Critical Section and Shear Strength

(b) Shearhead Details

(c) Properties of Cracked Composite Slab Section

Fig. 16-6 Design and Detailing Criteria for Slabs with Shearhead Reinforcement
8. The nominal shear strength V_n shall be less than or equal to $4\sqrt{f'_c}b_od$ on the critical section defined by 11.11.4.7, and $7\sqrt{f'_c}b_od$ at $d/2$ distance from the column face (11.11.4.8); see Fig. 16-6 (a).

9. Section 11.11.4.9 permits the shearheads to contribute in resisting the slab design moment in the column strip. The moment resistance M_v contributed to each column strip shall be the minimum of:

 a. $\frac{1}{2n}\phi\alpha_v\frac{V_u}{V_n}\left(\ell_v - 0.5c_1\right)$ \hspace{1cm} \textit{Eq. (11-36)}

 b. $0.30M_u$ of the total factored moment in each column strip

 c. the change in column strip moment over the length ℓ_v

 d. the value of M_p computed by \textit{Eq. (11-35)}.

When direct shear and moment are transferred between slab and column, the provisions of 11.11.6 must be satisfied in addition to the above criteria. In slabs with shearheads, integrity steel shall be provided in accordance with 13.3.8.6. Application on the design of shearheads as shear reinforcement is illustrated in Example 16.3.

11.11.5 \textbf{Shear Strength Provided by Headed Shear Stud Reinforcement}

The use of headed shear stud reinforcement was introduced in the 2008 Code. This type of shear reinforcement for slabs consists of headed stud assemblies. Each assembly consists of vertical bars (studs) placed perpendicular to the plane of the slab and mechanically anchored at each end by a plate (base rail) or a head capable of developing the yield strength of the bars, see Fig 16-7. Extensive tests, methods of design, and design examples are presented in Refs. 16.1 through 16.4.

Design of headed shear stud reinforcement requires specifying the stud diameter and spacing and the height of the assembly. Section 11.11.5 requires that the overall height of the shear stud assembly must not be less than the thickness of the slab less the sum of: (1) the concrete cover on the top flexural reinforcement; (2) the concrete cover on the base rail; and (3) one-half the bar diameter of the tension flexural reinforcement.

For the critical section at a distance $d/2$ from the edge of the column (11.11.1.2), the nominal shear strength provided by concrete V_c must not exceed $3\lambda\sqrt{f'_c}b_od$, and the nominal shear strength V_n is limited to $8\sqrt{f'_c}b_od$ (11.11.5.1). Thus, V_s must not be greater than $(8-3\lambda)\sqrt{f'_c}b_od$. Shear stresses due to factored shear force and moment at the critical section located $d/2$ outside the outermost peripheral line of shear reinforcement, must not exceed $2\phi\lambda\sqrt{f'_c}$ (11.11.5.4).

The area of shear reinforcement A_v is computed from \textit{Eq. (11-15)}, and is equal to the cross-sectional area of all shear reinforcement on one peripheral line that is approximately parallel to the perimeter of the column section (11.11.5.1). Section (11.11.5.1) requires that $A_vf_{yf}/(b_os)$ must not be less than $2\sqrt{f'_c}$, where s is the spacing of the peripheral lines of the headed shear stud reinforcement.

The spacing between the column face and the first peripheral line of shear reinforcement must not exceed $d/2$ (11.11.5.2). The spacing between peripheral lines of shear reinforcement (s), measured in a direction perpendicular to any face of the column, must be constant. For conventionally reinforced concrete slabs, s, should be limited to the following:

 $$s \leq 0.75d \quad \text{if maximum shear stresses due to factored loads } \leq 6\phi\sqrt{f'_c}$$
 $$s \leq 0.50d \quad \text{if maximum shear stresses due to factored loads } > 6\phi\sqrt{f'_c}$$

The spacing between adjacent shear reinforcement elements, measured on the perimeter of the first peripheral line of shear reinforcement must not exceed $2d$ (11.11.5.3).
Fig. 16-7 Shear Reinforcement by Headed Studs
11.11.6 Effect of Openings in Slabs on Shear Strength

The effect of openings in slabs on concrete shear strength shall be considered when the opening is located: (1) anywhere within a column strip of a flat slab system and (2) within 10 times the slab thickness from a concentrated load or reaction area. Slab opening effect is evaluated by reducing the perimeter of the critical section b_o by a length equal to the projection of the opening enclosed by two-lines extending from the centroid of the column and tangent to the opening; see Fig 16-8 (a). For slabs with shear reinforcement, the ineffective portion of the perimeter b_o is one-half of that without shear reinforcement; see Fig. 16-8 (b). The one-half factor is interpreted to apply equally to shearhead reinforcement and bar or wire reinforcement as well. Effect of opening in slabs on flexural strength is discussed in Part 18.

![Fig. 16-8 Effect of Openings in Slabs on Shear Strength](image)

11.11.7 Moment Transfer at Slab-Column Connections

For various loading conditions, unbalanced moment M_u can occur at the slab-column connections. For slabs without beams between supports, the transfer of unbalanced moment is one of the most critical design conditions for two-way slab systems. Shear strength at an exterior slab-column connection (without spandrel beam) is especially critical, because the total exterior negative moment must be transferred to the column, which is in addition to the direct shear due to gravity loads; see Fig. 16-9. The designer should not take this aspect of two-way slab design lightly. Two-way slab systems usually are fairly “forgiving” in the event of an error in the amount and or distribution of flexural reinforcement; however, little or no forgiveness is to be expected if shear strength provisions are not fully satisfied.

Note that the provisions of 11.11.6 (or 13.5.3) do not apply to slab systems with beams framing into the column support. When beams are present, load transfer from the slab through the beams to the columns is considerably less critical. Shear strength in slab systems with beams is covered in 13.6.8.
11.11.7.1 Distribution of Unbalanced Moment

The code specifies that the unbalanced moment at a slab-column connection must be transferred from the slab (without beams) to the column by eccentricity of shear in accordance with 11.11.7 and by flexure in accordance with 13.5.3 (11.11.7.1). Studies (Ref. 16.7) of moment transfer between slabs and square columns found that 0.6M_u is transferred by flexure across the perimeter of the critical section b_o defined by 11.11.1.2, and 0.4M_u by eccentricity of shear about the centroid of the critical section. For a rectangular column, the portion of moment transferred by flexure \(\gamma_f M_u \) increases as the dimension of the column that is parallel to the applied moment increases. The fraction of unbalanced moment transferred by flexure \(\gamma_f \) is:

\[
\gamma_f = \frac{1}{1 + \left(\frac{2}{3} \right) \frac{b_1}{b_2}}
\]

Eq. (13-1)

and the fraction of unbalanced moment transferred by eccentricity of shear is:

\[
\gamma_v = 1 - \gamma_f
\]

Eq. (11-37)

where \(b_1 \) and \(b_2 \) are the dimensions of the perimeter of the critical section, with \(b_1 \) parallel to the direction of analysis; see Fig. 16-10. The relationship of the parameters presented into Eqs. (13-1) and (11-37) is graphically illustrated in Fig. 16-11. Modification or adjustment of \(\gamma_f \) and thus \(\gamma_v \), is permitted in accordance with 13.5.3.3 for any two-way slab system, except for prestressed slabs. The following modifications are applicable, provided that the reinforcement ratio in the slab within the effective width defined in 13.5.3.2 does not exceed 0.375\(\rho_b \):

- For edge columns with unbalanced moments about an axis parallel to the slab edge (i.e., bending perpendicular to the edge), it is permitted to take \(\gamma_f = 1.0 \) provided that \(V_u \leq 0.75 \phi V_c \) at an edge column or \(V_u \leq 0.5 \phi V_c \) at a corner column.
- For unbalanced moments at interior supports and for edge columns with unbalanced moments about an axis perpendicular to the edge (i.e., bending parallel to the edge), it is permitted to increase \(\gamma_f \) by up to 25\%, but not to exceed \(\gamma_f = 1 \), provided that \(V_u \leq 0.4 \phi V_c \).
Fig. 16-10 Parameters b_1 and b_2 for Eqs. (11-37) and (13-1)

Fig. 16-11 Graphical Solution of Eqs. (13-1) and (11-37)
The unbalanced moment transferred by eccentricity of shear is $\gamma_v M_u$, where M_u is the unbalanced moment at the centroid of the critical section. The unbalanced moment M_u at an exterior support of an end span will generally not be computed at the centroid of the critical transfer section in the frame analysis. When the Direct Design Method of Chapter 13 is utilized, moments are computed at the face of the support. Considering the approximate nature of the procedure to evaluate the stress distribution due to moment-shear transfer, it seems unwarranted to consider a change in moment to the transfer centroid; use of the moment values from frame analysis (centerline of support) or from 13.6.3.3 (face of support) is accurate enough.

Unbalanced moment transfer between an edge column and a slab without edge beams requires special consideration when slabs are analyzed for gravity loads using the moment coefficients of the Direct Design Method. In this case, the unbalanced moment to be transferred M_u must be set equal to $0.3M_o$ (13.6.3.6), where M_o is the total factored static moment in the span. Therefore, the fraction of unbalanced moment transferred by shear is $\gamma_v M_u = \gamma_v(0.3M_o)$. See Part 19 for further discussion of that special shear strength requirement and its application in Example 19.1. If the Equivalent Frame Method is used, the unbalanced moment to be transferred is equal to the computed frame moment.

11.11.7.2 Shear Stresses and Strength Computation

Assuming that shear stress resulting from moment transfer by eccentricity of shear varies linearly about the centroid of the critical section defined in 11.11.1.2, the factored shear stresses at the faces of the critical section are the sum of stresses due to the direct shear V_u and the unbalanced moment transferred by eccentricity of shear $\gamma_v M_u$ (see Fig. 16-12, and R11.11.7.2).

Fig. 16-12 Shear Stress Distribution due to Moment-Shear Transfer at Slab-Column Connection
\[v_{u1} = \frac{V_u}{A_c} + \frac{\gamma_v M_u c}{J} \quad \text{Eq. (1)} \]
\[v_{u2} = \frac{V_u}{A_c} - \frac{\gamma_v M_u c'}{J} \quad \text{Eq. (2)} \]

where:
- \(A_c \) = area of concrete section resisting shear transfer, equal to the perimeter \(b_0 \) multiplied by the effective depth \(d \)
- \(J \) = property of critical section analogous to polar moment of inertia of segments forming area \(A_c \)
- \(c \) and \(c' \) = distances from centroidal axis of critical section to the perimeter of the critical section in the direction of analysis

Expressions for \(A_c, c, c', J/c \), and \(J/c' \), are contained in Fig. 16-13 for rectangular columns and Fig. 16-14 for circular interior columns.

Where biaxial moment transfer occurs, research has shown that the method for evaluating shear stresses due to moment transfer between slabs and column in R.11.11.7.2 is still applicable (Ref. 16.8). There is no need to superimpose the shear stresses due to moments transfer in two directions.

The maximum shear stress \(v_{u1} \) computed from Eq. (1) shall not exceed \(\phi v_n \), where \(\phi v_n \) is determined from the following (11.11.7.2):

a. For slabs without shear reinforcement:
\[\phi v_c = \phi \left(2 + \frac{4}{\beta} \right) \lambda' f'_c \quad \text{Eq. (11-31)} \]
\[\phi v_c = \phi \left(2 + \frac{\alpha d}{b_0} \right) \lambda' f'_c \quad \text{Eq. (11-32)} \]
\[\phi v_c = 4\lambda' f'_c \quad \text{Eq. (11-33)} \]

b. For slabs with shear reinforcement other than shearheads, \(\phi v_n \) is computed from (11.11.3):
\[\phi v_n = \phi \left(2\lambda' f'_c + \frac{A_v f_y}{b_0 s} \right) \leq 6\sqrt{f'_c} \quad \text{Eqs. (11-15), (11.11.3.1), and (11.11.3.2)} \]

where \(A_v \) is the total area of shear reinforcement provided on the column sides and \(b_0 \) is the perimeter of the critical section located at \(d / 2 \) distance away from the column perimeter, as defined by 11.11.1.2 (a). Due to the variation in shear stresses, as illustrated in Fig. 16-12, the computed area of shear reinforcement, if required, may be different from one column side to the other. The required area of shear reinforcement due to shear stress \(v_{u1} \) at its respective column side is:
\[A_v = \left(v_{u1} - \phi v_c \right) \left(\frac{c + d}{\phi f_y} \right) s \quad \text{Eq. (3)} \]
where \((c + d)\) is an effective “beam” width and \(v_c = 2\lambda \sqrt{f_c^*}\). However, R11.11.3 recommends symmetrical placement if shear reinforcement on all column sides. Thus, with symmetrical shear reinforcement assumed on all sides of the column, the required area \(A_v\) may be computed from:

\[
A_v = (v_{u1} - \phi v_c) \frac{b_0 s}{\phi f_y}
\]

\[\text{Eq. (4)}\]

where \(A_v\) is the total area of required shear reinforcement to be extended from the sides of the column, and \(b_o\) is the perimeter of the critical section located at \(d/2\) from the column perimeter. With symmetrical reinforcement on all column sides, the reinforcement extending from the column sides with less computed shear stress provides torsional resistance in the strip of slab perpendicular to the direction of analysis.

c. For slabs with shearheads as shear reinforcement, \(\phi V_n\) is computed from:

\[
\phi V_n = \phi 4\lambda \sqrt{f_c^*} \geq v_{u1}
\]

\[\text{11.11.7.3}\]

\[
v_{u1} = \frac{V_u}{b_0 d} + \frac{\gamma \lambda M_u c}{J} \leq \phi 4\lambda \sqrt{f_c^*}
\]

\[\text{Eq. (1)}\]

where \(b_o\) is the perimeter of the critical section defined in 11.11.4.7, \(c\) and \(J\) are section properties of the critical section located at \(d/2\) from the column perimeter (11.11.7.3), \(V_u\) is the direct shear force acting on the critical section defined in 11.11.4.7, and \(\gamma \lambda M_u\) is the unbalanced moment transferred by eccentricity of shear acting about the centroid of the critical section defined in 11.11.1.2(a). Note that this seemingly inconsistent summation of shear stresses occurring at two different critical shear sections is conservative and justified by tests (see R11.11.7.3). At the critical section located \(d/2\) from the column perimeter, \(v_u\) shall not exceed \(\phi 7\sqrt{f_c^*}\) (11.11.4.8); see Fig. 16-5.
Case A: Edge Column (Bending parallel to edge)

Case B: Interior Column

Case C: Edge Column (Bending perpendicular to edge)

Case D: Corner Column

Table: Section Properties for Shear Stress Computations – Rectangular Columns

<table>
<thead>
<tr>
<th>Case</th>
<th>Area of critical section, A_c</th>
<th>Modulus of critical section</th>
<th>J/c</th>
<th>J/c'</th>
<th>c</th>
<th>c'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$(b_1+2b_2)d$</td>
<td>$b_1d(b_1+6b_2)+d^3$</td>
<td>$\frac{b_1d(b_1+6b_2)+d^3}{6}$</td>
<td>$\frac{b_1}{2}$</td>
<td>$\frac{b_1}{2}$</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>$2(b_1+b_2)d$</td>
<td>$b_1d(b_1+3b_2)+d^3$</td>
<td>$\frac{b_1d(b_1+3b_2)+d^3}{3}$</td>
<td>$\frac{b_1}{2}$</td>
<td>$\frac{b_1}{2}$</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>$(2b_1+b_2)d$</td>
<td>$2b_1^2d(b_1+2b_2)+d^4(2b_1+b_2)$</td>
<td>$\frac{2b_1^2d(b_1+2b_2)+d^4(2b_1+b_2)}{6b_1}$</td>
<td>$\frac{b_1^2}{2b_1+b_2}$</td>
<td>$\frac{b_1^2(b_1+b_2)}{2b_1+b_2}$</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>$(b_1+b_2)d$</td>
<td>$b_1^2d(b_1+4b_2)+d^4(b_1+b_2)$</td>
<td>$\frac{b_1^2d(b_1+4b_2)+d^4(b_1+b_2)}{6(b_1+2b_2)}$</td>
<td>$\frac{b_1^2}{2(b_1+b_2)}$</td>
<td>$\frac{b_1^2(b_1+2b_2)}{2(b_1+b_2)}$</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 16-13 Section Properties for Shear Stress Computations – Rectangular Columns
\[A_c = \pi(D + d)d \]
\[c = c' = \frac{D + d}{2} \]
\[J = \frac{\pi d \left(\frac{D + d}{2} \right)^2 + d^3}{3} \]

Fig. 16-14 Section Properties for Shear Stress Computations – Circular Interior Column

REFERENCES

16.1 ACI-ASCE Committee 421, “Shear Reinforcement for Slabs”, American Concrete Institute, Farmington Hills, MI, 1999

16.7 Hanson, N.W., and Hanson, J.M., “Shear and Moment Transfer Between Concrete Slabs and Columns,” *Journal, PCA Research and Development Labs*, V-10, No. 1, Jan. 1968, pp. 2-16.

Example 16.1—Shear Strength of Slab at Column Support

Determine two-way action shear strength at an interior column support of a flat plate slab system for the following design conditions.

Column dimensions = 48 in. \times 8\,\text{in.}

Slab effective depth \(d = 6.5\,\text{in.}\)

Specified concrete strength \(f'_c = 4,000\,\text{psi}\)

Normal weight concrete

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Two-way action shear (punching shear) without shear reinforcement: (V_u \leq \phi V_n) \leq \phi V_c</td>
<td>Eq. (11-1) 11.11.2</td>
</tr>
<tr>
<td>2. Effect of loaded area aspect ratio (\beta): (\phi V_c = \phi \left(2 + \frac{\alpha}{\beta} \right) \lambda \sqrt{f_c'} d)</td>
<td>Eq. (11-31) 11.11.2.1</td>
</tr>
<tr>
<td>where (\beta = \frac{48}{8} = 6) Normal weight concrete (\lambda = 1)</td>
<td></td>
</tr>
<tr>
<td>(b_o = 2 (48 + 6.5 + 8 + 6.5) = 138,\text{in.})</td>
<td>11.11.1.2</td>
</tr>
<tr>
<td>(\phi = 0.75)</td>
<td>9.3.2.3</td>
</tr>
<tr>
<td>(\phi V_c = 0.75 \times \left(2 + \frac{40}{6}\right) \sqrt{4000 \times 138 \times 6.5/1,000} = 113.5,\text{kips})</td>
<td></td>
</tr>
<tr>
<td>3. Effect of perimeter area aspect ratio (\beta_o): (\phi V_c = \phi \left(2 + \frac{\alpha_s}{\beta_o} \right) \lambda \sqrt{f_c'} b_o d)</td>
<td>Eq. (11-32) 11.11.2.1</td>
</tr>
<tr>
<td>where (\alpha_s = 40) for interior column support (\beta_o = \frac{b_o}{d} = \frac{138}{6.5} = 21.2)</td>
<td></td>
</tr>
<tr>
<td>(\phi V_c = 0.75 \times \left(2 + \frac{40}{21.2}\right) \sqrt{4000 \times 138 \times 6.5/1,000} = 165.4,\text{kips})</td>
<td></td>
</tr>
</tbody>
</table>
Example 16.1 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
</table>

4. Excluding effect of β and β_o:

$$\phi V_c = \phi 4 \lambda \sqrt{f'_c b_o d}$$

$$= 0.75 \times 4 \times \sqrt{4000 \times 138 \times 6.5/1000} = 170.2 \text{ kips}$$

5. The shear strength ϕV_n is the smallest of the values computed above, i.e., $\phi V_n = 113.5 \text{ kips}$.

16-20
Example 16.2—Shear Strength for Non-Rectangular Support

For the L-shaped interior column support shown, check punching shear strength for a factored shear force of $V_u = 125$ kips. Use $f'_c = 4000$ psi and normal weight concrete. Effective slab depth = 5.5 in.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>For shapes other than rectangular, R11.11.2.1 recommends that β be taken as the ratio of the longest overall dimension of the effective loaded area a to the largest overall dimension of the effective loaded area b, measured perpendicular to a:</td>
</tr>
<tr>
<td></td>
<td>$\beta = \frac{a}{b} = \frac{54}{25} = 2.16$</td>
</tr>
<tr>
<td></td>
<td>For the critical section shown, $b_o = 141$ in.</td>
</tr>
<tr>
<td></td>
<td>Scaled dimensions of the drawings are used, and should be accurate enough</td>
</tr>
<tr>
<td>2.</td>
<td>Two-way action shear (punching shear) without shear reinforcement:</td>
</tr>
<tr>
<td></td>
<td>$V_u \leq \phi V_n$ Eq. (11-1)</td>
</tr>
<tr>
<td></td>
<td>$\leq \phi V_c$ 11.11.2</td>
</tr>
<tr>
<td></td>
<td>where the nominal shear strength V_c without shear reinforcement is the lesser of values given by Eqs. (11-31) and (11-33), but not greater than $4\lambda \sqrt{f'_c b_o d}$:</td>
</tr>
<tr>
<td></td>
<td>$V_c = \left(2 + \frac{4}{\beta}\right)\lambda \sqrt{f'_c b_o d}$ Eq. (11-31)</td>
</tr>
<tr>
<td></td>
<td>for normal weight concrete $\lambda = 1$</td>
</tr>
<tr>
<td></td>
<td>$= \left(2 + \frac{4}{2.16}\right)\sqrt{4000} \times 141 \times 5.5/1000 = 188.9$ kips</td>
</tr>
<tr>
<td></td>
<td>$V_c = \left(2 + \frac{\alpha_s}{\beta_o}\right)\lambda \sqrt{f'_c b_o d}$ Eq. (11-32)</td>
</tr>
</tbody>
</table>
Example 16.2 (cont’d) Calculations and Discussion

where $\alpha_s = 40$ for interior column support

$$\beta_0 = \frac{b_0}{d} = \frac{141}{5.5} = 25.6$$

$$V_c = \left(2 + \frac{40}{25.6}\right) \sqrt{4000 \times 141 \times 5.5/1000} = 174.7 \text{ kips}$$

$$V_c = 4\lambda f'_c b_0 d$$

$$= 4\sqrt{4000 \times 141 \times 5.5/1000} = 196.2 \text{ kips}$$

$$\varphi V_c = 0.75 (174.7) = 131 \text{ kips}$$

$$V_u = 125 \text{ kips} < \varphi V_c = 131 \text{ kips} \quad \text{O.K.}$$

Code Reference

11.11.2.1
Example 16.3—Shear Strength of Slab with Shear Reinforcement

Consider an interior panel of a flat plate slab system supported by a 12-in. square column. Panel size $l_1 = l_2 = 21$ ft. Determine shear strength of slab at column support, and if not adequate, increase the shear strength by considering different possible options. Overall slab thickness $h = 7.5$ in. ($d = 6$ in.).

$f'_c = 4000$ psi, normal weight concrete

$f_y = 60,000$ psi (bar reinforcement)

$f_y = 36,000$ psi (structural steel)

Superimposed factored load $= 160$ psf

Column strip negative moment $M_u = 175$ ft-kips

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.2</td>
</tr>
</tbody>
</table>

1. Wide-beam action shear and two-way action shear (punching shear) without shear reinforcement:

$V_u \leq \phi V_n$

$\leq \phi V_c$

Eq. (11-1)

11.11.2

a. Since there are no shear forces at the center lines of adjacent panels, tributary areas and critical sections for slab shear are as shown below.

![Diagram showing critical sections for beam and two-way action](image-url)
Example 16.3 (cont’d) Calculations and Discussion Code Reference

For 7.5-in. slab, factored dead load \(q_{Du} = 1.2 \times \frac{7.5}{12} \times 150 = 113 \) psf

\(q_u = 113 + 160 = 273 \) psf

a. Wide-Beam Action Shear.

Investigation of wide-beam action shear strength is made at the critical section at a distance \(d \) from face of column support.

\[V_u = 0.273 \left(9.5 \times 21 \right) = 54.5 \text{ kips} \]

\[V_c = 2\lambda \sqrt{f'c} b_w d = 2\left(1.0\right) \sqrt{4000} \left(21 \times 12 \right) \times 6/1000 = 191.3 \text{ kips} \]

\[\phi = 0.75 \]

\(\lambda = 1 \) (normal weight concrete)

\[\phi V_c = 0.75 \times 191.3 = 143.5 \text{ kips} > V_u = 54.5 \text{ kips} \quad \text{O.K.} \]

Wide-beam action will rarely control the shear strength of two-way slab systems.

b. Two-Way Action Shear.

Investigation of two-way action shear strength is made at the critical section \(b_o \) located at \(d/2 \) from the column perimeter. Total factored shear force to be transferred from slab to column:

\[V_u = 0.273 \left(21^2 - 1.5^2 \right) = 119.8 \text{ kips} \]

Shear strength \(V_c \) without shear reinforcement:

\[b_o = 4 \left(18 \right) = 72 \text{ in.} \]

\[\beta = \frac{12}{12} = 1.0 < 2 \]

\[\beta_o = \frac{b_o}{d} = \frac{72}{6} = 12 < 20 \]

\[V_c = 4\lambda \sqrt{f'c} b_o d = 4\left(1.0\right) \sqrt{4000} \times 72 \times 6/1000 = 109.3 \text{ kips} \]

\[\phi = 0.75 \]

\[\phi V_c = 0.75 \times 109.3 = 82 \text{ kips} < V_u = 119.8 \text{ kips} \quad \text{N.G.} \]

Shear strength of slab is not adequate to transfer the factored shear force \(V_u = 119.8 \text{ kips} \) from slab to column support. Shear strength may be increased by:

i. increasing concrete strength \(f'c \)
ii. increasing slab thickness at column support, i.e., using a drop panel
iii. providing shear reinforcement (bars, wires, steel I- or channel-shapes, or headed shear studs)
Example 16.3 (cont’d) Calculations and Discussion

The following parts of the example will address all methods to increase shear strength.

2. Increase shear strength by increasing strength of slab concrete:

\[V_u \leq \phi V_n \]

\[119,800 \leq 0.75 \left(4 \sqrt{f'_c} \times 72 \times 6 \right) \]

Solving, \(f'_c = 8545 \text{ psi} \)

3. Increase shear strength by increasing slab thickness at column support with drop panel:

Provide drop panel in accordance with 13.2.5 (see Fig. 18-2). Minimum overall slab thickness at drop panel = 1.25 (7.5) = 9.375-in. Try a 9.75 in. slab thickness (2.25-in. projection below slab*; \(d' = 8.25 \text{ in.} \)). Minimum distance from centerline of column to edge of drop panel = 21/6 = 3.5 ft. Try 7 × 7 ft drop panel.

* See Chapter 9 (Design Considerations for Economical Formwork) in Ref. 16.6.
For 2.25-in. drop panel projection, \(q_{Du} = 1.2 \times \frac{2.25}{12} \times 150 = 34 \text{ psf} \)

Each side of critical perimeter = 12 + 8.25 = 20.25 in. = 1.69 ft

\[V_u = 0.273 \left(21^2 - 1.69^2 \right) + 0.034 \left(7^2 - 1.69^2 \right) = 119.6 + 1.6 = 121.2 \text{ kips} \]

\[b_o = 4 \left(12 + 8.25 \right) = 81 \text{ in.} \)

\[\beta = 1.0 < 2 \]

\[\beta_o = \frac{b_o}{d} = \frac{81}{8.25} = 9.8 < 20 \]

\[\phi V_c = \phi 4\lambda \frac{\sqrt{f_{c'}}}{b_o d} \]

\[= 0.75 \times 4\lambda \frac{\sqrt{4000}}{81} \times 81 \times 8.25 = 126.8 \text{ kips} > \left(V_u = 121.2 \text{ kips} \right) \]

b. Investigate shear strength at critical section \(b_o \) located at \(d/2 \) from edge of drop panel.

Total factored shear force to be transferred —

\[V_u = 0.273 \left(21^2 - 7.5^2 \right) = 105.0 \text{ kips} \]

\[b_o = 4 \left(84 + 6 \right) = 360 \text{ in.} \)

\[\beta = \frac{84}{84} = 1.0 < 2 \]

\[\beta_o = \frac{b_o}{d} = \frac{360}{6} = 60 > 20 \]

\[\phi V_c = \phi \left(2 + \frac{\alpha_s}{\beta_o} \right) \lambda \frac{\sqrt{f_{c'}}}{b_o d} = \phi \left(2 + \frac{40}{60} \right) \frac{\sqrt{f_{c'}}}{b_o d} = \phi 2.67 \frac{\sqrt{f_{c'}}}{b_o d} \]

\[= 0.75 \times 2.67 \sqrt{4000} \times 360 \times 6/1000 = 273.2 \text{ kips} > V_u = 105.0 \text{ kips} \]

Note the significant decrease in potential shear strength at edge of drop panel due to large \(\beta_o \).

A 7 \times 7 \text{ ft} drop panel with a 2.25-in. projection below the slab will provide adequate shear strength for the superimposed factored loads of 160 psf.
Example 16.3 (cont’d) Calculations and Discussion Code Reference

4. Increase shear strength by bar reinforcement (see Figs. R11.11.3(a) and 16-5):

a. Check effective depth \(d \)

Assuming No. 3 stirrups \((d_b = 0.375 \text{ in.}) \),

\[
d = 6 \text{ in.} \geq \begin{cases}
6 \text{ in.} & \text{O.K.} \\
16 \times 0.375 = 6 \text{ in.} & \text{O.K.}
\end{cases}
\]

\[\text{Eq. (11-1)} \]

b. Check maximum shear strength permitted with bars.

\[V_u \leq \phi V_n \]

\[\phi V_n = \phi \left(6 \sqrt{f'c b_o d} \right) = 0.75 \left(6 \sqrt{4000 \times 72 \times 6} \right) / 1000 = 123.0 \text{ kips} \]

\[V_u = 0.273 \left(21^2 - 1.5^2 \right) = 119.8 \text{ kips} < (\phi V_n = 123.0 \text{ kips}) \text{ O.K.} \]

\[\text{Eq. (11-1)} \]

c. Determine shear strength provided by concrete with bar shear reinforcement.

\[V_c = 2 \lambda \sqrt{f'c b_o d} = 2 \sqrt{4000 \times 72 \times 6} / 1000 = 54.6 \text{ kips} \]

\[\phi V_c = 0.75 (54.6) = 41.0 \text{ kips} \]

d. Design shear reinforcement in accordance with 11.4.

Required area of shear reinforcement \(A_v \) is computed by

\[A_v = \frac{(V_u - \phi V_c) s}{\phi f_y d} \]

Assumes = 3 in. (maximum spacing permitted = \(d/2 \))

\[A_v = \frac{(119.8 - 41.0) \times 3}{0.75 \times 60 \times 6} = 0.88 \text{ in.}^2 \]

where \(A_c \) is total area of shear reinforcement required on the four sides of the column (see Fig. 16-5).

\[A_v \text{(per side)} = \frac{0.88}{4} = 0.22 \text{ in.}^2 \]
Example 16.3 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

e. Determine distance from sides of column where stirrups may be terminated (see Fig. 16-5).

\[V_u \leq \phi V_c \leq \phi 2\lambda \sqrt{f_c'} b_o d \]

For square column (see sketch below),

\[b_o = 4 \left(12 + a\sqrt{2} \right) \]

\[119,800 \leq 0.75 \times 2\sqrt{4000} \times 4 \left(12 + a\sqrt{2} \right) \times 6 \]

Solving, \(a = 28.7 \) in.

Note that the above is a conservative estimate, since \(V_u \) at the perimeter of the critical section shown below is considerably lower than 119.8 kips.

Stirrups may be terminated at \(d/2 = 3 \) in. inside the critical perimeter \(b_o \).

Use 9-No. 3 closed stirrups @ 3 in. spacing \(\left(A_v = 0.22 \text{ in.}^2 \right) \) along each column line as shown below.

5. Increase shear strength by steel I shapes (shearheads):

a. Check maximum shear strength permitted with steel shapes (see Fig. 18-8).

\[V_u = 0.273 \left(21^2 - 1.5^2 \right) = 119.8 \text{ kips} \]

\[V_u \leq \phi V_n \]

\[\phi V_n = \phi \left(7\sqrt{f_c'b_o d} \right) \]

\[\leq 0.75 \times \left(7\sqrt{4000} \times 72 \times 6 \right)/1000 = 143.4 \text{ kips} > V_u = 119.8 \text{ kips} \quad \text{O.K.} \]
b. Determine minimum required perimeter b_o of a critical section at shearhead ends with shear strength limited to $V_n = 4\sqrt{f_c' \cdot b_o \cdot d}$ (see Fig. 16-6 (a)).

\[V_u \leq \phi V_n \quad \text{Eq. (11-1)} \]

\[119,800 \leq 0.75 \left(4\sqrt{4000 \times b_o \times 6} \right) \]

Solving, $b_o = 105.2$ in.

11.11.4.7

c. Determine required length of shearhead arm ℓ_v to satisfy $b_o = 105.2$ in. at $0.75 \left(\ell_v - c_1 \right)/2$.

\[b_o = 4\sqrt{2 \left[\frac{c}{2} + \frac{3}{4} \left(\ell_v - \frac{c}{2} \right) \right]} \quad \text{(see Fig. 16-6 (a))} \]

With $b_o = 105.2$ in. and $c = 12$ in., solving, $\ell_v = 22.8$ in.

Note that the above is a conservative estimate, since V_u at the perimeter of the critical section considered is considerably lower than 119.8 kips.

d. To ensure that premature flexural failure of shearhead does not occur before shear strength of slab is reached, determine required plastic moment strength M_p of each shearhead arm.

\[\phi M_p = \frac{V_u}{2n} \left[h_v + \alpha_v \left(\ell_v - \frac{c_1}{2} \right) \right] \quad \text{Eq. (11-35)} \]

For a four (identical) arm shearhead, $n = 4$; assuming $h_v = 4$ in. and $\alpha_v = 0.25$:

\[\phi M_p = \frac{119.8}{2(4)} \left[4 + 0.25 \left(22.8 - \frac{12}{2} \right) \right] = 122.8 \text{ in.-kips} \]

$\phi = 0.9$ (tension-controlled member)

9.3.2.1

Required $M_p = \frac{122.8}{0.9} = 136.4$ in.-kips

Try W4 × 13 (plastic modulus $Z_x = 6.28$ in.3) A36 steel shearhead

$M_p = Z_x f_y = 6.28 (36) = 226.1$ in.-kips > 136.4 in.-kips O.K.

e. Check depth limitation of W4 × 13 shearhead.

$70t_w = 70 (0.280) = 19.6$ in. > $h_v = 4.16$ in. O.K.

11.11.4.2

f. Determine location of compression flange of steel shape with respect to compression surface of slab, assuming 3/4-in. cover and 2 layers of No. 5 bars.

$0.3d = 0.3 (6) = 1.8$ in. < $0.75 + 2 (0.625) = 2$ in. N.G.
Therefore, both layers of the No. 5 bars in the bottom of the slab must be cut.

g. Determine relative stiffness ratio α_v.

For the $W4 \times 13$ shape:

\[A_{st} = 3.83 \text{ in.}^2 \]
\[I_s = 11.3 \text{ in.}^4 \]

As provided for $M_u = 175 \text{ ft-kips}$ is No. 5 @ 5 in.

c.g. of $W4 \times 13$ from compression face = $0.75 + 2 = 2.75$ in.

Effective slab width = $c_2 + d = 12 + 6 = 18$ in.

Transformed section properties:

For $f'_{c_e} = 4,000 \text{ psi}$, use $\frac{E_s}{E_c} = \frac{29,000}{3605} = 8$

Steel transformed to equivalent concrete:

\[\frac{E_s}{E_c} A_s = 8 (4 \times 0.31) = 9.92 \text{ in.}^2 \]
\[\frac{E_s}{E_c} A_{st} = 8 (3.83) = 30.64 \text{ in.}^2 \]

Neutral axis of composite cracked slab section may be obtained by equating the static moments of the transformed areas.

\[\frac{18 (kd)^2}{2} = 30.64 (2.75 - kd) + 9.92 (6 - kd) \]

where kd is the depth of the neutral axis for the transformed area

Solving, $kd = 2.34$ in.
Example 16.3 (cont’d) Calculations and Discussion

Final Details of Shearhead Reinforcement

Composite I

\[
\text{Composite I} = \frac{18 (2.34)^3}{3} + \frac{E_s}{E_c} (I_s \text{ steel shape}) + 9.92 (3.66)^2 + 30.64 (0.41)^2 \\
= 76.9 + 8 (11.3) + 132.9 + 5.2 = 305.4 \text{ in.}^4
\]

\[\alpha_v = \frac{E_s / E_c I_s}{I_{\text{composite}}} = \frac{8 \times 11.3}{305.4} = 0.30 > 0.15 \quad \text{O.K.}
\]

Therefore, W4 × 13 section satisfies all code requirements for shearhead reinforcement.

h. Determine contribution of shearhead to negative moment strength of column strip.

\[
M_v = \frac{\phi \alpha_v V_u}{2n} \left(\ell_v - \frac{c_1}{2} \right)
\]

\[
= \frac{0.9 \times 0.30 \times 119.8}{2 \times 4} (22.8 - 6) = 67.9 \text{ in.-kips} = 5.7 \text{ ft-kips}
\]

However, \(M_v\) must not exceed either \(M_p = 136.4 \text{ in.-kips}\) or \(0.3 \times 175 \times 12 = 630 \text{ in.-kips}\), or the change in column strip moment over the length \(\ell_v\). For this design, approximately 4% of the column strip negative moment may be considered resisted by the shearhead reinforcement.
6. Increase the shear strength by headed shear stud reinforcement

 a. Check shear strength at distance d/2 from the column face

 \[V_u = 119.8 \text{ kips} \]

 \[\phi V_n = 0.75 \times \sqrt{4000} \times 72 \times 6 \times 1000 = 163.9 \text{ kips} > 119.8 \text{ kips} \quad \text{O.K.} \]

 b. Determine shear strength provided by concrete

 Maximum \(\phi V_c \) at d/2 when using headed shear stud reinforcement:

 \[\phi V_c \text{ maximum} = \phi 3\lambda \sqrt{f_c} b_o d = 0.75 \times 3 \times 1.0 \times \sqrt{4000} \times 72 \times 6 / 1000 = 61.5 \text{ kips} \]

 c. Design shear reinforcement in accordance with 11.4

 \[\phi V_s = V_u - \phi V_c = 119.8 - 61.5 = 58.3 \text{ kips} \]

 Using 3/8 in. stud arranged as shown in the figure (\(A_v = 0.88 \text{ in.}^2 \) for 8 studs) and \(f_{yt} = 51 \text{ ksi} \) (see R3.5.5):

 \[s = \frac{0.75 \times 0.88 \times 51 \times 6}{58.3} = 3.46 \text{ in.} \quad \text{Use 3.5 in.} \]

5. Check maximum headed stud spacing corresponding to permissible shear stress

 \[\frac{V_u}{b_o d} = \frac{119.8 \times 1000}{72 \times 6} = 277.3 \text{ psi} < \left(6\phi \sqrt{f_c} = 284.6 \text{ psi} \right) \]

 Maximum s = 0.75 d = 4.5 in.

 use s = 3.5 in.

Check \[A_v f_{yt} / (b_o s) > 2\sqrt{f_c} \]

\[0.88 \times 51,000 / (72 \times 3.5) = 178.1 \text{ psi} > \left(2\sqrt{4000} = 126.5 \text{ psi} \right) \quad \text{O.K.} \]
d. Determine the distance from the sides of the column where the studs may be terminated

\[V_u \leq \phi \lambda 2 \sqrt{f_c'} b_o d \]

\[b_o = 4 (12 + a \sqrt{2}) \] see figure below

\[119,800 \leq 0.75 \times 1.0 \times 2 \times \sqrt{4000} \times 4 (12 + a \sqrt{2}) \]

\[a = 28.7 \text{ in.} \]

Note that the calculated value of a is conservative, since \(V_u \) at the perimeter of the critical section located \(d/2 \) outside the outermost peripheral line of shear reinforcement, is considerably lower than 119.8 kips.

Headed shear stud reinforcement may be terminated at \(d/2 = 3 \text{ in.} \) inside the critical perimeter \(b_o \). The first headed shear stud is \(d/2 \) away from face of column. Required number of headed shear studs per rail:

\[[(a - d/2 - d/2)/s] + 1 = [(28.7 - 3 - 3)/3.5] + 1.0 = 7.5 \]

Use 8 pairs of studs on each column side, i.e. 7 spaces @ 3.5 in.

Distance provided from side of column to the critical perimeter:

\[= 7 \times 3.5 + 3 + 3 = 30.5 \text{ in.} > 28.7 \text{ in.} \] O.K.
Example 16.4—Shear Strength of Slab with Transfer of Moment

Consider an exterior (edge) panel of a flat plate slab system supported by a 16-in. square column. Determine shear strength for transfer of direct shear and moment between slab and column support. Overall slab thickness \(h = 7.25 \text{ in.} \) \((d \approx 6.0 \text{ in.})\). Assume that the Direct Design Method is used for analysis of the slab. Consider two loading conditions:

1. Total factored shear force \(V_u = 30 \text{ kips} \)

 Total factored static moment \(M_o \) in the end span = 96 ft-kips

2. \(V_u = 60 \text{ kips} \)

 \[M_o = 170 \text{ ft-kips} \]

\(f'_c = 4000 \text{ psi, normal weight concrete} \)

\(f_y = 60,000 \text{ psi} \)

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

1. Section properties for shear stress computations:

Refering to Fig. 16-13, edge column bending perpendicular to edge (Case C),

\[
b_1 = c_1 + \frac{d}{2} = 16 + \frac{6}{2} = 19.0 \text{ in.}
\]

\[
b_2 = c_2 + d = 16 + 6 = 22.0 \text{ in.}
\]

\[
b_o = 2 (19.0) + 22 = 60.0 \text{ in.}
\]

\[
c = \frac{b_1^2}{2b_1 + b_2} = \frac{19.0^2}{(2 \times 19.0) + 22.0} = 6.02 \text{ in.}
\]

\[
A_c = (2b_1 + b_2) d = 360 \text{ in.}^2
\]

\[
\frac{J}{c'} = \frac{2b_1^2 d (b_1 + 2b_2) + d^3 (2b_1 + b_2)}{6b_1} = 2508 \text{ in.}^3
\]

\[
c' = b_1 - c = 19 - 6.02 = 12.98 \text{ in.}
\]

\[
\frac{J}{c'} = \left(\frac{J}{c}\right)\left(\frac{c'}{c'}\right) = 2508 \left(\frac{6.02}{12.98}\right) = 1163 \text{ in.}^3
\]
Example 16.4 (cont’d) Calculations and Discussion

2. Loading condition (1), $V_u = 30$ kips, $M_o = 96$ ft-kips:

a. Portion of unbalanced moment to be transferred by eccentricity of shear.

\[\gamma_v = 1 - \gamma_f. \]

For unbalanced moments about an axis parallel to the edge at exterior supports, the value of γ_f can be taken equal to 1.0 provided that $V_u \leq 0.75 \phi V_c$.

\[V_c = 4\lambda\sqrt{f_c} b_d \]

\[= 4\sqrt{4000} \times 60 \times 6.0/1000 = 91.1 \text{ kips} \]

\[\phi = 0.75 \]

\[\phi \gamma_n = \phi 4\lambda\sqrt{f_c} = 0.75 \left(4\sqrt{4000}\right) = 189.7 \text{ psi} \]

\[V_{u1} = 83.3 \text{ psi} \quad \text{O.K.} \]

Therefore, all of the unbalanced moment at the support may be considered transferred by flexure (i.e., $\gamma_f = 1.0$ and $\gamma_v = 0$). Note γ_f that can be taken as 1.0 provided that ρ within the effective slab width $3h + c_2 = 21.75 + 16 = 37.75$ in. is not greater than 0.375 ρ_b.

b. Check shear strength of slab without shear reinforcement.

Combined shear stress along inside face of critical transfer section.

\[V_{u1} = \frac{V_u}{A_c} + \frac{\gamma_v M_u c}{J} = \frac{30,000}{360} + 0 = 83.3 \text{ psi} \]

Permissible shear stress:

\[\phi \gamma_n = \phi 4\lambda\sqrt{f_c} = 0.75 \left(4\sqrt{4000}\right) = 189.7 \text{ psi} \]

\[V_{u1} = 83.3 \text{ psi} \quad \text{O.K.} \]

Slab shear strength is adequate for the required shear and moment transfer between slab and column.

Design for the portion of unbalanced moment transferred by flexure $\gamma_f M_u$ must also be considered. See Example 19.1 when using the Direct Design Method. See Example 20.1 for the Equivalent Frame Method.

For the Direct Design Method, $\gamma_f M_u = 1.0 \times (0.26 M_o) = 25$ ft-kips to be transferred over the effective width of 37.75 in., provided that ρ within the 37.75-in. width ≤ 0.375 ρ_b.

Code Reference

11.11.7.1
11.3.2.3
13.5.3.3
13.6.3.3
3. Loading condition (2), \(V_u = 60 \) kips, \(M_o = 170 \) ft-kips:

 a. Check shear strength of slab without shear reinforcement.

 Portion of unbalanced moment to be transferred by eccentricity of shear.

 \[0.75\phi V_c = 51.2 \text{ kips} < V_u = 60 \text{ kips} \]

 Therefore, \(\gamma_v = 1 - \gamma_f \)

 \[\gamma_f = \frac{1}{1 + \frac{2}{3}\left(\frac{b_1}{b_2}\right)} = \frac{1}{1 + \frac{2}{3}\sqrt{19.0 \div 22.0}} = 0.62 \]

 \[\gamma_v = 1 - 0.62 = 0.38 \]

 For the Direct Design Method, the unbalanced moment \(M_u \) to be used in the shear stress computation for the edge column = 0.3\(M_o = 0.3 \times 170 = 51.0 \) ft-kips.

 Combined shear stress along inside face of critical transfer section,

 \[V_{ul} = \frac{V_u}{A_c} + \frac{\gamma_v M_{u,c}}{J} \]

 \[= \frac{60,000}{360} + \frac{0.38 \times 51.0 \times 12,000}{2508} \]

 \[= 166.7 + 92.7 = 259.4 \text{ psi} \]

 \[\phi V_n = 189.7 \text{ psi} < V_{ul} = 259.4 \text{ psi} \text{ N.G.} \]

 Shear reinforcement must be provided to carry excess shear stress; provide either bar reinforcement or steel I- or channel-shapes (shearheads).

 Increase slab shear strength by bar reinforcement.
Example 16.4 (cont’d) Calculations and Discussion

| Code Reference |

b. Check maximum shear stress permitted with bar reinforcement.

Check effective depth, d

Assuming No. 3 stirrups (d_b = 0.375 in.),

\[d = 6 \text{ in.} \geq \begin{cases} 6 \text{ in.} & \text{O.K.} \\ 16 \times 0.375 = 6 \text{ in.} & \text{O.K.} \end{cases} \]

\[\psi_{u1} \leq \psi 6 \sqrt{f'_c} \]

\[\psi v_n = 0.75 \left(6 \sqrt{4000}\right) = 284.6 \text{ psi} \]

\[\psi_{u1} = 259.4 \text{ psi} < \psi v_n = 284.6 \text{ psi} \text{ O.K.} \]

c. Determine shear stress carried by concrete with bar reinforcement.

\[\psi v_c = \phi 2\lambda \sqrt{f'_c} = 0.75 \left(4 \sqrt{4000}\right) = 94.9 \text{ psi} \]

d. With symmetrical shear reinforcement on all sides of column, required \(A_v \) is

\[A_v = \frac{(\psi_{u1} - \psi v_c) b_o s}{\phi f_y} \quad \text{Eq.(4)} \]

where \(b_o \) is perimeter of critical section located at \(d/2 \) from column perimeter

\[b_o = 2 (19) + 22 = 60 \text{ in.} \text{ and} \]

\[s = \frac{d}{2} = 3.0 \text{ in.} \]

\[A_v = \frac{(259.4 - 94.9) \times 60 \times 3.0}{0.75 \times 60,000} = 0.66 \text{ in.}^2 \]

\(A_v \) is total area of shear reinforcement required on the three sides of the column.

\[A_v \text{ (per side)} = \frac{0.66}{3} = 0.22 \text{ in.}^2 \]

Use No. 3 closed stirrups @ 3.0 in. spacing (\(A_v = 0.22 \text{ in.}^2 \))

A check on the calculations can easily be made; for No. 3 closed stirrups @ 3.0 in.:

\[\psi (v_c + v_s) = \phi \left(2\lambda \sqrt{f'_c} + \frac{A_v f_y}{b_o s}\right) \]
Example 16.4 (cont’d) Calculations and Discussion

\[
= 0.75 \left[2\sqrt{4000} + \frac{(3 \times 0.22) \times 60,000}{60 \times 3.0} \right]
\]

\[
= 0.75 (126.5 + 220.0) = 259.9 \text{ psi} > v_{u1} = 259.4 \text{ psi} \quad \text{O.K.}
\]

e. Determine distance from sides of column where stirrups may be terminated.

\[
V_u \leq \phi V_c
\]

\[
\phi V_c = \phi 2\lambda \sqrt{f'_c} b_o d
\]

where \(b_o = 2a\sqrt{2} + (3 \times 16) \)

\[
60,000 \leq 0.75 \times 2\sqrt{4000} \left(2a\sqrt{2} + 48\right) 6.0
\]

Solving, \(a = 20.3 \text{ in.} \)

Note that the above is a conservative estimate, since \(V_u \) at the perimeter of the critical section considered is considerably lower than 60 kips.

No. of stirrups required \(= (20.3 - d/2)/3.0 = 5.8 \)

(Stirrups may be terminated at \(d/2 = 3.0 \text{ in.} \) inside perimeter \(b_o \))

Use 6-No. 3 closed stirrups @ 3.0 in. spacing along the three sides of the column.
Use similar stirrup detail as for Example 16.3.
Strut-and-Tie Models

UPDATE FOR THE '08 CODE

Appendix A, Strut-and-Tie Models, was introduced in ACI 318-02. For the 2008 code, only editorial clarifications are introduced.

BACKGROUND

The strut-and-tie model is a tool for the analysis, design, and detailing of reinforced concrete members. It is essentially a truss analogy, based on the fact that concrete is strong in compression, and that steel is strong in tension. Truss members that are in compression are made up of concrete, while truss members that are in tension consist of steel reinforcement.

Appendix A, Strut-and-Tie Models, was introduced in ACI 318-02. The method presented in Appendix A provides a design approach, applicable to an array of design problems that do not have an explicit design solution in the body of the code. This method requires the designer to consciously select a realistic load path within the structural member in the form of an idealized truss. Rational detailing of the truss elements and compliance with equilibrium assures the safe transfer of loads to the supports or to other regions designed by conventional procedures. While solutions provided with this powerful design and analysis tool are not unique, they represent a conservative lower bound approach. As opposed to some of the prescriptive formulations in the body of ACI 318, the very visual, rational strut-and-tie model of Appendix A gives insight into detailing needs of irregular (load or geometric discontinuities) regions of concrete structures and promotes ductility at the strength limit stage. The only serviceability provisions in the current Appendix A are the crack control reinforcement for the struts.

The design methodology presented in Appendix A is largely based on the seminal articles on the subject by Schlaich et al.17.1, Collins and Mitchell17.2, and Marti17.3. Since publication of these papers, the strut-and-tie method has received increased attention by researchers and textbook writers (Collins and Mitchell17.4, MacGregor and Wight17.5). MacGregor described the background of provisions incorporated in Appendix A in ACI Special Publication SP-20817.6.

A.1 DEFINITIONS

The strut-and-tie design procedure calls for the distinction of two types of zones in a concrete component depending on the characteristics of stress fields at each location. Thus, structural members are divided into B-regions and D-regions.

B-regions represent portions of a member in which the “plane section” assumptions of the classical beam theory can be applied with a sectional design approach.

D-regions are all the zones outside the B-regions where cross-sectional planes do not remain plane upon loading. D-regions are typically assumed at portions of a member where discontinuities (or disturbances) of stress distribution occur due to concentrated forces (loads or reactions) or abrupt changes of geometry. Based on St. Venant’s Principle, the normal stresses (due to axial load and bending) approach quasi-linear distribution at a distance approximately equal to the larger of the overall height (h) and width of the member, away from the location of the concentrated force or geometric irregularity. Figure 17-1 illustrates typical discontinuities, D-Regions (cross-hatched areas), and B-Regions.
While B-regions can be designed with the traditional methods (ACI 318 Chapters 10 and 11), the \textbf{strut-and-tie model} was primarily introduced to facilitate the design of D-regions, and can be extended to the B-regions as well. The strut-and-tie model depicts the D-region of the structural member with a truss system consisting of compression \textit{struts} and tension \textit{ties} connected at \textit{nodes} as shown in \textit{Fig. 17-2}. This truss system is designed to transfer the factored loads to the supports or to adjacent B-regions. At the same time, forces in the truss members should maintain equilibrium with the applied loads and reactions.

\textit{Figure 17-1 Load and Geometric Discontinuities}
Struts are the compression elements of the strut-and-tie model representing the resultants of a compression field. Both parallel and fan shaped compression fields can be modeled by their resultant compression struts as shown in Fig. 17-3.

Typically compression struts would take a bottle-shape wherever the strut can spread laterally at mid-length. As a design simplification, prismatic compression members commonly idealize struts, however, other shapes are also possible. If the effective concrete compressive strength (f_{ce}) is different at the opposite ends of a strut, a linearly tapering compression member is suggested. This condition may occur, if at the two ends of the strut the nodal zones have different strengths or different bearing lengths. Should the compression stress be high in the strut, reinforcement may be necessary to prevent splitting due to transverse tension. (Similar to the splitting crack that develops in a cylinder supported on edge, and loaded in compression resulting in the tensile stresses due to the lateral spread of the compressive stress trajectories).

Ties consist of conventional deformed reinforcing steel, prestressing steel, or both, plus a portion of the surrounding concrete that is concentric with the axis of the tie. The surrounding concrete is not considered to resist axial
force in the model. However, it reduces the elongation of the tie (tension stiffening), in particular, under service loads. It also defines the zone in which the forces in the struts and ties are to be anchored.

Nodes are the intersection points of the axes of the struts, ties and concentrated forces, representing the joints of a strut-and-tie model. To maintain equilibrium, at least three forces should act on a given node of the model. Nodes are classified depending on the sign of the forces acting upon them (e.g., a C-C-C node resists three compression forces, a C-T-T node resists one compression forces and two tensile forces, etc.) as shown in Fig. 17-4

![Classification of Nodes](image)

A nodal zone is the volume of concrete that is assumed to transfer strut and tie forces through the node. The early strut-and-tie models used hydrostatic nodal zones, which were lately superseded by extended nodal zones.

The faces of a **hydrostatic nodal zone** are perpendicular to the axes of the struts and ties acting on the node, as depicted in Fig. 17-5. The term hydrostatic refers to the fact that the in-plane stresses are the same in all directions. (Note that in a true hydrostatic stress state the out-of-plane stresses should be also equal). Assuming identical stresses on all faces of a C-C-C nodal zone with three struts implies that the ratios of the lengths of the sides of the nodal zones (\(w_{n1} : w_{n2} : w_{n3}\)) are proportional to the magnitude of the strut forces (\(C_1 : C_2 : C_3\)). Note, that C denotes compression and T denotes tension.

![Hydrostatic Nodal Zone](image)

The extended nodal zone is a portion of a member bounded by the intersection of the effective strut width, \(w_s\), and the effective tie width, \(w_t\). This is illustrated in Fig. 17-6.

![Extended Nodal Zone](image)
A design with the strut-and-tie model typically involves the following steps:
1. Define and isolate D-regions.
2. Compute resultant forces on each D-region boundary.
3. Devise a truss model to transfer the resultant forces across the D-region. The axes of the struts and ties, are oriented to approximately coincide with the axes of the compression and tension stress fields respectively.
4. Calculate forces in the truss members.
5. Determine the effective widths of the struts and nodal zones considering the forces from the previous steps and the effective concrete strengths (defined in A.3.2 and A.5.2). Strength checks are based on
 \[\phi F_n \geq F_u \] \hspace{1cm} \text{Eq. (A-1)}
 where \(F_u \) is the largest factored force obtained from the applicable load combinations, \(F_n \) is the nominal strength of the strut, tie, or node, and the strength reduction factor, \(\phi \) factor is listed in 9.3.2.6 as 0.75 for ties, strut, nodal zones and bearing areas of strut-and-tie models.
6. Provide reinforcement for the ties considering the steel strengths defined in A.4.1. The reinforcement must be detailed to provide proper anchorage either side of the critical sections.

In addition to the strength limit states, represented by the strut-and-tie model, structural members should be checked for serviceability requirements. Traditional elastic analysis can be used for deflection checks. Crack control can be verified using provisions of 10.6.4, assuming that the tie is encased in a prism of concrete corresponding to the area of tie (RA.4.2).

There are usually several strut-and-tie models that can be devised for a given structural member and loading condition. Models that satisfy the serviceability requirements the best, have struts and ties that follow the compressive and tensile stress trajectories, respectively. Certain construction rules of strut-and-tie models, e.g., “the angle, \(\theta \), between the axes of any strut and any tie entering a single node shall not be taken as less than 25 degrees” (A.2.5) are imposed to mitigate potential cracking problems and to avoid incompatibilities due to shortening of the struts and lengthening of the ties in almost the same direction.

A.3 STRENGTH OF STRUTS

The nominal compressive strength of a strut without longitudinal reinforcement shall be taken as
\[F_{ns} = f_{ce} A_{cs} \] \hspace{1cm} \text{Eq. (A-2)}
to be calculated at the weaker end of the compression member. \(A_{cs} \) is the cross-sectional area at the end of the strut. In typical two-dimensional members, the width of the strut \((w_s) \) can be taken as the width of the member. The effective compressive strength of the concrete \((f_{ce}) \) for this purpose shall be taken as the lesser of the concrete strengths at the two sides of the nodal zone/strut interface. Section A.3.2 specifies the calculation of \(f_{ce} \) for the strut (detailed below), while A.5.2 provides for the same in the nodal zone (discussed later).

The effective compressive strength of the concrete in a strut is calculated, similarly to basic strength equations, as:
\[f_{ce} = 0.85 \beta_s f_c' \] \hspace{1cm} \text{Eq. (A-3)}

The \(\beta_s \) factor accounts for the effect of cracking and possible presence of transverse reinforcement. The strength of the concrete in a strut can be computed with \(\beta_s = 1.0 \) for struts that have uniform cross sectional area over their length. This is quasi-equivalent to the rectangular stress block in the compression zone of a beam or column. For bottle-shaped struts (Fig. 17-7) with reinforcement placed to resist the splitting forces (satisfying A.3.3)
\(\beta_s = 0.75 \) or without adequate confinement to resist splitting forces \(\beta_s = 0.60 \lambda \) (where \(\lambda \) is a correction factor (8.6.1) for lightweight concrete.)

For struts with intersecting cracks in a tensile zone, \(\beta_s \) is reduced to 0.4. Examples include strut-and-tie models used to design the longitudinal and transverse reinforcement of the tension flanges of beams, box-girders and walls. For all other cases (e.g., in beam webs where struts are likely to be crossed by inclined cracks), the \(\beta_s \) factor can be conservatively taken as \(0.6 \lambda \).

Section A.3.3 addresses cases where transverse reinforcement is provided to cross the bottle-shaped struts. The compression forces in the strut may be assumed to spread at a slope 2:1 (Fig. 17-7). The rebars are intended to resist the transverse tensile forces resulting from the compression stresses spreading laterally in the strut. They may be placed in one direction (when the \(\alpha \) angle between the rebar and the axis of the strut is at least 40 degree) or in two orthogonal directions.

To allow for \(\beta_s = 0.75 \), for concrete strength not exceeding 6000 psi, the reinforcement ratio needed to cross the strut is computed from:

\[
\sum \frac{A_{si}}{b_s s_i} \sin \alpha_i \geq 0.003 \tag{A-4}
\]

where \(A_{si} \) is the total area of reinforcement at spacing \(s_i \) in a layer of reinforcement with bars at an angle \(\alpha_i \) to the axis of the strut (shown in Fig. 17-8), and \(b_s \) is the width of the strut. Often, this reinforcement ratio cannot be provided due to space limitations. In those cases \(\beta_s = 0.60 \lambda \) shall be used.
If substantiated by test and analyses, increased effective compressive strength of a strut due to confining reinforcement may be used (e.g., at anchorage zones of prestressing tendons). This topic is discussed in detail in Refs. 17.7 and 17.8.

Additional strength can be provided to the struts by including compression reinforcement parallel to the axis of the strut. These bars must be properly anchored and enclosed by ties or spirals per 7.10. The compressive strength of these longitudinally reinforced struts can be calculated as:

\[F_{ns} = f_{ce}A_{cs} + A_{s}f_s' \]

Eq. (A-5)

where \(f_s' \) is the stress in the longitudinal strut reinforcement at nominal strength. It can be either obtained from strain analyses at the time the strut crushes, or taken as \(f_s' = f_y \) for Grade 40 and 60 rebars.

A.4 STRENGTH OF TIES

The nominal strength of a tie is calculated as the sum of yield strength of the conventional reinforcement plus the force in the prestressing steel:

\[F_{nt} = A_{ts}f_y + A_{tp}(f_{se} + \Delta f_p) \]

Eq. (A-6)

Note, that \(A_{tp} \) is zero if there is no prestressing present in the tie. The actual prestressing stress \(f_{se} + \Delta f_p \) should not exceed the yield stress \(f_{py} \) of the prestressing steel. Also, if not calculated, the code allows to estimate the increase in prestressing steel stress due to factored loads \(\Delta f_p \), as 60,000 psi for bonded prestressed reinforcement, or 10,000 psi for unbonded prestressed reinforcement.

Since the intent of having a tie is to provide for a tension element in a truss, the axis of the reinforcement centroid shall coincide with the axis of the tie assumed in the model. Depending on the distribution of the tie reinforcement, the effective tie width (\(w_t \)) may vary between the following limits:

- The minimum width for configurations where only one layer of reinforcement provided in a tie, \(w_t \) can be taken as the diameter of the bars in the tie plus twice the concrete cover to the surface of the ties. Should the tie be wider than this, the reinforcement shall be distributed evenly over the width.
- The upper limit is established as the width corresponding to the width in a hydrostatic nodal zone, calculated as

\[w_{t,max} = F_{nt}(f_{ce}b) \]

where \(f_{ce} \) is the applicable effective compression strength of a nodal zone discussed below and \(b \) is the width of the tie.

Nodes shall be able to develop the difference between the forces of truss members connecting to them. Thus, besides providing adequate amount of tie reinforcement, special attention shall be paid to proper anchorage. Anchorage can be achieved using mechanical devices, post-tensioning anchorage devices, standard hooks, headed bar, or straight bar embedment. The reinforcement in a tie should be anchored before it leaves the extended nodal zone, i.e., at the point defined by the intersection of the centroid of the bars in the tie and the extensions of the outlines of either the strut or the bearing area as shown in Fig.17-9. For truss layouts where more than one tie intersect at a node, each tie force shall be developed at the point where the centroid of the reinforcement in the tie leaves the extended nodal zone. (Note, that transverse reinforcement required by A.3.3 shall be anchored according to the provisions of 12.13).

In many cases the structural configuration does not allow to provide for the straight development length for a tie.
For such cases, anchorage is provided through mechanical devices, hooks, or splicing with several layers of smaller bars. These options often require a wider structural member and/or additional confinement reinforce-
ment (e.g., to avoid cracking along the outside of the hooks).

Figure 17-9 Anchorage of Tie Reinforcement

A.5 STRENGTH OF NODAL ZONES

The nominal compression strength at the face of a nodal zone or at any section through the nodal zone shall be:

\[
F_{nn} = f_{ce} A_{nz}
\]

where \(A_{nz} \) is taken as the area of the face of the nodal zone that the strut force \(F_u \) acts on, if the face is perpendicular to the line of action of \(F_u \). If the nodal zone is limited by some other criteria, the node-to-strut interface may not be perpendicular to the axis of the strut. Therefore, the axial stresses in the compression-only strut will generate both shear and normal stresses acting on the interface. In those cases, the \(A_{nz} \) parameter shall be the area of a section, taken through the nodal zone perpendicular to the strut axis.

The strut-and-tie model is applicable to three-dimensional situations as well. In order to keep calculations simple, A.5.3 allows the area of the nodal faces to be less than that described above. The shape of each face of the nodal zones must be similar to the shape of the projection of the end of the struts onto the corresponding faces of the nodal zones.

The effective compressive strength of the concrete in the nodal zone \((f'_{ce}) \) is calculated as:

\[
f_{ce} = 0.85 \beta_n f'_{ce}
\]

and must not exceed the effective concrete compressive strength on the face of a nodal zone due to the strut-and-tie model forces, unless confining reinforcement is provided within the nodal zone and its effect is evidenced by tests and analysis. The sign of forces acting on the node influences the capacity at the nodal zones as reflected by the \(\beta_n \) value. The presence of tensile stresses due to ties decreases the nodal zone concrete strength.

\(\beta_n = 1.0 \) in nodal zones bounded by struts or bearing areas (e.g., C-C-C nodes)

\(\beta_n = 0.8 \) in nodal zones anchoring one tie (e.g., C-C-T nodes)

\(\beta_n = 0.6 \) in nodal zones anchoring two or more ties (e.g., C-T-T or T-T-T nodes).
REFERENCES

Example 17.1—Design of Deep Flexural Member by the Strut-and-Tie Model

Determine the required reinforcement for the simply supported transfer girder shown in Fig. 17-10. The single column at midspan subjects the girder to 180 kips dead load and 250 kips live load.

Calculations and Discussion

1. Calculate factored load and reactions

 The transfer girder dead load is conservatively lumped to the column load at midspan. Transfer girder dead load is:

 $5(20/12) [6 + 6 + (32/12)] 0.15 = 18.5 \text{ kips}$

 $P_u = 1.2D + 1.6L = 1.2 \times (18.5 + 180) + 1.6 \times 250 = 640 \text{ kips}$

 $R_A = R_B = 640/2 = 320 \text{ kips}$

2. Determine if this beam satisfies the definition of a “deep beam”

 Overall girder height $h = 5 \text{ ft}$

 Clear span $\ell_n = 12 \text{ ft}$

 $\frac{\ell_n}{h} = \frac{12}{5} = 2.4 < 4$

 Member is a “deep beam” and will be designed using Appendix A.

3. Check the maximum shear capacity of the cross section

 $V_u = 320 \text{ kips}$

 Maximum $\phi V_n = \phi \left(10 \sqrt{f_c} b_w d\right)$

 10.7.3 and 10.7.2
Example 17.1 (cont’d) Calculations and Discussion

4. Establish truss model

Assume that the nodes coincide with the centerline of the columns (supports), and are located 5 in. from the upper or lower edge of the beam as shown in Fig. 17-11. The strut-and-tie model consists of two struts (A-C and B-C), one tie (A-B), and three nodes (A, B, and C). In addition, columns at A and B act as struts representing reactions. The vertical strut located in the upper column at the top of Node C represents the applied load.

![Figure 17-11 Preliminary Truss Layout](image)

The length of the diagonal struts $\sqrt{50^2 + 80^2} = 94.3$ in.

The force in the diagonal struts $= \frac{320 \times 94.3}{50} = 603$ kips

The force in the horizontal tie $= \frac{320 \times 80}{50} = 512$ kips

Verify the angle between axis of strut and tie entering Node A.

The angle between the diagonal struts and the horizontal tie $= \tan^{-1} (50/80) = 32° > 25°$ O.K. \(A.2.5\)

5. Calculate the effective concrete strength \(f_{ce}\) for the struts assuming that reinforcement is provided per \(A.3.3\) to resist splitting forces. (See Step 9)

For the “bottle-shaped” Struts A-C & B-C

$\dot{f}_{ce} = 0.85 \beta_s f'_c = 0.85 \times 0.75 \times 4000 = 2550$ psi \(Eq. (A-3) \)

where $\beta_s = 0.75$ per \(A.3.2.2(a)\)

Note, this effective compressive strength cannot exceed the strength of the nodes at both ends of the strut. See \(A.3.1\).
Assume that the vertical struts at in the columns A, B, and C have uniform cross-sectional area throughout their length.

\[\beta_s = 1.0 \text{ for prismatic struts} \]
\[f_{ce} = 0.85 \times 1.0 \times 4000 = 3400 \text{ psi} \]

6. Calculate the effective concrete strength (f_{ce}) for Nodal Zones A, B, and C

Nodal Zone C is bounded by three struts. So this is a C-C-C nodal zone with \(\beta_n = 1.0 \)

\[f_{ce} = 0.85 \times 1.00 \times 4000 = 3400 \text{ psi} \]
\[\text{Eq. (A-8)} \]

Nodal Zones A and B are bounded by two struts and a tie. For a C-C-T node:

\[\beta_n = 0.80 \]
\[f_{ce} = 0.85\beta_n f_c' = 0.85 \times 1.00 \times 4000 = 3400 \text{ psi} \]

7. Check strength at Node C

Assume that a hydrostatic nodal zone is formed at Node C. This means that the faces of the nodal zone are perpendicular to the axis of the respective struts, and that the stresses are identical on all faces.

To satisfy the strength criteria for all three struts and the node, the minimum nodal face dimension is determined based on the least strength value of \(f_{ce} = 2550 \text{ psi} \), thus, governed by the bottle-shaped diagonal struts. The same strength value will be used for Nodes A and B as well.

The strength checks for all components of the strut and tie model are based on

\[\phi F_n \geq F_u \]
\[\text{Eq. (A-1)} \]

where \(\phi = 0.75 \) for struts, ties, and nodes.

The length of the horizontal face of Nodal Zone C is calculated as

\[\frac{640,000}{0.75 \times 2550 \times 20} = 16.7 \text{ in. (less than column width of 20 in.)} \]

The length of the other faces, perpendicular to the diagonal struts, can be obtained from proportionality:

\[16.7 \times \frac{603}{640} = 15.7 \text{ in.} \]
8. Check the truss geometry.

At Node C

The center of the nodal zone is at 4.0 in. from the top of the beam, which is very close to the assumed 5 in.

At Node A

The horizontal tie should exert a force on this node to create a stress of 2550 psi. Thus size of the vertical face of the nodal zone is

\[
\frac{512,000}{0.75 \times 2550 \times 20} = 13.4 \text{ in.}
\]

The center of the tie is located \(13.4/2 = 6.7\) in. from the bottom of the beam. This is reasonably close to the 5 in. originally assumed, so no further iteration is warranted.

Width of node at Support A

\[
\frac{320,000}{0.75 \times 2550 \times 20} = 8.4 \text{ in.}
\]
9. Provide vertical and horizontal reinforcement to resist splitting of diagonal struts
\(f_c = 4000 \text{ psi} \leq 6000 \text{ psi} \) allowed by \textbf{A.3.3.1}.

The angle between the vertical ties and the struts is \(90^\circ - 32^\circ = 58^\circ \) \((\sin 58^\circ = 0.85)\)

Try two overlapping No. 4 stirrups @ 12 in. O.C. to accommodate the longitudinal tie reinforcement designed in Step 10, below.

\[
\frac{A_{si}}{b_s s_i} \sin \alpha_i = \frac{4 \times 0.20}{20 \times 12} \times 0.85 = 0.00283
\]

\[\text{Eq. (A-4)}\]

and No. 5 horizontal bars @ 12 in. O.C. on each side face \((\sin 32^\circ = 0.53)\)

\[
\frac{2 \times 0.31}{20 \times 12} \times 0.53 = 0.00137
\]

\[
\sum \frac{A_{si}}{b_s s_i} \sin \alpha_i = 0.00283 + 0.00137 = 0.0042 > 0.003 \quad \text{O.K.}
\]

\[\text{Eq. (A-4)}\]

10. Provide horizontal reinforcing steel for the tie connecting Nodes \(\text{A}\) and \(\text{B}\)

\[
A_{s,\text{req}} = \frac{F_u}{\phi f_y} = \frac{512}{0.75 \times 60} = 11.4 \text{ in.}^2
\]

Select 16 - No. 8 \(A_s = 12.64 \text{ in.}^2\)

These bars must be properly anchored. The anchorage length \((l_{\text{anc}})\) is to be measured from the point where the tie exits the extended nodal zone as shown in Fig. 17-14.

\[\text{A.4.3.3}\]
Example 17.1 (cont’d) Calculations and Discussion Code Reference

Distance \(x = \frac{6.7}{\tan 32} = 10.7 \) in.

Available space for a straight bar embedment

\[10.7 + 4.2 + 8 - 2.0 \text{ (cover)} = 20.9 \text{ in.} \]

This length is inadequate to develop a straight No. 8 bar.

Development length for a No. 8 bar with a standard 90 deg. hook

\[\ell_{dh} = \left(0.02 \frac{f_y}{\lambda' \sqrt{f_c'}} \right) d_b \]

\[= \left(0.02 \frac{60,000}{1.0 \sqrt{4000}} \right) 1.0 \]

\[= 19.0 < 20.9 \text{ in. O.K.} \]

Note: the 90 degree hooks will be enclosed within the column reinforcement that extends in the transfer girder. (Fig. 17-15) By providing adequate cover and transverse confinement, the development length of the standard hook could be reduced by the modifiers of 12.5.3.

Less congested reinforcement schemes can be devised with the use of head bars (12.6), reinforcing steel welded to bearing plates, or with the use of prestressing steel.

Comments:

The discrepancy in the vertical location of the nodes results in a negligible (about 1.5 percent) difference in the truss forces. Thus, another iteration is not warranted.

There are several alternative strut-and-tie models that could have been selected for this problem. An alternative truss layout is illustrated in Fig. 17-16. It has the advantage that the force in the bottom chord varies between nodes, instead of being constant between supports. Further, the truss posts carry truss forces, instead of providing vertical reinforcement just for crack control (A.3.3.1). Finally, the diagonals are steeper, therefore the diagonal compression and the bottom chord forces are reduced. The optimum idealized truss is one that requires the least amount of reinforcement.
Example 17.1 (cont’d) Calculations and Discussion

Figure 17-15 Detail of Tie Reinforcement

Figure 17-16 Alternative Strut-and-Tie Model
Example 17.2—Design of Column Corbel

Design the single corbel of the 16 in. × 16 in. reinforced concrete column for a vertical force $V_u = 60$ kips and horizontal force $N_u = 12$ kips. Assume $f'_c = 5000$ psi, and Grade 60 reinforcing steel.

![Design of Corbel](image1)

![Truss Layout](image2)

1. Establish the geometry of a trial truss and calculate force demand in members, as shown in Fig. 17-18.
2. Provide reinforcement for ties

Use $\phi = 0.75$

The nominal strength of ties is to be taken as:

$$F_{nt} = A_{ts}f_y + A_{tp}(f_{se} + \Delta f_p)$$

where the last term can be ignored as only nonprestressed reinforcement is provided.

<table>
<thead>
<tr>
<th>Tie</th>
<th>Fu</th>
<th>Ats</th>
<th>f_y</th>
<th>f_{se}</th>
<th>Δf_p</th>
<th>F_{nt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>46.3</td>
<td>1.03</td>
<td>0.75</td>
<td>60</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>12.0</td>
<td>0.27</td>
<td>0.75</td>
<td>60</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>BD & DF</td>
<td>93.2</td>
<td>2.07</td>
<td>0.75</td>
<td>60</td>
<td>2.07</td>
<td></td>
</tr>
</tbody>
</table>

3. Calculate strut widths

It is assumed that transverse reinforcement will be provided in compliance with $A.3.3$, so a $\beta_s = 0.75$ can be used in calculating the strut length

$$f_{ce} = 0.85 \beta_s f'_c = 0.85 \times 0.75 \times 5000 = 3187 \text{ kips}$$

$$\phi f_{ce} = 0.75 \times 3187 = 2390 \text{ psi}$$

Calculate the width of struts required

<table>
<thead>
<tr>
<th>Strut</th>
<th>P_u</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>69.1</td>
<td>1.81</td>
</tr>
</tbody>
</table>

$\phi = 0.75$
Strut BC

\[w = \frac{88,800}{16 \times 2390} = 2.32 \text{ in.} \]

Strut CE

\[w = \frac{135,800}{16 \times 2390} = 3.55 \text{ in.} \]

Strut DE

\[w = \frac{21.2}{16 \times 2390} = 0.55 \text{ in.} \]

The width of the struts will fit within the concrete column with the corbel.

Provide confinement reinforcement for the struts per A.3.3 in the form of horizontal ties.

The angle of the diagonal struts to the horizontal hoops is 58 degree. Provide No. 4 hoops at 4.5 in. on center.

\[\frac{A_s}{b_s^3} \sin \alpha = \frac{2 \times 0.20}{24 \times 4.5} \sin 58^\circ = 0.0031 > 0.003 \text{ O.K.} \]

Figure 17-19 Reinforcement Details
Example 17.3 — Design of Continuous Member

Design a deep transfer girder (shown in Figure 17-20) supporting three columns. The exterior columns are 24 in. x 24 in. and subject to a factored axial load of 500 kips, while the interior column is 56 in. x 24 in. and transmits a factored axial load of 2500 kips. The two supporting columns are 48 in. x 24 in. For simplicity, moments between the loading and supporting columns and the transfer girder are assumed to be zero.

![Figure 17-20 Transfer Girder](image)

Calculations and Discussion

1. Calculate the reactions including the self-weight of the girder.

 \[P_u = 500 + \frac{2500}{2} + 1.2 \times 25 \times 12 \times 2 \times 0.15 = 1858 \text{ kips} \]

 Check the supporting column capacity with 2% reinforcement

 \[\phi P_n(\text{max}) = 0.80 \phi \left[0.85 f'_c \left(A_g - A_{st} \right) + f_y A_{st} \right] \]

 \[= 0.80 \times 0.65 \left[0.85 \times 4(48 \times 24 \times 0.98) + 60 \times 48 \times 24 \times 0.02 \right] \]

 \[= 0.80 \times 0.65 \times \left[3838 + 1382 \right] \]

 \[= 2714 \text{ kips} > P_u = 1858 \text{ kips} \]

 The adequacy of the top columns can be verified similarly

2. Check shear capacity

 The maximum shear occurs at the interior face of the supporting columns
Example 17.3 (cont’d) Calculations and Discussion

\[V_u = 1858 - 500 - 1.2 \times 15 \times 12 \times 2 \times 0.15 = 1293 \text{ kips} \]

\[\phi V_n = \phi 10 \sqrt{f_c'} \cdot bd = 0.75 \times 10 \times \sqrt{4000} \times 24 \text{ in.} \times (0.9 \times 12) \times 12/1000 \]

\[= 1475 \text{ kips} > V_u = 1293 \text{ kips} \]

It is considered good practice to establish the
dimensions of a girder for a \(\frac{V_n}{\phi V_u} \) ratio between 0.6 and 0.8. An estimate
of the effective depth \(d \) as 0.9 \(h \) was used in the calculation above.

3. Confirm that this geometry is of a “deep beam”

The resultants of the loads are being applied at a distance of 12’ - 2’ = 10’ from
the face of the support, which is less than twice the overall member width (2×12’ = 24’)

4. Establish truss model

Figure 17-21 indicates the first trial strut-and-tie model incorporating subdivided
nodes at points II, IV, V.

5. Examine the Force Distribution at Node IV

The column support at IV is subdivided into three vertical struts acting at Nodes a, b, and c. The strut at “a”
will carry the load left of the support centerline, including the weight of the girder segment.

\[500 + 1.2 \times 13 \times 12 \times 2 \times 0.15 = 500 + 56 = 556 \text{ kips} \]

The other two vertical struts (at points b and c) of Node IV are assumed to carry half of the remainder reaction.

\[\frac{1}{2} (1858 - 556) = 651 \text{ kips} \]
6. Compute the width of the vertical struts in the column at Node IV

Since these struts have parallel stress trajectories with uniform cross-sectional area over the length of the column

\[\beta_s = 1.0 \] \hspace{1cm} A.3.2.1

The effective compressive strength of concrete in the strut side of the strut/node interface is:

\[f_{ce} = 0.85\beta_s f'_c = 0.85 \times 1.0 \times 4000 = 3400 \text{ psi} \] \hspace{1cm} Eq. A-3

Since Node IV anchors one tension tie

\[\beta_n = 0.80 \] \hspace{1cm} A.5.2.2

The strength of concrete represented by the node side of strut/node interface is:

\[f_{ce} = 0.85\beta_s f'_c = 0.85 \times 0.80 \times 4000 = 2720 \text{ psi} \] \hspace{1cm} Eq. A-8

The effective strength of concrete \(f_{ce} \) is to be taken as the lesser of the above two values \(A.3.1 \)

\[f_{ce} = 2720 \text{ psi} \text{ for all three vertical struts in the column.} \]

Notice that any hydrostatic nodal zones should have identical stresses at all their faces. This implies that at a node, where a “bottle-shaped” strut occurs with the same specified concrete strength \(f'_c \), since its effective compressive strength \(f_{ce} \) being less than that of the parallel struts, this lesser strength value will govern the dimension of the nodal zones and the other truss elements framing in. In this case, the strength of the “bottle-shaped” struts (all the diagonals of this example truss) have an effective compressive strength of:

\[f_{ce} = 0.85\beta_s f'_c = 0.85 \times 0.75 \times 4000 = 2550 \text{ psi} \] \hspace{1cm} assuming that surface reinforcement satisfying \(A.3.3 \) is provided. This is less than the strength of the nodes based on the vertical struts. Use \(f_{ce} = 2550 \text{ psi} \) value to calculate strut and node dimensions here forth.

The width of the vertical struts framing in from the support column at Node IV \((F_u = 556 \text{ kips, 651 kips, 651 kips}) \) are calculated as

\[w_s = \frac{F}{\phi f_{ce} b} = \frac{F_u}{0.75 \times 2550 \times 24} = 12.1 \text{ in.; 14.2 in.; 14.2 in. at points a, b, and c respectively.} \]

The total width of the three struts is 40.4 in., which fits in the 48 in. wide support. The relative location of the individual struts as shown in Fig. 17-22, is determined by centering the resultant of the three vertical struts on the centerline of the column.
7. Check the width of the upper columns similarly at Nodes I and II

At Node I \(P_u = 500 \text{ kips} \)

\[
ws = \frac{500,000}{0.75 \times 2550 \times 24} = 10.89 \text{ in.} < 24 \text{ in.}
\]

At Node II \(P_u = 2500 \text{ kips} \)

\[
ws = \frac{2,500,000}{0.75 \times 2550 \times 24} = 54.47 \text{ in.} < 56 \text{ in.} \text{ O.K.}
\]

The concrete strength value of the node \(f_{ce} = 2720 \text{ psi} \) is unchanged since the node at II can be split in half along the vertical centerline. This gives two C-C-T nodes with \(\beta_n = 0.80 \). All other parameters are the same as for Node I. As discussed in Step 6, use \(f_{ce} = 2550 \text{ psi} \), due to the presence of “bottle-shaped” diagonal struts, to establish the geometry.

The location of column strut at Node I is assumed to be at the centerline of the column. At Node II four identical struts are assumed initially in the column support with \(P_u = 625 \text{ kips} \) axial force demand at each and \(ws = \frac{625,000}{0.75 \times 2550 \times 24} = 13.62 \text{ in.} \) individual strut width as shown in Figure 17.23
8. Compute the forces in struts and ties.
Estimate the center of gravity of the horizontal reinforcement, both top and bottom, at 6 inches measured from the top and bottom of the beam to allow for several layers of rebars. Idealize the truss geometry as shown in Fig. 17-24.

STRUT I-IV a

At Node I the three forces (column load, I-IVa strut and the I-IIa tie) meet at the centerline of the column 6 in. below the top of the beam. The other end of the diagonal strut I-IVa, at Node IV is approximately 9 in. from the bottom of the beam to match the vertical location of point IVb. The horizontal location of IVa was established before to be 14.2 in. left of the support centerline.

To provide equilibrium at Joint I as shown in Fig. 17-3c

Vertical force at Joint I = 500 kips

Horizontal projection of Strut I-IVa = 144 - 14.2 = 129.8 in.

Vertical projection of Strut I-IVa = 144 - 6 - 9 = 129.0 in.

Horizontal force in Strut I-IVa and Tie I-IIa = \(\frac{500 \times 129.9}{129.0} = 503.1 \text{ kips} \)
Length of Strut I–IVa = $\sqrt{129.9^2 + 120.0^2} = 176.9$ in.

Compression force in Strut I-IVa at Node I:

$$\frac{500 \times 176.9}{120} = 737.1 \text{ kips}$$

Add weight of girder left of the centerline of Support IV, as calculated in Step 5, to establish strut force at Node IVa:

$$\frac{556 \times 176.9}{120} = 819.6 \text{ kips}$$

The strength of the “bottle-shaped” Strut I-IVa assuming the presence of surface reinforcement complying with A.3.3:

$$f_{ce} = 0.85 \beta_s f'_c = 0.85 \times 0.75 \times 4000 = 2550 \text{ psi}$$

Equation A-3

The concrete strength of both nodes at the end of the struts are $f_{ce} = 2720 \text{ psi}$, thus the $f_{ce} = 2550 \text{ psi}$ strength value governs, as detailed in Step 6. A.3.1

TIE I-IIa

The effective width of the tie is established based on limiting $f_{ce} = 2550$ set by RA 4.3 item 2 the diagonal “bottle-shaped” Strut I-IVa framing into the same hydrostatic node I.

$$w_t = \frac{541,400}{0.75 \times 2550 \times 24} = 11.80 \text{ in.}$$

The centerline of the tie is $11.8/2 = 5.9$ in. below the top of the girder

This is slightly less than the 6 in. originally assumed in the truss layout. The strut-and-tie model involves some iteration for the truss layout. Small differentials like this do not warrant revisions.

STRUT IIa-IVb

The horizontal force component of this strut balances that of the tie I-IIa = 541.4 kips

horizontal projection of Strut IIa-IVb = 144 - 1.07 - 20.42 = 122.51 in.

vertical projection of Strut IIa-IVa = 144 - 5.9 - 18 = 120.1 in.

vertical force in Strut IIa – IVb = $541.4 \times \frac{120.1}{122.51} = 530.7 \text{ kips}$

This result necessitates the adjustment of the initially assumed force distribution, and consequently, the width of vertical column struts at Nodes II and IV shown in Figures 17-22 and 17-23.
At Node IV the vertical strut forces will change to $530.7 + 21.6 = 552.3$ kips at point “b” by considering half the girder weight between Nodes IV and II ($12 \times 12 \times 2 \times 0.15/2 = 21.6$ kips) and $1858 - 556 - 552 = 750$ kips at Point “c”. The width of the struts will be adjusted to 12.1 in. and 16.3 in. respectively depicted in Fig. 17-25.

At Node II, the force in struts a and b will change from 625 kips to 530.7 kips while the inside struts will increase to $740.9 - 21.6 = 719.3$ kips maintaining equilibrium. The width of the Strut “a” will be reduced to 11.56 inches, while Strut “b” will increase to 15.67 in. Vertical Struts “c” and “d” will mirror “b” and “a” respectively.

STRUT IIb-IVc

Horizontal projection = $144 - 7.84 - 11.98 = 124.2$ in.

Vertical projection = $144 - 6 - 3 \times 5.90 = 120.3$ in.

(where the vertical location of Point IIb is now estimated as 3 times the location of IIa below the top of the girder)

Horizontal component of strut force = $740.9 - \frac{124.2}{120.3} = 764.9$ kips
TIE IVc-Va

The effective width of the tie is:

\[
wt = \frac{764,900}{0.75 \times 2550 \times 24} = 16.7 \text{ in.}
\]

The centerline of the tie is 16.7/2 = 8.3 in. above the bottom of the girder. This is more than the 6 in. initially assumed, but may not warrant another iteration.

The analysis should be continued node by node in a similar manner.

9. Provide crack control reinforcement

To use a \(\beta_s = 0.75 \) factor for the bottle-shaped struts, the reinforcing has to satisfy A.3.3. Since the \(f'_c \) is not greater than 6000 psi, on both faces of the girder vertical and horizontal reinforcing will be provided to satisfy

\[
\sum \frac{A_{si}}{b_{ss}} \sin \alpha \geq 0.003
\]

In addition, the new code provisions of sections 11.7.4 and 11.7.5 require vertical reinforcement \(A_v \geq 0.0025b_ws \)

horizontal reinforcement \(A_{vh} \geq 0.0015b_ws^2 \).

The angle of the struts to the reinforcement in the middle portion of the girder is

\[
\alpha_u = 46.6^\circ \quad \sin 46.6 = 0.727
\]
\[
\alpha_v = 43.4^\circ \quad \sin 43.4 = 0.687
\]

Try No. 4 horizontal bars on both faces at 12 in. on center

\[
\frac{A_{vh}}{b_ws} = \frac{2 \times 0.20}{24 \times 12} = 0.00167
\]

and No. 5 vertical bars on both faces at 10 in. on center

\[
\frac{A_v}{b_ws} = \frac{2 \times 0.31}{24 \times 10} = 0.00258
\]

\[
\sum \frac{A_{si}}{b_{ss}} \sin \alpha_i = 0.00167 \times 0.727 + 0.00258 \times 0.687 = 0.0012 + 0.0018 = 0.003
\]

Maximum spacing provisions d/5 on 12" are complied with in both directions.
10. Check the Node II

Because of the overall symmetry and the horizontal equilibrium of the outbound truss triangles, it is only the IIb-IVc and the IIc-Va strut that generates compression stress on the vertical section dividing Node II at its centerline. The horizontal component of these strut forces is 698 kips.

The stress on the vertical plane is:

\[
\frac{764,900}{(4 \times 5.9) \times 24} = 1350 \text{ psi} < 2720 \text{ psi} = f_{cu} \quad \text{O.K.}
\]

11. Design the tie reinforcement

TIE I-IIa

The tension force is 541.4 kips with the centerline 5.9 in. below the top of the beam.

The nominal strength of the tie is

\[
F_{nt} = A_{st}f_y + A_{tp}(f_{se} + \Delta f_p)
\]

\[
= A_{st}f_y \quad \text{for non-prestressed reinforcement}
\]

\[
A_{st} = \frac{F_u}{\phi f_y} = \frac{541.4}{0.75 \times 60} = 12.0 \text{ in.}^2
\]

Use 12-No. 9 bars in 3 layers shown in Figure 17-27.
To anchor these ties forming the I-IIa truss member would require at Node I hooks or mechanical anchorage devices since the development length has to be provided from the point where the center of the tie leaves the extended node. The 21 in. development length of a standard hook in 4000 psi concrete can be further reduced to $0.7 \times 21 = 15$ in. by placing the hooks inside the column cage extending into the girder. This should provide a side cover more than 2.5 in. and the concrete cover over the tail of the hook will exceed 2 in. Alternative arrangements with headed tie bars or u-shaped horizontal reinforcing bars are also possible. At Node II the same tie can be considered anchored if the top reinforcing is continuous. If these bars are spliced, at least 69 in. length has to be provided from the point where the center tie enters the extended node.
Blank
Two-Way Slab Systems

UPDATE FOR THE ’08 CODE

New 13.2.6 is added to introduce the requirements for shear caps. Commentary R13.3.6 is added to explain the need for corner reinforcement in slabs restrained by walls or beams. Figure R13.3.6 is added to explain the Code requirements for corner reinforcement.

13.1 BACKGROUND

Figure 18-1 shows the various types of two-way reinforced concrete slab systems in use at the present time that may be designed according to Chapter 13.

A solid slab supported on beams on all four sides (Fig. 18-1(a)) was the original slab system in reinforced concrete. With this system, if the ratio of the long to the short side of a slab panel is two or more, load transfer is predominantly by bending in the short direction and the panel essentially acts as a one-way slab. As the ratio of the sides of a slab panel approaches unity (or as panel approaches a square shape), significant load is transferred by bending in both orthogonal directions, and the panel should be treated as a two-way rather than a one-way slab.

As time progressed and technology evolved, the column-line beams gradually began to disappear. The resulting slab system consisting of solid slabs supported directly on columns is called the flat plate (Fig. 18-1(b)). The two-way flat plate is very efficient and economical and is currently the most widely used slab system for multi-story construction, such as motels, hotels, dormitories, apartment buildings, and hospitals. In comparison to other concrete floor/roof systems, flat plates can be constructed in less time and with minimum labor costs because the system utilizes the simplest possible formwork and reinforcing steel layout. The use of flat plate construction also has other significant economic advantages. For instance, because of the shallow thickness of the floor system, story heights are automatically reduced, resulting in smaller overall height of exterior walls and utility shafts; shorter floor-to-ceiling partitions; reductions in plumbing, sprinkler, and duct risers; and a multitude of other items of construction. In cities like Washington, D.C., where the maximum height of buildings is restricted, the thin flat plate permits the construction of the maximum number of stories in a given height. Flat plates also provide for the most flexibility in the layout of columns, partitions, small openings, etc. An additional advantage of flat plate slabs that should not be overlooked is their inherent fire resistance. Slab thickness required for structural purposes will, in most cases, provide the fire resistance required by the general building code, without having to apply spray-on fire proofing, or install a suspended ceiling. This is of particular importance where job conditions allow direct application of the ceiling finish to the flat plate soffit, eliminating the need for suspended ceilings. Additional cost and construction time savings are then possible as compared to other structural systems.

The principal limitation on the use of flat plate construction is imposed by shear around the columns (13.5.4). For heavy loads or long spans, the flat plate is often thickened locally around the columns creating what are known as drop panels or shear caps. When a flat plate incorporates drop panels or shear caps, it is called a flat slab (Fig. 18-1(c)). Also for reasons of shear around the columns, the column tops are sometimes flared, creating column capitals. For purposes of design, a column capital is part of the column, whereas a drop panel is part of the slab (13.7.3 and 13.7.4).
Waffle slab construction (Fig. 18-1(d)) consists of rows of concrete joists at right angles to each other with solid heads at the column (needed for shear strength). The joists are commonly formed by using standard square “dome” forms. The domes are omitted around the columns to form the solid heads. For design purposes, waffle slabs are considered as flat slabs with the solid heads acting as drop panels (13.1.3). Waffle slab construction allows a considerable reduction in dead load as compared to conventional flat slab construction since the slab thickness can be minimized due to the short span between the joists. Thus, it is particularly advantageous where the use of long span and/or heavy loads is desired without the use of deepened drop panels, shear caps or support beams. The geometric shape formed by the joist ribs is often architecturally desirable.

13.1.4 Deflection Control—Minimum Slab Thickness

Minimum thickness/span ratios enable the designer to avoid extremely complex deflection calculations in routine designs. Deflections of two-way slab systems need not be computed if the overall slab thickness meets the minimum requirements specified in 9.5.3. Minimum slab thicknesses for flat plates, flat slabs, and waffle slabs based on Table 9.5(c), and two-way beam-supported slabs based on Eqs. (9-12) and (9-13) are summarized in Table 18-1, where \(l_n \) is the clear span length in the long direction of a two-way slab panel. The tabulated values are the controlling minimum thicknesses governed by interior, side, or corner panels assuming a constant slab thickness for all panels making up a slab system. Practical edge beam sizes will usually provide beam-to-slab stiffness ratios \(\alpha_f \) greater than the minimum specified value of 0.8. A “standard” size drop panel that would allow a 10% reduction in the minimum required thickness of a flat slab floor system is illustrated in Fig. 18-2. Note that a drop of larger size and depth may be used if required for shear strength; however, a corresponding lesser slab thickness is not permitted unless deflections are computed.

For design convenience, minimum thicknesses for the six types of two-way slab systems listed in Table 18-1 are plotted in Fig. 18-3.

Refer to Part 10 for a general discussion on control of deflections for two-way slab systems, including design examples of deflection calculations for two-way slabs.
Table 18-1 Minimum Thickness for Two-Way Slab Systems (Grade 60 Reinforcement)

<table>
<thead>
<tr>
<th>Two-Way Slab System</th>
<th>α_{lm}</th>
<th>β</th>
<th>Minimum h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Plate</td>
<td>—</td>
<td>≤ 2</td>
<td>$\ell_n/30$</td>
</tr>
<tr>
<td>Flat Plate with Spandrel Beams1</td>
<td>—</td>
<td>≤ 2</td>
<td>$\ell_n/33$</td>
</tr>
<tr>
<td>Flat Slab</td>
<td>—</td>
<td>≤ 2</td>
<td>$\ell_n/33$</td>
</tr>
<tr>
<td>Flat Slab2 with Spandrel beams1</td>
<td>—</td>
<td>≤ 2</td>
<td>$\ell_n/36$</td>
</tr>
<tr>
<td>Two-Way Beam-Supported Slab3</td>
<td>≤ 0.2</td>
<td>≤ 2</td>
<td>$\ell_n/30$</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1</td>
<td>$\ell_n/33$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>$\ell_n/36$</td>
</tr>
<tr>
<td></td>
<td>≥ 2.0</td>
<td>1</td>
<td>$\ell_n/37$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>$\ell_n/44$</td>
</tr>
<tr>
<td>Two-Way Beam-Supported Slab1,3</td>
<td>≤ 0.2</td>
<td>≤ 2</td>
<td>$\ell_n/33$</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1</td>
<td>$\ell_n/36$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>$\ell_n/40$</td>
</tr>
<tr>
<td></td>
<td>≥ 2.0</td>
<td>1</td>
<td>$\ell_n/41$</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>$\ell_n/49$</td>
</tr>
</tbody>
</table>

1Spandrel beam-to-slab stiffness ratio $\alpha_i \geq 0.8$ (9.5.3.3)

2Drop panel length $\geq \ell/3$, depth $\geq 1.25h$ (13.3.7)

3Min. $h = 5$ in. for $\alpha_{lm} \leq 2.0$; min. $h = 3.5$ in. for $\alpha_{lm} > 2.0$ (9.5.3.3)

Figure 18-2 Drop Panel Details (13.2.5)
13.2 DEFINITIONS

13.2.1 Design Strip

For analysis of a two-way slab system by either the Direct Design Method (13.6) or the Equivalent Frame Method (13.7), the slab system is divided into design strips consisting of a column strip and half middle strip(s) as defined in 13.2.1 and 13.2.2, and as illustrated in Fig. 18-4. The column strip is defined as having a width equal to one-half the transverse or longitudinal span, whichever is smaller. The middle strip is bounded by two column strips. Some judgment is required in applying the definitions given in 13.2.1 for column strips with varying span lengths along the design strip.

The reason for specifying that the column strip width be based on the shorter of ℓ_1 or ℓ_2 is to account for the tendency for moment to concentrate about the column line when the span length of the design strip is less than its width.

13.2.4 Effective Beam Section

For slab systems with beams between supports, the beams include portions of the slab as flanges, as shown in Fig. 18-5. Design constants and stiffness parameters used with the Direct Design and Equivalent Frame analysis methods are based on the effective beam sections shown.
Figure 18-4 Definition of Design Strips

Figure 18-5 Effective Beam Section (13.2.4)

Figure 18-6 Shear Caps (13.2.6)

Shear caps used mainly to increase the slab shear strength is recognized in the Code. Shear cap must project below the slab and extend a minimum horizontal distance equal to the thickness of the projection below the slab soffit Figure 18-6.

13.3 SLAB REINFORCEMENT

- Minimum area of reinforcement in each direction for two-way slab systems = 0.0018bh (b = slab width, h = total thickness) for Grade 60 bars for either top or bottom steel (13.3.1).
- Maximum bar spacing is 2h, but not more than 18 in. (13.3.2).
- Minimum extensions for reinforcement in slabs without beams (flat plates and flat slabs) are prescribed in Fig. 13.3.8 (13.3.8.1).
Note that the reinforcement details of Fig. 13.3.8 do not apply to two-way slabs with beams between supports or to slabs in non-sway or sway frames resisting lateral loads. For those slabs, a general analysis must be made according to Chapter 12 of the Code to determine bar lengths based on the moment variation but shall not be less than those prescribed in Fig. 13.3.8 (13.3.8.4). Reinforcement details for bent bars were deleted from Fig. 13.3.8 in the ’89 code in view of their rare usage in today’s construction. Designers who wish to use bent bars in two-way slabs (without beams) should refer to Fig. 13.4.8 of the ’83 code, with due consideration of the integrity requirements of 7.13 and 13.3.8 in the current code.

According to 13.3.6, top and bottom reinforcement must be provided at the exterior corners of slabs supported by edge walls or where one or more edge beams have a value of α_f greater than 1.0. The corner reinforcement in both top and bottom of slab must be designed for a moment equal to the largest positive moment per unit width in the slab panel, and must be placed in a band parallel to the diagonal in the top of the slab and a band perpendicular to the diagonal in the bottom of the slab (Fig. 18-7 (a)); alternatively, it may be placed in two layers parallel to the edges of the slab in both the top and bottom of the slab (Fig. 18-7 (b)). Additionally, the corner reinforcement must extend at least one-fifth of the longer span in each direction from the corner.

In slabs without beams, all bottom bars in the column strip shall be continuous or spliced with class A splices or with mechanical or welded splices satisfying 12.14.3 (13.3.8.5) to provide some capacity for the slab to span to an adjacent support in the event a single support is damaged. Additionally, at least two of these continuous bottom bars shall pass through the region bounded by the longitudinal reinforcement of the column and must be anchored at exterior supports. In lift-slab construction and slabs with shearhead reinforcement, clearance may be inadequate and it may not be practical to pass the column strip bottom reinforcing bars through the column. In these cases, two continuous bonded bottom bars in each direction shall pass as close to the column as possible through holes in the shearhead arms or, in the case of lift-slab construction, within the lifting collar (13.3.8.6). This condition was initially addressed in the 1992 Code and was further clarified in 1999.

13.4 OPENINGS IN SLAB SYSTEMS

The code permits openings of any size in any slab system, provided that an analysis is performed that demonstrates that both strength and serviceability requirements are satisfied (13.4.1). For slabs without beams; the analysis of 13.4.1 is waived when the provisions of 13.4.2.1 through 13.4.2.4 are met:

- In the area common to intersecting middle strips, openings of any size are permitted (13.4.2.1).
- In the area common to intersecting column strips, maximum permitted opening size is one-eighth the width of the column strip in either span (13.4.2.2).
- In the area common to one column strip and one middle strip, maximum permitted opening size is limited such that only a maximum of one-quarter of slab reinforcement in either strip may be interrupted (13.4.2.3).

The total amount of reinforcement required for the panel without openings, in both directions, shall be maintained; thus, reinforcement interrupted by the opening must be replaced on each side of the opening. Figure 18-8 illustrates the provisions of 13.4.2 for slabs with $\ell_2 > \ell_1$. Refer to Part 16 for a discussion on the effect of openings in slabs without beams on concrete shear strength (13.4.2.4).

13.5 DESIGN PROCEDURES

Section 13.5.1 permits design (analysis) of two-way slab systems by any method that satisfies code-defined strength requirements (9.2 and 9.3), and all applicable code serviceability requirements, including specified limits on deflections (9.5.3).

13.5.1 Gravity Load Analysis—Two methods of analysis of two-way slab systems under gravity loads are addressed in Chapter 13: the simpler Direct Design Method (DDM) of 13.6, and the more complex Equivalent Frame
Method (EFM) of 13.7. The Direct Design Method is an approximate method using moment coefficients, while the Equivalent Frame (elastic analysis) Method is more exact. The approximate analysis procedure of the Direct
Design Method will give reasonably conservative moment values for the stated design conditions for slab systems within the limitations of 13.6.1.

Both methods are for analysis under gravity loads only, and are limited in application to buildings with columns and/or walls laid out on a basically orthogonal grid, i.e., where column lines taken longitudinally and transversely through the building are mutually perpendicular. Both methods are applicable to slabs with or without beams between supports. Note that neither method applies to slab systems with beams spanning between other beams; the beams must be located along column lines and be supported by columns or other essentially nondeflecting supports at the corners of the slab panels.

13.5.1.2 Lateral Load Analysis—For lateral load analysis of frames, the model of the structure may be based upon any approach that is shown to satisfy equilibrium and geometric compatibility and to be in reasonable agreement with test data. Acceptable approaches include plate-bending finite-element models, effective beam width models, and equivalent frame models. The stiffness values for frame members used in the analysis must reflect effects of slab cracking, geometric parameters, and concentration of reinforcement.

During the life of the structure, ordinary occupancy loads and volume changes due to shrinkage and temperature effects will cause cracking of slabs. To ensure that lateral drift caused by wind or earthquakes is not underestimated, cracking of slabs must be considered in stiffness assumptions for lateral drift calculations.

The stiffness of slab members is affected not only by cracking, but also by other parameters such as \(\ell_2/\ell_1 \), \(c_1/\ell_1 \), \(c_2/c_1 \), and on concentration of reinforcement in the slab width defined in 13.5.3.2 for unbalanced moment transfer by flexure. This added concentration of reinforcement increases stiffness by preventing premature yielding and softening in the slab near the column supports. Consideration of the actual stiffness due to these factors is important for lateral load analysis because lateral displacement can significantly affect the moments in the columns, especially in tall moment frame buildings. Also, actual lateral displacement for a single story, or for the total height of a building is an important consideration for building stability and performance.

Cracking reduces stiffness of the slab-beams as compared with that of an uncracked floor. The magnitude of the loss of stiffness due to cracking will depend on the type of slab system and reinforcement details. For example, prestressed slab systems with reduced slab cracking due to prestressing, and slab systems with large beams between columns will lose less stiffness than a conventional reinforced flat plate system.

Prior to the 1999 code, the commentary indicated that stiffness values based on Eq. (9-8) were reasonable. However, this was deleted from the commentary in 1999, since factors such as volume change effects and early age loading are not adequately represented in Eq. (9-8). Since it is difficult to evaluate the effect of cracking on stiffness, it is usually sufficient to use a lower bound value. On the assumption of a fully cracked slab with minimum reinforcement at all locations, a stiffness for the slab-beam equal to one-fourth that based on the gross area of concrete (\(K_{sb}/4 \)) should be reasonable. A detailed evaluation of the effect of cracking may also be made. Since slabs normally have more than minimum reinforcement and are not fully cracked, except under very unusual conditions, the one-fourth value should be expected to provide a safe lower bound for stiffness under lateral loads. See R13.5.1.2 for guidance on stiffness assumption for lateral load analysis.

Moments from an Equivalent Frame (or Direct Design) analysis for gravity loading may be combined with moments from a lateral load analysis (13.5.1.3). Alternatively, the Equivalent Frame Analysis can be used for lateral load analysis, if modified to account for reduced stiffness of the slab-beams.

For both vertical and lateral load analyses, moments at critical sections of the slab-beams are transversely distributed in accordance with 13.6.4 (column strips) and 13.6.6 (middle strips).

13.5.4 Shear in Two-Way Slab Systems

If two-way slab systems are supported by beams or walls, the slab shear is seldom a critical factor in design, as the shear force at factored loads is generally well below the shear strength of the concrete.
In contrast, when two-way slabs are supported directly by columns as in flat plates or flat slabs, shear around the columns is of critical importance. Shear strength at an exterior slab-column connection (without edge beams) is especially critical because the total exterior negative slab moment must be transferred directly to the column. This aspect of two-way slab design should not be taken lightly by the designer. Two-way slab systems will normally be found to be quite “forgiving” if an error in the distribution or even in the amount of flexural reinforcement is made, but there will be no forgiveness if the required shear strength is not provided.

For slab systems supported directly by columns, it is advisable at an early stage in design to check the shear strength of the slab in the vicinity of columns as illustrated in Fig. 18-9.

Two types of shear need to be considered in the design of flat plates or flat slabs supported directly on columns. The first is the familiar one-way or beam-type shear, which may be critical in long narrow slabs. Analysis for beam shear considers the slab to act as a wide beam spanning between the columns. The critical section is taken at a distance d from the face of the column. Design against beam shear consists of checking for satisfaction of the requirement indicated in Fig. 18-10(a). Beam shear in slabs is seldom a critical factor in design, as the shear force is usually well below the shear strength of the concrete.

Two-way or “punching” shear is generally the more critical of the two types of shear in slab systems supported directly on columns. Punching shear considers failure along the surface of a truncated cone or pyramid around a column. The critical section is taken perpendicular to the slab at a distance $d/2$ from the perimeter of a column. The shear force V_u to be resisted can be easily calculated as the total factored load on the area bounded by panel centerlines around the column, less the load applied within the area defined by the critical shear perimeter (see Fig. 18-9).

In the absence of significant moment transfer from the slab to the column, design against punching shear consists of making sure that the requirement of Fig. 18-10(b) is satisfied. For practical design, only direct shear (uniformly distributed around the perimeter b_o) occurs around interior slab-column supports where no (or insignificant) moment is to be transferred from the slab to the column. Significant moments may have to be carried when unbalanced gravity loads on either side of an interior column or horizontal loading due to wind must be transferred from the slab to the column. At exterior slab-column supports, the total exterior slab moment from gravity loads (plus any lateral load moments due to wind or earthquake) must be transferred directly to the column.
13.5.3 Transfer of Moment in Slab-Column Connections

Transfer of moment between a slab and a column takes place by a combination of flexure (13.5.3) and eccentricity of shear (11.11.7.1). Shear due to moment transfer is assumed to act on a critical section at a distance d/2 from the face of the column (the same critical section around the column as that used for direct shear transfer; see Fig. 18-9(b)). The portion of the moment transferred by flexure is assumed to be transferred over a width of slab equal to the transverse column width c₂, plus 1.5 times the slab or drop panel thickness on either side of the column (13.5.3.2). Concentration of negative reinforcement is to be used to resist moment on this effective slab width. The combined shear stress due to direct shear and moment transfer often governs the design, especially at the exterior slab-column supports.

The portions of the total unbalanced moment M_u to be transferred by eccentricity of shear and by flexure are given by Eqs. (11-37) and (13-1), respectively, where $\gamma_v M_u$ is considered transferred by eccentricity of shear, and $\gamma_f M_u$ is considered transferred by flexure. At an interior square column with $b_1 = b_2$, 40% of the moment is transferred by eccentricity of shear ($\gamma_v M_u = 0.40M_u$), and 60% by flexure ($\gamma_f M_u = 0.60M_u$), where M_u is the transfer moment at the centroid of the critical section. The moment M_u at the exterior slab-column support will generally not be computed at the centroid of the critical transfer section. In the Equivalent Frame analysis, moments are computed at the column centerline. In the Direct Design Method, moments are computed at the face of support. Considering the approximate nature of the procedure used to evaluate the stress distribution due to moment transfer, it seems unwarranted to consider a change in moment to the critical section centroid; use of the moment values at column centerline (EFM) or at face of support (DDM) directly would usually be accurate enough.

![Figure 18-10 Direct Shear at an Interior Slab-Column Support (see Fig. 18-9)](image)

$V_u \leq \phi V_c$

$\leq \phi 2\lambda\sqrt{f_c}$

where V_u is factored shear force (total factored load on shaded area).

$V_u \leq \phi V_c$

where:

$$\phi V_c = \min \left\{ \phi \left(2 + \frac{4}{\beta} \right) \lambda \sqrt{f_c} b_o d, \phi \left(\frac{\alpha_s d}{b_o} + 2\right) \lambda \sqrt{f_c} b_o d, \phi 4\lambda\sqrt{f_c} b_o d \right\}$$

V_u = factored shear force (total factored load on shaded area)

b_o = perimeter of critical section

β_c = long side/short side of reaction area

α_s = constant (11.11.2.1 (b))
The factored shear stress on the critical transfer section is the sum of the direct shear and the shear caused by moment transfer,

\[v_u = \frac{V_u}{A_c} + \frac{\gamma_v M_u c}{J} \]

For slabs supported on square columns, shear stress \(v_u \) must not exceed \(\phi 4\lambda \sqrt{f_c'} \).

Computation of the combined shear stress involves the following properties of the critical transfer section:

- \(A_c \) = area of critical section
- \(c \) = distance from centroid of critical section to face of section where stress is being computed
- \(J \) = property of critical section analogous to polar moment of inertia

The above properties are given in Part 16. Note that in the case of flat slabs, two different critical sections need to be considered in punching shear calculations, as shown in Fig. 18-11.

Unbalanced moment transfer between slab and an edge column (without spandrel beams) requires special consideration when slabs are analyzed by the Direct Design Method for gravity loads. See discussion on 13.6.3.6 in Part 19.

The provisions of 13.5.3.3 were introduced in the ’95 Code. At exterior supports, for unbalanced moments about an axis parallel to the edge, the portion of moment transferred by eccentricity of shear, \(\gamma_v M_u \), may be reduced to zero provided that the factored shear at the support (excluding the shear produced by moment transfer) does not exceed 75 percent of the shear strength \(\phi V_c \) defined in 11.11.2.1 for edge columns or 50 percent for corner columns. Tests indicate that there is no significant interaction between shear and unbalanced moment at the exterior support in such cases. It should be noted that as \(\gamma_v M_u \) is decreased, \(\gamma_f M_u \) is increased.

Tests of interior supports have indicated that some flexibility in distributing unbalanced moment by shear and flexure is also possible, but with more severe limitations than for exterior supports. For interior supports, the unbalanced moment transferred by flexure is permitted to be increased up to 25 percent provided that the factored shear (excluding the shear caused by moment transfer) at an interior support does not exceed 40 percent of the shear strength \(\phi V_c \) defined in 11.11.2.1.

Note that the above modifications are permitted only when the reinforcement ratio \(\rho \) within the effective slab width defined in 13.5.3.2 is less than or equal to 0.375\(\rho_b \). This provision is intended to improve ductile behavior of the column-slab joint.

SEQUEL

The Direct Design Method and the Equivalent Frame Method for gravity load analysis of two-way slab systems are treated in detail in the following Parts 19 and 20, respectively.
Two-Way Slabs — Direct Design Method

BACKGROUND

The Direct Design Method is an approximate procedure for analyzing two-way slab systems subjected to gravity loads only. Since it is approximate, the method is limited to slab systems meeting the limitations specified in 13.6.1. Two-way slab systems not meeting these limitations must be analyzed by more accurate procedures such as the Equivalent Frame Method, as specified in 13.7. See Part 20 for discussion and design examples using the Equivalent Frame Method.

With the publication of ACI 318-83, the Direct Design Method for moment analysis of two-way slab systems was greatly simplified by eliminating all stiffness calculations for determining design moments in an end span. A table of moment coefficients for distribution of the total span moment in an end span (13.6.3.3) replaced the expressions for distribution as a function of the flexural stiffness ratio of equivalent column to combined flexural stiffness of the slabs and beams at the joint, α_{ec}. As a companion change, the approximate Eq. (13-4) for unbalanced moment transfer between the slab and an interior column was also simplified through elimination of the α_{ec} term. With these changes, the Direct Design Method became a truly direct design procedure, with all design moments determined directly from moment coefficients. Through the 1989 (Revised 1992) edition of the code and commentary, R13.6.3.3 included a “Modified Stiffness Method” reflecting the original distribution, and confirming that design aids and computer programs based on the original distribution as a function of the stiffness ratio α_{ec} were still applicable for usage. The “Modified Stiffness Method” was dropped from R13.6.3.3 in the 1995 edition of the Code and commentary.

PRELIMINARY DESIGN

Before proceeding with the Direct Design Method, a preliminary slab thickness h needs to be determined for control of deflections according to the minimum thickness requirements of 9.5.3. Table 18-1 and Fig. 18-3 can be used to simplify minimum thickness computations.

For slab systems without beams, it is advisable at this stage in the design process to check the shear strength of the slab in the vicinity of columns or other support locations in accordance with the shear provision for slabs (11.11). See discussion on 13.5.4 in Part 18.

Once a slab thickness has been selected, the Direct Design Method can be applied. The method is essentially a three-step analysis procedure, involving: (1) determining the total factored static moment for each span, (2) dividing the total factored static moment between negative and positive moments within each span, and (3) distributing the negative and the positive moment to the column and the middle strips in the transverse direction.

For analysis, the slab system is divided into design strips consisting of a column strip and two half-middle strip(s) as defined in 13.2.1 and 13.2.2, and as illustrated in Fig. 19-1. Some judgment is required in applying the column strip definition given in 13.2.1 for slab systems with varying span lengths along the design strip.
13.6.1 Limitations

The Direct Design Method applies within the limitations illustrated in Fig. 19-2:

1. There must be three or more continuous spans in each direction;

2. Slab panels must be rectangular with a ratio of longer to shorter span (centerline-to-centerline of supports) not greater than 2;

3. Successive span lengths (centerline-to-centerline of supports) in each direction must not differ by more than 1/3 of the longer span;

4. Columns must not be offset more than 10% of the span (in direction of offset) from either axis between centerlines of successive columns;

5. Loads must be uniformly distributed, with the unfactored or service live load not more than 2 times the unfactored or service dead load \(L/D \leq 2 \);

6. For two-way beam-supported slabs, relative stiffness of beams in two perpendicular directions must satisfy the minimum and maximum requirements given in 13.6.1.6; and

7. Redistribution of negative moments by 8.4 is not permitted.

13.6.2 Total Factored Static Moment for a Span

For uniform loading, the total design moment \(M_o \) for a span of the design strip is calculated by the simple static moment expression:

\[
M_o = \frac{q_u \ell_n^2 \ell_2^2}{8}.
\]

\(Eq. (13-4) \)

where \(q_u \) is the factored combination of dead and live loads (psf), \(q_u = 1.2w_d + 1.6w_l \). The clear span \(\ell_n \) (in the direction of analysis) is defined in a straightforward manner for columns or other supporting elements of rectangular cross-section. The clear span starts at the face of support. Face of support is defined as shown in Fig. 19-3. One limitation requires that the clear span not be taken as less than 65% of the span center-to-center of supports (13.6.2.5). The length \(\ell_2 \) is simply the span (centerline-to-centerline) transverse to \(\ell_n \); however, when the span adjacent and parallel to an edge is being considered, the distance from edge of slab to panel centerline is used for \(\ell_2 \) in calculation of \(M_o \) (13.6.2.4).
When edge of exterior design strip is supported by a wall, the factored moment resisted by this middle strip is defined in 13.6.6.3.

* Figure 19-1 Definition of Design Strips
Figure 19-2 Conditions for Analysis by Direct Design Method

(a) Interior & Exterior Column or Wall Supports

(b) Exterior Supports with Brackets or Corbels

Figure 19-3 Critical Sections for Negative Design Moment
13.6.3 **Negative and Positive Factored Moments**

The total static moment for a span is divided into negative and positive design moments as shown in Fig. 19-4. End span moments in Fig. 19-4 are shown for a flat plate or flat slab without spandrels (slab system without beams between interior supports and without edge beams). For other end span conditions, the total static moment M_0 is distributed as shown in Table 19-1.

![Design Strip Moments](image)

Figure 19-4 Design Strip Moments

Table 19-1 Distribution of Total Static Moment for an End Span

<table>
<thead>
<tr>
<th>Factored Moment</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Plates and Flat Slabs</td>
<td>Slab Simply Supported on Concrete or Masonry Wall</td>
<td>Two-Way Beam-Supported Slabs</td>
<td>Without Edge Beam</td>
<td>With Edge Beam</td>
<td>Slab Monolithic with Concrete Wall</td>
</tr>
<tr>
<td>Interior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>0.75</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>Positive</td>
<td>0.63</td>
<td>0.57</td>
<td>0.52</td>
<td>0.50</td>
<td>0.35</td>
</tr>
<tr>
<td>Exterior</td>
<td>0</td>
<td>0.16</td>
<td>0.26</td>
<td>0.30</td>
<td>0.65</td>
</tr>
</tbody>
</table>

13.6.3.6 **Special Provision for Load Transfer Between Slab and an Edge Column**—For columns supporting a slab without beams, load transfer directly between the slab and the supporting columns (without intermediate load transfer through beams) is one of the most critical design conditions for the flat plate or flat slab system. Shear strength of the slab-column connection is critical. This aspect of two-way slab design should not be taken lightly by the designer. Two-way slab systems are fairly “forgiving” of an error in the distribution or even in the amount of flexural reinforcement; however, there is little or no forgiveness if a critical error in the provision of shear strength is made. See Part 16 for special provisions for direct shear and moment transfer at slab-column connections.
Section 13.6.3.6 addresses the potentially critical moment transfer between a beamless slab and an edge column. To ensure adequate shear strength when using the approximate end-span moment coefficients of 13.6.3.3, the 1989 edition of the code required that the full nominal strength M_n provided by the column strip be used in determining the fraction of unbalanced moment transferred by the eccentricity of shear (γ_v) in accordance with 11.11.7 (for end spans without edge beams, the column strip is proportioned to resist the total exterior negative factored moment). This requirement was changed in ACI 318-95. The moment $0.3M_o$ instead of M_n of the column strip must be used in determining the fraction of unbalanced moment transferred by the eccentricity of shear. The total reinforcement provided in the column strip includes the additional reinforcement concentrated over the column to resist the fraction of unbalanced moment transferred by flexure, $\gamma_fM_u = \gamma_f(0.26M_o)$, where the moment coefficient (0.26) is from 13.6.3.3, and γ_f is given by Eq. (13-1).

13.6.4 Factored Moments in Column Strips

The amounts of negative and positive factored moments to be resisted by a column strip, as defined in Fig. 19-1, depends on the relative beam-to-slab stiffness ratio and the panel width-to-length ratio in the direction of analysis. An exception to this is when a support has a large transverse width.

The column strip at the exterior of an end span is required to resist the total factored negative moment in the design strip unless edge beams are provided.

When the transverse width of a support is equal to or greater than three quarters (3/4) of the design strip width, 13.6.4.3 requires that the negative factored moment be uniformly distributed across the design strip.

The percentage of total negative and positive factored moments to be resisted by a column strip may be determined from the tables in 13.6.4.1 (interior negative), 13.6.4.2 (exterior negative) and 13.6.4.4 (positive), or from the following expressions:

Percentage of negative factored moment at interior support to be resisted by column strip

$$= 75 + 30 \left(\frac{\alpha_f \ell_2}{\ell_1} \right) \left(1 - \frac{\ell_2}{\ell_1} \right)$$

(1)

Percentage of negative factored moment at exterior support to be resisted by column strip

$$= 100 - 10\beta_t + 12\beta_t \left(\frac{\alpha_f \ell_2}{\ell_1} \right) \left(1 - \frac{\ell_2}{\ell_1} \right)$$

(2)

Percentage of positive factored moment to be resisted by column strip

$$= 60 + 30 \left(\frac{\alpha_f \ell_2}{\ell_1} \right) \left(1.5 - \frac{\ell_2}{\ell_1} \right)$$

(3)

Note: When $\frac{\alpha_f \ell_2}{\ell_1} > 1.0$, use 1.0 in above equations. When $\beta_t > 2.5$, use 2.5 in Eq. (2) above.

For slabs without beams between supports ($\alpha_f = 0$) and without edge beams ($\beta_t = 0$), the distribution of total negative moments to column strips is simply 75 and 100 percent for interior and exterior supports, respectively, and the distribution of total positive moment is 60 percent. For slabs with beams between supports, distribution depends on the beam-to-slab stiffness ratio; when edge beams are present, the ratio of torsional stiffness of edge beam to flexural stiffness of slab also influences distribution. Figs. 19-6, 19-7, and 19-8 simplify evaluation of the beam-to-slab stiffness ratio α_f. To evaluate β_t, stiffness ratio for edge beams, Table 19-2 simplifies calculation of the torsional constant C.
Figure 19-5 Transfer of Negative Moment at Exterior Support Section of Slab without Beams

Effective Slab Width for Moment Transfer by Flexure, \(c + 2 \times (1.5h) \)

transferred by flexure; \((1-\gamma_f)(0.30M_o)\) transferred by eccentricity of shear.

Figure 19-6 Effective Beam and Slab Sections for Computation of Stiffness Ratio \(\alpha \)
Figure 19-7 Beam Stiffness (Interior Beams)
Table 19-2 Design Aid for Computing C, Cross-Sectional Constant Defining Torsional Properties

![Diagram of edge beam and torsional properties](image)

- **Use larger value of C computed from (1) or (2)**

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>202</td>
<td>369</td>
<td>592</td>
<td>868</td>
<td>1,118</td>
<td>1,538</td>
<td>1,900</td>
<td>2,557</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>245</td>
<td>452</td>
<td>736</td>
<td>1,096</td>
<td>1,529</td>
<td>2,024</td>
<td>2,566</td>
<td>3,709</td>
<td>4,738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>288</td>
<td>534</td>
<td>880</td>
<td>1,325</td>
<td>1,871</td>
<td>2,510</td>
<td>3,233</td>
<td>4,861</td>
<td>6,567</td>
<td>8,083</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>330</td>
<td>619</td>
<td>1,024</td>
<td>1,554</td>
<td>2,212</td>
<td>2,996</td>
<td>3,900</td>
<td>6,013</td>
<td>8,397</td>
<td>10,813</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>373</td>
<td>702</td>
<td>1,167</td>
<td>1,782</td>
<td>2,553</td>
<td>3,482</td>
<td>4,567</td>
<td>7,165</td>
<td>10,226</td>
<td>13,544</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>416</td>
<td>785</td>
<td>1,312</td>
<td>2,011</td>
<td>2,895</td>
<td>3,968</td>
<td>5,233</td>
<td>8,317</td>
<td>12,055</td>
<td>16,275</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>458</td>
<td>869</td>
<td>1,456</td>
<td>2,240</td>
<td>3,236</td>
<td>4,454</td>
<td>5,900</td>
<td>9,459</td>
<td>13,885</td>
<td>19,005</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>522</td>
<td>994</td>
<td>1,672</td>
<td>2,583</td>
<td>3,748</td>
<td>5,183</td>
<td>6,900</td>
<td>11,197</td>
<td>16,628</td>
<td>23,101</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>586</td>
<td>1,119</td>
<td>1,888</td>
<td>2,926</td>
<td>4,260</td>
<td>5,912</td>
<td>7,900</td>
<td>12,925</td>
<td>19,373</td>
<td>27,197</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>650</td>
<td>1,243</td>
<td>2,104</td>
<td>3,269</td>
<td>4,772</td>
<td>6,641</td>
<td>8,900</td>
<td>14,653</td>
<td>22,117</td>
<td>31,293</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>714</td>
<td>1,369</td>
<td>2,320</td>
<td>3,612</td>
<td>5,284</td>
<td>7,370</td>
<td>9,900</td>
<td>16,381</td>
<td>24,860</td>
<td>35,389</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>842</td>
<td>1,619</td>
<td>2,752</td>
<td>4,298</td>
<td>6,308</td>
<td>8,828</td>
<td>11,900</td>
<td>19,837</td>
<td>30,349</td>
<td>43,581</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>970</td>
<td>1,869</td>
<td>3,183</td>
<td>4,984</td>
<td>7,332</td>
<td>10,286</td>
<td>13,900</td>
<td>23,293</td>
<td>35,836</td>
<td>51,773</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>1,098</td>
<td>2,119</td>
<td>3,616</td>
<td>5,670</td>
<td>8,356</td>
<td>11,744</td>
<td>15,900</td>
<td>26,749</td>
<td>41,325</td>
<td>59,965</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1,226</td>
<td>2,369</td>
<td>4,048</td>
<td>6,356</td>
<td>9,380</td>
<td>13,202</td>
<td>17,900</td>
<td>30,205</td>
<td>46,813</td>
<td>68,157</td>
<td></td>
</tr>
</tbody>
</table>

* Small side of a rectangular cross section with dimensions x and y.

13.6.5 Factored Moments in Beams

When a design strip contains beams between columns, the factored moment assigned to the column strip must be distributed between the slab and the beam portions of the column strip. The amount of the column strip factored moment to be resisted by the beam varies linearly between zero and 85 percent as \(\alpha f_1 \ell_2 / \ell_1 \) varies between zero and 1.0. When \(\alpha f_1 \ell_2 / \ell_1 \) is equal to or greater than 1.0, 85 percent of the total column strip moment must be resisted by the beam. In addition, the beam section must resist the effects of loads applied directly to the beam, including weight of beam stem projecting above or below the slab.

13.6.6 Factored Moments in Middle Strips

Factored moments not assigned to the column strips must be resisted by the two half-middle strips comprising the design strip (see Fig. 19-1). An exception to this is a middle strip adjacent to and parallel with an edge supported by a wall, where the moment to be resisted is twice the factored moment assigned to the half middle strip corresponding to the first row of interior supports (13.6.6.3).

13.6.9 Factored Moments in Columns and Walls

Supporting columns and walls must resist any negative moments transferred from the slab system.
For interior columns (or walls), the approximate Eq. (13-7) may be used to determine the unbalanced moment transferred by gravity loading, unless an analysis is made considering the effects of pattern loading and unequal adjacent spans. The transfer moment is computed directly as a function of span length and gravity loading. For the more usual case with equal transverse and adjacent spans, Eq. (13-7) reduces to

\[
M_u = 0.07 \left(0.5q_{Lu} \ell_2 \ell_n^2 \right)
\]

where,

- \(q_{Lu} \) = factored live load, psf
- \(\ell_2 \) = span length transverse to \(\ell_n \)
- \(\ell_n \) = clear span length in the direction of analysis

At exterior column or wall supports, the total exterior negative factored moment from the slab system (13.6.3.3) is transferred directly to the supporting members. Due to the approximate nature of the moment coefficients, it seems unwarranted to consider the change in moment from face of support to centerline of support; use the moment values from 13.6.3.3 directly.

Columns above and below the slab must resist the unbalanced support moment based on the relative column stiffnesses—generally, in proportion to column lengths above and below the slab. Again, due to the approximate nature of the moment coefficients of the Direct Design Method, the refinement of considering the change in moment from centerline of slab-beam to top or bottom of column seems unwarranted.

DESIGN AID — DIRECT DESIGN MOMENT COEFFICIENTS

Distribution of the total factored static moment in the span, \(M_o \), into negative and positive moments, and then into column and middle strip moments, involves direct application of moment coefficients to the total moment \(M_o \). The moment coefficients are a function of location of span (interior or end), slab support conditions, and type of two-way slab system. For design convenience, moment coefficients for typical two-way slab systems are given in Tables 19-3 through 19-7. Tables 19-3 through 19-6 apply to flat plates or flat slabs with differing end support conditions. Table 19-7 applies to two-way slabs supported on beams on all four sides. Final moments for the column strip and the middle strip are directly tabulated.

Table 19-3 Design Moment Coefficients for Flat Plate or Flat Slab Supported Directly on Columns

<table>
<thead>
<tr>
<th>Slab Moments</th>
<th>End Span</th>
<th>Interior Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>Exterior Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Total Moment</td>
<td>0.26(M_o)</td>
<td>0.52(M_o)</td>
</tr>
<tr>
<td>Column Strip</td>
<td>0.26(M_o)</td>
<td>0.31(M_o)</td>
</tr>
<tr>
<td>Middle Strip</td>
<td>0</td>
<td>0.21(M_o)</td>
</tr>
</tbody>
</table>

Note: All negative moments are at face of support.
The moment coefficients of Table 19-4 (flat plate with edge beams) are valid for $\beta_t \geq 2.5$. The coefficients of Table 19-7 (two-way beam-supported slabs) apply for $\alpha_{f1} \ell_2 / \ell_1 \geq 1.0$ and $\beta_t \geq 2.5$. Many practical beam sizes will provide beam-to-slab stiffness ratios such that $\alpha_{f1} \ell_2 / \ell_1$ and β_t will be greater than these limits, allowing moment coefficients to be taken directly from the tables, without further consideration of stiffnesses and interpolation for moment coefficients. However, if beams are present, the two stiffness parameters α_{f1} and β_t will need to be evaluated. For two-way slabs, and for $E_{cb} = E_{cs}$, the stiffness parameter α_{f1} is simply the ratio of the moments of inertia of the effective beam and slab sections in the direction of analysis, $\alpha_{f1} = I_b / I_s$, as illustrated in Fig. 19-6. Figures 19-7 and 19-8 simplify evaluation of the α_{f1} term.

Table 19-4 Design Moment Coefficients for Flat Plate or Flat Slab with Edge Beams

<table>
<thead>
<tr>
<th>Slab Moments</th>
<th>End Span</th>
<th>Interior Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) End Span</td>
<td>(2) Neutral</td>
</tr>
<tr>
<td></td>
<td>Exterior Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Total Moment</td>
<td>0.30M_o</td>
<td>0.50M_o</td>
</tr>
<tr>
<td>Column Strip</td>
<td>0.23M_o</td>
<td>0.30M_o</td>
</tr>
<tr>
<td>Middle Strip</td>
<td>0.07M_o</td>
<td>0.20M_o</td>
</tr>
</tbody>
</table>

Notes:

1. All negative moments are at face of support.
2. Torsional stiffness of edge beam is such that $\beta_t \geq 2.5$. For values of β_t less than 2.5, exterior negative column strip moment increases to $(0.30 - 0.03 \beta_t) M_o$

For $E_{cb} = E_{cs}$, relative stiffness provided by an edge beam is reflected by the parameter $\beta_t = C/2I_s$, where I_s is the moment of inertia of the effective slab section spanning in the direction of ℓ_1 and having a width equal to ℓ_2, i.e., $I_s = \ell_2 h^3 / 12$. The constant C pertains to the torsional stiffness of the effective edge beam cross-section. It is found by dividing the beam section into its component rectangles, each having a smaller dimension x and a larger dimension y, and by summing the contributions of all the parts by means of the equation:

$$C = \Sigma \left(1 - \frac{0.63x}{y} \right) \left(\frac{x^3y}{3} \right)$$

The subdivision can be done in such a way as to maximize C. Table 19-2 simplifies calculation of the torsional constant C.

19-12
Table 19-5 Design Moment Coefficients for Flat Plate or Flat Slab with End Span Integral with Wall

<table>
<thead>
<tr>
<th>Slab Moments</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exterior Negative</td>
<td>Positive</td>
<td>First Interior Negative</td>
<td>Positive</td>
<td>Interior Negative</td>
</tr>
<tr>
<td>Total Moment</td>
<td>0.65M₀</td>
<td>0.35M₀</td>
<td>0.65M₀</td>
<td>0.35M₀</td>
<td>0.65M₀</td>
</tr>
<tr>
<td>Column Strip</td>
<td>0.49M₀</td>
<td>0.21M₀</td>
<td>0.49M₀</td>
<td>0.21M₀</td>
<td>0.49M₀</td>
</tr>
<tr>
<td>Middle Strip</td>
<td>0.16M₀</td>
<td>0.14M₀</td>
<td>0.16M₀</td>
<td>0.14M₀</td>
<td>0.16M₀</td>
</tr>
</tbody>
</table>

Note: All negative moments are at face of support.

Table 19-6 Design Moment Coefficients for Flat Plate or Flat Slab with End Span Simply Supported on Wall

<table>
<thead>
<tr>
<th>Slab Moments</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exterior Negative</td>
<td>Positive</td>
<td>First Interior Negative</td>
<td>Positive</td>
<td>Interior Negative</td>
</tr>
<tr>
<td>Total Moment</td>
<td>0</td>
<td>0.63M₀</td>
<td>0.75M₀</td>
<td>0.35M₀</td>
<td>0.65M₀</td>
</tr>
<tr>
<td>Column Strip</td>
<td>0</td>
<td>0.38M₀</td>
<td>0.56M₀</td>
<td>0.21M₀</td>
<td>0.49M₀</td>
</tr>
<tr>
<td>Middle Strip</td>
<td>0</td>
<td>0.25M₀</td>
<td>0.19M₀</td>
<td>0.14M₀</td>
<td>0.16M₀</td>
</tr>
</tbody>
</table>

Note: All negative moments are at face of support.
Table 19-7 Design Moment Coefficients for Two-Way Beam-Supported Slab

<table>
<thead>
<tr>
<th>Span Ratio ℓ_2/ℓ_1</th>
<th>Slab and Beam Moments</th>
<th>End Span</th>
<th>Interior Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Total Moment</td>
<td></td>
<td>0.16M_o</td>
<td>0.57M_o</td>
</tr>
<tr>
<td>0.5</td>
<td>Column Strip Beam Slab</td>
<td>0.12M_o</td>
<td>0.43M_o</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02M_o</td>
<td>0.08M_o</td>
</tr>
<tr>
<td></td>
<td>Middle Strip</td>
<td>0.02M_o</td>
<td>0.06M_o</td>
</tr>
<tr>
<td>1.0</td>
<td>Column Strip Beam Slab</td>
<td>0.10M_o</td>
<td>0.37M_o</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02M_o</td>
<td>0.06M_o</td>
</tr>
<tr>
<td></td>
<td>Middle Strip</td>
<td>0.04M_o</td>
<td>0.14M_o</td>
</tr>
<tr>
<td>2.0</td>
<td>Column Strip Beam Slab</td>
<td>0.06M_o</td>
<td>0.22M_o</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01M_o</td>
<td>0.04M_o</td>
</tr>
<tr>
<td></td>
<td>Middle Strip</td>
<td>0.09M_o</td>
<td>0.31M_o</td>
</tr>
</tbody>
</table>

Notes:
1. All negative moments are at face of support.
2. Torsional stiffness of edge beam is such that $\beta_1 \leq 2.5$
3. $\alpha_1 \ell_2/\ell_1 \geq 1.0$.
Example 19.1—Two-Way Slab without Beams Analyzed by the Direct Design Method

Use the Direct Design Method to determine design moments for the flat plate slab system in the direction shown, for an intermediate floor.

Story height = 9 ft
Column dimensions = 16 × 16 in.
Lateral loads to be resisted by shear walls
No edge beams
Partition weight = 20 psf
Service live load = 40 psf
f'_c = 4000 psi, normal weight concrete
f_y = 60,000 psi

Also determine the reinforcement and shear requirements at an exterior column.

Calculations and Discussion

1. Preliminary design for slab thickness h:

 a. Control of deflections.

 For slab systems without beams (flat plate), the minimum overall thickness h with Grade 60 reinforcement is (see Table 18-1):

 \[h = \frac{\ell_n}{30} = \frac{200}{30} = 6.67 \text{ in.} \]

 Use $h = 7$ in

 where ℓ_n is the length of clear span in the long direction = 216 - 16 = 200 in.

 This is larger than the 5 in. minimum specified for slabs without drop panels.

 b. Shear strength of slab.

 Use an average effective depth, d' = 5.75 in. (3/4-in. cover and No. 4 bar)

 Slab self weight = \(\left(\frac{7}{12} \right) \times 150 = 87.5 \text{ psf} \)

 Factored dead load, $q_{Du} = 1.2 \times (87.5 + 20) = 129 \text{ psf}$

 Factored live load, $q_{Lu} = 1.6 \times 40 = 64 \text{ psf}$

 Total factored load, $q_u = 193 \text{ psf}$

 Investigation for wide-beam action is made on a 12-in. wide strip at a distance d from the face of support in the long direction (see Fig.19-9).

 \[V_u = 0.193 \times \left(\frac{18}{2} - \frac{16}{2 \times 12} - \frac{5.75}{12} \right) = 1.5 \text{ kips} \]

 \[V_c = 2\lambda \sqrt{f'_c b_w d} \]

 $\lambda = 1$ (normal weight concrete)
Example 19.1 (cont’d) Calculations and Discussion

Figure 19-9 Critical Sections for One-Way and Two-Way Shear

\[V_c = \frac{2\sqrt{4000 \times 12 \times 5.75}}{1000} = 8.73 \text{ kips} \]

\[\phi V_c = 0.75 \times 8.73 = 6.6 \text{ kips} > V_u = 1.5 \text{ kips} \quad \text{O.K.} \]

Since there are no shear forces at the centerline of adjacent panels (see Fig. 19-9), the shear strength in two-way action at d/2 distance around a support is computed as follows:

\[V_u = 0.193 [(18 \times 14) - 1.812)] = 48.0 \text{ kips} \]

\[V_c = 4\lambda \sqrt{t_c b_o d} \quad \text{(for square columns)} \quad \text{Eq. (11-33)} \]

\[= \frac{4\sqrt{4000 \times (4 \times 21.75) \times 5.75}}{1000} = 126.6 \text{ kips} \]

\[V_u = 48.0 \text{ kips} < \phi V_c = 0.75 \times 126.6 \text{ kips} = 95.0 \text{ kips} \quad \text{O.K.} \]

Therefore, preliminary design indicates that a 7 in. slab is adequate for control of deflection and shear strength.

2. Check applicability of Direct Design Method:

There is a minimum of three continuous spans in each direction

Long-to-short span ratio is 1.29 < 2.0
Example 19.1 (cont’d) Calculations and Discussion

Successive span lengths are equal 13.6.1.3

Columns are not offset 13.6.1.4

Loads are uniformly distributed with service live-to-dead load ratio of 0.37 < 2.0 13.6.1.5

Slab system is without beams 13.6.1.6

3. Factored moments in slab:

a. Total factored static moment per span. 13.6.2

\[M_o = \frac{q_u \ell^2 n^2}{8} \]

\[= \frac{0.193 \times 14 \times 16.67^2}{8} = 93.6 \text{ ft-kips} \]

b. Distribution of the total factored moment \(M_o \) per span into negative and positive moments, and then into column and middle strip moments. This distribution involves direct application of the moment coefficients to the total moment \(M_o \). Referring to Table 19-3 (flat plate without edge beams).

<table>
<thead>
<tr>
<th>End Span:</th>
<th>Total Moment (ft-kips)</th>
<th>Column Strip Moment (ft-kips)</th>
<th>Moment (ft-kips) in Two Half-Middle Strips*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Negative</td>
<td>(0.26M_o = 24.3)</td>
<td>(0.26M_o = 24.3)</td>
<td>0</td>
</tr>
<tr>
<td>Positive</td>
<td>(0.52M_o = 48.7)</td>
<td>(0.31M_o = 29.0)</td>
<td>0.21(M_o = 19.7)</td>
</tr>
<tr>
<td>Interior Negative</td>
<td>(0.70M_o = 65.5)</td>
<td>(0.53M_o = 49.6)</td>
<td>0.17(M_o = 15.9)</td>
</tr>
<tr>
<td>Interior Span:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>(0.35M_o = 32.8)</td>
<td>(0.21M_o = 19.7)</td>
<td>0.14(M_o = 13.1)</td>
</tr>
<tr>
<td>Negative</td>
<td>(0.65M_o = 60.8)</td>
<td>(0.49M_o = 45.9)</td>
<td>0.16(M_o = 15.0)</td>
</tr>
</tbody>
</table>

*That portion of the total static moment \(M_o \) not resisted by the column strip is assigned to the two half-middle strips.

Note: The factored moments may be modified by 10 percent, provided the total factored static moment in any panel is not less than that computed from Eq. (13-4). This modification is not applied. 13.6.7

4. Factored moments in columns: 13.6.9

a. Interior columns, with equal spans in the direction of analysis and (different) equal spans in the transverse direction.

\[M_u = 0.07 \left(0.5q_u \ell^2 n^2 \right) \]

\[= 0.07 \left(0.5 \times 1.6 \times 0.04 \times 14 \times 16.67^2 \right) = 8.7 \text{ ft-kips} \]
Example 19.1 (cont’d) Calculations and Discussion

With the same column size and length above and below the slab,

\[M_{\text{column}} = \frac{8.7}{2} = 4.35 \text{ ft-kips} \]

This moment is combined with the factored axial load (for each story) for design of the interior columns.

b. Exterior columns.

Total exterior negative moment from slab must be transferred directly to the columns: \(M_u = 24.3 \text{ ft-kips} \). With the same column size and length above and below the slab,

\[M_{\text{column}} = \frac{24.3}{2} = 12.15 \text{ ft-kips} \]

This moment is combined with the factored axial load (for each story) for design of the exterior column.

5. Check slab flexural and shear strength at exterior column

a. Total flexural reinforcement required for design strip:

i. Determine reinforcement required for strip moment \(M_u = 24.3 \text{ ft-kips} \)

Assume tension-controlled section (\(\phi = 0.9 \))

Column strip width \(b = \frac{14 \times 12}{2} = 84 \text{ in.} \)

\[R_n = \frac{M_u}{\phi bd^2} = \frac{24.3 \times 12,000}{0.9 \times 84 \times 5.75^2} = 117 \text{ psi} \]

\[\rho = \frac{0.85 f'_c}{f_y} \left(1 - \sqrt{\frac{2R_n}{0.85f'_c}} \right) \]

\[= \frac{0.85 \times 4}{60} \left(1 - \sqrt{\frac{2 \times 117}{0.85 \times 4000}} \right) = 0.0020 \]

\[A_s = \rho bd = 0.0020 \times 84 \times 5.75 = 0.96 \text{ in.}^2 \]

\[\rho_{\text{min}} = 0.0018 \]
Example 19.1 (cont’d) Calculations and Discussion

Min. $A_s = 0.0018 \times 84 \times 7 = 1.06 \text{ in.}^2 > 0.96 \text{ in.}^2$

Number of No. 4 bars $= \frac{1.06}{0.2} = 5.3$, say 6 bars

Maximum spacing $s_{max} = 2h = 14 \text{ in.} < 18 \text{ in.}$

Number of No.4 bars based on $s_{max} = \frac{84}{14} = 6$

Verify tension-controlled section:

$$a = \frac{A_{sfy}}{0.85f_{cb}} = \frac{(6 \times 0.2) \times 60}{0.85 \times 4 \times 84} = 0.25 \text{ in.}$$

$$c = \frac{a}{\beta_1} = \frac{0.25}{0.85} = 0.29 \text{ in.}$$

$$\varepsilon_t = \left(\frac{0.003}{c}\right) d_t - 0.003$$

$$= \left(\frac{0.003}{0.29}\right) 5.75 - 0.003 = 0.057 > 0.005$$

Therefore, section is tension-controlled.

Use 6-No. 4 bars in column strip.

ii. Check slab reinforcement at exterior column for moment transfer between slab and column

Portion of unbalanced moment transferred by flexure $= \gamma_f M_u$

From Fig. 16-13, Case C:

$$b_1 = c_1 + \frac{d}{2} = 16 + \frac{5.75}{2} = 18.88 \text{ in.}$$

$$b_2 = c_2 + d = 16 + 5.75 = 21.75 \text{ in.}$$

$$\gamma_f = \frac{1}{1 + \frac{2/3}{\sqrt{b_1/b_2}}} = \frac{1}{1 + \frac{2/3}{\sqrt{18.88/21.75}}} = 0.62$$

Eq. (13-1)
\[\gamma_f M_u = 0.62 \times 24.3 = 15.1 \text{ ft-kips} \]

Note that the provisions of 13.5.3.3 may be utilized; however, they are not in this example.

Assuming tension-controlled behavior, determine required area of reinforcement for \(\gamma_f M_u = 15.1 \text{ ft-kips} \):

Effective slab width \(b = c_2 + 3h = 16 + 3(7) = 37 \text{ in.} \)

\[R_n = \frac{M_u}{\phi bd^2} = \frac{15.1 \times 12,000}{0.9 \times 37 \times 5.75^2} = 165 \text{ psi} \]

\[\rho = \frac{0.85 f'_c}{f_y} \left(1 - \sqrt{1 - \frac{2R_n}{0.85 f'_c}} \right) \]

\[= \frac{0.85 \times 4}{60} \left(1 - \sqrt{1 - \frac{2 \times 165}{0.85 \times 4000}} \right) = 0.0028 \]

\[A_s = 0.0028 \times 37 \times 5.75 = 0.60 \text{ in.}^2 \]

Min. \(A_s = 0.0018 \times 37 \times 7 = 0.47 \text{ in.}^2 < 0.60 \text{ in.}^2 \)

Number of No. 4 bars = \(\frac{0.60}{0.2} = 3 \)

Verify tension-controlled section:

\[a = \frac{A_s f_y}{0.85 f'_c b} = \frac{(3 \times 0.2) \times 60}{0.85 \times 4 \times 37} = 0.29 \text{ in.} \]

\[c = \frac{a}{\beta_1} = \frac{0.29}{0.85} = 0.34 \text{ in.} \]

\[\varepsilon_t = \left(\frac{0.003}{0.34} \right) (5.75 - 0.003) = 0.048 > 0.005 \]
Therefore, section is tension-controlled.

Provide the required 3-No. 4 bars by concentrating 3 of the column strip bars (6-No. 4) within the 37 in. slab width over the column. For symmetry, add one additional No. 4 bar outside of 37-in. width.

Note that the column strip section remains tension-controlled with the addition of 1-No. 4 bar.

iii. Determine reinforcement required for middle strip.

Since all of the moment at exterior columns is transferred to the column strip, provide minimum reinforcement in middle strip:

\[
\text{Min. } A_s = 0.0018 \times 84 \times 7 = 1.06 \text{ in.}^2
\]

Number of No. 4 bars = \(\frac{1.06}{0.2} = 5.3 \), say 6

Maximum spacing \(s_{\text{max}} = 2h = 14 \text{ in.} < 18 \text{ in.} \)

Number of No. 4 bars based on \(s_{\text{max}} = \frac{84}{14} = 6 \)

Provide No. 4 @ 14 in. in middle strip.

b. Check combined shear stress at inside face of critical transfer section:

For shear strength equations, see Part 16.

\[
v_u = \frac{V_u}{A_c} + \frac{\gamma_v M_u c_{AB}}{J_c}
\]

Factored shear force at exterior column:

\[
V_u = 0.193 \left[(14 \times 9.667) - \left(\frac{18.88 \times 21.75}{144} \right) \right] = 25.6 \text{ kips}
\]

When the end span moments are determined from the Direct Design Method, the fraction of unbalanced moment transferred by eccentricity of shear must be

\[
0.3 M_o = 0.3 \times 93.6 = 28.1 \text{ ft-kips}
\]

\[
\gamma_v = 1 - \gamma_f = 1 - 0.62 = 0.38 \quad \text{Eq. (11-37)}
\]
From Fig. 16-13, critical section properties for edge column bending perpendicular to edge (Case C):

\[
A_c = (2b_1 + b_2) \cdot d = \left((2 \times 18.88) + 21.75 \right) \times 5.75 = 342.2 \text{ in.}^2
\]

\[
J_{c_{AB}} = \frac{2b_1^2 \cdot d \cdot (b_1 + 2b_2) + d^3 \cdot (2b_1 + b_2)}{6b_1}
\]

\[
= 2(18.88)^2(5.75) \left[18.88 + (2 \times 21.75) \right] + 5.75^3 \left[(2 \times 18.88) + 21.75 \right] \div 6 \times 18.88
\]

\[
= 2357 \text{ in.}^3
\]

\[
v_u = \frac{25,600}{342.2} + \frac{0.38 \times 28.1 \times 12,000}{2357}
\]

\[
= 74.8 + 54.4 = 129.2 \text{ psi}
\]

Allowable shear stress \(\phi v_u = \phi 4\lambda \sqrt{\frac{f_c}{J_c}} = 0.75 \times 4 \times \frac{4000}{\sqrt{2357}} = 189.7 \text{ psi} \geq v_u \quad \text{O.K.} \)
Example 19.2—Two-Way Slab with Beams Analyzed by the Direct Design Method

Use the Direct Design Method to determine design moments for the slab system in the NS direction, for an intermediate floor.

Story height = 12 ft
Edge beam dimensions = 14 × 27 in.
Interior beam dimensions = 14 × 20 in.
Column dimensions = 18 × 18 in.
Slab thickness = 6 in.
Service live load = 100 psf

\(f'_c = 4000 \text{ psi (for all members), normal weight concrete} \)
\(f_y = 60,000 \text{ psi} \)

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preliminary design for slab thickness (h):</td>
<td>9.5.3</td>
</tr>
</tbody>
</table>

Control of deflections.

With the aid of Figs. 19-6, 19-7, and 19-8, beam-to-slab flexural stiffness ratio \(\alpha_f \) is computed as follows:

NS edge beams:

\[\ell_2 = 141 \text{ in}. \]

\[\frac{a}{h} = \frac{27}{6} = 4.5 \]

\[\frac{b}{h} = \frac{14}{6} = 2.33 \]

From Fig. 19-8, \(f = 1.47 \)

\[I_b = \left(\frac{ba^3}{12} \right) f \]

\[I_s = \frac{\ell_2 h^3}{12} \]
Example 19.2 (cont’d) Calculations and Discussion

\[\alpha_f = \frac{E_{cb} I_b}{E_{cs} I_s} = \frac{I_b}{I_s} \]

\[= \left(\frac{b}{\ell_2} \right) \left(\frac{a}{h} \right)^3 \]

\[= \left(\frac{14}{141} \right) \left(\frac{27}{6} \right)^3 (1.47) = 13.30 \]

EW edge beams:

\[\ell_2 = \frac{17.5 \times 12}{2} + \frac{18}{2} = 114 \text{ in.} \]

\[\alpha_f = \left(\frac{14}{114} \right) \left(\frac{27}{6} \right)^3 (1.47) = 16.45 \]

NS interior beams:

\[\ell_2 = 22 \text{ ft} = 264 \text{ in.} \]

\[\frac{a}{h} = \frac{20}{6} = 3.33 \]

\[\frac{b}{h} = \frac{14}{6} = 2.33 \]

From Fig. 19-7, \(f = 1.61 \)

\[\alpha_f = \left(\frac{14}{114} \right) \left(\frac{27}{6} \right)^3 (1.47) = 16.45 \]

EW interior beams:

\[\ell_2 = 17.5 \text{ ft} = 210 \text{ in.} \]

\[\alpha_f = \left(\frac{14}{210} \right) \left(\frac{20}{6} \right)^3 (1.61) = 3.98 \]

Since \(\alpha_{fm} > 2.0 \) for all beams, Eq. (9-13) will control minimum thickness.

9.5.3.3
Therefore,

\[h = \frac{\ell_n \left(0.8 + \frac{f_y}{200,000} \right)}{36 + 9 \beta} \]

Eq. (9-13)

\[= \frac{246 \left(0.8 + \frac{60,000}{200,000} \right)}{36 + 9 (1.28)} = 5.7 \text{ in.} \]

where

\[\beta = \frac{\text{clear span in the long direction}}{\text{clear span in the short direction}} = \frac{20.5}{16} = 1.28 \]

\[\ell_n = \text{clear span in long direction measured face to face of columns} = 20.5 \text{ ft} = 246 \text{ in.} \]

Use 6 in. slab thickness

2. Check applicability of Direct Design Method:

There is a minimum of three continuous spans in each direction

Long-to-short span ratio is 1.26 < 2.0

Successive span lengths are equal

Columns are not offset

Loads are gravity and uniformly distributed with service live-to-dead ratio of 1.33 < 2.0

Check relative stiffness for slab panel:

Interior Panel:

\[\alpha_{f1} = 3.16 \quad \ell_2 = 264 \text{ in.} \]

\[\alpha_{f2} = 3.98 \quad \ell_1 = 210 \text{ in.} \]

\[\frac{\alpha_{f1} \ell_2^2}{\alpha_{f2} \ell_1^2} = \frac{3.16 \times 264^2}{3.98 \times 210^2} = 1.25 \quad 0.2 < 1.25 < 5.0 \quad \text{O.K.} \]

Eq. (13-2)

Exterior Panel:

\[\alpha_{f1} = 3.16 \quad \ell_2 = 264 \text{ in.} \]

\[\alpha_{f2} = 16.45 \quad \ell_1 = 210 \text{ in.} \]

\[\frac{\alpha_{f1} \ell_2^2}{\alpha_{f2} \ell_1^2} = \frac{3.16 \times 264^2}{16.45 \times 210^2} = 0.3 \quad 0.2 < 0.3 < 5.0 \quad \text{O.K.} \]

Therefore, use of Direct Design Method is permitted.
3. Factored moments in slab:

 Total factored moment per span

 \[\text{Average weight of beams stem} = \frac{14 \times 14}{144} \times \frac{150}{22} = 9.3 \text{ psf} \]

 \[\text{Weight of slab} = \frac{6}{12} \times 150 = 75 \text{ psf} \]

 \[w_u = 1.2(75 + 9.3) + 1.6(100) = 261 \text{ psf} \]

 \[\ell_n = 17.5 - \frac{18}{12} = 16 \text{ ft} \]

 \[M_o = \frac{q_u \ell_n^2}{8} \]

 \[= \frac{0.261 \times 22 \times 16^2}{8} = 183.7 \text{ ft-kips} \]

 Distribution of moment into negative and positive moments:

 Interior span:

 Negative moment = 0.65 \(M_o \) = 0.65 \times 183.7 = 119.4 \text{ ft-kips}

 Positive moment = 0.35 \(M_o \) = 0.35 \times 183.7 = 64.3 \text{ ft-kips}

 End span:

 Exterior negative = 0.16 \(M_o \) = 0.16 \times 183.7 = 29.4 \text{ ft-kips}

 Positive = 0.57 \(M_o \) = 0.57 \times 183.7 = 104.7 \text{ ft-kips}

 Interior negative = 0.70 \(M_o \) = 0.7 \times 183.7 = 128.6 \text{ ft-kips}

 Note: The factored moments may be modified by 10 percent, provided the total factored static moment in any panel is not less than that computed from Eq. (13-4). This modification is not applied here.

4. Distribution of factored moments to column and middle strips:

 Percentage of total negative and positive moments to column strip.
Example 19.2 (cont’d) Calculations and Discussion

At interior support:

\[
75 + 30 \left(\frac{\alpha f_1 \ell_2}{\ell_1} \right) \left(1 - \frac{\ell_2}{\ell_1} \right) = 75 + 30 (1 - 1.26) = 67\% \quad \text{Eq. (1)}
\]

where \(\alpha f_1 \) was computed earlier to be 3.16 (see NS interior beam above)

At exterior support:

\[
100 - 10 \beta t + 12 \beta t \left(\frac{\alpha f_1 \ell_2}{\ell_1} \right) \left(1 - \frac{\ell_2}{\ell_1} \right) = 100 - 10 (1.88) + 12 (1.88) (1 - 1.26) = 75\% \quad \text{Eq. (2)}
\]

where

\[
\beta t = \frac{C}{2I_s} = \frac{17,868}{2 \times 4752} = 1.88
\]

\[
I_s = \frac{\ell_2 h^3}{12} = 4752 \text{ in.}^4
\]

\(C \) is taken as the larger value computed (with the aid of Table 19-2) for the torsional member shown below.

\[
\Sigma C = 11,141 + 2248 = 13,389 \text{ in.}^4 \quad \Sigma C = 16,628 + 1240 = 17,868 \text{ in.}^4
\]

Positive moment:

\[
60 + 30 \left(\frac{\alpha f_1 \ell_2}{\ell_1} \right) \left(1.5 - \frac{\ell_2}{\ell_1} \right) = 60 + 30 (1.5 - 1.26) = 67\% \quad \text{Eq. (3)}
\]
Factored moments in column strips and middle strips are summarized as follows:

<table>
<thead>
<tr>
<th>End Span:</th>
<th>Factored Moment (ft-kips)</th>
<th>Column Strip</th>
<th>Moment (ft-kips) in Two Half-Middle Strips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>Exterior Negative</td>
<td>29.4</td>
<td>75</td>
<td>22.1</td>
</tr>
<tr>
<td>Positive</td>
<td>104.7</td>
<td>67</td>
<td>70.5</td>
</tr>
<tr>
<td>Interior Negative</td>
<td>128.6</td>
<td>67</td>
<td>86.2</td>
</tr>
<tr>
<td>Interior Span:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>119.4</td>
<td>67</td>
<td>80.0</td>
</tr>
<tr>
<td>Positive</td>
<td>64.3</td>
<td>67</td>
<td>43.1</td>
</tr>
</tbody>
</table>

1 Since $\alpha_{1}^{1}/L_{1} > 1.0$, beams must be proportioned to resist 85 percent of column strip moment per 13.6.5.1.
2 That portion of the factored moment not resisted by the column strip is assigned to the half-middle strips.

5. Factored moments in columns:

 a. Interior columns, with equal spans in the direction of analysis and (different) equal spans in the transverse direction.

 \[M_u = 0.07 \left(0.5q_L \ell_2 \ell_n^2 \right) \]
 \[= 0.07 \left(0.5 \times 1.6 \times 0.1 \times 22 \times 16^2 \right) = 31.5 \text{ ft-kips} \]

 With the same column size and length above and below the slab,

 \[M_{\text{column}} = \frac{31.5}{2} = 15.8 \text{ ft-kips} \]

 This moment is combined with the factored axial load (for each story) for design of the interior columns.

 b. Exterior columns.

 The total exterior negative moment from the slab beam is transferred to the exterior columns; with the same column size and length above and below the slab system:

 \[M_{\text{column}} = \frac{29.4}{2} = 14.7 \text{ ft-kips} \]
6. Shear strength:

a. Beams.

Since $\alpha_{f1}\ell_2/\ell_1 > 1$ for all beams, they must resist total shear caused by factored loads on the tributary areas shown on the figure below.

Only interior beams will be checked here, because they carry much higher shear forces than the edge beams.

NS Beams:

$b_w = 14$ in., $d = 17$ in.

$$V_u = \frac{1}{2}q_u\frac{\ell_1}{2} = \frac{q_u\ell_1^2}{4}$$

$$= 0.261 \times 17.5 = 20.0 \text{ kips}$$

$$\phi V_c = \phi 2\lambda \sqrt{f'_c b_w d}$$

$$= 0.75 \times 2\sqrt{4000} \times 14 \times 17/1000 = 22.6 \text{ kips} > V_u$$

Provide minimum shear reinforcement per 11.4.6.3.

EW Beams:

$$V_u = \frac{q_u\ell_1 (2\ell_2 - \ell_1)}{4}$$

$$= 0.261 \times 17.5 \left[(2 \times 22) - 17.5 \right] = 30.3 \text{ kips} > \phi V_c = 22.6 \text{ kips} \text{ N.G.}$$
Example 19.2 (cont’d) Calculations and Discussion

Required shear strength to be provided by shear reinforcement:

\[V_S = \left(V_u - \phi V_c \right)/\phi = \left(30.3 - 22.6 \right)/0.75 = 10.3 \text{ kips} \]

b. Slabs (bw = 12 in., d = 5 in.).

\[q_u = (1.2 \times 75) + (1.6 \times 100) = 250 \text{ psf} \]

\[V_u = \frac{q_u l}{2} = \frac{0.25 \times 17.5}{2} = 2.2 \text{ kips} \]

\[\phi V_c = \phi 2\lambda \sqrt{f_c^t} b w d \]

\[= 0.75 \times 2\sqrt{4000} \times 12 \times 5/100 = 5.7 \text{ kips} > V_u = 2.2 \text{ kips} \text{ O.K.} \]

Shear strength of slab is adequate without shear reinforcement.

7. Edge beams must be designed to resist moment not transferred to exterior columns by interior
Update for the ‘08 Code

Minor editorial change is introduced in 13.7.2 for clarity. The expressions live load and dead load are replaced by unfactored live load and unfactored dead load.

Background

The Equivalent Frame Method of analysis converts a three-dimensional frame system with two-way slabs into a series of two-dimensional frames (slab-beams and columns), with each frame extending the full height of the building, as illustrated in Fig. 20-1. The width of each equivalent frame extends to mid-span between column centerlines. The complete analysis of the two-way slab system for a building consists of analyzing a series of equivalent interior and exterior frames spanning longitudinally and transversely through the building. For gravity loading, the slab-beams at each floor or roof (level) may be analyzed separately, with the far ends of attached columns considered fixed (13.7.2.5).

The Equivalent Frame Method of elastic analysis applies to buildings with columns laid out on a basically orthogonal grid, with column lines extending longitudinally and transversely through the building. The analysis method is applicable to slabs with or without beams between supports.

The Equivalent Frame Method may be used for lateral load analysis if the stiffnesses of frame members are modified to account for cracking and other relevant factors. See discussion on 13.5.1.2 in Part 18.

Preliminary Design

Before proceeding with Equivalent Frame analysis, a preliminary slab thickness h needs to be determined for control of deflections, according to the minimum thickness requirements of 9.5.3. Table 18-1 and Fig. 18-3 may be used to simplify minimum thickness computations. For slab systems without beams, it is advisable at this stage of design to check the shear strength of the slab in the vicinity of columns or other support locations, according to the special provisions for slabs of 11.11. See discussion on 13.5.4 in Part 18.

13.7.2 Equivalent Frame

Application of the frame definitions given in 13.7.2, 13.2.1, and 13.2.2 is illustrated in Figs. 20-1 and 20-2. Some judgment is required in applying the definitions given in 13.2.1 for slab systems with varying span lengths along the design strip. Members of the equivalent frame are slab-beams and torsional members (transverse horizontal members) supported by columns (vertical members). The torsional members provide moment transfer between the slab-beams and the columns. The equivalent frame members are illustrated in Fig. 20-3. The initial step in the frame analysis requires that the flexural stiffness of the equivalent frame members be determined.
13.7.3 Slab-Beams

Common types of slab systems with and without beams between supports are illustrated in Figs. 20-4 and 20-5. Cross-sections for determining the stiffness of the slab-beam members K_{sb} between support centerlines are shown for each type. The equivalent slab-beam stiffness diagrams may be used to determine moment distribution constants and fixed-end moments for Equivalent Frame analysis.

Stiffness calculations are based on the following considerations:

a. The moment of inertia of the slab-beam between faces of supports is based on the gross cross-sectional area of the concrete. Variation in the moment of inertia along the axis of the slab-beam between supports must be taken into account (13.7.3.2).

b. A support is defined as a column, capital, bracket or wall. Note that a beam is not considered a supporting member for the equivalent frame (R13.7.3.3).

c. The moment of inertia of the slab-beam from the face of support to the centerline of support is assumed equal to the moment of inertia of the slab-beam at the face of support, divided by the quantity $(1 - c_2/\ell_2)^2$ (13.7.3.3).

The magnification factor $1/(1 - c_2/\ell_2)^2$ applied to the moment of inertia between support face and support centerline, in effect, makes each slab-beam at least a haunched member within its length. Consequently, stiffness and carryover factors and fixed-end moments based on the usual assumptions of uniform prismatic members cannot be applied to the slab-beam members.
Tables A1 through A6 in Appendix 20A at the end of this chapter give stiffness coefficients, carry-over factors, and fixed-end moment (at left support) coefficients for different geometric and loading configurations. A wide range of column size-to-span ratios in both longitudinal and transverse directions is covered in the tables. Table A1 can be used for flat plates and two-way slabs with beams. Tables A2 through A5 are intended to be used for flat slabs and waffle slabs with various drop (solid head) depths. Table A6 covers the unusual case of a flat plate combined with a flat slab. Fixed-end moment coefficients are provided for both uniform and partially uniform loads. Partial load coefficients were developed for loads distributed over a length of span equal to 0.2\(l_1 \). However, loads acting over longer portions of span may be considered by summing the effects of loads acting over each 0.2\(l_1 \) interval. For example, if the partial loading extends over 0.6\(l_1 \), then the coefficients corresponding to three consecutive 0.2\(l_1 \) intervals are to be added. This provides flexibility in the arrangement of loading. For concentrated loads, a high intensity of partial loading may be considered at the appropriate location, and assumed to be distributed over 0.2\(l_1 \). For parameter values in between those listed, interpolation may be made. Stiffness diagrams are shown on each table. With appropriate engineering judgment, different span conditions may be considered with the help of information given in these tables.
Figure 20-3 Equivalent Frame Members

Figure 20-4 Sections for Calculating Slab-Beam Stiffness K_{sb}
13.7.4 Columns

Common types of column end support conditions for slab systems are illustrated in Fig. 20-6. The column stiffness is based on a height of column \(l_c \) measured from the mid-depth of the slab above to the mid-depth of the slab below. The column stiffness diagrams may be used to determine column flexural stiffness, \(K_c \). The stiffness diagrams are based on the following considerations:

a. The moment of inertia of the column outside the slab-beam joint is based on the gross cross-sectional area of the concrete. Variation in the moment of inertia along the axis of the column between slab-beam joints is taken into account. For columns with capitals, the moment of inertia is assumed to vary linearly from the base of the capital to the bottom of the slab-beam (13.7.4.1 and 13.7.4.2).

b. The moment of inertia is assumed infinite \((I = \infty) \) from the top to the bottom of the slab-beam at the joint. As with the slab-beam members, the stiffness factor \(K_c \) for the columns cannot be based on the assumption of uniform prismatic members (13.7.4.3).

Table A7 in Appendix 20A can be used to determine the actual column stiffnesses and carry-over factors.

13.7.5 Torsional Members

Torsional members for common slab-beam joints are illustrated in Fig. 20-7. The cross-section of a torsional member is the largest of those defined by the three conditions given in 13.7.5.1. The governing condition (a), (b), or (c) is indicated below each illustration in Fig. 20-7.
The stiffness K_t of the torsional member is calculated by the following expression:

$$K_t = \sum \left[\frac{9E_{cs}C}{\ell_2 \left[1 - (c_2 / \ell_2)\right]^3} \right]$$

(1)

where the summation extends over torsional members framing into a joint: two for interior frames, and one for exterior frames.

The term C is a cross-sectional constant that defines the torsional properties of each torsional member framing into a joint:

$$C = \sum \left[1 - 0.63 \left(\frac{x}{y} \right) \right] \frac{x^2y}{3}$$

(2)

where x is the shorter dimension of a rectangular part and y is the longer dimension of a rectangular part.

The value of C is computed by dividing the cross section of a torsional member into separate rectangular parts and summing the C values for the component rectangles. It is appropriate to subdivide the cross section in a manner that results in the largest possible value of C. Application of the C expression is illustrated in Fig. 20-8.

If beams frame into the support in the direction moments are being determined, the torsional stiffness K_t given by Eq. (1) needs to be increased as follows:

$$K_{ta} = \frac{K_t I_{sb}}{I_s}$$
where \(K_{ta} \) = increased torsional stiffness due to the parallel beam (note parallel beam shown in Fig. 20-3)

\[
I_s = \frac{\ell_2 h^3}{12}
\]

\(I_{sb} \) = moment of inertia of the slab section specified for \(I_s \) including that portion of the beam stem extending above and below the slab (for the parallel beam illustrated in Fig. 20-3, \(I_{sb} \) is for the full tee section shown).

Figure 20-7 Torsional Members
Figure 20-8 Cross-Sectional Constant C, Defining Torsional Properties of a Torsional Member

Equivalent Columns (R13.7.4)

With the publication of ACI 318-83, the equivalent column concept of defining a single-stiffness element consisting of the actual columns above and below the slab-beams plus an attached transverse torsional member was eliminated from the code. With the increasing use of computers for two-way slab analysis by the Equivalent Frame Method, the concept of combining stiffnesses of actual columns and torsional members into a single stiffness has lost much of its attractiveness. The equivalent column was, however, retained in the commentary until the 1989 edition of the code, as an aid to analysis where slab-beams at different floor levels are analyzed separately for gravity loads, especially when using moment distribution or other hand calculation procedures for the analysis. While the equivalent column concept is still recognized by R13.7.4, the detailed procedure contained in the commentary since the ‘83 edition for calculating the equivalent column stiffness, K_{ec}, was deleted from R13.7.5 of the ‘95 and later Codes.

Both Examples 20.1 and 20.2 utilize the equivalent column concept with moment distribution for gravity load analysis.

The equivalent column concept modifies the column stiffness to account for the torsional flexibility of the slab-to-column connection which reduces its efficiency for transmission of moments. An equivalent column is illustrated in Fig. 20-3. The equivalent column consists of the actual columns above and below the slab-beams, plus “attached” torsional members on both sides of the columns, extending to the centerlines of the adjacent panels. Note that for an edge frame, the attached torsional member is on one side only. The presence of parallel beams will also influence the stiffness of the equivalent column.

The flexural stiffness of the equivalent column K_{ec} is given in terms of its inverse, or flexibility, as follows:
\[
\frac{1}{K_{ec}} = \frac{1}{\Sigma K_c} + \frac{1}{\Sigma K_t}
\]

For computational purposes, the designer may prefer that the above expression be given directly in terms of stiffness as follows:

\[
K_{ec} = \frac{\Sigma K_c \times \Sigma K_t}{\Sigma K_c + \Sigma K_t}
\]

Stiffnesses of the actual columns, \(K_c\), and torsional members, \(K_t\) must comply with 13.7.4 and 13.7.5.

After the values of \(K_c\) and \(K_t\) are determined, the equivalent column stiffness \(K_{ec}\) is computed. Using Fig. 20-3 for illustration,

\[
K_{ec} = \frac{(K_{ct} + K_{cb}) (K_{ta} + K_{ta})}{K_{ct} + K_{cb} + K_{ta} + K_{ta}}
\]

where

- \(K_{ct}\) = flexural stiffness at top of lower column framing into joint,
- \(K_{cb}\) = flexural stiffness at bottom of upper column framing into joint,
- \(K_{ta}\) = torsional stiffness of each torsional member, one on each side of the column, increased due to the parallel beam (if any).

13.7.6 Arrangement of Live Load

In the usual case where the exact loading pattern is not known, the maximum factored moments are developed with loading conditions illustrated by the three-span partial frame in Fig. 20-9, and described as follows:

a. When the unfactored live load does not exceed three-quarters of the unfactored dead load, only loading pattern (1) with full factored live load on all spans need be analyzed for negative and positive factored moments.

b. When the unfactored live-to-dead load ratio exceeds three-quarters, the five loading patterns shown need to be analyzed to determine all factored moments in the slab-beam members. Loading patterns (2) through (5) consider partial factored live loads for determining factored moments. However, with partial live loading, the factored moments cannot be taken less than those occurring with full factored live load on all spans; hence load pattern (1) needs to be included in the analysis.

For slab systems with beams, loads supported directly by the beams (such as the weight of the beam stem or a wall supported directly by the beams) may be inconvenient to include in the frame analysis for the slab loads, \(w_d + w_i\). An additional frame analysis may be required with the beam section designed to carry these loads in addition to the portion of the slab moments assigned to the beams.
13.7.7 Factored Moments

Moment distribution is probably the most convenient hand calculation method for analyzing partial frames involving several continuous spans with the far ends of upper and lower columns fixed. The mechanics of the method will not be described here, except for a brief discussion of the following two points: (1) the use of the equivalent column concept to determine joint distribution factors and (2) the proper procedure to distribute the equivalent column moment obtained in the frame analysis to the actual columns above and below the slab-beam joint. See Examples 20.1 and 20.2.

A frame joint with stiffness factors K shown for each member framing into the joint is illustrated in Fig. 20-10. Expressions are given below for the moment distribution factors DF at the joint, using the equivalent column stiffness, K_{ec}. These distribution factors are used directly in the moment distribution procedure.

Equivalent column stiffness,

$$K_{ec} = \frac{\sum K_c \times \sum K_t}{\sum K_c + \sum K_t}$$
\[
\frac{(K_{ct} + K_{cb}) (K_t + K_l)}{K_{ct} + K_{cb} + K_t + K_l}
\]

Slab-beam distribution factor,

\[
DF \ (\text{span } 2-1) = \frac{K_{b1}}{K_{b1} + K_{b2} + K_{ec}}
\]

\[
DF \ (\text{span } 2-3) = \frac{K_{b2}}{K_{b1} + K_{b2} + K_{ec}}
\]

Equivalent column distribution factor (unbalanced moment from slab-beam),

\[
DF = \frac{K_{ec}}{K_{b1} + K_{b2} + K_{ec}}
\]

The unbalanced moment determined for the equivalent column in the moment distribution cycles is distributed to the actual columns above and below the slab-beam in proportion to the actual column stiffnesses at the joint. Referring to Fig. 20-10:

Portion of unbalanced moment to upper column

\[
= \frac{K_{cb}}{(K_{cb} + K_{ct})}
\]

Portion of unbalanced moment to lower column

\[
= \frac{K_{ct}}{(K_{cb} + K_{ct})}
\]

The “actual” columns are then designed for these moments.

13.7.7.1 - 13.7.7.3 Negative Factored Moments—Negative factored moments for design must be taken at faces of rectilinear supports, but not at a distance greater than 0.175 \(l_1\) from the center of a support. This absolute value is a limit on long narrow supports in order to prevent undue reduction in design moment. The support member is defined as a column, capital, bracket or wall. Non-rectangular supports should be treated as square supports having the same cross-sectional area. Note that for slab systems with beams, the faces of beams are not considered face-of-support locations. Locations of the critical section for negative factored moment for various support conditions are illustrated in Fig. 20-11. Note the special requirements illustrated for exterior supports.
13.7.7.4 Moment Redistribution—Should a designer choose to use the Equivalent Frame Method to analyze a slab system that meets the limitations of the Direct Design Method, the factored moments may be reduced so that the total static factored moment (sum of the average negative and positive moments) need not exceed M_o computed by Eq. (13-4). This permissible reduction is illustrated in Fig. 20-12.

Since the Equivalent Frame Method of analysis is not an approximate method, the moment redistribution allowed in 8.4 may be used. Excessive cracking may result if these provisions are imprudently applied. The burden of judgment is left to the designer as to what, if any, redistribution is warranted.

13.7.7.5 Factored Moments in Column Strips and Middle Strips—Negative and positive factored moments may be distributed to the column strip and the two half-middle strips of the slab-beam in accordance with 13.6.4, 13.6.5 and 13.6.6, provided that the requirement of 13.6.1.6 is satisfied. See discussion on 13.6.4, 13.6.5, 13.6.6 in Part 19.
APPENDIX 20A DESIGN AIDS FOR MOMENT DISTRIBUTION CONSTANTS

Table A1 Moment Distribution Constants for Slab-Beam Members

<table>
<thead>
<tr>
<th>(C_{N1}/\xi_1)</th>
<th>(C_{N2}/\xi_2)</th>
<th>Stiffness Factors (K_{NF})</th>
<th>Carry Over Factors (C_{NF})</th>
<th>Unit Load Fixed end M Coef. ((M_{NF}))</th>
<th>Fixed end moment Coef. ((M_{NF})) for ((b-a)=0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a=0.0)</td>
<td>(a=0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a=0.4)</td>
<td>(a=0.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a=0.8)</td>
<td>(a=0.8)</td>
</tr>
<tr>
<td>0.00</td>
<td>–</td>
<td>4.00</td>
<td>0.50</td>
<td>0.0833</td>
<td>0.0151</td>
</tr>
<tr>
<td>0.00</td>
<td>–</td>
<td>4.00</td>
<td>0.50</td>
<td>0.0833</td>
<td>0.0151</td>
</tr>
<tr>
<td>0.10</td>
<td>4.18</td>
<td>0.51</td>
<td>0.0847</td>
<td>0.0154</td>
<td>0.0293</td>
</tr>
<tr>
<td>0.20</td>
<td>4.35</td>
<td>0.52</td>
<td>0.0864</td>
<td>0.0156</td>
<td>0.0300</td>
</tr>
<tr>
<td>0.30</td>
<td>4.53</td>
<td>0.54</td>
<td>0.0872</td>
<td>0.0160</td>
<td>0.0310</td>
</tr>
<tr>
<td>0.40</td>
<td>4.70</td>
<td>0.55</td>
<td>0.0882</td>
<td>0.0165</td>
<td>0.0314</td>
</tr>
<tr>
<td>0.50</td>
<td>4.89</td>
<td>0.57</td>
<td>0.0901</td>
<td>0.0169</td>
<td>0.0324</td>
</tr>
<tr>
<td>0.60</td>
<td>5.06</td>
<td>0.59</td>
<td>0.0923</td>
<td>0.0171</td>
<td>0.0332</td>
</tr>
<tr>
<td>0.70</td>
<td>5.24</td>
<td>0.61</td>
<td>0.0945</td>
<td>0.0172</td>
<td>0.0347</td>
</tr>
<tr>
<td>0.80</td>
<td>5.43</td>
<td>0.64</td>
<td>0.0971</td>
<td>0.0180</td>
<td>0.0361</td>
</tr>
</tbody>
</table>

\[C_{F1} = C_{N1}; \quad C_{F2} = C_{N2} \]

0.00	–	4.00	0.50	0.0833	0.0151
0.00	–	4.00	0.50	0.0833	0.0151
0.10	4.16	0.51	0.0847	0.0155	0.0296
0.20	4.33	0.52	0.0864	0.0159	0.0305
0.30	4.50	0.54	0.0882	0.0163	0.0311
0.40	4.68	0.56	0.0899	0.0168	0.0316
0.50	4.87	0.59	0.0917	0.0173	0.0321
0.60	5.06	0.62	0.0936	0.0178	0.0326
0.70	5.25	0.66	0.0956	0.0185	0.0330
0.80	5.44	0.70	0.0977	0.0192	0.0335

\[C_{F1} = 0.5C_{N1}; \quad C_{F2} = 0.5C_{N2} \]

0.00	–	4.00	0.50	0.0833	0.0151
0.00	–	4.00	0.50	0.0833	0.0151
0.10	4.16	0.51	0.0847	0.0155	0.0296
0.20	4.33	0.52	0.0864	0.0159	0.0305
0.30	4.50	0.54	0.0882	0.0163	0.0311
0.40	4.68	0.56	0.0899	0.0168	0.0316
0.50	4.87	0.59	0.0917	0.0173	0.0321
0.60	5.06	0.62	0.0936	0.0178	0.0326
0.70	5.25	0.66	0.0956	0.0185	0.0330
0.80	5.44	0.70	0.0977	0.0192	0.0335

\[C_{F1} = 2C_{N1}; \quad C_{F2} = 2C_{N2} \]

20-13
Table A2: Moment Distribution Constants for Slab-Beam Members (Drop thickness = 0.25h)

<table>
<thead>
<tr>
<th>$C_{N1} l_1$</th>
<th>$C_{N2} l_2$</th>
<th>Stiffness Factors k_{NF}</th>
<th>Carry Over Factors C_{NF}</th>
<th>Fixed end moment Coeff. (m_{NF}) for $(b-a)=0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$a=0.0$</td>
</tr>
<tr>
<td>$C_{F1} = C_{N1}$; $C_{F2} = C_{N2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>—</td>
<td>4.79</td>
<td>0.54</td>
<td>0.0879</td>
</tr>
<tr>
<td>0.10</td>
<td>0.00</td>
<td>4.79</td>
<td>0.54</td>
<td>0.0879</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>4.99</td>
<td>0.55</td>
<td>0.0890</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>5.18</td>
<td>0.56</td>
<td>0.0901</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>5.37</td>
<td>0.57</td>
<td>0.0911</td>
</tr>
<tr>
<td>0.20</td>
<td>0.00</td>
<td>4.79</td>
<td>0.54</td>
<td>0.0879</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>5.17</td>
<td>0.56</td>
<td>0.0900</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>5.56</td>
<td>0.58</td>
<td>0.0918</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>5.96</td>
<td>0.60</td>
<td>0.0936</td>
</tr>
<tr>
<td>0.30</td>
<td>0.00</td>
<td>4.79</td>
<td>0.54</td>
<td>0.0879</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>5.32</td>
<td>0.57</td>
<td>0.0905</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>5.90</td>
<td>0.59</td>
<td>0.0930</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>6.55</td>
<td>0.62</td>
<td>0.0955</td>
</tr>
</tbody>
</table>

$C_{F1} = 0.5 C_{N1}$; $C_{F2} = 0.5 C_{N2}$

$C_{F1} = 2 C_{N1}$; $C_{F2} = 2 C_{N2}$
Table A3 Moment Distribution Constants for Slab-Beam Members (Drop thickness = 0.50h)

<table>
<thead>
<tr>
<th>C_{N1}/a</th>
<th>C_{N2}/a</th>
<th>Stiffness Factors k_{NF}</th>
<th>Carry Over Factors C_{NF}</th>
<th>Unit Load Fixed end M Coeff. (m_{NF})</th>
<th>Fixed end moment Coeff. (m_{NF}) for (b—a) = 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$a = 0.0$</td>
<td>$a = 0.2$</td>
</tr>
<tr>
<td>0.00</td>
<td>—</td>
<td>5.84</td>
<td>0.59</td>
<td>0.0926</td>
<td>0.0164</td>
</tr>
<tr>
<td>0.10</td>
<td>0.00</td>
<td>5.84</td>
<td>0.59</td>
<td>0.0926</td>
<td>0.0164</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>6.04</td>
<td>0.60</td>
<td>0.0936</td>
<td>0.0167</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>6.24</td>
<td>0.61</td>
<td>0.0940</td>
<td>0.0170</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>6.43</td>
<td>0.61</td>
<td>0.0952</td>
<td>0.0173</td>
</tr>
<tr>
<td>0.20</td>
<td>0.00</td>
<td>5.84</td>
<td>0.59</td>
<td>0.0926</td>
<td>0.0164</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>6.22</td>
<td>0.61</td>
<td>0.0942</td>
<td>0.0168</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>6.62</td>
<td>0.62</td>
<td>0.0957</td>
<td>0.0172</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>7.01</td>
<td>0.64</td>
<td>0.0971</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.30</td>
<td>0.00</td>
<td>5.84</td>
<td>0.59</td>
<td>0.0926</td>
<td>0.0164</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>6.37</td>
<td>0.61</td>
<td>0.0947</td>
<td>0.0168</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>6.95</td>
<td>0.63</td>
<td>0.0967</td>
<td>0.0172</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>7.57</td>
<td>0.65</td>
<td>0.0986</td>
<td>0.0177</td>
</tr>
</tbody>
</table>

$C_{F1} = C_{N1} + C_{N2}$
$C_{F2} = C_{N2} + C_{N1}$
$C_{F1} = 0.5C_{N1} + 0.5C_{N2}$
$C_{F2} = 0.5C_{N2} + 0.5C_{N1}$
$C_{F1} = 2C_{N1} + 2C_{N2}$
$C_{F2} = 2C_{N2} + 2C_{N1}$
Appendix 20A Design Aids for Moment Distribution Constants (cont’d)

Table A4 Moment Distribution Constants for Slab-Beam Members (Drop thickness = 0.75h)

| C_{N1}/l_1 | C_{N2}/l_2 | Stiffness Factors
| k_{NF} | Carry Over Factors
| C_{NF} | Fixed end M. Coeff. (m$_{NF}$)
| Fixed end moment Coeff. (m$_{NF}$) for (b—a) = 0.2
a = 0.0	a = 0.2	a = 0.4	a = 0.6	a = 0.8					
0.00	—	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.00	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.10	7.12	0.64	0.0972	0.0174	0.0365	0.0295	0.0122	0.0016
0.20	0.20	7.31	0.64	0.0978	0.0176	0.0370	0.0297	0.0120	0.0014
0.30	0.30	7.48	0.65	0.0984	0.0179	0.0375	0.0299	0.0118	0.0013
0.20	0.00	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.10	7.12	0.64	0.0977	0.0175	0.0369	0.0297	0.0121	0.0015
0.20	0.20	7.31	0.65	0.0988	0.0178	0.0378	0.0301	0.0118	0.0013
0.30	0.30	7.48	0.67	0.0999	0.0182	0.0386	0.0304	0.0115	0.0011
0.30	0.00	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.10	7.29	0.65	0.0981	0.0175	0.0371	0.0299	0.0121	0.0015
0.20	0.20	7.66	0.66	0.0996	0.0179	0.0383	0.0304	0.0117	0.0013
0.30	0.30	8.02	0.68	0.1009	0.0182	0.0394	0.0309	0.0113	0.0011

Table A5 Moment Distribution Constants for Slab-Beam Members (Drop thickness = 0.75h)

| C_{N1}/l_1 | C_{N2}/l_2 | Stiffness Factors
| k_{NF} | Carry Over Factors
| C_{NF} | Fixed end M. Coeff. (m$_{NF}$)
| Fixed end moment Coeff. (m$_{NF}$) for (b—a) = 0.2
a = 0.0	a = 0.2	a = 0.4	a = 0.6	a = 0.8					
0.00	—	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.00	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.10	7.08	0.64	0.0980	0.0174	0.0366	0.0298	0.0125	0.0017
0.20	0.20	7.23	0.64	0.0993	0.0177	0.0372	0.0302	0.0126	0.0016
0.20	0.00	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.10	7.08	0.64	0.0980	0.0174	0.0366	0.0298	0.0125	0.0017
0.20	0.20	7.23	0.64	0.0993	0.0177	0.0372	0.0302	0.0126	0.0016
0.30	0.30	7.51	0.65	0.1014	0.0179	0.0381	0.0310	0.0128	0.0016

Table A6 Moment Distribution Constants for Slab-Beam Members (Drop thickness = 0.75h)

| C_{N1}/l_1 | C_{N2}/l_2 | Stiffness Factors
| k_{NF} | Carry Over Factors
| C_{NF} | Fixed end M. Coeff. (m$_{NF}$)
| Fixed end moment Coeff. (m$_{NF}$) for (b—a) = 0.2
a = 0.0	a = 0.2	a = 0.4	a = 0.6	a = 0.8					
0.00	—	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.00	6.92	0.63	0.0965	0.0171	0.0360	0.0293	0.0124	0.0017
0.10	0.10	7.26	0.64	0.0946	0.0173	0.0361	0.0287	0.0112	0.0013
Table A5 Moment Distribution Constants for Slab-Beam Members (Drop thickness = h)

<table>
<thead>
<tr>
<th>C_{N1}/l_1</th>
<th>C_{N2}/l_2</th>
<th>Stiffness Factors K_{NF}</th>
<th>Carry Over Factors C_{NF}</th>
<th>Unit. Load Fixed end M. Coeff. (M_{NF}) for (b—a) = 0.2</th>
<th>Fixed end moment Coeff. (M_{NF}) for (b—a) = 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>—</td>
<td>7.89</td>
<td>0.66</td>
<td>0.0993</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.10</td>
<td>0.00</td>
<td>7.89</td>
<td>0.66</td>
<td>0.0993</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>8.07</td>
<td>0.66</td>
<td>0.0998</td>
<td>0.0180</td>
</tr>
<tr>
<td>0.20</td>
<td>0.20</td>
<td>8.24</td>
<td>0.67</td>
<td>0.1003</td>
<td>0.0182</td>
</tr>
<tr>
<td>0.30</td>
<td>0.30</td>
<td>8.40</td>
<td>0.67</td>
<td>0.1007</td>
<td>0.0183</td>
</tr>
<tr>
<td>0.20</td>
<td>0.00</td>
<td>7.89</td>
<td>0.66</td>
<td>0.0993</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.30</td>
<td>0.20</td>
<td>8.55</td>
<td>0.68</td>
<td>0.1010</td>
<td>0.0183</td>
</tr>
<tr>
<td>0.30</td>
<td>0.30</td>
<td>9.87</td>
<td>0.69</td>
<td>0.1018</td>
<td>0.0186</td>
</tr>
</tbody>
</table>

Fixed end moment Coeff. (M_{NF}) for (b—a) = 0.2

<table>
<thead>
<tr>
<th>C_{N1}/l_1</th>
<th>C_{N2}/l_2</th>
<th>Stiffness Factors K_{NF}</th>
<th>Carry Over Factors C_{NF}</th>
<th>Unit. Load Fixed end M. Coeff. (M_{NF}) for (b—a) = 0.2</th>
<th>Fixed end moment Coeff. (M_{NF}) for (b—a) = 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>—</td>
<td>7.89</td>
<td>0.66</td>
<td>0.0993</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.00</td>
<td>0.10</td>
<td>8.07</td>
<td>0.66</td>
<td>0.0998</td>
<td>0.0180</td>
</tr>
<tr>
<td>0.20</td>
<td>0.20</td>
<td>8.24</td>
<td>0.67</td>
<td>0.1003</td>
<td>0.0182</td>
</tr>
<tr>
<td>0.30</td>
<td>0.30</td>
<td>8.40</td>
<td>0.67</td>
<td>0.1007</td>
<td>0.0183</td>
</tr>
</tbody>
</table>

Fixed end moment Coeff. (M_{NF}) for (b—a) = 0.2

<table>
<thead>
<tr>
<th>C_{N1}/l_1</th>
<th>C_{N2}/l_2</th>
<th>Stiffness Factors K_{NF}</th>
<th>Carry Over Factors C_{NF}</th>
<th>Unit. Load Fixed end M. Coeff. (M_{NF}) for (b—a) = 0.2</th>
<th>Fixed end moment Coeff. (M_{NF}) for (b—a) = 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>—</td>
<td>7.89</td>
<td>0.66</td>
<td>0.0993</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.00</td>
<td>0.10</td>
<td>8.03</td>
<td>0.66</td>
<td>0.1006</td>
<td>0.0180</td>
</tr>
<tr>
<td>0.20</td>
<td>0.20</td>
<td>8.16</td>
<td>0.67</td>
<td>0.1016</td>
<td>0.0182</td>
</tr>
<tr>
<td>0.30</td>
<td>0.30</td>
<td>8.15</td>
<td>0.68</td>
<td>0.1016</td>
<td>0.0184</td>
</tr>
</tbody>
</table>

Fixed end moment Coeff. (M_{NF}) for (b—a) = 0.2

<table>
<thead>
<tr>
<th>C_{N1}/l_1</th>
<th>C_{N2}/l_2</th>
<th>Stiffness Factors K_{NF}</th>
<th>Carry Over Factors C_{NF}</th>
<th>Unit. Load Fixed end M. Coeff. (M_{NF}) for (b—a) = 0.2</th>
<th>Fixed end moment Coeff. (M_{NF}) for (b—a) = 0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>—</td>
<td>7.89</td>
<td>0.66</td>
<td>0.0993</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.00</td>
<td>0.10</td>
<td>7.79</td>
<td>0.66</td>
<td>0.0993</td>
<td>0.0177</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>8.20</td>
<td>0.67</td>
<td>0.0981</td>
<td>0.0179</td>
</tr>
</tbody>
</table>
Table A6 Moment Distribution Constants for Slab-Beam Members

(Column dimensions assumed equal at near end and far end — \(c_{F1} = c_{N1}, c_{F2} = c_{N2} \))

<table>
<thead>
<tr>
<th>(C_i/l_i)</th>
<th>(C_j/l_j)</th>
<th>(t = 1.5h)</th>
<th>(t = 2h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>5.39</td>
<td>0.49</td>
<td>0.1023</td>
</tr>
<tr>
<td>0.10</td>
<td>5.39</td>
<td>0.49</td>
<td>0.1023</td>
</tr>
<tr>
<td>0.20</td>
<td>5.86</td>
<td>0.54</td>
<td>0.1012</td>
</tr>
<tr>
<td>0.30</td>
<td>6.05</td>
<td>0.55</td>
<td>0.1025</td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>5.39</td>
<td>0.49</td>
<td>0.1023</td>
</tr>
<tr>
<td>0.10</td>
<td>5.88</td>
<td>0.54</td>
<td>0.1006</td>
</tr>
<tr>
<td>0.20</td>
<td>6.33</td>
<td>0.58</td>
<td>0.1003</td>
</tr>
<tr>
<td>0.30</td>
<td>6.75</td>
<td>0.60</td>
<td>0.1008</td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>5.39</td>
<td>0.49</td>
<td>0.1023</td>
</tr>
<tr>
<td>0.10</td>
<td>6.08</td>
<td>0.56</td>
<td>0.1003</td>
</tr>
<tr>
<td>0.20</td>
<td>6.78</td>
<td>0.61</td>
<td>0.0996</td>
</tr>
<tr>
<td>0.30</td>
<td>7.48</td>
<td>0.64</td>
<td>0.0997</td>
</tr>
</tbody>
</table>
Table A7 Stiffness and Carry-Over Factors for Columns

<table>
<thead>
<tr>
<th>I_a/I_b</th>
<th>1.05</th>
<th>1.10</th>
<th>1.15</th>
<th>1.20</th>
<th>1.25</th>
<th>1.30</th>
<th>1.35</th>
<th>1.40</th>
<th>1.45</th>
<th>1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{AB}</td>
<td>4.29</td>
<td>4.40</td>
<td>4.48</td>
<td>4.56</td>
<td>4.64</td>
<td>4.72</td>
<td>4.80</td>
<td>4.88</td>
<td>4.96</td>
<td>5.04</td>
</tr>
<tr>
<td>C_{AB}</td>
<td>0.57</td>
<td>0.56</td>
<td>0.53</td>
<td>0.50</td>
<td>0.48</td>
<td>0.46</td>
<td>0.44</td>
<td>0.42</td>
<td>0.40</td>
<td>0.38</td>
</tr>
</tbody>
</table>

For values of k_{AB} and c_{AB} read (l_1/l_2) as (l_1/l_1). q_i can be approximated as $\pi/2$.

20-19
Example 20.1—Two-Way Slab Without Beams Analyzed by Equivalent Frame Method

Using the Equivalent Frame Method, determine design moments for the slab system in the direction shown, for an intermediate floor.

Story height = 9 ft
Column dimensions = 16 × 16 in.
Lateral loads to be resisted by shear walls
No edge beams
Partition weight = 20 psf
Unfactored live load = 40 psf

\(f'_c = 4000 \text{ psi (for slabs), normal weight concrete} \)
\(f'_c = 6000 \text{ psi (for columns), normal weight concrete} \)
\(f_y = 60,000 \text{ psi} \)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

1. Preliminary design for slab thickness \(h \):

 a. Control of deflections.

 For flat plate slab systems, the minimum overall thickness \(h \) with Grade 60 reinforcement is (see Table 18-1):

 \[
 h = \frac{\ell_n}{30} = \frac{200}{30} = 6.67 \text{ in.} \quad \text{(Table 9.5 (a))}
 \]

 but not less than 5 in.

 where \(\ell_n \) = length of clear span in the long direction = 216 – 16 = 200 in.

 Try 7 in. slab for all panels (weight = 87.5 psf)

 Note, in addition to ACI 318-08 deflection control requirements, thickness of slab should satisfy the minimum required for fire resistance, as specified in the locally adopted building code.

 b. Shear strength of slab.

 Use average effective depth \(d = 5.75 \text{ in.} \) (3/4 in. cover and No. 4 bar)

 Factored dead load, \(q_{Du} = 1.2 \times (87.5 + 20) = 129 \text{ psf} \quad \text{(9.2.1)} \)

 Factored live load, \(q_{Lu} = 1.6 \times 40 = 64 \text{ psf} \)

 Total factored load = 193 psf

 For wide beam action consider a 12-in. wide strip taken at \(d \) distance from the face of support in the long direction (see Fig. 20-13).

 \[
 V_u = 0.193 \times 7.854 \times 1.0 = 1.5 \text{ kips}
 \]

 \[
 V_c = 2\lambda \sqrt{f'_c b_w d} \]

20-20
Example 20.1 (cont’d) Calculations and Discussion Code Reference

\[\phi V_c = 0.75 \times \frac{2 \sqrt{4000}}{12 \times 5.75/1,000} = 6.6 \text{ kips} > V_u \quad \text{O.K.} \]

For normalweight concrete \(\lambda = 1 \)

For two-way action, since there are no shear forces at the centerlines of adjacent panels, the shear strength at \(d/2 \) distance around the support is computed as follows:

\[V_u = 0.193 \left[(18 \times 14) - 1.81^2 \right] = 48.0 \text{ kips} \]

\[V_c = 4\lambda \sqrt{f_c'b_o d} \quad \text{(for square interior column)} \]

\[= 4 \sqrt{4000} \left(4 \times 21.75 \right) \times 5.75/1,000 = 126.6 \text{ kips} \]

\[\phi V_c = 0.75 \times 126.6 = 95.0 \text{ kips} > V_u \quad \text{O.K.} \]

9.3.2.3

Figure 20-13 Critical Sections for Shear for Example Problem

Preliminary design indicates that a 7 in. overall slab thickness is adequate for control of deflections and shear strength.

2. Frame members of equivalent frame:

Determine moment distribution factors and fixed-end moments for the equivalent frame members. The moment distribution procedure will be used to analyze the partial frame. Stiffness factors \(k \), carry over factors COF, and fixed-end moment factors FEM for the slab-beams and column members are determined using the tables of Appendix 20-A. These calculations are shown here.

a. Flexural stiffness of slab-beams at both ends, \(K_{sb} \)

\[\frac{cN_1}{l_1} = \frac{16}{(18 \times 12)} = 0.07, \quad \frac{cN_2}{l_2} = \frac{16}{(14 \times 12)} = 0.1 \]
Example 20.1 (cont’d) Calculations and Discussion

For \(c_{F1} = c_{N1} \) and \(c_{F2} = c_{N2} \), \(k_{NF} = k_{FN} = 4.13 \) by interpolation from Table A1 in Appendix 20A.

Thus, \(K_{sb} = k_{NF} \frac{E_{cI_s}}{\ell_1} = 4.13 \frac{E_{cI_s}}{\ell_1} \)
\[\text{Table A1} \]

\[= 4.13 \times 3.60 \times 10^6 \times 4802/216 = 331 \times 10^6 \text{ in.-lb} \]

where \(I_s = \frac{\ell_2 h^3}{12} = \frac{168(7)^3}{12} = 4802 \text{ in.}^4 \)

\(E_{cs} = 57,000 \sqrt{I_c} = 57,000 \sqrt{4000} = 3.60 \times 10^6 \text{ psi} \)
\[8.5.1 \]

Carry-over factor \(\text{COF} = 0.509 \), by interpolation from Table A1.

Fixed-end moment \(FEM = 0.0843w_u \ell_2 \ell_1^2 \), by interpolation from Table A1.

b. Flexural stiffness of column members at both ends, \(K_c \).

Referring to Table A7, Appendix 20A, \(t_a = 3.5 \text{ in.}, t_b = 3.5 \text{ in.}, \)

\(H = 9 \text{ ft} = 108 \text{ in.}, H_c = 101 \text{ in.}, t_a/t_b = 1, H/H_c = 1.07 \)

Thus, \(k_{AB} = k_{BA} = 4.74 \) by interpolation.

\[K_c = 4.74 \frac{E_{cc}I_c}{\ell_c} \]
\[= 4.74 \times 4.42 \times 10^6 \times 5461/108 = 1059 \times 10^6 \text{ in.-lb} \]

where \(I_c = \frac{c^4}{12} = \frac{(16)^4}{12} = 5461 \text{ in.}^4 \)

\(E_{cs} = 57,000 \sqrt{I_c} = 57,000 \sqrt{6000} = 4.42 \times 10^6 \text{ psi} \)
\[8.5.1 \]

\(\ell_c = 9 \text{ ft} = 108 \text{ in.} \)

c. Torsional stiffness of torsional members, \(K_t \).

\[K_t = \frac{9E_{cs}C}{\left[\ell_2 \left(1 - c_2/\ell_2 \right)^3 \right]} \]
\[= \frac{9 \times 3.60 \times 10^6 \times 1325}{168(0.905)^3} = 345 \times 10^6 \text{ in.-lb} \]
\[R.13.7.5 \]
Example 20.1 (cont’d) Calculations and Discussion Code Reference

where \(C = \sum \left(1 - 0.63 \frac{x}{y}\right) \left(\frac{x^3y}{3}\right) \)
\[= \left(1 - 0.63 \times \frac{7}{16}\right) \left(\frac{7^3 \times 16}{3}\right) = 1325 \text{ in.}^4 \]
\(c_2 = 16 \text{ in.} \) and \(\ell_2 = 14 \text{ ft} = 168 \text{ in.} \)

\[\text{C} \]

\[\text{Eq. (13-6)} \]

\[= \left(1 - 0.63 \frac{7}{1003} \frac{16}{3}\right) \left(\frac{73}{1003} \frac{16}{3}\right) = 1325 \text{ in.}^4 \]

d. Equivalent column stiffness \(K_{ec}. \)

\[K_{ec} = \frac{\Sigma K_c \times \Sigma K_t}{\Sigma K_c + \Sigma K_t} \]
\[= \frac{(2 \times 1059)(2 \times 345)}{(2 \times 1059) + (2 \times 345)} \times 10^6 \]
\[= 520 \times 10^6 \text{ in.-lb} \]

where \(\Sigma K_t \) is for two torsional members, one on each side of column, and \(\Sigma K_c \) is for the upper and lower columns at the slab-beam joint of an intermediate floor.

e. Slab-beam joint distribution factors DF.

At exterior joint,
\[DF = \frac{331}{(331 + 520)} = 0.389 \]

At interior joint,
\[DF = \frac{331}{(331 + 331 + 520)} = 0.280 \]

COF for slab-beam = 0.509

3. Partial frame analysis of equivalent frame:

Determine maximum negative and positive moments for the slab-beams using the moment distribution method. Since the unfactored live load does not exceed three-quarters of the unfactored dead load, design moments are assumed to occur at all critical sections with full factored live load on all spans.

\[\frac{L}{D} = \frac{40}{(87.5 + 20)} = 0.37 < \frac{3}{4} \]

a. Factored load and fixed-end moments.

Factored dead load \(q_{Du} = 1.2 \times (87.5 + 20) = 129 \text{ psf} \)

Factored live load \(q_{Lu} = 1.6 \times 40 = 64 \text{ psf} \)
Example 20.1 (cont’d) Calculations and Discussion

Factored load $q_{u} = q_{Du} + q_{Lu} = 193 \text{ psf}$

FEM’s for slab-beams $= m_{NF} q_{u} \ell_{1}^{2} \ell_{2}$ (Table A1, Appendix 20A)

$$= 0.0843 \left(0.193 \times 14\right) 18^{2} = 73.8 \text{ ft-kips}$$

b. Moment distribution. Computations are shown in Table 20-1. Counterclockwise rotational moments acting on the member ends are taken as positive. Positive span moments are determined from the following equation:

$$M_{u} (\text{midspan}) = M_{o} - \left(M_{uL} + M_{uR}\right)/2$$

where M_{o} is the moment at midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not occur at midspan, but its value is close to that at midspan for this example.

Positive moment in span 1-2:

$$+M_{u} = \left(0.193 \times 14\right) 18^{2}/8 - \left(46.6 + 84.0\right)/2 = 44.1 \text{ ft-kips}$$

Positive moment in span 2-3:

$$+M_{u} = \left(0.193 \times 14\right) 18^{2}/8 - \left(76.2 + 76.2\right)/2 = 33.2 \text{ ft-kips}$$

Table 20-1 Moment Distribution for Partial Frame

<table>
<thead>
<tr>
<th>Joint</th>
<th>Member</th>
<th>1-2</th>
<th>2-1</th>
<th>2-3</th>
<th>3-2</th>
<th>3-4</th>
<th>4-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>0.389</td>
<td>0.280</td>
<td>0.280</td>
<td>0.280</td>
<td>0.280</td>
<td>0.280</td>
<td>0.389</td>
</tr>
<tr>
<td>COF</td>
<td>0.509</td>
<td>0.509</td>
<td>0.509</td>
<td>0.509</td>
<td>0.509</td>
<td>0.509</td>
<td>0.509</td>
</tr>
<tr>
<td>FEM</td>
<td>+73.8</td>
<td>-73.8</td>
<td>+73.8</td>
<td>-73.8</td>
<td>+73.8</td>
<td>-73.8</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>-28.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
<td>-14.6</td>
<td>0.0</td>
<td>0.0</td>
<td>14.6</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>0.0</td>
<td>4.1</td>
<td>4.1</td>
<td>-4.1</td>
<td>-4.1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>2.1</td>
<td>0.0</td>
<td>-2.1</td>
<td>2.1</td>
<td>0.0</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>-0.8</td>
<td>0.6</td>
<td>0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.3</td>
<td>-0.4</td>
<td>-0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.1</td>
<td>-1.1</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Neg. M</td>
<td>46.6</td>
<td>-84.0</td>
<td>76.2</td>
<td>-76.2</td>
<td>84.0</td>
<td>-46.6</td>
<td></td>
</tr>
<tr>
<td>M @ midspan</td>
<td>44.1</td>
<td>33.2</td>
<td>44.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Design moments:

Positive and negative factored moments for the slab system in the direction of analysis are plotted in Fig. 20-14. The negative design moments are taken at the faces of rectilinear supports but not at distances greater than \(0.175 \ell \) from the centers of supports.

\[
\frac{16 \text{ in.}}{2} = 0.67 \text{ ft} < 0.175 \times 18 = 3.2 \text{ ft} \quad \text{(Use face of support location)}
\]

\[\text{Figure 20-14 Positive and Negative Design Moments for Slab-Beam (All Spans Loaded with Full Factored Live Load)}\]

5. Total factored moment per span:

Slab systems within the limitations of 13.6.1 may have the resulting moments reduced in such proportion that the numerical sum of the positive and average negative moments need not be greater than:

\[
13.7.7.4
\]
Example 20.1 (cont'd) Calculations and Discussion Reference

\[Mo = \frac{q_u \ell^3 \ell}{8} = 0.193 \times 14 \times (16.67)^2 / 8 = 93.9 \text{ ft-kips} \]

End spans: \(44.1 + (32.3 + 67.0)/2 = 93.8 \text{ ft-kips} \)

Interior span: \(33.2 + (60.8 + 60.8)/2 = 94 \text{ ft-kips} \)

It may be seen that the total design moments from the Equivalent Frame Method yield a static moment equal to that given by the static moment expression used with the Direct Design Method.

6. Distribution of design moments across slab-beam strip:

The negative and positive factored moments at critical sections may be distributed to the column strip and the two half-middle strips of the slab-beam according to the proportions specified in 13.6.4 and 13.6.6. The requirement of 13.6.1.6 does not apply for slab systems without beams, \(\alpha = 0 \). Distribution of factored moments at critical sections is summarized in Table 20-2.

<table>
<thead>
<tr>
<th>Table 20-2 Distribution of Factored Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip</td>
</tr>
<tr>
<td>Factored Moment (ft-kips)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>End Span:</td>
</tr>
<tr>
<td>Exterior Negative</td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>Interior Negative</td>
</tr>
<tr>
<td>Interior Span:</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
</tr>
</tbody>
</table>

* For slab systems without beams
** That portion of the factored moment not resisted by the column strip is assigned to the two half-middle strips.

7. Column moments:

The unbalanced moment from the slab-beams at the supports of the equivalent frame are distributed to the actual columns above and below the slab-beam in proportion to the relative stiffnesses of the actual columns. Referring to Fig. 20-14, the unbalanced moment at joints 1 and 2 are:

Joint 1 = +46.6 ft-kips

Joint 2 = -84.0 + 76.2 = -7.8 ft-kips

The stiffness and carry-over factors of the actual columns and the distribution of the unbalanced moments to the exterior and interior columns are shown in Fig. 20-15. The design
In summary:

Design moment in exterior column = 22.08 ft-kips

Design moment in interior column = 3.66 ft-kips

8. Check slab flexural and shear strength at exterior column

a. Total flexural reinforcement required for design strip:

i. Determine reinforcement required for column strip moment $M_u = 32.3$ ft-kips

Assume tension-controlled section ($\phi = 0.9$)

Column strip width $b = \frac{14 \times 12}{2} = 84$ in.

$R_u = \frac{M_u}{\phi bd^2} = \frac{32.3 \times 12,000}{0.9 \times 84 \times 5.75^2} = 155$ psi

$\rho = \frac{0.85f_y}{f_y} \left(1 - \sqrt{1 - \frac{2R_u}{0.85f_y}}\right)$

$= \frac{0.85 \times 4}{60} \left(1 - \sqrt{1 - \frac{2 \times 155}{0.85 \times 4,000}}\right) = 0.0026$

$A_s = \rho bd = 0.0026 \times 84 \times 5.75 = 1.28$ in.2

$\rho_{\min} = 0.0018$

Min $A_s = 0.0018 \times 84 \times 7 = 1.06$ in.$^2 < 1.28$ in.2

Number of No. 4 bars = $\frac{1.28}{0.2} = 6.4$, say 7 bars

Maximum spacing $s_{\max} = 2h = 14$ in. < 18 in.
\[c = \frac{a}{\beta_1} = \frac{0.29}{0.85} = 0.34 \text{ in.} \]

\[\varepsilon_t = \left(\frac{0.003}{c} \right) d_t - 0.003 \]

\[= \left(\frac{0.003}{0.34} \right) 5.75 - 0.003 = 0.048 > 0.005 \]

Therefore, section is tension-controlled. \(10.3.4 \)

Use 7-No. 4 bars in column strip.

ii. Check slab reinforcement at exterior column for moment transfer between slab and column

Portion of unbalanced moment transferred by flexure = \(\gamma_f M_u \) \(13.5.3.2 \)

From Fig. 16-13, Case C:

\[b_1 = c_1 + \frac{d}{2} = 16 + \frac{5.75}{2} = 18.88 \text{ in.} \]

\[b_2 = c_2 + d = 16 + 5.75 = 21.75 \text{ in.} \]

\[\gamma_f = \frac{1}{1 + (2/3) \sqrt{b_1 / b_2}} \]

\[= \frac{1}{1 + (2/3) \sqrt{18.88 / 21.75}} = 0.62 \]

\[\gamma_f M_u = 0.62 \times 32.3 = 20.0 \text{ ft-kips} \]

Note that the provisions of 13.5.3.3 may be utilized; however, they are not in this example.

Assuming tension-controlled behavior, determine required area of reinforcement for \(\gamma_f M_u = 20.0 \text{ ft-kips} \)

Effective slab width \(b = c_2 + 3h = 16 + 3(7) = 37 \text{ in.} \) \(13.5.3.2 \)

\[R_u = \frac{M_u}{\phi b d^2} = \frac{20 \times 12,000}{0.9 \times 37 \times 5.75^2} = 218 \text{ psi} \]

\[\rho = \frac{0.85 f_c'}{f_y} \left(1 - \sqrt{1 - \frac{2R_u}{0.85 f_c'}} \right) \]
Example 20.1 (cont’d)

\[
\frac{0.85 \times 4}{60} \left(1 - \sqrt{1 - \frac{2 \times 218}{0.85 \times 4000}}\right) = 0.0038
\]

\[A_s = 0.0038 \times 37 \times 5.75 = 0.80 \text{ in.}^2\]

Min. \[A_s = 0.0018 \times 37 \times 7 = 0.47 \text{ in.}^2 < 0.80 \text{ in.}^2\]

Number of No. 4 bars = \[\frac{0.80}{0.20} = 4\]

Verify tension-controlled section:

\[a = \frac{A_s f_y}{0.85 f_c b} = \frac{(4 \times 0.2) \times 60}{0.85 \times 4 \times 37} = 0.38 \text{ in.}\]

\[c = \frac{a}{\beta_1} = \frac{0.38}{0.85} = 0.45 \text{ in.}\]

\[\varepsilon_t = \left(\frac{0.003}{0.45}\right)(5.75 - 0.003) = 0.035 > 0.005\]

Therefore, section is tension-controlled.

10.3.4

Provide the required 4-No. 4 bars by concentrating 4 of the column strip bars (7-No. 4) within the 37 in. slab width over the column. For symmetry, add one additional No. 4 bar outside of 37-in. width.

Note that the column strip section remains tension-controlled with the addition of 1-No. 4 bar.

The reinforcement details at the edge column are shown below.
iii. Determine reinforcement required for middle strip.

Provide minimum reinforcement, since $M_u = 0$ (see Table 20-2).

Min. $A_s = 0.0018 \times 84 \times 7 = 1.06$ in.2

Maximum spacing $s_{\text{max}} = 2h = 14$ in. < 18 in. \[13.3.2\]

Provide No. 4 @ 14 in. in middle strip.

b. Check combined shear stress at inside face of critical transfer section \[11.11.7.1\]

For shear strength equations, see Part 16.

$V_u = \frac{V_u}{A_c} + \frac{\gamma M_u}{J/C}$

From Example 19.1, $V_u = 25.6$ kips

When factored moments are determined by an accurate method of frame analysis, such as the Equivalent Frame Method, unbalanced moment is taken directly from the results of the frame analysis. Also, considering the approximate nature of the moment transfer analysis procedure, assume the unbalanced moment M_u is at the centroid of the critical transfer section.
Example 20.1 (cont’d) Calculations and Discussion Code Reference

Thus, $M_u = 32.3$ ft-kips (see Table 20-2)

$\gamma_v = 1 - \gamma_f = 1 - 0.62 = 0.38$

Eq. (11-37)

From Example 19.1, critical section properties:

$A_c = 342.2$ in.2

$J/c = 2,357$ in.3

$V_u = \frac{25,600}{342.2} + \frac{0.38 \times 32.3 \times 12,000}{2,357}$

$= 74.8 + 62.5 = 137.3$ psi

Allowable shear stress $\phi v_n = \phi 4 \lambda \sqrt{f_c'} = 189.7$ psi $> v_u$ O.K. 11.11.7.2
Using the Equivalent Frame Method, determine design moments for the slab system in the direction shown, for an intermediate floor.

Story height = 12 ft
Edge beam dimensions = 14 × 27 in.
Interior beam dimensions = 14 × 20 in.
Column dimensions = 18 × 18 in.
Unfactored live load = 100 psf

\(f'_c = 4000 \text{ psi (for all members), normal weight concrete} \)
\(f_y = 60,000 \text{ psi} \)

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preliminary design for slab thickness (h).</td>
<td>9.5.3.3</td>
</tr>
</tbody>
</table>

Control of deflections:

From Example 19.2, the beam-to-slab flexural stiffness ratios \(\alpha \) are:

\[
\alpha_f = 13.30 \text{ (NS edge beam)} \\
\alpha_f = 16.45 \text{ (EW edge beam)} \\
\alpha_f = 3.16 \text{ (NS interior beam)} \\
\alpha_f = 3.98 \text{ (EW interior beam)}
\]

Since all \(\alpha_f > 2.0 \) (see Fig. 8-2), Eq. (9-13) will control. Therefore,

\[
h = \frac{f'_n (0.8 + f_y / 200,000)}{36 + 9\beta} \quad \text{Eq. (9-12)}
\]
Example 20.2 (cont’d) Calculations and Discussion Code Reference

\[
= 246 \left(0.8 + \frac{60,000}{200,000}\right) \over 36 + 9 \times (1.28) = 5.7 \text{ in.}
\]

where \(\ell_n \) = clear span in long direction = 20.5 ft = 246 in.

\[
\beta = \frac{\text{clear span in long direction}}{\text{clear span in short direction}} = \frac{20.5}{16.0} = 1.28
\]

Use 6 in. slab thickness.

2. Frame members of equivalent frame.

Determine moment distribution constants and fixed-end moment coefficients for the equivalent frame members. The moment distribution procedure will be used to analyze the partial frame for vertical loading. Stiffness factors k, carry-over factors COF, and fixed-end moment factors FEM for the slab-beams and column members are determined using the tables of Appendix 20-A. These calculations are shown here.

a. Slab-beams, flexural stiffness at both ends \(K_{sb} \):

\[
\frac{c_{NI1}}{\ell_1} = \frac{18}{17.5 \times 12} = 0.0857 \approx 0.1
\]

\[
\frac{c_{NI2}}{\ell_2} = \frac{18}{22 \times 12} = 0.0682
\]

Referring to Table A1, Appendix 20A,

\[
K_{sb} = \frac{4.11E_cI_{sb}}{\ell_1} = 4.11 \times \frac{25,387E_c}{(17.5 \times 12)} = 497E_c
\]

where \(I_{sb} \) is the moment of inertia of slab-beam section shown in Fig. 20-16 and computed with the aid of Fig. 20-21 at the end of this Example.

\(I_{sb} = 2.72 (14 \times 20^3)/12 = 25,387 \text{ in.}^4 \)

Carry-over factor COF = 0.507

Fixed-end moment, FEM = \(0.0842q_u \ell_2 \ell_1^2 \).

\[\ell_2 = 22' = 264'' \]

Figure 20-16 Cross-Section of Slab-Beam

20-33
b. Column members, flexural stiffness K_c:

$t_a = 17$ in, $t_b = 3$ in., $t_a/t_b = 5.67$

$H = 12$ ft $= 144$ in., $H_c = 144 - 17 - 3 = 124$ in.

$H/H_c = 1.16$ for interior columns

$t_a = 24$ in., $t_b = 3$ in., $t_a/t_b = 8.0$

$H = 12$ ft $= 144$ in., $H_c = 144 - 24 - 3 = 117$ in.

$H/H_c = 1.23$ for exterior columns

Referring to Table A7, Appendix 20A,

For interior columns:

$$K_{ct} = \frac{6.82E_cI_c}{\ell_c} = \frac{6.82 \times 8748E_c}{144} = 414E_c$$

$$K_{cb} = \frac{4.99E_cI_c}{\ell_c} = \frac{4.99 \times 8748E_c}{144} = 303E_c$$

For exterior columns:

$$K_{ct} = \frac{8.57E_cI_c}{\ell_c} = \frac{8.57 \times 8748E_c}{144} = 512E_c$$

$$K_{cb} = \frac{5.31E_cI_c}{\ell_c} = \frac{5.31 \times 8748E_c}{144} = 323E_c$$

where $I_c = \frac{(c)^4}{12} = \frac{(18)^4}{12} = 8,748$ in.4

$\ell_c = 12$ ft $= 144$ in.

c. Torsional members, torsional stiffness K_t:

$$K_t = \frac{9E_cC}{\ell_c^2 (1 - c_2/\ell_c)^3} \quad R13.7.5$$

where $C = \Sigma(1 - 0.63 x/y) (x^3y/3)$

For interior columns:

$$K_t = 9E_c \times \frac{11,698}{[264 (0.932)^3]} = 493E_c$$
Example 20.2 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
</table>

where \(1 - \frac{c_2}{\ell_2} = 1 - \frac{18}{(22 \times 12)} = 0.932 \)

\(C \) is taken as the larger value computed with the aid of Table 19-2 for the torsional member shown in Fig. 20-17.

\[
\begin{align*}
\Sigma C_1 & = 4738 + 2752 = 7490 \text{ in.}^4 \\
\Sigma C_2 & = 10,226 + 736 \times 2 = 11,698 \text{ in.}^4
\end{align*}
\]

\[
\begin{array}{lll}
x_1 &= 14 \text{ in.} & x_2 = 6 \text{ in.} \\
y_1 &= 14 \text{ in.} & y_2 = 42 \text{ in.} \\
C_1 &= 4738 & C_2 = 2752 \\
\Sigma C &= 4738 + 2752 = 7490 \text{ in.}^4 \\
\Sigma C &= 10,226 + 736 \times 2 = 11,698 \text{ in.}^4
\end{array}
\]

\[\text{Figure 20-17 Attached Torsional Member at Interior Column}\]

For exterior columns:

\[
K_t = \frac{9E_c}{17,868/[264 \times (0.932)^3]} = 752E_c
\]

where \(C \) is taken as the larger value computed with the aid of Table 19-2 for the torsional member shown in Fig. 20-18.

\[
\begin{align*}
\Sigma C_1 & = 11,141 + 2248 = 13,389 \text{ in.}^4 \\
\Sigma C_2 & = 16,628 + 1240 = 17,868 \text{ in.}^4
\end{align*}
\]

\[
\begin{array}{lll}
x_1 &= 14 \text{ in.} & x_2 = 6 \text{ in.} \\
y_1 &= 21 \text{ in.} & y_2 = 35 \text{ in.} \\
C_1 &= 11,141 & C_2 = 2248 \\
\Sigma C &= 11,141 + 2248 = 13,389 \text{ in.}^4 \\
\Sigma C &= 16,628 + 1240 = 17,868 \text{ in.}^4
\end{array}
\]

\[\text{Figure 20-18 Attached Torsional Member at Exterior Column}\]
d. Increased torsional stiffness K_{ta} due to parallel beams:

For interior columns:

$$K_{ta} = \frac{K_{t}I_{sb}}{I_{s}} = \frac{493E_{c} \times 25,387}{4752} = 2634E_{c}$$

For exterior columns:

$$K_{ta} = \frac{752E_{c} \times 25,387}{4752} = 4017E_{c}$$

where $I_{s} =$ moment of inertia of slab-section shown in Fig. 20-19.

$$I_{s} = 264 \times (6)^{3}/12 = 4752 \text{ in.}^{4}$$

$I_{sb} =$ moment of inertia of full T-section shown in Fig. 20-19 and computed with the aid of Fig. 20-21.

$$I_{sb} = 2.72 \times (14 \times 20^{3}/12) = 25,387 \text{ in.}^{4}$$

![Figure 20-19 Slab-Beam in the Direction of Analysis](image)

Figure 20-19 Slab-Beam in the Direction of Analysis

e. Equivalent column stiffness, K_{ec}:

$$K_{ec} = \frac{\Sigma K_{c} \times \Sigma K_{ta}}{\Sigma K_{c} + \Sigma K_{ta}}$$

where ΣK_{ta} is for two torsional members, one on each side of column; and ΣK_{c} is for the upper and lower columns at the slab-beam joint of an intermediate floor.

For interior columns:

$$K_{ec} = \frac{(303E_{c} + 414E_{c}) (2 \times 2634E_{c})}{(303E_{c} + 414E_{c}) + (2 \times 2634E_{c})} = 631E_{c}$$

For exterior columns:
Example 20.2 (cont’d) Calculations and Discussion

\[K_{ec} = \frac{(323E_c + 521E_c)(2 \times 4017E_c)}{(323E_c + 521E_c) + (2 \times 4017E_c)} = 764E_c \]

f. Slab-beam joint distribution factors DF:

At exterior joint:

\[\text{DF} = \frac{497E_c}{(497E_c + 764E_c)} = 0.394 \]

At interior joint:

\[\text{DF} = \frac{497E_c}{(497E_c + 497E_c + 631E_c)} = 0.306 \]

COF for slab-beam = 0.507

3. Partial frame analysis of equivalent frame.

Determine maximum negative and positive moments for the slab-beams using the moment distribution method.

With an unfactored live-to-dead load ratio:

\[\frac{L}{D} = \frac{100}{75} = 1.33 > \frac{3}{4} \]

the frame will be analyzed for five loading conditions with pattern loading and partial live load as allowed by 13.7.6.3 (see Fig. 20-9 for an illustration of the five load patterns considered).

a. Factored loads and fixed-end moments:

Factored dead load, \(q_{Du} = 1.2 (75 + 9.3) = 101 \text{ psf} \)

\[\left(\frac{14 \times 14}{144} \times \frac{150}{22} \right) = 9.3 \text{ psf is weight of beam stem per foot divided by } \ell^2 \]

Factored live load, \(q_{Lu} = 1.6 (100) = 160 \text{ psf} \)

Factored load, \(q_u = q_{Du} + q_{Lu} = 261 \text{ psf} \)

FEM for slab-beams \(= m_{NF}q_u\ell_2\ell_f^2 \) (Table A1, Appendix 20A)

FEM due to \(q_{Du} + q_{Lu} \) \(= 0.0842 (0.261 \times 22) 17.5^2 = 148.1 \text{ ft-kips} \)
Example 20.2 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

- FEM due to \(q_{Du} + \frac{3}{4} q_{Lu} \) = 0.0842 \((0.221 \times 22) \times 17.5^2\) = 125.4 ft-kips
- FEM due to \(q_{Du} \) only = 0.0842 \((0.101 \times 22) \times 17.5^2\) = 57.3 ft-kips

b. Moment distribution for the five loading conditions is shown in Table 20-3. Counterclockwise rotational moments acting on member ends are taken as positive. Positive span moments are determined from the equation:

\[
M_{ul(midspan)} = M_o - \frac{(M_{uL} + M_{uR})}{2}
\]

where \(M_o \) is the moment at midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not occur at midspan, but its value is close to that at midspan.

Positive moment in span 1-2 for loading (1):

\[
+M_u = \frac{(0.261 \times 22) \times 17.5^2}{8} - \frac{(93.1 + 167.7)}{2} = 89.4 \text{ ft-kips}
\]

The following moment values for the slab-beams are obtained from Table 20-3.

- Maximum positive moment in end span
 - the larger of 89.4 or 83.3 = 89.4 ft-kips
- Maximum positive moment in interior span*
 - the larger of 66.2 or 71.3 = 71.3 ft-kips
- Maximum negative moment at end support
 - the larger of 93.1 or 86.7 = 93.1 ft-kips
- Maximum negative moment at interior support of end span
 - the larger of 167.7 or 145.6 = 167.7 ft-kips
- Maximum negative moment at interior support of interior span
 - the larger of 153.6 or 139.2 = 153.6 ft-kips

4. Design moments.

Positive and negative factored moments for the slab system in the transverse direction are plotted in Fig. 20-20. The negative factored moments are taken at the face of rectilinear supports at distances not greater than 0.175 \(\ell_1 \) from the center of supports.

\[
\frac{18 \text{ in.}}{2} = 0.75 \text{ ft} < 0.175 \times 17.5 = 3.1 \text{ ft} \quad \text{(Use face of support location)}.
\]

* This is the only moment governed by the pattern loading with partial live load. All other maximum moments occur with full factored live load on all spans.
Example 20.2 (cont'd)
Calculations and Discussion

Table 20-3
Moment Distribution for Partial Frame
(Transverse Direction)

![Diagram of a frame structure with labeled joints and members.]

<table>
<thead>
<tr>
<th>Joint</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>4-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
<td>1-2</td>
<td>2-1</td>
<td>2-3</td>
<td>3-2</td>
<td>3-4</td>
</tr>
<tr>
<td>DF</td>
<td>0.394</td>
<td>0.306</td>
<td>0.306</td>
<td>0.306</td>
<td>0.306</td>
</tr>
<tr>
<td>COF</td>
<td>0.507</td>
<td>0.507</td>
<td>0.507</td>
<td>0.507</td>
<td>0.507</td>
</tr>
<tr>
<td>COM*</td>
<td>-29.6</td>
<td>+29.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>+4.6</td>
<td>-4.6</td>
<td>+4.6</td>
<td>-4.6</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>+0.7</td>
<td>-0.9</td>
<td>-0.7</td>
<td>+0.7</td>
<td>+0.9</td>
</tr>
<tr>
<td>Σ</td>
<td>+153.7</td>
<td>-178.8</td>
<td>+142.5</td>
<td>-142.5</td>
<td>+178.8</td>
</tr>
<tr>
<td>DM**</td>
<td>+60.6</td>
<td>+11.1</td>
<td>+11.1</td>
<td>-11.1</td>
<td>-11.1</td>
</tr>
<tr>
<td>Total</td>
<td>+93.1</td>
<td>-167.7</td>
<td>+153.6</td>
<td>-153.6</td>
<td>+167.7</td>
</tr>
<tr>
<td>Midspan M</td>
<td>83.3</td>
<td>83.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) All spans loaded with full factored live load

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
<td>-58.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>58.4</td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
<td>-29.6</td>
<td>0.0</td>
<td>0.0</td>
<td>29.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Dist</td>
<td>0.0</td>
<td>9.1</td>
<td>9.1</td>
<td>-9.1</td>
<td>-9.1</td>
<td>0.0</td>
</tr>
<tr>
<td>CO</td>
<td>4.6</td>
<td>0.0</td>
<td>-4.6</td>
<td>4.6</td>
<td>0.0</td>
<td>-4.6</td>
</tr>
<tr>
<td>Dist</td>
<td>-1.8</td>
<td>1.4</td>
<td>1.4</td>
<td>-1.4</td>
<td>-1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>CO</td>
<td>0.7</td>
<td>-0.9</td>
<td>-0.7</td>
<td>0.7</td>
<td>0.9</td>
<td>-0.7</td>
</tr>
<tr>
<td>Dist</td>
<td>-0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>-0.5</td>
<td>-0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>CO</td>
<td>0.3</td>
<td>-0.1</td>
<td>-0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.3</td>
</tr>
<tr>
<td>Σ</td>
<td>93.1</td>
<td>-167.7</td>
<td>153.6</td>
<td>-153.6</td>
<td>167.7</td>
<td>-93.1</td>
</tr>
<tr>
<td>DM**</td>
<td>+60.6</td>
<td>+11.1</td>
<td>+11.1</td>
<td>-11.1</td>
<td>-11.1</td>
<td>-60.6</td>
</tr>
<tr>
<td>Total</td>
<td>+93.1</td>
<td>-167.7</td>
<td>+153.6</td>
<td>-153.6</td>
<td>+167.7</td>
<td>-93.1</td>
</tr>
<tr>
<td>Midspan M</td>
<td>86.7</td>
<td>86.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) First and third spans loaded with 3/4 factored live load

<table>
<thead>
<tr>
<th>FEM</th>
<th>125.4</th>
<th>-125.4</th>
<th>57.3</th>
<th>-57.3</th>
<th>125.4</th>
<th>-125.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
<td>-49.4</td>
<td>20.8</td>
<td>20.8</td>
<td>-20.8</td>
<td>-20.8</td>
<td>49.4</td>
</tr>
<tr>
<td>CO</td>
<td>10.6</td>
<td>-25.1</td>
<td>-10.6</td>
<td>10.6</td>
<td>25.1</td>
<td>-10.6</td>
</tr>
<tr>
<td>Dist</td>
<td>-4.2</td>
<td>10.9</td>
<td>10.9</td>
<td>-10.9</td>
<td>-10.9</td>
<td>4.2</td>
</tr>
<tr>
<td>CO</td>
<td>5.5</td>
<td>-2.1</td>
<td>5.5</td>
<td>2.1</td>
<td>-2.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Dist</td>
<td>-2.2</td>
<td>2.3</td>
<td>2.3</td>
<td>-2.3</td>
<td>-2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>CO</td>
<td>1.2</td>
<td>-1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>-1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Dist</td>
<td>-0.5</td>
<td>0.7</td>
<td>0.7</td>
<td>-0.7</td>
<td>-0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>CO</td>
<td>0.4</td>
<td>-0.2</td>
<td>-0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>-0.4</td>
</tr>
<tr>
<td>Dist</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Σ</td>
<td>86.7</td>
<td>-119.0</td>
<td>74.6</td>
<td>-74.6</td>
<td>119.0</td>
<td>-86.7</td>
</tr>
<tr>
<td>DM**</td>
<td>-18.4</td>
<td>35.0</td>
<td>35.0</td>
<td>-35.0</td>
<td>-35.0</td>
<td>18.4</td>
</tr>
<tr>
<td>Total</td>
<td>+28.3</td>
<td>-119.0</td>
<td>+74.6</td>
<td>-74.6</td>
<td>+119.0</td>
<td>-28.3</td>
</tr>
</tbody>
</table>

(3) Center span loaded with 3/4 factored live load

<table>
<thead>
<tr>
<th>FEM</th>
<th>57.3</th>
<th>-57.3</th>
<th>125.4</th>
<th>-125.4</th>
<th>57.3</th>
<th>-57.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
<td>-22.6</td>
<td>-20.8</td>
<td>-20.8</td>
<td>20.8</td>
<td>20.8</td>
<td>22.6</td>
</tr>
<tr>
<td>CO</td>
<td>-10.6</td>
<td>-11.4</td>
<td>10.6</td>
<td>-10.6</td>
<td>11.4</td>
<td>10.6</td>
</tr>
<tr>
<td>Dist</td>
<td>4.2</td>
<td>0.3</td>
<td>0.3</td>
<td>-0.3</td>
<td>-0.3</td>
<td>4.2</td>
</tr>
<tr>
<td>CO</td>
<td>0.1</td>
<td>2.1</td>
<td>0.1</td>
<td>-2.1</td>
<td>-2.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Dist</td>
<td>-0.1</td>
<td>0.6</td>
<td>0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>CO</td>
<td>-0.3</td>
<td>0.0</td>
<td>-0.3</td>
<td>0.0</td>
<td>0.3</td>
<td>-0.3</td>
</tr>
<tr>
<td>Dist</td>
<td>0.1</td>
<td>-0.1</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Dist</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Midspan M</td>
<td>28.2</td>
<td>-87.9</td>
<td>114.9</td>
<td>-114.9</td>
<td>87.9</td>
<td>-28.2</td>
</tr>
</tbody>
</table>

Midspan M | 71.2

Table cont’d on next page
Example 20.2 (cont’d) Calculations and Discussion

Table 20-3 Moment Distribution for Partial Frame (Transverse Direction) — continued —

(4) First span loaded with 3/4 factored live load and beam-slab assumed fixed at support two spans away

<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
<td>125.4</td>
<td>-57.3</td>
<td>57.3</td>
<td>-125.4</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-49.4</td>
<td>20.8</td>
<td>20.8</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>10.6</td>
<td>-25.0</td>
<td>0.0</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-4.2</td>
<td>7.7</td>
<td>7.7</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>3.9</td>
<td>-2.1</td>
<td>0.0</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-1.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>0.3</td>
<td>-0.8</td>
<td>0.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>0.1</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

(5) First and second span loaded with 3/4 factored live load

<table>
<thead>
<tr>
<th></th>
<th>FEM</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
<td>125.4</td>
<td>125.4</td>
<td>-125.4</td>
<td>-125.4</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>-49.4</td>
<td>0.0</td>
<td>0.0</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>0.0</td>
<td>-25.1</td>
<td>10.6</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
<td>4.4</td>
<td>4.4</td>
<td>-3.5</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>2.2</td>
<td>0.0</td>
<td>-1.8</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>-0.9</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Dist</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

5. Total factored moment per span.

Slab systems within the limitations of 13.6.1 may have the resulting moments reduced in such proportion that the numerical sum of the positive and average negative moments are not greater than the total static moment M_o given by Eq. (13-3). Check limitations of 13.6.1.6 for relative stiffness of beams in two perpendicular directions.

For interior panel (see Example 19.2):

\[
\frac{\alpha_{f1} \ell_{2}^2}{\alpha_{r1} \ell_{1}^2} = \frac{316 (22)^2}{3.98 (17.5)^2} = 1.25
\]

13.6.1.6

0.2 < 1.25 < 5.0 O.K.

For exterior panel (see Example 19.2):

\[
\frac{3.16 (22)^2}{16.45 (17.5)^2} = 0.30
\]

13.6.1.6

0.2 < 0.30 < 5.0 O.K.
Example 20.2 (cont’d) Calculations and Discussion

\[w_c = 0.261 \times 22 = 5.74 \text{ klf} \]

Frame Moments (ft-kips)

- End span: \(89.4 + \frac{(60.2 + 128.4)}{2} = 183.7 \text{ ft-kips} \)
- Interior span: \(71.2 + \frac{(117.6 + 117.6)}{2} = 188.8 \text{ ft-kips} \)

To illustrate proper procedure, the interior span factored moments may be reduced as follows:

- Permissible reduction = \(\frac{183.7}{188.8} = 0.973 \)
- Adjusted negative design moment = \(117.6 \times 0.973 = 114.3 \text{ ft-kips} \)
- Adjusted positive design moment = \(71.2 \times 0.973 = 69.3 \text{ ft-kips} \)

Design Moments (ft-kips)

End span: \(89.4 + (60.2 + 128.4)/2 = 183.7 \text{ ft-kips} \)

Interior span: \(71.2 + (117.6 + 117.6)/2 = 188.8 \text{ ft-kips} \)

All limitations of 13.6.1 are satisfied and the provisions of 13.7.7.4 may be applied.

\[\frac{M_o}{q_u 2 n^2 8} = \frac{0.261 \times 22 \times 16^2}{8} = 183.7 \text{ ft-kips} \]

Eq. (13-4)

Figure 20-20 Positive and Negative Design Moments for Slab-Beam
(All Spans Loaded with Full Factored Live Load Except as Noted)
6. Distribution of design moments across slab-beam strip.

 Negative and positive factored moments at critical sections may be distributed to the column strip, beam and two-half middle strips of the slab-beam according to the proportions specified in 13.6.4, 13.6.5 and 13.6.6, if requirement of 13.6.1.6 is satisfied.

 a. Since the relative stiffnesses of beams are between 0.2 and 5.0 (see step No. 5), the moments can be distributed across slab-beams as specified in 13.6.4, 13.6.5 and 13.6.6.

 b. Distribution of factored moments at critical section:

 \[\frac{\ell_2}{\ell_1} = \frac{22}{17.5} = 1.257 \]

 \[\frac{\alpha f_1 \ell_2}{\ell_1} = 3.16 \times 1.257 = 3.97 \]

 \[\beta_t = \frac{C}{2I_s} = \frac{17,868}{(2 \times 4752)} = 1.88 \]

 where \(I_s = \frac{22 \times 12 \times 63}{12} = 4,752 \) in.\(^4\)

 \(C = 17,868 \) in.\(^4\) (see Fig. 20-18)

 Factored moments at critical sections are summarized in Table 20-4.

 Table 20-4 Distribution of Design Moments

<table>
<thead>
<tr>
<th></th>
<th>Factored Moment (ft-kips)</th>
<th>Column Strip</th>
<th>Moment (ft-kips) in Two Half-Middle Strips**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Percent*</td>
<td>Moment (ft-kips)</td>
</tr>
<tr>
<td>End Span:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Negative</td>
<td>60.2</td>
<td>75</td>
<td>45.2</td>
</tr>
<tr>
<td>Positive</td>
<td>89.4</td>
<td>67</td>
<td>59.9</td>
</tr>
<tr>
<td>Interior Negative</td>
<td>128.4</td>
<td>67</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Span:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>117.6</td>
<td>67</td>
<td>78.8</td>
</tr>
<tr>
<td>Positive</td>
<td>71.3</td>
<td>67</td>
<td>47.8</td>
</tr>
</tbody>
</table>

 * Since \(\alpha f_1 \ell_2 / \ell_1 > 1.0 \) beams must be proportioned to resist 85 percent of column strip moment per 13.6.5.1.

 ** That portion of the factored moment not resisted by the column strip is assigned to the two half-middle strips.

7. Calculations for shear in beams and slab are performed in Example 19.2, Part 19.
Example 20.2 (cont’d)

<table>
<thead>
<tr>
<th>Coefficient, C_t</th>
<th>Ratio $B = \frac{h_f}{h}$</th>
<th>Ratio $A = \frac{b}{b_w}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>0.35</td>
<td>5</td>
</tr>
<tr>
<td>2.0</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>0.15</td>
<td>15</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>20</td>
</tr>
</tbody>
</table>

\[I_b = C_t \left(\frac{b_w h^3}{12}\right) \]

in which

\[C_t = 1 + (A-1) B^3 + \frac{3(1-B)^2 B (A-1)}{1 + B (A-1)} \]

Figure 20-21 Coefficient C_t for Gross Moment of Inertia of Flanged Sections (Flange on One or Two Sides)
UPDATE FOR THE ‘08 CODE

In the 2008 Code, the provisions for the alternative design of slender walls have been updated for both the strength and deflection requirements.

14.1 BACKGROUND

Chapter 14 contains the provisions for the design of walls subjected to axial loads, with or without flexure (14.1.1). Cantilever retaining walls with minimum horizontal reinforcement according to 14.3.3 are designed according to the flexural design provisions of Chapter 10 (14.1.2).

In general, reinforced concrete design approaches can be divided into geometrical and behavioral. The former approach sets dimensional limits for both types of elements; while, the latter makes no distinction between the elements when the structural behavior is similar but introduces different requirements where no commonality is observed. The Code chose the behavioral approach for walls and columns, which is why the Code imposes no direct limits on the aspect ratio when a column transitions to a wall. For flexure and axial design, including slenderness effects, similar equations can be utilized. Shear design procedures are different because the shear behavior of columns is similar to beams. In walls the out-of-plane shear effects are similar to slabs and the in-plane shear behavior is affected by the depth-to-height ratio.

14.2 GENERAL

According to 14.2.2, walls shall be designed in accordance with the provisions of 14.2, 14.3, and either 14.4, 14.5, or 14.8. Section 14.4 contains the requirements for walls designed as compression members using the strength design provisions for flexure and axial loads of Chapter 10. Any wall may be designed by this method, and no minimum wall thicknesses are prescribed.

Section 14.5 contains the Empirical Design Method which applies to walls of solid rectangular cross-section with resultant loads for all applicable load combinations falling within the middle third of the wall thickness at all sections along the height of the wall. Minimum thicknesses of walls designed by this method are contained in 14.5.3. Walls of nonrectangular cross-section, such as ribbed wall panels, must be designed by the provisions of 14.4, or if applicable, 14.8.

Section 14.8 contains the provisions of the Alternate Design Method, which are applicable to simply supported, axially loaded members subjected to out-of-plane uniform lateral loads, with maximum moments and deflections occurring at mid-height. Also, the wall cross-section must be constant over the height of the panel. No minimum wall thicknesses are prescribed for walls designed by this method.

All walls must be designed for the effects of shear forces. Section 14.2.3 requires that the design for shear must be in accordance with 11.9 special shear provisions for walls. The required shear reinforcement may exceed the minimum wall reinforcement prescribed in 14.3.
For rectangular walls containing uniformly distributed vertical reinforcement and subjected to an axial load smaller than that producing balanced failure, the following approximate equation can be used to determine the design moment capacity of the wall (Ref. 21.7 and 21.8):

\[\phi M_n = \phi \left[0.5 A_{st} f_y \ell_w \left(1 + \frac{P_u}{A_{st} f_y} \right) \left(1 - \frac{c}{\ell_w} \right) \right] \]

where

- \(A_{st} \) = total area of vertical reinforcement, in.\(^2\)
- \(\ell_w \) = horizontal length of wall, in.
- \(P_u \) = factored axial compressive load, kips
- \(f_y \) = yield strength of reinforcement, ksi
- \(c/\ell_w \) = factor relating depth of equivalent rectangular compressive stress block to the neutral axis depth (10.2.7.3)
- \(\omega = \frac{A_{st}}{\ell_w h f'_c} \)
- \(f'_c \) = compressive strength of concrete, ksi
- \(\alpha = \frac{P_u}{\ell_w h f'_c} \)
- \(h \) = thickness of wall, in.
- \(\phi = 0.90 \) (strength primarily controlled by flexure with low axial load)

For a wall subjected to a series of point loads, the horizontal length of the wall that is considered effective for each concentrated load is the least of the center-to-center distance between loads and width of bearing plus four times the wall thickness (14.2.4). Columns built integrally with walls shall conform to 10.8.2 (14.2.5). Walls shall be properly anchored into all intersecting elements, such as floors, columns, other walls, and footings (14.2.6).

Section 15.8 provides the requirements for force transfer between a wall and a footing. Note that for cast-in-place walls, the required area of reinforcement across the interface shall not be less than the minimum vertical reinforcement given in 14.3.2 (15.8.2.2).

14.3 MINIMUM WALL REINFORCEMENT

The minimum wall reinforcement provisions apply to walls designed according to 14.4, 14.5, or 14.8, unless a greater amount is required to resist horizontal shear forces in the plane of the wall according to 11.9.8 and 11.9.9.

Walls must contain both vertical and horizontal reinforcement. The minimum ratio of vertical reinforcement area to gross concrete area is (1) 0.0012 for deformed bars not larger than No. 5 with \(f_y \geq 60,000 \) psi, or for welded wire reinforcement (plain or deformed) not larger than W31 or D31, or (2) 0.0015 for all other deformed bars (14.3.2). The minimum ratio of horizontal reinforcement is (1) 0.0020 for deformed bars not larger than No. 5 with \(f_y \geq 60,000 \) psi, or for welded wire reinforcement (plain or deformed) not larger than W31 or D31, or (2) 0.0025 for all other deformed bars (14.3.3).
The minimum wall reinforcement required by 14.3 is provided primarily for control of cracking due to shrinkage and temperature stresses. Also, the minimum vertical wall reinforcement required by 14.3.2 does not substantially increase the strength of a wall above that of a plain concrete wall. It should be noted that the reinforcement and minimum thickness requirements of 14.3 and 14.5.3 may be waived where structural analysis shows adequate strength and wall stability (14.2.7). This required condition may be satisfied by a design using the structural plain concrete provisions in Chapter 22 of the code.

For walls thicker than 10 in., except for basement walls, reinforcement in each direction shall be placed in two layers (14.3.4).

Spacing of vertical and horizontal reinforcement shall not exceed 18 in. nor three times the wall thickness (14.3.5).

According to 14.3.6, lateral ties for vertical reinforcement are not required as long as the vertical reinforcement is not required as compression reinforcement or the area of vertical reinforcement does not exceed 0.01 times the gross concrete area.

A minimum of two No. 5 bars in walls having two layers of reinforcement in both directions and one No. 5 bar in walls having a single layer of reinforcement must be provided around all window and door and similar sized openings, with minimum bar extension beyond the corner of opening equal to the bar development length (14.3.7).

14.4 WALLS DESIGNED AS COMPRESSION MEMBERS

When the limitations of 14.5 or 14.8 are not satisfied, walls must be designed as compression members by the strength design provisions in Chapter 10 for flexure and axial loads. The minimum reinforcement requirements of 14.3 apply to walls designed by this method. Vertical wall reinforcement need not be enclosed by lateral ties (as for columns) when the conditions of 14.3.6 are satisfied. All other code provisions for compression members apply to walls designed by Chapter 10.

As with columns, the design of walls is usually difficult without the use of design aids. Wall design is further complicated by the fact that slenderness is a consideration in practically all cases. A second-order analysis, which takes into account variable wall stiffness, as well as the effects of member curvature and lateral drift, duration of the loads, shrinkage and creep, and interaction with the supporting foundation, is specified in 10.10.3 or 10.10.4. In lieu of that procedure, the approximate evaluation of slenderness effects prescribed in 10.10.5 may be used.

It is important to note that Eqs. (10-14) and (10-15) for EI in the approximate slenderness method were not originally derived for members with a single layer of reinforcement. For members with a single layer of reinforcement, the following expression for EI has been suggested in Ref. 21.2:

\[
EI = \frac{E_c I_g}{\beta} \left(0.5 - \frac{e}{h} \right) \geq 0.1 \frac{E_c I_g}{\beta} \]

\[
\leq 0.4 \frac{E_c I_g}{\beta}
\]

where

- \(E_c \) = modulus of elasticity of concrete
- \(I_g \) = moment of inertia of gross concrete section about the centroidal axis, neglecting reinforcement
- \(e \) = eccentricity of the axial loads and lateral forces for all applicable load combinations
- \(h \) = overall thickness of wall
- \(\beta = 0.9 + 0.5\beta_d^2 - 12\rho \geq 1.0 \)
- \(\beta_d = \) ratio of sustained load to total load
- \(\rho = \) ratio of area of vertical reinforcement to gross concrete area
In the Eqs. (10-14) and (10-15) for EI for nonsway conditions, the term $\beta_{d_{ns}}$ is defined as the ratio of maximum factored axial sustained load to maximum factored axial load associated with the same load combination, but must not be taken greater than 1.0 (10.10.6.2).

For sustained lateral loads in sway frames, the term β_{ds} is defined as the ratio of maximum factored sustained shear within a story to the maximum factored shear in that story associated with the same load combination, but must not be taken greater than 1.0 (10.10.4.2).

For consistency, similar definitions of β_d are appropriate for the EI expressions for walls in Eq. (1) based on if the wall is nonsway or sway out-of-plane. Note that if it is determined that an out-of-plane sway condition exists, then $\beta_d = 0$ for the case of lateral loads that are not sustained.

Figure 21-1 shows the comparison of flexural stiffness (EI) by Code Eq. (10-15) and Eq. (1) in terms of E_cI_g. The ratio of EI/E_cI_g is plotted as a function of e/h for several values of β_d, for a constant reinforcement ratio ρ of 0.0015. Note that Code Eq. (10-15) assumes EI to be independent of e/h and appears to overestimate the wall stiffness for larger eccentricities. For walls designed by Chapter 10 with slenderness evaluation by 10.10.5 Eq. (1) is recommended in lieu of Code Eq. (10-15) for determining wall stiffness. Example 21.1 illustrates this method for a tilt-up wall panel.

Figure 21-1 Stiffness EI of Walls

14.5 EMPIRICAL DESIGN METHOD

The Empirical Design Method may be used for the design of walls if the resultant of all applicable loads falls within the middle one-third of the wall thickness (eccentricity $e \leq h/6$), and the thickness is at least the minimum prescribed in 14.5.3 (see Fig. 21-2). Note that in addition to any eccentric axial loads, the effect of any lateral loads on the wall must be included to determine the total eccentricity of the resultant load. The method applies only to walls of solid rectangular cross-section.
Primary application of this method is for relatively short or squat walls subjected to vertical loads only. Application becomes extremely limited when lateral loads need to be considered, because the total load eccentricity must not exceed $h/6$. Walls not meeting these criteria must be designed as compression members for axial load and flexure by the provisions of Chapter 10 (14.4) or, if applicable, by the Alternate Design Method of 14.8.

When the total eccentricity e does not exceed $h/6$, the design is performed considering P_u as a concentric axial load. The factored axial load P_u must be less than or equal to the design axial load strength ϕP_n computed by Eq. (14-1):

$$P_u \leq \phi P_n \leq 0.55 \phi' f_c A_g \left[1 - \left(\frac{k l_c}{32h} \right)^2 \right]$$

where

- ϕ = strength reduction factor 0.65 corresponding to compression-controlled sections in accordance with 9.3.2.2.
- A_g = gross area of wall section
- k = effective length factor defined in 14.5.2
- l_c = vertical distance between supports

Equation (14-1) takes into consideration both load eccentricity and slenderness effects. The eccentricity factor 0.55 was originally selected to give strengths comparable to those given by Chapter 10 for members with axial load applied at an eccentricity not to exceed $h/6$.

In order to use Eq. (14-1), the wall thickness h must not be less than $1/25$ times the supported length or height, whichever is shorter, nor less than 4 in. (14.5.3.1). Exterior basement walls and foundation walls must be at least 7-1/2 in. thick (14.5.3.2).

With the publication of the 1980 supplement of ACI 318, Eq. (14-1) was modified to reflect the general range of end conditions encountered in wall design, and to allow for a wider range of design applications. The wall strength equation in previous codes was based on the assumption that the top and bottom ends of the wall are restrained against lateral movement, and that rotation restraint exists at one end, so as to have an effective length factor between 0.8 and 0.9. Axial load strength values could be unconservative for pinned-pinned end conditions, which can exist in certain walls, particularly of precast and tilt-up applications. Axial strength could also be overestimated where the top end of the wall is free and not braced against translation. In these cases, it is necessary to reflect the proper effective length in the design equation. Equation (14-1) allows the use of different effective length factors k to address this situation. The values of k have been specified in 14.5.2.
for commonly occurring wall end conditions. Equation (14-1) will give the same results as the 1977 Code Eq. (14-1) for walls braced against translation at both ends and with reasonable base restraint against rotation. Reasonable base restraint against rotation implies attachment to a member having a flexural stiffness EI/ℓ at least equal to that of the wall. Selection of the proper k for a particular set of support end conditions is left to the judgment of the engineer.

Figure 21-3 shows typical axial load-moment strength curves for 8, 10, and 12-in. walls with $f'_c = 4,000$ psi and $f_y = 60,000$ psi. The curves yield eccentricity factors (ratios of strength under eccentric loading to that under concentric loading) of 0.562, 0.568, and 0.563 for the 8, 10, and 12-in. walls with $e = h/6$ and $\rho = 0.0015$.

$$f'_c = 4 \text{ ksi}; \quad f_y = 60 \text{ ksi}; \quad \phi = 1.00; \quad \rho = \frac{A_s}{A_g}; \quad g = 0.75$$

Figure 21-3 Typical Load-Moment Strength Curves for 8-, 10-, and 12-in. Walls

Figure R14.5 in the Commentary shows a comparison of the strengths obtained from the Empirical Design Method and Sec. 14.4 for members loaded at the middle third of the thickness with different end conditions.

Example 21.2 illustrates application of the Empirical Design Method to a bearing wall supporting precast floor beams.

14.8 ALTERNATE DESIGN OF SLENDER WALLS

The alternate design method for walls is based on the experimental research reported in Ref. 21.4. This method has appeared in the Uniform Building Code (UBC) since 1988, and is contained in the 2003 International Building Code (IBC). It is important to note that the provisions of 14.8 differ from those in the UBC and IBC in the following ways: (1) nomenclature and wording has been changed to comply with ACI 318 style, and (2) the procedure has been limited to out-of-plane flexural effects on simply supported wall panels with maximum moments and deflections occurring at midspan. Before 2008, the out-of-plane deflections in wall panels were calculated using the procedures in 9.5.2.3. However, re-evaluation of the original test data (Ref. 21.4) demonstrated that out-of-plane deflections increase rapidly when the service-level moment exceeds $2/3M_{cr}$.

Before 2008, the effective area of longitudinal reinforcement in a slender wall for obtaining an approximate cracked moment of inertia was calculated using an effective area of tension reinforcement defined as $A_{se,w} = A_g + P_u/f_y$. However, this term overestimated the contribution of axial load in many cases where two layers of reinforcement were utilized.

According to 14.8.1, the provisions of 14.8 are considered to satisfy 10.10 when flexural tension controls the out-of-plane design of a wall. The following limitations apply to the alternate design method (14.8.2):
1. The wall panel shall be simply supported, axially loaded, and subjected to an out-of-plane uniform lateral load. The maximum moments and deflections shall occur at the mid-height of the wall (14.8.2.1).
2. The cross-section is constant over the height of the panel (14.8.2.2).
3. The wall cross sections shall be tension-controlled (14.8.2.3).
4. Reinforcement shall provide a design moment strength ϕM_n greater than or equal to M_{cr}, where M_{cr} is the moment causing flexural cracking due to the applied lateral and vertical loads. Note that M_{cr} shall be obtained using the modulus of rupture f_r given by Eq. (9-10) (14.8.2.4).
5. Concentrated gravity loads applied to the wall above the design flexural section shall be distributed over a width equal to the lesser of (a) the bearing width plus a width on each side that increases at a slope of 2 vertical to 1 horizontal down to the design flexural section or (b) the spacing of the concentrated loads. Also, the distribution width shall not extend beyond the edges of the wall panel (14.8.2.5) (see Fig. 21-4).
6. The vertical stress P_u/A_g at the mid-height section shall not exceed 0.06 f_c' (14.8.2.6).

When one or more of these conditions are not satisfied, the wall must be designed by the provisions of 14.4.

According to 14.8.3, the design moment strength ϕM_n for combined flexure and axial loads at the mid-height cross-section must be greater than or equal to the total factored moment M_u at this section. The factored moment M_u includes P-Δ effects and is defined as follows:

$$M_u = M_{ua} + P_u \Delta_u$$ \hspace{1cm} Eq. (14-4)

where M_{ua} = maximum factored moment at the mid-height section of the wall due to lateral and eccentric vertical loads, not including PΔ effects.

P_u = factored axial load

Δ_u = deflection at the mid-height of the wall due to the factored loads

$$\Delta_u = 5M_u \ell_c^2/(0.75)48E_cI_{cr}$$ \hspace{1cm} Eq. (14-5)

ℓ_c = vertical distance between supports

E_c = modulus of elasticity of concrete (8.5)

I_{cr} = moment of inertia of cracked section transformed to concrete

$$I_{cr} = nA_{se,w}(d-c)^2 + (\ell_wc^3/3)$$ \hspace{1cm} Eq. (14-7)

n = modular ratio of elasticity $= E_s/E_c \geq 6$ (14.8.3)

E_s = modulus of elasticity of nonprestressed reinforcement

$A_{se,w}$ = area of effective longitudinal tension reinforcement in the wall segment

$$= A_s + (P_u/f_y) (h/2d)$$
A_s = area of longitudinal tension reinforcement in the wall segment
f_y = specified yield stress of nonprestressed reinforcement
d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement
c = distance from extreme compression fiber to neutral axis corresponding to the effective longitudinal reinforcement
\ell_w = horizontal length of the wall

Note that Eq. (14-4) includes the effects of the factored axial loads and lateral load (M_u), as well as the P-Δ effects (P_u Δ_u).

Substituting Eq. (14-5) for Δ_u into Eq. (14-4) results in the following equation for M_u:

$$M_u = \frac{M_{ua}}{1 - \frac{5P_u l_c^2}{(0.75)48E_c I_{cr}}}$$ \hspace{1cm} \text{Eq. (14-6)}$$

Figure 21-5 shows the analysis of the wall according to the provisions of 14.8 for the case of additive lateral and gravity load effects.

The design moment strength \(\phi M_n \) of the wall can be determined from the following equation:

$$\phi M_n = \phi A_{se,w} f_y \left(d - \frac{a}{2} \right)$$ \hspace{1cm} \text{Eq. (2)}$$

where

$$a = \frac{A_{se,w} f_y}{0.85 f'c l_w}$$

and \(\phi \) is determined in accordance with 9.3.2.
In addition to satisfying the strength requirement of Eq. (14-3), the deflection requirement of 14.8.4 must also be satisfied. In particular, the maximum deflection Δ_s due to service loads, including $P-\Delta$ effects, shall not exceed $\ell_c/150$.

M_a is the maximum moment at midheight of wall due to service lateral and eccentric vertical loads, including $P\Delta$ effects.

When $M_a \leq (2/3)M_{cr}$, then

$$\Delta_s = \left(\frac{M_a}{M_{cr}}\right)\Delta_{cr} \quad \text{Eq. (14-9)}$$

When $M_a > (2/3)M_{cr}$, then

$$\Delta_s = \frac{(2/3)\Delta_{cr} + \left[\Delta_n-(2/3)\Delta_{cr}\right]\left[M_a-(2/3)M_{cr}\right]}{\left[M_n-(2/3)M_{cr}\right]} \quad \text{Eq. (14-8)}$$

Where:

$$\Delta_{cr} = \frac{(5M_{cr}l_c^2)/(48E_cI_{cr})}{\text{Eq. (14-10)}}$$

$$\Delta_n = \frac{(5M_n l_c^2)/(48E_cI_{cr})}{\text{Eq. (14-10)}}$$

I_{cr} is calculated by Eq. 14-7 and M_a is obtained by iteration of deflections.

Example 21.3 illustrates the design of a nonprestressed precast wall panel by the alternated design method.

11.9 SPECIAL SHEAR PROVISIONS FOR WALLS

For most low-rise buildings, horizontal shear forces acting in the plane of walls are small, and can usually be neglected in design. Such in-plane forces, however, become an important design consideration in high-rise buildings. Design for shear shall be in accordance with the special provisions for walls in 11.9 (14.2.3).

Example 21.4 illustrates in-plane shear design of walls, including design for flexure.

DESIGN SUMMARY

A trial procedure for wall design is suggested: first assume a wall thickness h and a reinforcement ratio ρ. Based on these assumptions, check the trial wall for the applied loading conditions.

It is not within the scope of Part 21 to include design aids for a broad range of wall and loading conditions. The intent is to present examples of various design options and aids. The designer can, with reasonable effort, produce design aids to fit the range of conditions usually encountered in practice. For example, strength interaction diagrams such as those plotted in Fig. 21-6(a) ($\rho = 0.0015$) and Fig. 21-6(b) ($\rho = 0.0025$) can be helpful design aids for evaluation of wall strength. The lower portions of the strength interaction diagrams are also shown for 6.5-in. thick walls. Figure 21-7 may be used to select wall reinforcement.

Prestressed walls are not covered specifically in Part 21. Prestressing of walls is advantageous for handling (precast panels) and for increased buckling resistance. For design of prestressed walls, the designer should consult Ref. 21.6.
Figure 21-6 Axial Load-Moment Interaction Diagram for Walls ($f'_c = 4000$ psi, $f_y = 60$ ksi)

(a) Reinforcement Ratio $\rho = 0.0015$

(b) Reinforcement Ratio $\rho = 0.0025$
REFERENCES

21.8 Alex E. Cardenas, and Donald D. Magura, Strength of High-Rise Shear Walls-Rectangular Cross Sections, Response of Multistory Concrete Structures to Lateral Forces, SP-36, American Concrete Institute, Farmington Hills, MI, 1973, pp 119-150.
Example 21.1—Design of Tilt-up Wall Panel by Chapter 10 (14.4)

Design of the wall shown is required. The wall is restrained at the top edge, and the roof load is supported through 4 in. tee stems spaced at 4 ft on center.

![Diagram of Tilt-up Wall Panel]

Design data:

Roof dead load = 50 psf
Roof live load = 20 psf
Wind load = 20 psf
Unsupported length of wall $l_u = 16$ ft
Effective length factor $k = 1.0$ (pinned-pinned end condition)
Concrete $f'_c = 4000$ psi ($w_c = 150$ pcf)
Reinforcing steel $f_y = 60,000$ psi
Assume non-sway condition.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Trial wall selection</td>
<td></td>
</tr>
<tr>
<td>Try $h = 6.5$ in. with assumed $e = 6.75$ in.</td>
<td></td>
</tr>
<tr>
<td>Try a single layer of No. 4 @ 12 in. vertical reinforcement ($A_s = 0.20$ in.²/ft) at centerline of wall</td>
<td></td>
</tr>
<tr>
<td>For a 1-ft wide design strip:</td>
<td></td>
</tr>
<tr>
<td>$\rho_{\ell} = \frac{A_s}{bh} = \frac{0.20}{(12 \times 6.5)} = 0.0026 > 0.0012$ O.K.</td>
<td>14.3.2 (a)</td>
</tr>
<tr>
<td>2. Effective wall length for roof reaction</td>
<td></td>
</tr>
<tr>
<td>Bearing width + 4 (wall thickness) = $4 + 4 (6.5) = 30$ in. = 2.5 ft (governs)</td>
<td></td>
</tr>
<tr>
<td>Center-to-center distance between stems = 4 ft</td>
<td>14.2.4</td>
</tr>
</tbody>
</table>
3. Roof loading per foot width of wall

\[
\text{Dead load} = \left[50 \times \left(\frac{4}{2.5} \right) \right] \times \frac{40}{2} = 1600 \text{ plf}
\]

\[
\text{Live load} = \left[20 \times \left(\frac{4}{2.5} \right) \right] \times \frac{40}{2} = 640 \text{ plf}
\]

Wall dead load at mid-height

\[
= \frac{6.5}{12} \times \left(\frac{16}{2} + 2 \right) \times 150 = 813 \text{ plf}
\]

4. Factored load combinations

Load comb. 1: \(U = 1.2D + 0.5L_r \)

\[
P_u = 1.2 (1.6 + 0.81) + 0.5 (0.64) = 2.9 + 0.3 = 3.2 \text{ kips}
\]

\[
M_u = 1.2 (1.6 \times 6.75) + 0.5 (0.64 \times 6.75) = 15.1 \text{ in.-kips at top}
\]

\[
\beta_d = 2.9/3.2 = 0.91
\]

Load comb. 2: \(U = 1.2D + 1.6L_r + 0.8W \)

\[
P_u = 1.2 (1.6 + 0.81) + 1.6 (0.64) + 0 = 2.9 + 1.0 = 3.9 \text{ kips}
\]

\[
M_u \geq 1.2 (1.6 \times 6.75)/2 + 1.6 (0.64 \times 6.75)/2 + 0.8 (0.02 \times 16^2 \times 12/8)
= 16.1 \text{ in.-kips at midspan}
\]

\[
M_u \geq 1.2 (1.6 \times 6.75) + 1.6 (0.64 \times 6.75) + 0.8 (0.02 \times 2^2 \times 12/2)
= 19.9 \text{ in.-kips at top}
\]

\[
\beta_d = 2.9/3.9 = 0.74
\]

Load comb. 3: \(U = 1.2D + 1.6W + 0.5L_r \)

\[
P_u = 1.2 (1.6 + 0.81) + 0 + 0.5 (0.64) = 3.2 \text{ kips}
\]

\[
M_u \geq 1.2 (1.6 \times 6.75)/2 + 1.6 (0.02 \times 16^2 \times 12/8) + 0.5 (0.64 \times 6.75)/2
= 19.8 \text{ in.-kips at midspan}
\]

\[
M_u \geq 1.2 (1.6 \times 6.75) + 1.6 (0.02 \times 2^2 \times 12/2) + 0.5 (0.64 \times 6.75)
= 15.9 \text{ in.-kips at midspan}
= 19.8 \text{ in.-kips}
\]

\[
\beta_d = 2.9/3.2 = 0.91
\]

Load comb. 4: \(U = 0.9D + 1.6W \)

\[
P_u = 0.9 (1.6 + 0.81) + 0 = 2.2 \text{ kips}
\]

\[
M_u \geq 0.9 (1.6 \times 6.75)/2 + 1.6 (0.02 \times 16^2 \times 12/8) = 17.1 \text{ in.-kips at midspan}
\]

\[
M_u \geq 0.9 (1.6 \times 6.75) + 1.6 (0.02 \times 2^2 \times 12/2) = 10.5 \text{ in.-kips at top}
= 17.1 \text{ in.-kips}
\]

\[
\beta_d = 2.2/2.2 = 1.0
\]
Example 21.1 (cont’d) Calculations and Discussion Code Reference

5. Check wall slenderness

\[\frac{k\ell_u}{r} = \frac{1.0 \times (16 \times 12)}{(0.3 \times 6.5)} = 98.5 \]

where \(r = 0.3h \)

6. Calculate magnified moments for non-sway case

\[M_c = \delta_{ns} M_2 \]

\[\delta_{ns} = \frac{C_m}{1 - \left(\frac{P_u}{0.75P_c} \right)} \geq 1 \]

\[P_c = \frac{\pi^2EI}{(k\ell_u)^2} \]

\[EI = \frac{E_cI_g}{\beta} \left(0.5 - \frac{c}{h} \right) \geq 0.1 \frac{E_cI_g}{\beta} \]

\[\leq 0.4 \frac{E_cI_g}{\beta} \]

\[\frac{c}{h} = \frac{6.75}{6.5} = 1.04 > 0.5 \]

Thus, \(EI = 0.1 \left(\frac{E_cI_g}{\beta} \right) \)

\[E_c = 57,000 \sqrt{4000} = 3.605 \times 10^6 \text{ psi} \]

\[I_g = \frac{12 \times 6.5^3}{12} = 274.6 \text{ in.}^4 \]

\[\beta = 0.9 + 0.5 \beta^2_d - 12p \geq 1.0 \]

\[= 0.9 + 0.5 \beta^2_d - 12(0.0026) \]

\[= 0.869 + 0.5 \beta^2_d \geq 1.0 \]

\[EI = \frac{0.1 \times 3.605 \times 10^6 \times 274.6}{\beta} = \frac{99 \times 10^6}{\beta} \text{ lb-in.}^2 \]

\[P_c = \frac{\pi^2 \times 99 \times 10^6}{\beta (16 \times 12)^2 \times 1000} = \frac{26.5}{\beta} \text{ kips} \]
Example 21.1 (cont’d) Calculations and Discussion Code Reference

$C_m = 1.0$ for members with transverse loads between supports
10.10.6.4

Determine magnified moment M_c for each load case.

<table>
<thead>
<tr>
<th>Load Comb.</th>
<th>P_u (kips)</th>
<th>$M_2 = M_u$ (in.-kips)</th>
<th>β_d</th>
<th>β</th>
<th>E_l (lb-in.2)</th>
<th>P_c (kips)</th>
<th>δ_{ns}</th>
<th>M_c (in.-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>15.1</td>
<td>0.91</td>
<td>1.28</td>
<td>77×10^6</td>
<td>20.7</td>
<td>1.26</td>
<td>19.1</td>
</tr>
<tr>
<td>2</td>
<td>3.9</td>
<td>19.9</td>
<td>0.74</td>
<td>1.14</td>
<td>87×10^6</td>
<td>23.2</td>
<td>1.29</td>
<td>25.7</td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
<td>19.8</td>
<td>0.91</td>
<td>1.28</td>
<td>77×10^6</td>
<td>20.7</td>
<td>1.26</td>
<td>25.0</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td>17.1</td>
<td>1.00</td>
<td>1.37</td>
<td>72×10^6</td>
<td>19.4</td>
<td>1.18</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Note: M_2 must at least be $P_u(0.6 + 0.03h) = 3.9[0.6 + 0.03(6.5)] = 3.1$ in.-kips
10.10.6.5

7. Check design strength vs. required strength

Assume that the section is tension-controlled for each load combination, i.e., $\varepsilon_t \geq 0.005$
and $\phi = 0.90$.
9.3.2

The following table contains a summary of the strain compatibility analysis for each load combination, based on the assumption above:

<table>
<thead>
<tr>
<th>Load Comb.</th>
<th>$P_n = P_u/\phi$ (kips)</th>
<th>a (in.)</th>
<th>c (in.)</th>
<th>ε_t (in./in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.6</td>
<td>0.38</td>
<td>0.44</td>
<td>0.0190</td>
</tr>
<tr>
<td>2</td>
<td>4.4</td>
<td>0.39</td>
<td>0.46</td>
<td>0.0180</td>
</tr>
<tr>
<td>3</td>
<td>3.6</td>
<td>0.38</td>
<td>0.44</td>
<td>0.0190</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>0.35</td>
<td>0.47</td>
<td>0.0206</td>
</tr>
</tbody>
</table>

For example, the strain in the reinforcement ε_t is computed for load combination No. 2 as follows:

$A_{se,w} = A_s + \left(\frac{P_n}{f_y}\right)(h/2d) = 0.20 + \left(\frac{4.3}{60}\right)\left(\frac{6.5}{2}\right)(3.25) = 0.27$ in.2

$a = \frac{A_{se,w}f_y}{0.85\zeta_\ell_w} = \frac{(0.27)(60)}{0.85(4)(12)}$

$a = 0.39$ in.
10.2.7.1

$c = a/\beta_1 = 0.39/0.85 = 0.46$ in.
10.2.7.3

$\varepsilon_t = \frac{0.003}{c}(d-c)$
10.2.2

$\varepsilon_t = \frac{0.003}{0.47}(3.25-0.47)$

$\varepsilon_t = 0.0180 > 0.0050 \rightarrow$ tension-controlled section
10.3.4
Note that the strain in the reinforcement for each of the load combinations is greater than 0.0050, so that the assumption of tension-controlled sections ($\phi = 0.90$) is correct.

For each load combination, the required nominal strength will be compared to the computed design strength. The results are tabulated below.

<table>
<thead>
<tr>
<th>Load Comb.</th>
<th>Required Nominal Strength</th>
<th>Design Strength M_n (in.-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$P_n = P_u/\phi$ (kips)</td>
<td>$M_n = M_c/\phi$ (in.-kips)</td>
</tr>
<tr>
<td>1</td>
<td>3.6</td>
<td>21.2</td>
</tr>
<tr>
<td>2</td>
<td>4.4</td>
<td>28.5</td>
</tr>
<tr>
<td>3</td>
<td>3.6</td>
<td>27.8</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>22.4</td>
</tr>
</tbody>
</table>

For example, the design strength M_n is computed for load combination No. 2 as follows:

$$M_n = 0.85f'_c ba \left(\frac{h}{2} - \frac{a}{2}\right) - A_s f_y \left(\frac{h}{2} - d_t\right)$$

$$= 0.85(4)(12)(0.39) \left(\frac{6.5}{2} - \frac{0.39}{2}\right) - 0.2(60) \left(\frac{6.5}{2} - 3.25\right)$$

$$= 49 \text{ in.-kips}$$

The wall is adequate with the No. 4 @ 12 in. since the design strength is greater than the required nominal strength for all load combinations.
Example 21.2—Design of Bearing Wall by Empirical Design Method (14.5)

A concrete bearing wall supports a floor system of precast single tees spaced at 8 ft on centers. The stem of each tee section is 8 in. wide. The tees have full bearing on the wall. The height of the wall is 15 ft, and the wall is considered laterally restrained at the top.

Design Data:

Floor beam reactions: dead load = 28 kips
live load = 14 kips

\(f'_c = 4000 \text{ psi} \)

\(f_y = 60,000 \text{ psi} \)

Neglect weight of wall

Calculations and Discussion

The general design procedure is to select a trial wall thickness \(h \), then check the trial wall for the applied loading conditions.

1. Select trial wall thickness \(h \)

\[
h \geq \frac{f'_u}{25} \quad \text{but not less than 4 in.} \quad 14.5.3.1
\]

\[
\geq \frac{15 \times 12}{25} = 7.2 \text{ in.}
\]

Try \(h = 7.5 \text{ in.} \)

2. Calculate factored loading

\[
P_u = 1.2D + 1.6L \\
= 1.2 \times 28 + 1.6 \times 14 = 33.6 + 22.4 = 56.0 \text{ kips} \quad \text{Eq. (9-2)}
\]

3. Check bearing strength of concrete

Assume width of stem for bearing equal to 7 in., to allow for beveled bottom edges.

Loaded area \(A_1 = 7 \times 7.5 = 52.5 \text{ in.}^2 \)

Bearing capacity = \(\phi(0.85f'_cA_1) = 0.65 \times 0.85 \times 4 \times 52.5 = 116 \text{ kips} > 56.0 \text{ kips} \quad 10.14.1 \)
4. Calculate design strength of wall

Effective horizontal length of wall per tee reaction = \[\frac{8 \times 12}{7 + 4(7.5)} = 37 \text{ in. (govern)}\]

\[k = 0.8\]

\[\phi P_n = 0.55 \phi' f_c A_g \left[1 - \left(\frac{k f_c}{32h}\right)^2\right]\]

\[= 0.55 \times 0.65 \times 4(37 \times 7.5) \left[1 - \left(\frac{0.8 \times 15 \times 12}{32 \times 7.5}\right)^2\right]\]

\[= 254 \text{ kips > 56 kips O.K.}\]

The 7.5-in. wall is adequate, with sufficient margin for possible effect of load eccentricity.

5. Determine single layer of reinforcement

Based on 1-ft width of wall and Grade 60 reinforcement (No. 5 and smaller):

Vertical \(A_s = 0.0012 \times 12 \times 7.5 = 0.108 \text{ in.}^2/\text{ft}\)

Horizontal \(A_s = 0.0020 \times 12 \times 7.5 = 0.180 \text{ in.}^2/\text{ft}\)

Spacing = \[3h = 3 \times 7.5 = 22.5 \text{ in. (govern)}\]

\[18 \text{ in. (govern)}\]

Vertical \(A_s\): use No. 4 @ 18 in. on center \((A_s = 0.13 \text{ in.}^2/\text{ft})\)

Horizontal \(A_s\): use No. 4 @ 12 in. on center \((A_s = 0.20 \text{ in.}^2/\text{ft})\)

Design aids such as the one in Fig. 21-7 may be used to select reinforcement directly.
Example 21.3—Design of Precast Panel by the Alternate Design Method (14.8)

Determine the required vertical reinforcement for the precast wall panel shown below. The roof loads are supported through the 3.75 in. webs of the 10DT24 which are spaced 5 ft on center.

Design data:

- Weight of 10DT24 = 468 plf
- Roof dead load = 20 psf
- Roof live load = 30 psf
- Wind load = 30 psf
- Concrete $f'_c = 4000$ psi ($w_c = 150$ pcf)
- Reinforcing steel $f_y = 60,000$ psi

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.2</td>
</tr>
<tr>
<td>14.8.2.5</td>
</tr>
</tbody>
</table>

1. Trial wall section

Try $h = 8$ in.
Try a single layer of No. 4 @ 9 in. vertical reinforcement ($A_s = 0.27$ in.2/ft) at centerline of wall.

For a 1-ft wide design strip: $\rho (\text{gross}) = \frac{A_s}{\ell_w h} = \frac{0.27}{12 \times 8} = 0.0028 > 0.0012$ O.K.

2. Distribution width of interior concentrated loads at mid-height of wall (see Fig. 21-4)

$$W + \frac{\ell_c}{2} = \frac{3.75}{12} + \frac{20}{2} = 10.3 \text{ ft}$$

$S = 5.0$ ft (governs)
3. Roof loading per foot width of wall

Dead load = \[\left(\frac{468}{2} + (20 \times 5) \right) \left(\frac{60}{2} \right) = 10,020 \text{ lbs/5 ft} = 2,004 \text{ plf} \]

Live load = \((30 \times 5) \left(\frac{60}{2} \right) = 4,500 \text{ lbs/5 ft} = 900 \text{ plf} \)

Wall dead load = \(\frac{8}{12} \times 20 \times 150 = 2,000 \text{ plf} \)

Eccentricity of the roof loads about the panel center line = \(\frac{2}{3} \times 4 = 2.7 \text{ in.} \)

4. Factored load combinations at mid-height of wall (see Fig. 21-5)

a. Load comb. 1: \(U = 1.4D \)

\[P_u = P_{u1} + \frac{P_{u2}}{2} \]

\[P_{u1} = (1.4 \times 2.0) = 2.8 \text{ kips} \]

\[P_{u2} = 1.4 \times 2.0 = 2.8 \text{ kips} \]

\[P_u = 2.8 + \frac{2.8}{2} = 4.2 \text{ kips} \]

\[M_u = \frac{M_{ua}}{1 - \frac{5P_u\ell_c^2}{(0.75)48E_cI_{cr}}} \]

\[M_{ua} = \frac{w_u\ell_c^2}{8} + \frac{P_{u1}e}{2} = 0 + \frac{2.8 \times 2.7}{2} = 3.8 \text{ in.-kips} \]

\[E_c = 57,000\sqrt{4000} = 3,605,000 \text{ psi} \]

\[I_{cr} = nA_{se,w}(d - c)^2 + \frac{\ell_w c^3}{3} \]

\[n = \frac{E_s}{E_c} = \frac{29,000}{3605} = 8.0 > 6.0 \text{ O.K.} \]

\[A_{se,w} = A_s + \frac{P_u h}{2f_y d} = 0.27 + \frac{4.2 \times 8}{2 \times 60 \times 4} = 0.34 \text{ in.}^2 / \text{ft} \]

\[a = \frac{A_{se,w}f_y}{0.85f_c \ell_w} = \frac{0.34 \times 60}{0.85 \times 4 \times 12} = 0.50 \text{ in.} \]
Example 21.3 (cont’d) Calculations and Discussion

\[c = \frac{a}{\beta_1} = \frac{0.50}{0.85} = 0.59 \text{ in.} \]

Therefore,

\[I_{cr} = 8.0 \times 0.34 \times (4 - 0.59)^2 + \frac{12 \times 0.59^3}{3} = 32.5 \text{ in.}^4 \]

\[\varepsilon_t = \left(\frac{0.003}{c} \right) d_t - 0.003 \]

\[= \left(\frac{0.003}{0.59} \right) (4) - 0.003 = 0.0173 > 0.005 \]

Therefore, section is tension-controlled

\[\phi = 0.9 \]

\[M_a = \frac{3.9}{1 - \frac{5 \times 4.2 \times (20 \times 12)^2}{0.75 \times 48 \times 3.605 \times 32.5}} = 5.4 \text{ in.-kips} \]

b. Load comb. 2: \(U = 1.2D + 1.6L_r + 0.8W \)

\[P_{u1} = (1.2 \times 2) + (1.6 \times 0.9) = 3.8 \text{ kips} \]

\[P_{u2} = 1.2 \times 2.0 = 2.4 \text{ kips} \]

\[P_u = 3.8 + \frac{2.4}{2} = 5.0 \text{ kips} \]

\[M_{ua} = \frac{w_u I_c^2}{8} + \frac{P_{ul}e}{2} = \frac{0.8 \times 0.030 \times 20^2}{8} + \frac{3.8 \times (2.7/12)}{2} \]

\[= 1.2 + 0.4 = 1.6 \text{ ft-kips} = 19.2 \text{ in.-kips} \]

\[A_{se,w} = 0.27 + \frac{5.0 \times 8}{2 \times 60 \times 4} = 0.35 \text{ in.}^2 / \text{ft} \]

\[a = \frac{0.35 \times 60}{0.85 \times 4 \times 12} = 0.51 \text{ in.} \]
Example 21.3 (cont’d) Calculations and Discussion Code Reference

\[c = \frac{0.51}{0.85} = 0.60 \text{ in.} \]

Therefore,
\[I_{cr} = 8.0 \times 0.35 \times (4 - 0.60)^2 + \frac{12 \times 0.60^3}{3} = 33.2 \text{ in.} \]

\[\varepsilon_t = \left(\frac{0.003}{0.60} \right)(4) - 0.003 = 0.0170 > 0.005 \]

\[\phi = 0.9 \]

\[M_u = \frac{19.2}{1 - \frac{5 \times 5.0 \times (20 \times 12)^2}{0.75 \times 48 \times 3605 \times 33.2}} = 28.8 \text{ in.-kips} \]

\[M_{ua} = \frac{1.6 \times 0.03 \times 20^2}{8} + \frac{2.9 \times (2.7/12)}{2} = 2.4 + 0.3 = 2.7 \text{ ft-kips} = 32.4 \text{ in.-kips} \]

\[A_{se,w} = 0.27 + \frac{4.1 \times 8}{2 \times 60 \times 4} = 0.34 \text{ in.}^2 / \text{ft} \]

\[a = \frac{0.34 \times 60}{0.85 \times 4 \times 12} = 0.5 \text{ in.} \]

\[c = \frac{0.5}{0.85} = 0.59 \text{ in.} \]

Therefore,
\[I_{cr} = 8 \times 0.34 \times (4 - 0.59)^2 + \frac{12 \times 0.59^3}{3} = 32.5 \text{ in.}^4 \]
Example 21.3 (cont’d) Calculations and Discussion

\[\phi = 0.9 \text{ as in load combination 1} \]

\[M_u = \frac{32.4}{1 - \frac{5 \times 4.1 \times (20 \times 12)^2}{0.75 \times 48 \times 3605 \times 32.5}} = 45.0 \text{ in.-kips} \]

\[d. \text{ Load comb. 4: } U = 0.9D + 1.6W \]

\[P_{u1} = 0.9 \times 2.0 = 1.8 \text{ kips} \]

\[P_{u2} = 0.9 \times 2.0 = 1.8 \text{ kips} \]

\[P_u = 1.8 + \frac{1.8}{2} = 2.7 \text{ kips} \]

\[M_{ua} = \frac{1.6 \times 0.030 \times 20^2}{8} + \frac{1.8 \times (2.7/12)}{2} = 2.6 \text{ ft-kips} = 31.2 \text{ in.-kips} \]

\[A_{se,w} = 0.27 + \frac{2.7 \times 8}{2 \times 60 \times 4} = 0.32 \text{ in.}^2 / \text{ft} \]

\[a = \frac{0.32 \times 60}{0.85 \times 4 \times 12} = 0.47 \text{ in.} \]

\[c = \frac{0.47}{0.85} = 0.55 \text{ in.} \]

Therefore,

\[I_{cr} = 8.0 \times 0.32 \times (4 - 0.55)^2 + \frac{12 \times 0.55^3}{3} = 31.1 \text{ in.} \]

\[\epsilon_t = \left(\frac{0.003}{c} \right) d_t - 0.003 = \left(\frac{0.003}{0.55} \right) (4) - 0.003 = 0.0188 > 0.005 \]

\[\phi = 0.9 \]

\[M_u = \frac{31.2}{1 - \frac{5 \times 2.7 \times (20 \times 12)^2}{0.75 \times 48 \times 3605 \times 31.1}} = 38.7 \text{ in.-kips} \]

5. Check if section is tension-controlled.

Assume section is tension-controlled \(\phi = 0.9 \) (Fig. R.9.3.2)

\[P_n = \frac{P_u}{\phi} \]
Example 21.3 (cont’d) Calculations and Discussion

Lc1: \[U = 1.4D \]
\[Pu = 4.2 \text{kips} \]

Lc2: \[U = 1.2D + 1.6L_r + 0.8W \]
\[Pu = 5.0 \text{kips (controls)} \]

Lc3: \[U = 1.2D + 1.6L_r + 0.5W \]
\[Pu = 4.1 \text{kips} \]

Lc4: \[U = 0.9D + 1.6W \]
\[Pu = 2.7 \text{kips} \]

[Diagram of cross-section]

\[P_n = \frac{Pu}{\phi} = \frac{5.0}{0.9} = 5.56 \text{kips} \]

\[a = \frac{P_n h}{2d} + A_s f_y = \frac{5.56 \times 8}{0.85 \times 4 \times 12} + 0.27 \times 60 = 21.76 \times 40.8 = 0.533 \text{ in.} \]

\[c = \frac{a}{0.85} = \frac{0.533}{0.85} = 0.627 \text{ in.} \]

\[\varepsilon_t = \frac{0.003}{0.627} (d - c) = \frac{0.003}{0.627} \left(\frac{8}{2} - 0.627 \right) \]

\[= \frac{0.003}{0.627} \times 3.373 \]

\[= 0.016 \geq 0.005 \]

tension-controlled section.

6. Determine \(M_{cr} \)

\[I_g = \frac{1}{12} \ell \omega h^3 = \frac{1}{12} \times 12 \times 8^3 = 512 \text{ in.}^4 \]

\[y_t = \frac{8}{2} = 4 \text{ in.} \]

\[f_r = 7.5 \lambda \sqrt{f_{cr}} = 7.5 \times 1.0 \times \sqrt{4000} = 474.3 \text{ psi} \quad \text{Eq. (9-10)} \]
Example 21.3 (cont’d) Calculations and Discussion

\[
M_{cr} = \frac{f_y I_g}{y_t} = \frac{474.3 \times 512}{4 \times 1000} = 60.7 \text{ in.-kips}
\]

7. Check design moment strength \(\phi M_n \)

a. Load comb. 1

\[
M_n = A_{se,w} f_y (d - \frac{a}{2}) = 0.34 \times 60 \times \left(4 - \frac{0.5}{2} \right) = 76.5 \text{ in.-kips}
\]

\[
\phi M_n = 0.9 \times 76.5 = 68.9 \text{ in.-kips} > M_u = 5.4 \text{ in.-kips} \quad \text{O.K.}
\]

\[
> M_{cr} = 60.7 \text{ in.-kips} \quad \text{O.K.} \quad 14.8.3
\]

b. Load comb. 2

\[
M_n = 0.35 \times 60 \times \left(4 - \frac{0.51}{2} \right) = 78.7 \text{ in.-kips}
\]

\[
\phi M_n = 0.9 \times 78.7 = 70.8 \text{ in.-kips} > M_u = 28.8 \text{ in.-kips} \quad \text{O.K.}
\]

\[
> M_{cr} = 60.7 \text{ in.-kips} \quad \text{O.K.} \quad 14.8.3
\]

c. Load comb. 3

\[
M_n = 0.34 \times 60 \times \left(4 - \frac{0.5}{2} \right) = 76.5 \text{ in.-kips}
\]

\[
\phi M_n = 0.9 \times 76.5 = 68.9 \text{ in.-kips} > M_u = 45.0 \text{ in.-kips} \quad \text{O.K.}
\]

\[
> M_{cr} = 60.7 \text{ in.-kips} \quad \text{O.K.} \quad 14.8.3
\]

d. Load comb. 4

\[
M_n = 0.32 \times 60 \times \left(4 - \frac{0.47}{2} \right) = 72.3 \text{ in.-kips}
\]

\[
\phi M_n = 0.9 \times 72.3 = 65.1 \text{ in.-kips} > M_u = 38.7 \text{ in.-kips} \quad \text{O.K.}
\]

\[
> M_{cr} = 60.7 \text{ in.-kips} \quad \text{O.K.} \quad 14.8.3
\]

8. Check vertical stress at mid-height section

Load comb. 2 governs:

\[
\frac{P_u}{A_g} = \frac{5000}{8 \times 12} = 52.1 \text{ psi} < 0.06 f_c' = 0.06 \times 4000 = 240 \text{ psi} \quad \text{O.K.} \quad 14.8.2.6
\]
9. Check midheight deflection Δ_s

$M_a = $ maximum moment at midheight of wall due to service lateral and eccentric vertical loads, including PΔ effects.

$M_a = M_{sa} + P_s \Delta_s$

$M_{sa} = w \ell_c^2/8 + P_{st} e/2 = 0.030 \times 20^2/8 + (2.0 + 0.9)(2.7/12)/2 = 1.8$ ft-kips = 21.6 in.-kips

$P_s = P_{s1} + P_{s2}/2 = (2.0 + 0.9) + 2.0/2 = 3.9$ kips

$M_{cr} = 60.7$ in.-kips

$\Delta_{cr} = (5M_{cr} \ell_c^2)/(48E_c I_g)$

$= \left[5 \times 60.7 \times (20 \times 12)^2\right]/(48 \times 3,605 \times 512) = 0.20$ in. \textit{Eq. (14-10)}

For $M_a < (2/3)M_{cr}$

$\Delta_s = (M_a/M_{cr})\Delta_{cr}$

Since Δ_s is a function of M_a and M_a is a function of Δ_s, no closed form solution for Δ_s is possible. Δ_s will be determined by iteration.

Assume $\Delta_s = (M_{sa}/M_{cr})\Delta_{cr} = (21.6/60.7) \times 0.20 = 0.07$ in.

$M_a = M_{sa} + P_s \Delta_s = 21.6 + 3.9 \times 0.07 = 21.9$ in.-kips

$\Delta_s = (M_a/M_{cr})\Delta_{cr} = (21.9/60.7) \times 0.20 = 0.07$ in. \textit{Eq. (14-9)}

No further iterations are required.

$M_a = 21.9$ in.-kips $< (2/3)M_{cr} = (2/3) \times 60.7 = 40.5$ in.-kips \text{O.K.}

Therefore,

$\Delta_s = 0.07$ in. $< \ell_c/150 = (20 \times 12)/150 = 1.6$ in. \text{O.K.}

The wall is adequate with No. 4 @ 9 in. vertical reinforcement.
Example 21.4—Shear Design of Wall

Determine the shear and flexural reinforcement for the wall shown.

\[h = 8 \text{ in.} \]
\[f_c' = 3000 \text{ psi} \]
\[f_y = 60,000 \text{ psi} \]

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Check maximum shear strength permitted</td>
</tr>
<tr>
<td>[\phi V_n = \phi 10 \sqrt{f_c'hd}]</td>
<td>11.9.3</td>
</tr>
<tr>
<td>where (d = 0.8 \ell_w = 0.8 \times 8 \times 12 = 76.8 \text{ in.})</td>
<td>11.9.4</td>
</tr>
<tr>
<td>[\phi V_n = 0.75 \times 10 \sqrt{3000} \times 8 \times 76.8/1000 = 252.4 \text{ kips} > V_u = 200 \text{ kips} \quad \text{O.K.}]</td>
<td></td>
</tr>
</tbody>
</table>

2. Calculate shear strength provided by concrete \(V_c \)

Critical section for shear:

\[\ell_w = 8 = 4 \text{ ft} \quad \text{(governs)} \]
| or |
\[h_w = 12 = 6 \text{ ft} \]

\[V_c = 3.3 \sqrt{f_c'hd} + \frac{N_ud}{4\ell_w} \]

\[= 3.3 \times 3000 \times 8 \times 76.8/1000 + 0 = 111 \text{ kips} \]

or
Example 21.4 (cont’d) Calculations and Discussion Code Reference

V_c = \left[0.6 \lambda \sqrt{f'_c} + \frac{l_w (1.25 \lambda \sqrt{f'_c} + 0.2 N_u)}{M_u / V_u - \ell_w / 2} \right] h d

= \left[0.6 \times 1.0 \times \sqrt{3000} + \frac{96 (1.25 \times 1.0 \times \sqrt{3000} + 0) \times 8 \times 76.8}{1000} \right] = 104 \text{ kips (governs)}

where \(M_u = (12 - 4) V_u = 8 V_u \) ft-kips = 96V_u in.-kips

3. Determine required horizontal shear reinforcement

\(V_u = 200 \text{ kips} > \phi V_c / 2 = 0.75 (104)/2 = 39.0 \text{ kips} \)

Shear reinforcement must be provided in accordance with 11.9.9.

\(V_u \leq \phi V_n \) \hspace{1cm} \text{Eq. (11-1)}
\(\leq \phi (V_c + V_s) \) \hspace{1cm} \text{Eq. (11-2)}
\(\leq \phi V_c + \frac{\phi A_v f_y d}{s} \) \hspace{1cm} \text{Eq. (11-29)}

\(A_v = \frac{(V_u - \phi V_c)}{\phi f_y d} \)

\(= \frac{[200 - (0.75 \times 104)]}{0.75 \times 60 \times 76.8} = 0.0353 \text{ in.}^2/\text{in.} \)

For 2-No. 3: \(s = \frac{2 \times 0.11}{0.0353} = 6.2 \text{ in.} \)

2-No. 4: \(s = \frac{2 \times 0.20}{0.0353} = 11.3 \text{ in.} \)

2-No. 5: \(s = \frac{2 \times 0.31}{0.0353} = 17.6 \text{ in.} \)

Try 2-No. 4 @ 10 in.

\(\rho_t = \frac{A_v}{A_g} = \frac{2 \times 0.20}{8 \times 10} = 0.0050 > 0.0025 \text{ O.K.} \) \hspace{1cm} 11.9.9.2
Example 21.4 (cont’d) Calculations and Discussion

Maximum spacing = \[
\frac{8 \times 12}{5} = 19.2 \text{ in.}
\]

3h = 3 \times 8 = 24.0 \text{ in.}

18.0 \text{ in. (governs)}

Use 2-No. 4 @ 10 in.

4. Determine vertical shear reinforcement

\[
\rho_\ell = 0.0025 + 0.5 \left(2.5 - \frac{h_w}{\ell_w}\right) \left(\rho_t - 0.0025\right) \geq 0.0025
\]

\[
= 0.0025 + 0.5 (2.5 - 1.5) (0.0050 - 0.0025)
\]

\[
= 0.0038
\]

Maximum spacing = \[
\frac{8 \times 12}{3} = 32 \text{ in.}
\]

3h = 3 \times 8 = 24.0 \text{ in.}

18.0 \text{ in. (governs)}

Use 2-No. 4 @ 13 in. (\rho_\ell = 0.0038)

5. Design for flexure

\[M_u = V_u h_w = 200 \times 12 = 2,400 \text{ ft-kips}\]

Assume tension-controlled section (\(\phi = 0.90\))

with \(d = 0.8 \ell_w = 0.8 \times 96 = 76.8 \text{ in.}\)

(Note: an exact value of \(d\) will be determined by a strain compatibility analysis below)

\[R_n = \frac{M_u}{\phi bd^2} = \frac{2400 \times 12,000}{0.9 \times 8 \times 76.8^2} = 678 \text{ psi}\]

\[\rho = \frac{0.85 f_c'}{f_y} \left(1 - \sqrt{1 - \frac{2R_n}{0.85f_c'}}\right)\]

\[= \frac{0.85 \times 3}{60} \left(1 - \sqrt{1 - \frac{2 \times 678}{0.85 \times 3000}}\right) = 0.0134\]

\[A_s = \rho bd = 0.0134 \times 8 \times 76.8 = 8.24 \text{ in.}^2\]
Try 9-No. 8 ($A_s = 7.11 \text{ in.}^2$) at each end of wall, which provides less area of steel than that determined based on $d = 0.8\ell_w$.

Check moment strength of wall with 9-No. 8 bars using a strain compatibility analysis (see figure below for reinforcement layout).

From strain compatibility analysis (including No. 4 vertical bars):

$c = 13.1 \text{ in.}$

$\varepsilon_t = 0.0182 > 0.0050$

Therefore, section is tension-controlled as assumed and $\phi = 0.90$.

$M_n = 3451 \text{ ft-kips}$

$\phi M_n = 0.9 \times 3451 = 3106 \text{ ft-kips} > 2400 \text{ ft-kips} \quad \text{O.K.}$

Use 9-No. 8 bars each end ($A_s = 7.11 \text{ in.}^2$)
UPDATE FOR THE ‘08 CODE

The new Section 15.10.4 requires a minimum amount of reinforcement in a nonprestressed mat foundation for each principal direction and the required distribution of that reinforcement.

Section 11.6.5 is revised to increase the upper limit on the shear friction strength for concrete placed monolithically or placed against a hardened concrete surface intentionally roughened as specified in 11.6.9. The increased limit becomes applicable when using higher-strength concrete.

GENERAL CONSIDERATIONS

Provisions of Chapter 15 apply primarily for design of footings supporting a single column (isolated footings) and do not provide specific design provisions for footings supporting more than one column (combined footings). The code states that combined footings shall be proportioned to resist the factored loads and induced reactions in accordance with the appropriate design requirements of the code. Detailed discussion of combined footing design is beyond the scope of Part 22. However, as a general design approach, combined footings may be designed as beams in the longitudinal direction and as an isolated footing in the transverse direction over a defined width on each side of the supported columns. Code Refs. 15.1 and 15.2 are suggested for detailed design recommendations for combined footings.

15.2 LOADS AND REACTIONS

Footings must be designed to safely resist the effects of the applied factored axial loads, shears and moments. The size (base area) of a footing or the arrangement and number of piles is determined based on the allowable soil pressure or allowable pile capacity, respectively. The allowable soil or pile capacity is determined by principles of soil mechanics in accordance with general building codes. The following procedure is specified for footing design:

1. The footing size (plan dimensions) or the number and arrangement of piles is to be determined on the basis of unfactored (service) loads (dead, live, wind, earthquake, etc.) and the allowable soil pressure or pile capacity (15.2.2).

2. After having established the plan dimensions, the depth of the footing and the required amount of reinforcement are determined based on the appropriate design requirements of the code (15.2.1). The service pressures and the resulting shear and moments are multiplied by the appropriate load factors specified in 9.2 and are used to proportion the footing.

For purposes of analysis, an isolated footing may be assumed to be rigid, resulting in a uniform soil pressure for concentric loading, and a triangular or trapezoidal soil pressure distribution for eccentric loading (combined axial and bending effect). Only the computed bending moment that exists at the base of the column or pedestal is to be transferred to the footing. The minimum moment requirement for slenderness considerations in 10.10.6.5 need not be transferred to the footing (R15.2).
15.4 MOMENT IN FOOTINGS

At any section of a footing, the external moment due to the base pressure shall be determined by passing a vertical plane through the footing and computing the moment of the forces acting over the entire area of the footing on one side of the vertical plane. The maximum factored moment in an isolated footing is determined by passing a vertical plane through the footing at the critical sections shown in Fig. 22-1 (15.4.2). This moment is subsequently used to determine the required area of flexural reinforcement in that direction. The reinforcement provided must also meet the minimum area of reinforcing steel required for a mat foundation. Section 15.10.4 requires the reinforcement in each principal direction satisfy Section 7.12.2. For Grade 60, this required reinforcement ratio is 0.0018.

In one-way square or rectangular footings and two-way square footings, flexural reinforcement shall be distributed uniformly across the entire width of the footing (15.4.3). For two-way rectangular footings, the reinforcement must be distributed as shown in Table 22-1 (15.4.4).

![Figure 22-1 Critical Location for Maximum Factored Moment in an Isolated Footing (15.4.2)](image)

![Table 22-1 Distribution of Flexural Reinforcement](table)

<table>
<thead>
<tr>
<th>Footing Type</th>
<th>Square Footing</th>
<th>Rectangular Footing</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way</td>
<td> (15.4.3)</td>
<td> (15.4.3)</td>
</tr>
<tr>
<td>Two-way</td>
<td> (15.4.3)</td>
<td> (15.4.4)</td>
</tr>
</tbody>
</table>

Note: Maximum bar spacing, s, must not exceed 18 inches (15.10.4).
Shear strength of a footing supported on soil or rock in the vicinity of the supported member (column or wall) must be determined for the more severe of the two conditions stated in 11.11. Both wide-beam action (11.11.1.1) and two-way action (11.11.1.2) must be checked to determine the required footing depth. Beam action assumes that the footing acts as a wide beam with a critical section across its entire width. If this condition is the more severe, design for shear proceeds in accordance with 11.1 through 11.4. Even though wide-beam action rarely controls the shear strength of footings, the designer must ensure that shear strength for beam action is not exceeded. Two-way action for the footing checks “punching” shear strength. The critical section for punching shear is a perimeter \(b_0 \) around the supported member with the shear strength computed in accordance with 11.11.2.1. Tributary areas and corresponding critical sections for wide-beam action and two-way action for an isolated footing are illustrated in Fig. 22-2. Note that it is permissible to use a critical section with four straight sides for square or rectangular columns (11.11.1.3).

In the design of a footing for two-way action, \(V_c \) is the smallest value obtained from Eqs. (11-31), (11-32), and (11-33). Eq. (11-33) established the upper limit of \(V_c \) at \(4\lambda \sqrt{f_c' b_0 d} \). Eq. (11-31) accounts for the effect of \(\beta \), which is the ratio of the long side to the short side of the column, concentrated load, or reaction area. As \(\beta \) increases the concrete shear strength decreases (see Fig. 22-3). Eq. (11-32) was developed to account for the effect of \(b_0/d \), and is based on tests that indicated shear strength decreases as \(b_0/d \) increases.

If the factored shear force \(V_u \) at the critical section exceeds the governing shear strength given by \(\phi V_c \), the minimum of Eqs. (11-31), (11-32), or (11-33), shear reinforcement must be provided. For shear reinforcement consisting of bars or wires and single- or multiple-leg stirrups, the shear strength may be increased to a maximum value of \(6\sqrt{f_c'} b_0 d \) (11.11.3.2), provided the footing has an effective depth \(d \) greater than or equal to 6 in., but not less than 16 times the shear reinforcement bar diameter (11.11.3). However, shear reinforcement must be designed to carry the shear in excess of \(2\lambda \sqrt{f_c' b_0 d} \) (11.11.3.1).

For footing design (without shear reinforcement), the shear strength equations may be summarized as follows:
Figure 22-3 Shear Strength of Concrete in Footings

- Wide beam action

\[V_u \leq \phi V_n \]
\[\leq \phi \left(2 \lambda \sqrt{f_c} b_w d \right) \]
where \(b_w \) and \(V_u \) are computed for the critical section defined in 11.11.1.1 (see Fig. 22-2).

- Two-way action

\[V_u \leq \text{minimum of} \]
\[\begin{align*}
\left(2 + \frac{4}{\beta} \right) \lambda \sqrt{f_c} b_o d \\
\left(\frac{\alpha_s d}{b_o} + 2 \right) \lambda \sqrt{f_c} b_o d \\
4 \lambda \sqrt{f_c} b_o d
\end{align*} \]
\[\text{Eq. (11-31)} \]
\[\text{Eq. (11-32)} \]
\[\text{Eq. (11-33)} \]

where

- \(\beta \) = ratio of long side to short side of the column, concentrated load or reaction area
- \(\alpha_s \) = 40 for interior columns
 = 30 for edge columns
 = 20 for corner columns
- \(b_o \) = perimeter of critical section shown in Fig. 22-2
15.8 TRANSFER OF FORCE AT BASE OF COLUMN, WALL, OR REINFORCED PEDESTAL

With the publication of ACI 318-83, 15.8 addressing transfer of force between a footing and supported member (column, wall, or pedestal) was revised to address both cast-in-place and precast construction. Section 15.8.1 gives general requirements applicable to both cast-in-place and precast construction. Sections 15.8.2 and 15.8.3 give additional rules for cast-in-place and precast construction, respectively. For force transfer between a footing and a precast column or wall, anchor bolts or mechanical connectors are specifically permitted by 15.8.3, with anchor bolts to be designed in accordance with Appendix D. (Prior to the ’83 code, connection between a precast member and footing required either longitudinal bars or dowels crossing the interface, contrary to common practice.) Also note that walls are specifically addressed in 15.8 for force transfer to footings.

Section 15.8.3 contains requirements for the connection between precast columns and walls to supporting members. This section refers to 16.5.1.3 for minimum connection strength. Additionally, for precast columns with larger cross-sectional areas than required for loading, it is permitted to use a reduced effective area based on the cross-section required, but not less than one-half the total area when determining the nominal strength in tension.

The minimum tensile strength of a connection between a precast wall panel and its supporting member is required to have a minimum of two ties per panel with a minimum nominal tensile capacity of 10 kips per tie (16.5.1.3(b)).

All forces applied at the base of a column or wall (supported member) must be transferred to the footing (supporting member) by bearing on concrete and/or by reinforcement. Tensile forces must be resisted entirely by reinforcement. Bearing on concrete for both supported and supporting member must not exceed the concrete bearing strength permitted by 10.14 (see discussion on 10.14 in Part 6).

For a supported column, the bearing capacity ϕP_{nb} is

$$\phi P_{nb} = \phi (0.85f'_{c}A_{1})$$ \hspace{1cm} 10.14.1$$

where

- f'_{c} = compressive strength of the column concrete
- A_{1} = loaded area (column area)
- $\phi = 0.65$ \hspace{1cm} 9.3.2.4

For a supporting footing,

$$\phi P_{nb} = \phi (0.85f'_{c}A_{1}) \sqrt[2]{\frac{A_{2}}{A_{1}}} \leq 2\phi (0.85f'_{c}A_{1})$$

where

- f'_{c} = compressive strength of the footing concrete
- A_{2} = area of the lower base of the largest frustrum of a pyramid, cone, or tapered wedge contained wholly within the footing and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal (see Fig. R10.14).

Example 22.4 illustrates the design for force transfer at the base of a column.

When bearing strength is exceeded, reinforcement must be provided to transfer the excess load. A minimum area of reinforcement must be provided across the interface of column or wall and footing, even where concrete bearing strength is not exceeded. With the force transfer provisions addressing both cast-in-place and precast
construction, including force transfer between a wall and footing, the minimum reinforcement requirements are based on the type of supported member, as shown in Table 22-2.

| Table 22-2 Minimum Reinforcement for Force Transfer Between Footing and Supported Member |
|--------------------------------------|------------------|------------------|
| | Cast-in-Place | Precast |
| Columns | 0.005A_g | $\frac{200A_g}{f_y}$ |
| (15.8.2.1) | | (16.5.1.3 (a)) |
| Walls | see 14.3.2 | see 16.5.1.3(b) and (c) |
| (15.8.2.2) | | |

For cast-in-place construction, reinforcement may consist of extended reinforcing bars or dowels. For precast construction, reinforcement may consist of anchor bolts or mechanical connectors. Reference 22.1 devotes an entire chapter on connection design for precast construction.

The shear-friction design method of 11.6.4 should be used for horizontal force transfer between columns and footings (15.8.1.4; see Example 22.6). Consideration of some of the lateral force being transferred by shear through a formed shear key is questionable. Considerable slip is required to develop a shear key. Shear keys, if provided, should be considered as an added mechanical factor of safety only, with no design shear force assigned to the shear key.

PLAIN CONCRETE PEDESTALS AND FOOTINGS

Plain concrete pedestals and footings are designed in accordance with Chapter 22. See Part 30 for an in-depth discussion and examples.

REFERENCE

Example 22.1—Design for Base Area of Footing

Determine the base area A_f required for a square spread footing with the following design conditions:

Service dead load = 350 kips
Service live load = 275 kips
Service surcharge = 100 psf

Assume average weight of soil and concrete above footing base = 130 pcf

Allowable soil pressure at bottom of footing = 4.5 ksf

Column dimensions = 30 × 12 in.

Calculations and Discussion

1. Determination of base area:

The base area of the footing is determined using service (unfactored) loads with the net permissible soil pressure.

Weight of surcharge = 0.10 ksf

Net allowable soil pressure = 4.5 - 0.75 = 3.75 ksf

Required base area of footing:

$$A_f = \frac{350 + 275}{3.75} = 167 \text{ ft}^2$$

Use a 13 × 13 ft square footing ($A_f = 169 \text{ ft}^2$)

2. Factored loads and soil reaction:

To proportion the footing for strength (depth and required reinforcement) factored loads are used.

$$P_u = 1.2 \times 350 + 1.6 \times 275 = 860 \text{ kips}$$

$$q_s = \frac{P_u}{A_f} = \frac{860}{169} = 5.10 \text{ ksf}$$

22-7
Example 22.2—Design for Depth of Footing

For the design conditions of Example 22.1, determine the overall thickness of footing required.

\[f'_c = 3000 \text{ psi} \]
\[P_u = 860 \text{ kips} \]
\[q_s = 5.10 \text{ ksf} \]

normalweight concrete

Calculations and Discussion

Determine depth based on shear strength without shear reinforcement. Depth required for shear usually controls the footing thickness. Both wide-beam action and two-way action for strength computation need to be investigated to determine the controlling shear criteria for depth.

Assume overall footing thickness = 33 in. and average effective thickness \(d = 28 \text{ in.} = 2.33 \text{ ft} \)

1. Wide-beam action:
 \[V_u = q_s \times \text{tributary area} \]
 \[b_w = 13 \text{ ft} = 156 \text{ in.} \]
 Tributary area = \(13 \times (6.0 - 2.33) = 47.7 \text{ ft}^2 \)
 \[V_u = 5.10 \times 47.7 = 243 \text{ kips} \]
 \[\phi V_n = \phi \left(2 \lambda \sqrt{f'_c b_w d} \right) \]
 \[= 0.75 \left(2 \times 1.0 \times \sqrt{3000 \times 156 \times 28} / 1000 \right) \]
 \[= 359 \text{ kips} > V_u \quad \text{O.K.} \]

2. Two-way action:
 \[V_u = q_s \times \text{tributary area} \]
 Tributary area = \(\left(13 \times 13 \right) \times \left(\frac{30 + 28}{144} \right) = 152.9 \text{ ft}^2 \)
 \[V_u = 5.10 \times 152.9 = 780 \text{ kips} \]
Example 22.2 (cont’d) Calculations and Discussion

\[
\frac{V_c}{\lambda \sqrt{f'_{c} b_0 d}} = \text{minimum of} \begin{cases}
2 + \frac{4}{\beta} \\
\frac{\alpha_s d}{b_0} + 2 \\
\frac{4}{4}
\end{cases}
\]

\[
b_0 = 2 (30 + 28) + 2 (12 + 28) = 196 \text{ in.}
\]

\[
\beta = \frac{30}{12} = 2.5
\]

\[
\frac{b_0}{d} = \frac{196}{28} = 7
\]

\[
\alpha_s = 40 \text{ for interior columns}
\]

\[
\frac{V_c}{\lambda \sqrt{f'_{c} b_0 d}} = \begin{cases}
2 + \frac{4}{2.5} = 3.6 \text{ (governs)} \\
\frac{40}{7} + 2 = 7.7 \\
\frac{4}{4}
\end{cases}
\]

\[
\phi V_c = 0.75 \times 3.6 \times 1.0 \times \sqrt{3000} \times 196 \times 28 / 1000
\]

\[
= 812 \text{ kips} > V_u = 780 \text{ kips} \quad \text{O.K.}
\]
Example 22.3—Design for Footing Reinforcement

For the design conditions of Example 22.1, determine required footing reinforcement.

\[f_{c'} = 3000 \text{ psi} \]
\[f_y = 60,000 \text{ psi} \]
\[P_u = 860 \text{ kips} \]
\[q_s = 5.10 \text{ ksf} \]

Calculations and Discussion

1. Critical section for moment is at face of column

\[M_u = 5.10 \times 13 \times 6^{2}/2 = 1193 \text{ ft-kips} \]

2. Compute required \(A_s \) assuming tension-controlled section (\(\phi = 0.9 \))

Required \(R_n = \frac{M_u}{\phi bd^2} = \frac{1193 \times 12 \times 1000}{0.9 \times 156 \times 28^2} = 130 \text{ psi} \)

\[\rho = \frac{0.85f_{c'}}{f_y} \left(1 - \sqrt{1 - \frac{2R_n}{0.85f_{c'}}}\right) \]
\[= \frac{0.85 \times 3}{60} \left(1 - \sqrt{1 - \frac{2 \times 130}{0.85 \times 3000}}\right) = 0.0022 \]

\[\rho \text{ (gross area)} = \frac{d}{h} \times 0.0022 = \frac{28}{33} \times 0.0022 = 0.0019 \]

Check minimum \(A_s \) required for footings of uniform thickness; for Grade 60 reinforcement:

\[\rho_{\text{min}} = 0.0018 < 0.0019 \quad \text{O.K.} \]

Required \(A_s = \rho bd \)

\[A_s = 0.0022 \times 156 \times 28 = 9.60 \text{ in.}^2 \]

Try 13-No. 8 bars (\(A_s = 10.27 \text{ in.}^2 \)) each way

Check maximum bar spacing:

\[\frac{13 \times 12 - 2(3) - 1}{12} = 12.42 < 18 \text{ in.} \quad \text{O.K.} \]

Note that a lesser amount of reinforcement is required in the perpendicular direction due to lesser \(M_u \), but for ease of placement, the same uniformly distributed reinforcement will be used each way (see Table 22-1). Also note that \(d_t = 27 \text{ in.} \) for perpendicular direction.
3. Check net tensile strain \((\varepsilon_t) \)

\[
a = \frac{A_s f_y}{0.85 f'_c b}
\]

\[
= \frac{10.27 \times 60}{0.85 \times 3 \times 156} = 1.55
\]

\[
c = a \frac{\beta_1}{0.85} = 1.82
\]

\[
\frac{\varepsilon_t + 0.003}{d_t} = \frac{0.003}{c}
\]

\[
\varepsilon_t = \left(\frac{0.003}{c} \right) d_t - 0.003
\]

\[
= \frac{0.003 \times 28 - 0.003}{1.82} = 0.043 > 0.004
\]

Therefore, section is tension-controlled and initial assumption is valid, O.K.

Thus, use 13-No. 8 bars each way.

4. Check development of reinforcement.

Critical section for development is the same as that for moment (at face of column).

\[
\ell_d = \left[\frac{3 f_y}{40 \lambda \sqrt{f'_c}} \left(\psi_i \psi_e \psi_s \frac{c_b + K_{tr}}{d_b} \right) \right] d_b
\]

\hspace{1cm} \text{Eq. (12-1)}
Clear cover (bottom and side) = 3.0 in.

Center-to-center bar spacing = \(\frac{156 - 2 \times 3 - 2 \times 0.5}{12} = 12.4 \) in.

\[
\begin{align*}
 c_b &= \text{minimum of} \left\{ \frac{3.0 + 0.5}{2} = 3.5 \text{ in. (governs)} \right. \\
 &= \left. \frac{12.4}{2} = 6.2 \text{ in.} \right.
\end{align*}
\]

\(K_{tr} = 0 \) (no transverse reinforcement)

\[
\frac{c_b + K_{tr}}{d_b} = \frac{3.5 + 0}{1.0} = 3.5 > 2.5, \text{ use } 2.5
\]

\(\psi_t = 1.0 \) (less than 12 in. of concrete below bars)

\(\psi_e = 1.0 \) (uncoated reinforcement)

\(\psi_t \psi_e = 1.0 < 1.7 \)

\(\psi_s = 1.0 \) (larger than No. 7 bars)

\(\lambda = 1.0 \) (normal weight concrete)

\[
\ell_d = \left[\frac{3}{40} \frac{60,000}{1.0 \sqrt{3000}} \frac{1.0 \times 1.0 \times 1.0}{2.5} \right] \times 1.0 = 32.9 \text{ in. > 12.0 in. O.K.}
\]

Since \(\ell_d = 32.9 \) in. is less than the available embedment length in the short direction

\[
\left(\frac{156}{2} - \frac{30}{2} - 3 = 60 \text{ in.} \right), \text{ the No. 8 bars can be fully developed.}
\]

Use 13-No. 8 each way.
Example 22.4—Design for Transfer of Force at Base of Column

For the design conditions of Example 22.1, check force transfer at interface of column and footing.

\(f'_c \) (column) = 5000 psi, normal weight concrete

\(f'_c \) (footing) = 3000 psi, normal weight concrete

\(f_y = 60,000 \text{ psi} \)

\(P_u = 860 \text{ kips} \)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8.1.1</td>
<td>(\phi P_{nb} = \phi (0.85 f'_c A_1))</td>
</tr>
<tr>
<td>10.14.1</td>
<td>(= 0.65 (0.85 \times 5 \times 12 \times 30) = 995 \text{ kips} > P_u = 860 \text{ kips}) O.K.</td>
</tr>
<tr>
<td>9.3.2.4</td>
<td>15.8.1.1</td>
</tr>
<tr>
<td>10.14.1</td>
<td>2. Bearing strength of footing ((f'_c = 3000 \text{ psi})):</td>
</tr>
<tr>
<td></td>
<td>The bearing strength of the footing is increased by a factor (\sqrt{A_2 / A_1} \leq 2) due to the large footing area permitting a greater distribution of the column load.</td>
</tr>
</tbody>
</table>

Diagram
Example 22.4 (cont’d) Calculations and Discussion

A₁ is the column (loaded) area and A₂ is the plan area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 horizontal. For the 30 × 12 in. column supported on the 13 × 13 ft square footing,

\[A_2 = (66 + 12 + 66) \times (63 + 30 + 63). \]

\[\frac{A_2}{A_1} = \frac{144 \times 156}{30 \times 12} = 7.9 > 2, \text{ use } 2 \]

Note that bearing on the column concrete will always govern until the strength of the column concrete exceeds twice that of the footing concrete.

\[\phi P_{nb} = 2 \left[\phi (0.85 f_c A_1) \right] \]

\[= 2 \left[0.65 (0.85 \times 3 \times 12 \times 30) \right] = 1193 \text{ kips} > P_u = 860 \text{ kips} \quad \text{O.K.} \]

3. Required dowel bars between column and footing:

Even though bearing strength on the column and footing concrete is adequate to transfer the factored loads, a minimum area of reinforcement is required across the interface.

\[A_s (\text{min}) = 0.005 (30 \times 12) = 1.80 \text{ in.}^2 \]

Provide 4-No. 7 bars as dowels (Aₜ = 2.40 in.²)

4. Development of dowel reinforcement in compression:

In column:

\[\ell_{dc} = \left(\frac{0.02 f_y}{\lambda \sqrt{f_c}} \right) d_b \geq \left(0.0003 f_y \right) d_b \]

For No. 7 bars:

\[\ell_{dc} = \left(\frac{0.02 \times 60,000}{1.0 \sqrt{5000}} \right) 0.875 = 14.9 \text{ in.} \]

\[\ell_{dc(\text{min})} = 0.0003 \times 60,000 \times 0.875 = 15.8 \text{ in.} \quad \text{(governs)} \]

In footing:

\[\ell_{dc} = \left(\frac{0.02 \times 60,000}{1.0 \sqrt{3000}} \right) 0.875 = 19.2 \text{ in.} \quad \text{(governs)} \]

\[\ell_{dc(\text{min})} = 0.0003 \times 60,000 \times 0.875 = 15.8 \text{ in.} \]

Available length for development in footing

\[= \text{footing thickness - cover - 2 (footing bar diameter) - dowel bar diameter} \]

\[= 33 - 3 - 2 (1.0) - 0.875 = 27.1 \text{ in.} > 19.2 \text{ in.} \]

Therefore, the dowels can be fully developed in the footing.
Example 22.5—Design for Transfer of Force by Reinforcement

For the design conditions given below, provide for transfer of force between the column and footing.

12 × 12 in. tied reinforced column with 4-No. 14 longitudinal bars

\(f'_c = 4000 \text{ psi (column and footing), normalweight concrete} \)

\(f_y = 60,000 \text{ psi} \)

\(P_D = 200 \text{ kips} \)

\(P_L = 100 \text{ kips} \)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8.1.1</td>
</tr>
<tr>
<td>15.8.1.2</td>
</tr>
<tr>
<td>15.8.2.1</td>
</tr>
</tbody>
</table>

1. Factored load \(P_u = (1.2 \times 200) + (1.6 \times 100) = 400 \text{ kips} \) \(Eq. (9-2) \)

2. Bearing strength on column concrete:

\[
\phi P_{nb} = \phi (0.85 f'_c A_1) = 0.65 (0.85 \times 4 \times 12 \times 12)
\]

\[
= 318.2 \text{ kips} < P_u = 400 \text{ kips} \quad \text{N.G.}
\]

The column load cannot be transferred by bearing on concrete alone. The excess load (400 - 318.2 = 81.8 kips) must be transferred by reinforcement.

3. Bearing strength on footing concrete:

\[
\phi P_{nb} = \frac{A_2}{A_1} [\phi (0.85 f'_c A_1)]
\]

\[
\frac{A_2}{A_1} = \sqrt{\frac{7 \times 7}{1 \times 1}} = 7 > 2, \text{ use 2}
\]

\[
\phi P_{nb} = 2 (318.2) = 636.4 \text{ kips} > 400 \text{ kips} \quad \text{O.K.}
\]

4. Required area of dowel bars:

\[
A_s (\text{required}) = \frac{P_u - \phi P_{nb}}{\phi f_y}
\]

\[
= \frac{81.8}{0.65 \times 60} = 2.10 \text{ in.}^2
\]

\[
A_s (\text{min}) = 0.005 (12 \times 12) = 0.72 \text{ in.}^2
\]

Try 4-No. 8 bars \((A_s = 3.16 \text{ in.}^2) \)
5. Development of dowel reinforcement

a. For development into the column, the No. 14 column bars may be lap spliced with the No. 8 footing dowels. The dowels must extend into the column a distance not less than the development length of the No. 14 column bars or the lap splice length of the No. 8 footing dowels, whichever is greater.

For No. 14 bars:

\[\ell_{dc} = \left(\frac{0.02f_y}{\lambda \sqrt{f_c'}} \right) d_b = \left(\frac{0.02 \times 60,000}{1.0 \sqrt{4000}} \right) \times 1.693 = 32.1 \text{ in. (governs)} \]

\[\ell_{dc(min)} = \left(0.0003f_y \right) d_b = 0.0003 \times 60,000 \times 1.693 = 30.5 \text{ in.} \]

For No. 8 bars:

\[\text{lap length} = 0.0005f_yd_b \]

\[= 0.0005 \times 60,000 \times 1.0 = 30 \text{ in.} \]

Development length of No. 14 bars governs.

The No. 8 dowel bars must extend not less than 33 in. into the column.

b. For development into the footing, the No. 8 dowels must extend a full development length.

\[\ell_{dc} = \left(\frac{0.02f_y}{\lambda \sqrt{f_c'}} \right) d_b = \left(\frac{0.02 \times 60,000}{1.0 \sqrt{4000}} \right) \times 1.0 = 19.0 \text{ in. (governs)} \]

\[\ell_{dc(min)} = \left(0.0003f_y \right) d_b = 0.0003 \times 60,000 \times 1.0 = 18.0 \text{ in.} \]

This length may be reduced to account for excess reinforcement.

\[\frac{A_s \text{ (required)}}{A_s \text{ (provided)}} = \frac{2.10}{3.16} = 0.66 \]

Required \(\ell_{dc} = 19 \times 0.66 = 12.5 \text{ in.} \)

Available length for dowels development \(\approx 18 - 5 = 13 \text{ in.} > 12.5 \text{ in. required, O.K.} \)

Note: In case the available development length is less than the required development length, either increase footing depth or use larger number of smaller size dowels. Also note that if the footing dowels are bent for placement on top of the footing reinforcement (as shown in the figure), the bent portion cannot be considered effective for developing the bars in compression (12.5.5).
Example 22.6—Design for Transfer of Horizontal Force at Base of Column

For the column and footing of Example 22.5, design for transfer of a horizontal factored force of 85 kips acting at the base of the column. The footing surface is not intentionally roughened.

Design data:

Footing: size = 9 x 9 ft
thickness = 1 ft-6 in.

Column: size = 12 x 12 in. (tied)
4-No. 14 longitudinal reinforcement

$f_c' = 4000$ psi (footing and column) normal weight

$f_y = 60,000$ psi

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The shear-friction design method of 11.6 is applicable.</td>
<td>15.8.1.4</td>
</tr>
</tbody>
</table>

Check maximum shear transfer permitted:

$V_u \leq \phi (0.2f_c'A_c)$ but not greater than $\phi (800A_c)$.

$\phi V_n = 0.75 (0.2 \times 4 \times 12 \times 12) = 86.4$ kips

$\phi (800A_c) = 0.75 \times 800 \times 12 \times 12 / 1000 = 86.4$ kips

$V_u = 85$ kips $< \phi (0.2f_c'A_c)$ and $\phi (800A_c)$ O.K.

The shear transfer of 85 kips is permitted at the base of 12 x 12 in. column.

Strength requirement for shear:

$V_u \leq \phi V_n$.
$V_n = V_u / \phi = A_{vf}f_y\mu$.

Use $\mu = 0.62\lambda = 0.6$ (concrete not intentionally roughened)
and $\phi = 0.75$ (shear)

Required $A_{vf} = \frac{V_u}{\phi f_y \mu} = \frac{85}{0.75 \times 60 \times 0.6} = 3.15$ in.2

A_s (provided) = 3.16 in.2 O.K.

Therefore, use 4-No. 8 dowels ($A_s = 3.16$ in.2)
If the 4-No. 8 dowels were not adequate for transfer of horizontal shear, the footing concrete in contact with the column concrete could be roughened to an amplitude of approximately 1/4 in. to take advantage of the higher coefficient of friction of 1.0 and a potentially higher V_n limit in 11.6.5:

$$\text{Required } A_{vf} = \frac{85}{0.75 \times 60 \times 1.0} = 1.89 \text{ in.}^2$$

2. Tensile development of No. 8 dowels, as required by 11.6.8

a. Within the column

$$\ell_d = \left[\frac{3 \frac{f_y}{40 \lambda \sqrt{f_c'}} \psi_t \psi_e \psi_s}{(c_b + K_{tr}) \frac{d_b}{d_b}} \right]$$

Eq. (12-1)

Clear cover to No. 8 bar $= 3.25$ in.

Center-to-center bar spacing of No. 8 bars $= 4.5$ in.

$$c_b = \text{minimum of } \left\{ \begin{array}{l} 3.25 + 0.5 = 3.75 \text{ in.} \\ \frac{4.5}{2} = 2.25 \text{ in.} \end{array} \right\}$$

$$2.1$$

Assume $K_{tr} = 0$ (conservatively consider no transverse reinforcement)

$$\frac{c_b + K_{tr}}{d_b} = \frac{2.25 + 0}{1.0} = 2.25 < 2.5, \text{ use } 2.25$$

$$\psi_t = 1.0$$

$$\psi_e = 1.0$$

$$\psi_t \psi_e = 1.0 < 1.7$$

$$\psi_s = 1.0$$

$$\lambda = 1.0$$

$$\ell_d = \left(\frac{3}{40} \right) \left(\frac{60,000}{1.0 \sqrt{4000}} \right) \left(\frac{1.0 \times 1.0 \times 1.0}{2.25} \right) \times 1.0 = 31.6 \text{ in.}$$

Provide at least 32 in. of embedment into the column.

b. Within the footing

Use standard hooks at the ends of the No. 8 bars
Example 22.6 (cont’d) Calculations and Discussion

\[\ell_{dh} = \left(0.02 \psi_{cfy} / \lambda \sqrt{f'_c} \right) d_b. \]

\[= \left(0.02 \times 1.0 \times 1.0 \times \frac{60,000}{1.0 \sqrt{4000}} \right) \times 1.0 = 19.0 \text{ in.} \]

Modifications:

- cover normal to plane of 90° hook > 2.5 in.
- cover on bar extension beyond hook ≥ 2 in.

\[\ell_{dh} = 0.7 \times 19 = 13.3 \text{ in.} \]

Min. \(\ell_{dh} = 8 \times d_b = 8 \text{ in.} < 13.3 \text{ in.} \)

Available development length =

\[= 18 - 5 = 13 \text{ in.} < 13.3 \text{ in.} \text{ N.G.} \]

Increase footing depth by 2 in. Total depth = 20 in.

Use 15 in. hook embedment into footing to secure dowels at the footing reinforcement.

Total length of No. 8 dowel = 32 + 15 = 47 in. Use 4 ft-0 in. long dowels.

Note: The top of the footing at the interface between column and footing must be clean and free of laitance before placement of the column concrete.

\[\text{4-No. 14} \]

\[\text{No. 8 dowel} \]

\[\text{No. 4 tie} \]

\[\text{1.5" cover} \]

\[\text{6d}_b = 6" \text{ diameter bend (Table 7.2)} \]

\[\text{1'-4"} \]

\[90° \text{ Standard hook} \]

\[= 12d_b + 3d_b + d_b \]

\[= 16d_b = 16" = 1' - 4" \]

No. 8 dowel detail
For the pile cap shown, determine the required thickness of the footing (pile cap).

Cap size = 8.5 × 8.5 ft

Column size = 16 × 16 in.

Pile diameter = 12 in.

\(f'_C \) = 4000 psi, normalweight concrete

Load per pile:

\(P_D = 20 \text{ kips} \)

\(P_L = 10 \text{ kips} \)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11</td>
</tr>
<tr>
<td>15.7</td>
</tr>
<tr>
<td>Eq. (9-2)</td>
</tr>
<tr>
<td>Eq. (11-1)</td>
</tr>
<tr>
<td>11.11.1.1</td>
</tr>
</tbody>
</table>

1. Depth required for shear usually controls pile cap thickness. Both wide-beam action and two-way action for the footing must be investigated.

Assume an overall cap thickness of 1 ft-9 in. with an average \(d \approx 14 \text{ in.} \)

2. Factored pile loading:

\[P_u = 1.2 \times 20 + 1.6 \times 10 = 40 \text{ kips} \]

3. Strength requirements for shear

\[V_u \leq \phi V_n \]

a. Wide-beam action for cap:

3 piles fall within tributary area

\[V_u \text{ (neglecting footing wt.)} = 3 \times 40 = 120 \text{ kips} \]

\[\phi V_n = \phi \left(2\lambda \sqrt{f'_C} b_w d \right) \]

\[b_w = 8 \text{ ft-6 in.} = 102 \text{ in.} \]

\[\phi V_n = 0.75 \left(2\sqrt{4000} \times 102 \times 14 \right) / 1000 = 135.4 \text{ kips} > V_u = 120 \text{ kips} \quad \text{O.K.} \]
Example 22.7 (cont’d) Calculations and Discussion

b. Two-way action:

8 piles fall within the tributary area

\[V_u = 8 \times 40 = 320 \text{ kips} \]

\[
\frac{V_c}{\lambda \sqrt{f_{ct} b_0 d}} = \text{smallest value of} \left\{ \begin{array}{c}
\frac{2 + \frac{4}{\beta}}{2} \cdot \frac{\alpha_s d}{b_o} + 2 \\
\frac{4}{b_o}
\end{array} \right\}
\]

\[\beta = \frac{16}{16} = 1.0 \]

\[b_o = 4(16 + 14) = 120 \text{ in.} \]

\[\alpha_s = 40 \text{ for interior columns} \]

\[\frac{b_o}{d} = \frac{120}{14} = 8.6 \]

\[
\frac{V_c}{\lambda \sqrt{f_{ct} b_0 d}} = \left\{ \begin{array}{c}
\frac{2 + \frac{4}{1}}{2} = 6 \\
\frac{40}{8.6} + 2 = 6.7 \\
\frac{4}{8.6} \text{ (governs)}
\end{array} \right\}
\]

\[\phi V_c = 0.75 \times 4\sqrt{4000} \times 120 \times 14/1000 \]

\[= 319 \text{ kips} \approx V_u = 320 \text{ kips O.K.} \]

4. Check “punching” shear strength at corner piles. With piles spaced at 3 ft-0 in. on center, critical perimeters do not overlap.

\[V_u = 40 \text{ kips per pile} \]

Code Reference

11.11.1.2

Equations (11-31), (11-32), (11-33)
Example 22.7 (cont’d)

Calculations and Discussion

\[
\frac{V_c}{\lambda \sqrt{f_c^2 b_0 d}} = \text{minimum of} \begin{cases}
2 + \frac{4}{\beta} \\
\frac{\alpha_s d}{b_0} + 2 \\
\frac{4}{4}
\end{cases}
\]

\(\beta = 1.0\) (square reaction area of equal area)

\(b_o = \frac{\pi}{4} (12 + 2 \times 7) + 2 \times 15 = 50.4\) in.

\(\alpha_s = 20\) (for corner columns)

\[
\frac{b_o}{d} = \frac{50.4}{14} = 3.6
\]

\[
\frac{V_c}{\lambda \sqrt{f_c^2 b_0 d}} = \begin{cases}
2 + \frac{4}{1} = 6 \\
\frac{20}{3.6} + 2 = 7.6 \\
\frac{4}{4} \text{ (governs)}
\end{cases}
\]

\(\phi V_c = 0.75 \times 4\sqrt{4000} \times 50.4 \times 14/1000 = 134\) kips \(> V_u = 40\) kips O.K.
Chapter 16 has not changed in the 2005 or 2008 Code cycle. This Chapter was completely rewritten in the 1995 Code and minor revisions were made in 2002. Prior to the 1995 Code Chapter 16 was largely performance oriented. The current chapter is more prescriptive, although the word “instructive” may be more appropriate, as the chapter provides much more guidance to the designer of structures which incorporate precast concrete. Not only does the chapter itself provide more requirements and guidelines, but the commentary contains some 25 references, as opposed to 4 in the 1989 code, thus encouraging the designer to make maximum use of the available literature.

The increase in instructive material is most notable in 16.5, Structural Integrity. Requirements for structural integrity were introduced in 7.13 of the 1989 code. For precast construction, this section required only that tension ties be provided in all three orthogonal directions (two horizontal and one vertical) and around the perimeter of the structure, without much further guidance. Reference 23.1 was given for precast bearing wall buildings. The recommendations given in that reference are now codified in 16.5.2. Section 16.5.1 applies primarily to precast structures other than bearing wall buildings and, as is the case with most of the rewritten Chapter 16, is largely a reflection of time-tested industry practice. Note that tilt-up concrete construction is a form of precast concrete. Reference 23.3 addresses all phases of design and construction of tilt-up concrete structures.

16.2 GENERAL

The code requires that precast members and connections be designed for “... loading and restraint conditions from initial fabrication to end use in the structure ...” Often, especially in the case of wall panels, conditions during handling are far more severe than those experienced during service. For this reason, and also because practices and details vary among manufacturers, precast concrete components are most often designed by specialty engineers employed by the manufacturer. Calculations, as well as shop drawings (16.2.4) are then submitted to the engineer-of-record for approval. This procedure is also usually followed in the design of connections. For more information on the relationship between the engineer-of-record and the specialty engineer, see Refs. 23.4 and 23.5.

As stated above, since 1995, the commentary of the code encourages the use of other publications for the design of precast concrete structures. References 23.2, 23.6, and 23.7 are particularly useful to the designer. Of these, the most widely used is Ref. 23.7, the PCI Design Handbook.

As pointed out in 16.2.2, precast structural systems do have an added requirement to be addressed compared to cast-in-place structures. The forces and deformations in the connections and adjacent members due to volumetric changes (shrinkage, creep and temperature) and deformations due to differential settlements, must be considered in the design.

Section 16.2.3 states that tolerances must be specified. This is usually done by reference to Industry documents23.8, 23.9, 23.10, as noted in the commentary. Design of precast concrete members and connections is particularly sensitive to tolerances. Therefore, they should be specified in the contract documents or shop drawings together with required concrete strengths at different stages of construction [16.2.4(b)] as well as the details for temporary loads [16.2.4(a)].
16.3 DISTRIBUTION OF FORCES AMONG MEMBERS

Section 16.3.1 covers distribution of forces perpendicular to the plane of members (gravity load on roofs and floors, lateral loads on walls, etc). The Code does not give any specific provisions on this subject, as the actual distribution is highly dependent on the relative stiffness of the adjacent members and the type of connection. Instead the commentary provides numerous references. Most of the referenced research relates to hollow-core slabs, and is also applicable to solid slabs that are connected by continuous grout keys. Members that are connected together by other means, such as weld plates on double tees, have through extensive use been found to be capable of distributing concentrated loads to adjacent members. It is common to assume for design purposes that up to 25% of a concentrated load can be transferred to each adjacent member; the connections should be designed accordingly. Since load transfer is dependent on compatible deflections, less distribution occurs nearer the support, as shown in Fig. 23-1(a) for hollow core slabs. Flanges of double tees are also designed for transverse load distribution over an effective width as illustrated in Fig. 23-1(b). Other types of decks may not necessarily follow the same pattern, because of different torsional resistance properties, but the same principles are applicable. A typical design is shown in Example 23.1.

Compatibility of the deflections of adjacent units is an important design consideration. For example, in the driving lane of a precast concrete double-tee parking deck, even if each member has adequate strength to carry a full wheel load, it is undesirable for each unit to deflect independently. It is common practice to use more closely spaced connections in those cases, to assure sharing of the load and to eliminate differential deflections between members.

Section 16.3.2 covers distribution of in-plane forces. It requires a continuous load path for such forces. If these forces are tensile, they must be resisted by structural steel or steel reinforcement. Since these in-plane forces are usually caused by lateral loads such as those due to wind or earthquakes, and since such lateral loads can occur in any direction, nearly all of the continuous load path must be provided by structural steel or steel reinforcement. In that respect, the reinforcement splices and connections (such as bolts, welded plates, headed studs, etc) designed to meet the requirements of this section may also provide the continuous ties required by 16.5.

These in-plane connections also resist or accommodate forces and deformations resulting from shrinkage, creep and thermal effects. In case of unrestrained members volume changes and rotations have to be accommodated. If the structural configurations warrant restraint, the connections and the members should be designed to provide strength and ductility.

16.4 MEMBER DESIGN

This section is primarily concerned with minimum reinforcement requirements for precast members. Section 16.4.1 waives transverse steel requirements in prestressed concrete members 12 ft or less in width, except where such steel is required for flexure. The commentary notes that an example of an exception to the waiver is the flanges of single and double tees. This section is intended primarily for hollow core and solid slabs where the transverse connection is typically grouted joints and no significant shrinkage or temperature related stresses can develop in the short direction.

Section 16.4.2 reduces the minimum reinforcement in precast, nonprestressed walls, from that required for cast-in-place reinforced concrete walls in Chapter 14, to 0.001 times the gross cross-sectional area of the wall panels, in accordance with common industry practice. This is in recognition of the fact that much of the shrinkage of precast wall panels occurs prior to attachment to the structure. Spacing of reinforcement in precast walls should not exceed 5 times the wall thickness or 30 in. for interior walls or 18 in. for exterior walls.

When wall panels are load-bearing, they are usually designed as compression members in accordance with Chapter 10. When they are not load-bearing (and often even when they are), the stresses during handling are usually critical. In those cases, it is common to place the lifting and dunnage points so that the stresses during handling do not exceed the modulus of rupture (with a safety factor), especially for architectural precast panels. If cracking is likely, crack control reinforcement in accordance with 10.6.4 is required.
(a) Hollow core slab

(b) Double tee

Figure 23-1 Assumed Load Distribution
16.5 STRUCTURAL INTEGRITY

The provisions of 16.5.1.1 are intended to assure that there is a continuous load path from every precast member to the lateral load resisting system. The commentary gives several examples of how this may be accomplished. Section 16.5.1.2 is adopted from a similar minimum lateral tie force (e.g. roof or floor diaphragm to shearwalls) requirement in the earlier Uniform Building Code, as explained in the commentary.

Section 16.5.1.3 gives requirements for vertical tension ties. The requirement for columns in 16.5.1.3(a) applies not only to connections of columns to footings, but also to such connections as column splices. The 10,000 lb requirement for each of at least two ties per wall panel in 16.5.1.3(b) is from the PCI Design Handbook\(^{23.7}\), and is the numerical equivalent of a common connection used in the precast concrete industry for many years. This is strictly an empirical value, and is intended to apply only to the dimensions of the hardware items in the connection, without including eccentricities in the design. Section 16.5.1.3(c) permits this connection to be into a reinforced concrete floor slab, as is common with tilt-up construction where the design forces do not produce tension at the base.

Section 16.5.2 in essence codifies some of the recommendations of PCI Guideline report, which gives numerical values for tension ties in bearing wall buildings with three or more stories. This report is based on a series of tests conducted at the Portland Cement Association’s laboratories\(^{23.12}\) in the late 1970s.

16.6 CONNECTION AND BEARING DESIGN

Section 16.6.1 lists the several ways that precast members can be connected, and then allows design by analysis or test. Special mention is made of 11.6, Shear Friction, as this is a commonly used analysis/design tool. See Part 14 of this document. Examples on application of shear friction design procedure are also given in PCI Design Handbook\(^{23.7}\) and Design and Typical Details of Connections for Precast and Prestressed Concrete.\(^{23.6}\)

Section 16.6.2 describes several important considerations when designing for bearing of precast elements. The minimum bearing lengths of 16.6.2.2(a) are particularly important. It should be emphasized that these are minimum values, and that the structure should be detailed with significantly longer bearing lengths, to allow for tolerance in placement. Section 16.6.2.3 makes it clear that positive moment reinforcement need not comply with the 6 in. extension into the support rule, provided a minimum of one-third of such reinforcement goes at least to the center of the bearing.

16.7 ITEMS EMBEDDED AFTER CONCRETE PLACEMENT

In precasting plants, it has long been common practice to place certain embedded items (dowels or inserts) in the concrete after it has been cast to facilitate the manufacturing process. This practice is recognized in this section and constitutes an exception to the provisions of 7.5.1. Conditions to embed items in the concrete while it is in a plastic state are: (1) embedded item is not required to be hooked or tied to reinforcement within the concrete, (2) embedded item is secured in its position until concrete hardens, and (3) concrete is properly consolidated around each embedment.

16.8 MARKING AND IDENTIFICATION

The purpose of identification marks on precast members is to facilitate construction and avoid placing errors. Each precast member should be marked to show date of manufacture, location, and orientation. All members should be identified according to placing drawings.
16.9 HANDLING

This section re-emphasizes the general requirement of 16.2.1. Handling stresses and deformations must be considered during the design of precast concrete members. Erection steps and hardware (to provide temporary erection connection bracing and shoring) required for each step must be shown on contract or erection drawings as well as the sequence of removing those items.

16.10 STRENGTH EVALUATION OF PRECAST CONSTRUCTION

It is always desirable, due to safety and economical considerations, to test a precast concrete member before it is integrated into the structure. This new section describes how Chapter 20 provisions can be applied to examine the precast member itself that will be part of a composite system. The test loads specified in 20.3.2 must be adjusted to simulate the load portion carried by the suspect member examined when it is in the final, composite mode. The acceptance criteria of 20.5 apply to the isolated precast member.

REFERENCES

Example 23.1—Load Distribution in Double Tees

Required: Compute the factored moments and shears for each of three double tees of the following roof:

![Double Tee Diagram]

Given:
- Double tees = 10DT24 (self weight = 468 plf), h = 24 in., width = 10 ft
- Span = 60 ft
- Distributed superimposed DL = 15 psf, LL = 30 psf
- Concentrated dead load on Tee #1, \(P_1 = 20 \) kips @ 3 ft from left support
- Concentrated dead load on Tee #2, \(P_2 = 20 \) kips @ midspan

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assume:</td>
<td></td>
</tr>
<tr>
<td>Concentrated dead load (P_1) cannot be distributed to adjacent tees since it is near the support.</td>
<td></td>
</tr>
<tr>
<td>Concentrated dead load (P_2) is distributed, with 25 percent to adjacent tees and 50 percent to the tee supporting the load, i.e.</td>
<td></td>
</tr>
<tr>
<td>(0.25 \times 20) kips = 5 kips to Tee #1</td>
<td></td>
</tr>
<tr>
<td>(0.50 \times 20) kips = 10 kips to Tee #2</td>
<td></td>
</tr>
<tr>
<td>(0.25 \times 20) kips = 5 kips to Tee #3</td>
<td></td>
</tr>
<tr>
<td>2. Factored uniform dead and live loads, for each tee</td>
<td>Eq. (9-2)</td>
</tr>
<tr>
<td>(DL = 468 + 15 \times 10) ft width = 0.618 kip/ft</td>
<td></td>
</tr>
<tr>
<td>(LL = 30 \times 10) ft width = 0.30 kip/ft</td>
<td></td>
</tr>
<tr>
<td>(w_u = 1.2D + 1.6L)</td>
<td></td>
</tr>
<tr>
<td>(= 1.2 \times 0.618 + 1.6 \times 0.30 = 1.222) kip/ft</td>
<td></td>
</tr>
<tr>
<td>3. Factored moments and shears for Tee #1</td>
<td></td>
</tr>
<tr>
<td>Factored concentrated dead load next to support = 1.2 \times 20 = 24) kips (from (P_1))</td>
<td></td>
</tr>
<tr>
<td>Factored concentrated dead load at midspan = 1.2 \times 5 = 6) kips (from (P_2))</td>
<td></td>
</tr>
<tr>
<td>(w_u = 1.222) kip/ft</td>
<td></td>
</tr>
</tbody>
</table>
Example 23.1 (cont’d) Calculations and Discussion

Reaction at left support \[= \frac{57}{60}(24) + \frac{6}{2} + \frac{1.222(60)}{2} = 62.46 \text{ kips}\]

For prestressed concrete members, design for shear at distance \(h/2 = 1 \text{ ft}\) \(\text{11.1.3.2}\)

\(V_u \text{ (left)} = 62.46 - 1.222 \times 1 = 61.24 \text{ kips}\)

Reaction at right support \[= \frac{3}{60}(24) + \frac{6}{2} + \frac{1.222(60)}{2} = 40.86 \text{ kips}\]

At distance \(h/2\), \(V_u \text{ (right)} = 40.86 - 1.222 \times 1 = 39.64 \text{ kips}\)

Maximum moment is at midspan

\(M_u \text{ (max)} = 40.86(30) - 1.222(30)(15) = 676 \text{ ft-kips}\)

4. Factored moments and shears for Tee #2

\[M_u = \frac{w_u \ell^2}{8} + \frac{P_u \ell}{4}\]

\[= \frac{1.222(60)^2}{8} + \frac{1.2(10)(60)}{4} = 730 \text{ ft-kips}\]

Maximum reaction \[= \frac{w_u \ell}{2} + \frac{P_u}{2}\]

\[= \frac{1.222(60)}{2} + \frac{1.2(10)}{2} = 42.66 \text{ kips}\]

At distance \(h/2\), \(V_u = 42.66 - 1.222 \times 1 = 41.44 \text{ kips}\)

5. Factored moments and shears for Tee #3

\[M_u = \frac{1.222(60)^2}{8} + \frac{1.2(5)(60)}{4} = 640 \text{ ft-kips}\]

Maximum reaction \[= \frac{1.222(60)}{2} + \frac{1.2(5)}{2} = 39.66 \text{ kips}\]

At distance \(h/2\), \(V_u = 39.66 - 1.222 = 38.44 \text{ kips}\)
Prestressed Concrete — Flexure

UPDATE FOR THE ’08 CODE

The compressive stress at transfer at the ends of simply supported members is raised from $0.60f_c$ to $0.70f_c$ in 18.4.1. This increase reflects research and developments in practice in the precast, prestressed concrete industry practice.

Minor editorial changes for clarity are made in 18.4.1 for the allowable extreme fiber stress in tension.

The requirement for minimum amount of prestressed and nonprestressed reinforcement in 18.8.2 is limited to members with bonded prestressed reinforcement only. This provision is intended as precaution against abrupt flexural failure developing immediately after cracking. Tests of one-way slabs and beams have shown that unbonded tendons do not rupture or yield at the time of first flexural cracking.

Section 18.10.4 is modified to clarify the provisions for redistribution of moments in continuous prestressed flexural members with bonded reinforcement. Allowing inelastic behavior in positive moment regions is made explicit and the same limit is put on the amount of inelastic positive moment redistribution as the limit for negative moment in the 2005 Code.

BACKGROUND

In prestressed members, compressive stresses are introduced into the concrete to reduce tensile stresses resulting from applied loads including the self weight of the member (dead load). Prestressing steel, in the form of strands, bars, or wires, is used to impart compressive stresses to the concrete. Pretensioning is a method of prestressing in which the tendons are tensioned before concrete is placed and the prestressing force is primarily transferred to the hardened concrete through bond. Post-tensioning is a method of prestressing in which the tendons are tensioned after the concrete has hardened and the prestressing force is primarily transferred to the concrete through the end anchorages.

The act of prestressing a member introduces “prestressing loads” to the member. The induced prestressing loads, acting in conjunction with externally applied loads, improve the serviceability and the strength of the member beginning immediately after prestress force transfer and continuing throughout the life of the member. Prestressed structures must be analyzed taking into account prestressing loads, service loads, temperature, creep, shrinkage and the structural properties of all materials involved.

The code states that all provisions of the code apply to prestressed concrete, unless they are in conflict with Chapter 18 or are specifically excluded. The exclusions, listed in 18.1.3, are necessary because some empirical or simplified analytical methods employed elsewhere in the code may not adequately account for the effects of prestressing forces.

Deflections of prestressed members calculated according to 9.5.4 should not exceed the values listed in Table 9.5(b). According to 9.5.4, prestressed concrete members, like any other concrete members, should be designed to have
adequate stiffness to prevent deformations which may adversely affect the strength or serviceability of the structure.

PRESTRESSING MATERIALS

The most commonly used prestressing material in the United States is Grade 270 ksi low-relaxation, seven-wire strand, defined by ASTM A 416. The most common size is 0.5-in., although there is increasing use of 0.6-in. strand, especially for post-tensioning of large scale projects. The properties of these strands are as follows:

<table>
<thead>
<tr>
<th>Nominal Diameter, in.</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area, sq. in.</td>
<td>0.153</td>
<td>0.217</td>
</tr>
<tr>
<td>Tensile strength f_{pu}, ksi</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>Tensile force capacity, kips</td>
<td>41.3</td>
<td>58.6</td>
</tr>
<tr>
<td>Jacking stress, ksi = 0.75 f_{pu}</td>
<td>202.5</td>
<td>202.5</td>
</tr>
</tbody>
</table>

Virtually identical metric strands are used in countries using the metric system.

The Prestressed Concrete Institute’s *PCI Design Handbook*, 6th edition, Ref. 24.1, gives a standard stress-strain curve for this material, as shown in Fig. 24-1. This curve is approximated by the two expressions given below the figure.

The above curve can be approximated by the following equations:

\[
\begin{align*}
\varepsilon_{ps} & \leq 0.0086: \quad f_{ps} = 28,500 \varepsilon_{ps} \text{ (ksi)} \\
\varepsilon_{ps} & > 0.0086: \quad f_{ps} = 270 - \frac{0.04}{\varepsilon_{ps} - 0.007} \text{ (ksi)}
\end{align*}
\]

Figure 24-1 Stress-Strain Curve for Grade 270, Low Relaxation Strand (Ref. 24.1)
NOTATION AND TERMINOLOGY

The following symbols are used in 18.4.4, which deals with serviceability requirements for cracked prestressed flexural members.

\[\Delta f_{ps} = \text{stress in prestressing steel at service loads less decompression stress, psi. See Fig. 24-2} \]

\[f_{dc} = \text{decompression stress. Stress in the prestressing steel when stress is zero in the concrete at the same level as the centroid of the tendons in a cross-section in flexure, psi. See Fig. 24-2} \]

\[s = \text{center-to-center spacing of flexural tension steel near the extreme tension face, in. Where there is only one bar or tendon near the extreme tension face, } s \text{ is the width of extreme tension face} \]

Note, \(f_{dc} = f_{se} + \frac{f_c}{E_p/E_c} \) where \(f_c \) is the concrete stress at level of steel under dead load and prestress. \(f_{dc} \) may be conservatively taken as \(f_{se} \).

![Stress-strain Curve of the Prestressing Steel](image)

The following definitions found in 2.2 are consistently used in Chapter 18 and throughout the code. They reflect industry terminology. See Fig. 24-2

Prestressing steel — High-strength steel element, such as wire, bar, or strand, or a bundle of such elements, used to impart prestress forces to concrete.

Tendon — In pretensioned applications, the tendon is the prestressing steel. In post-tensioned applications, the tendon is a complete assembly consisting of anchorages, prestressing steel, and sheathing with coating for unbonded applications or ducts with grout for bonded applications.

Bonded tendon — Tendon in which prestressing steel is bonded to concrete either directly or through grouting.

Unbonded tendon — Tendon in which the prestressing steel is prevented from bonding to the concrete and is free to move relative to the concrete. The prestressing force is permanently transferred to the concrete at the tendon ends by the anchorages only.

Duct — A conduit (plain or corrugated) to accommodate prestressing steel for post-tensioned installation. Requirements for post-tensioning ducts are given in 18.17.

Sheathing — A material encasing prestressing steel to prevent bonding of the prestressing steel with the surrounding concrete, to provide corrosion protection, and to contain the corrosion inhibiting coating.
18.2 GENERAL

The code specifies strength and serviceability requirements for all concrete members, prestressed or nonprestressed. This section requires that, for prestressed members, both strength and behavior at service conditions must be checked. All load stages that may be critical during the life of the structure, beginning with the transfer of the prestressing force to the member and including handling and transportation, must be considered.

This section also calls attention to several structural issues specific to prestressed concrete structures that must be considered in design:

- Stress concentrations 18.2.3. See 18.13 for requirements for post-tensioned anchorages, where this is a main design consideration.

- Compatibility of deformation with adjoining construction 18.2.4. An example of the effect of prestressing on adjoining parts of a structure is the need to include moments caused by axial shortening of prestressed floors in the design of the columns which support the floors.

- Buckling of prestressed members 18.2.5. This section addresses the possibility of buckling of any part of a member where prestressing tendons are not in contact with the concrete. This can occur when prestressing steel is in an oversize duct, and with external prestressing described in 18.22. Similarly stability related strength reduction may be present in slender parts of the prestressed components.

- Section properties 18.2.6. The code requires that the area of open post-tensioning ducts be deducted from section properties prior to bonding of prestressing tendons. For pretensioned members and post-tensioned members after grouting, the commentary allows the use of gross section properties, or effective section properties that may include the transformed area of bonded tendons and nonprestressed reinforcement.

18.3 DESIGN ASSUMPTIONS

In applying fundamental structural principles (equilibrium, stress-strain relations, and geometric compatibility) to prestressed concrete structures, certain simplifying assumptions can be made. For computation of strength (18.3.1), the basic assumptions given for nonprestressed members in 10.2 apply, except that 10.2.4 applies only to nonprestressed reinforcement. For investigation of service load conditions, the “elastic theory” (referring to the linear variation of stress with strain) may be used. Where concrete is cracked, the concrete resists no tension. For analysis at service load conditions, the moduli of elasticity for concrete and nonprestressed reinforcement are given in 8.5. The modulus of elasticity for prestressing steel is not given in the code but can generally be taken as described in Fig. 24-1.

Section 18.3.3 defines three classes of prestressed flexural members, as follows:

Uncracked Class U: \[f_t \leq 7.5 \sqrt{f_c} \]

Transition Class T: \[7.5 \sqrt{f_c} < f_t \leq 12 \sqrt{f_c} \]

Cracked Class C: \[f_t \leq 12 \sqrt{f_c} \]

Table 24-1 summarizes the applicable requirements for these three classes of prestressed flexural members and, for comparison, for nonprestressed flexural members as well.

Class U and Class T members correspond to those designed by 18.4.2(c) and 18.4.2(d), respectively, of ACI 318-99 and earlier editions of the code. In ACI 318-99, 18.4.2(d) required deflections to be checked by a cracked section analysis if tensile stresses exceeded \(6 \sqrt{f_c} \), but the section was not assumed to be cracked unless the stress
exceeded $7.5\sqrt{f_c'}$. This inconsistency was eliminated in 2002 and later Codes by setting the threshold tensile stress between Classes U and T at $7.5\sqrt{f_c'}$.

Class C permits design using any combination of prestressing steel and reinforcement. It “fills the gap” between prestressed and nonprestressed concrete. For Class C members, a cracked section analysis or stresses is required by 18.3.4; whereas, for Class T members, an approximate cracked section analysis is required by 9.5.4.2 for deflection only. Unfortunately, a cracked section stress analysis for combined flexure and axial load (from the prestress) is complex. Reference 24.2 gives one method of accomplishing this.

As an exception to the typical threshold values, 18.3.3 requires that prestressed two-way slab systems be designed as Class U with $f_t \leq 6\sqrt{f_c'}$.

Table 24-1 Serviceability Design Requirements (adapted from Table R18.3.3)

<table>
<thead>
<tr>
<th></th>
<th>Prestressed</th>
<th></th>
<th></th>
<th>Nonprestressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed behavior</td>
<td>Class U</td>
<td>Class T</td>
<td>Class C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uncracked</td>
<td>Transition between uncurred and cracked</td>
<td>Cracked</td>
<td>Cracked</td>
</tr>
<tr>
<td>Section properties for stress calculation at service loads</td>
<td>Gross section 18.3.4</td>
<td>Gross section 18.3.4</td>
<td>Cracked section 18.3.4</td>
<td>No requirement</td>
</tr>
<tr>
<td>Allowable stress at transfer</td>
<td>18.4.1</td>
<td>18.4.1</td>
<td>18.4.1</td>
<td>No requirement</td>
</tr>
<tr>
<td>Allowable compressive stress based on uncracked section properties</td>
<td>18.4.2</td>
<td>18.4.2</td>
<td>No requirement</td>
<td>No requirement</td>
</tr>
<tr>
<td>Tensile stress at service loads 18.3.3</td>
<td>$\leq 7.5\sqrt{f_c'}$</td>
<td>$7.5\sqrt{f_c'} < f_t \leq 12\sqrt{f_c'}$</td>
<td>No requirement</td>
<td>No requirement</td>
</tr>
<tr>
<td>Deflection calculation basis</td>
<td>9.5.4.1 Gross section</td>
<td>9.5.4.2 Cracked section, bilinear</td>
<td>9.5.4.2 Cracked section, bilinear</td>
<td>9.5.2, 9.5.3 Effective moment of inertia</td>
</tr>
<tr>
<td>Crack control</td>
<td>No requirement</td>
<td>No requirement</td>
<td>10.6.4 Modified by 18.4.4.1</td>
<td>10.6.4</td>
</tr>
<tr>
<td>Computation of Δf_{ps} or f_s for crack control</td>
<td>—</td>
<td>—</td>
<td>Cracked section analysis</td>
<td>$M/(A_s \times$ lever arm), or $0.6f_y$</td>
</tr>
<tr>
<td>Side skin reinforcement</td>
<td>No requirement</td>
<td>No requirement</td>
<td>10.6.7</td>
<td>10.6.7</td>
</tr>
</tbody>
</table>

18.4 SERVICEABILITY REQUIREMENTS — FLEXURAL MEMBERS

Both concrete and prestressing tendon stresses are limited to ensure satisfactory behavior immediately after transfer of prestress and at service loads. The code provides different permissible stresses for conditions immediately after prestress transfer (before time-dependent losses) and for conditions at service loads (after all prestress losses have occurred).

For conditions immediately after prestress transfer, the code allows; extreme fiber compressive stress of $0.70f_c'$ at the ends of simply supported members and $0.60f_c'$ for all other cases.

The permissible compression transfer stress at the ends of simply supported members was raised from 0.60f_c' to 0.70f_c' in the 2008 Code to recognize research in the precast prestressed beams. The permissible extreme fiber tensile stress at transfer is $6\sqrt{f_c'}$ at the ends of simply supported members and $3\sqrt{f_c'}$ at other locations remained unchanged. Where tensile stress exceeds the permissible values, bonded nonprestressed reinforcement must be provided to resist the total tensile force in concrete assuming an uncracked section.
The permissible compressive stress due to prestress plus total service loads is limited to $0.60f'_c$. The permissible compressive stress for the condition of prestress plus sustained loads is equal to $0.45f'_c$. It should be noted that the “sustained loads” mentioned in 18.4.2(a) include any portion of the live load that will be sustained for a sufficient period to cause significant time-dependent deflections.

Concrete tensile stress limitations for Class U and T at service loads apply to the “precompressed” tensile zone which is that portion of the member cross-section in which flexural tension occurs under dead and live loads.

For Class C prestressed members not subject to fatigue or to aggressive exposure, crack control is accomplished by applying the steel spacing requirement based on 10.6.4 and Eq. (10-4) for nonprestressed concrete. In applying Eq.(10-4), the modifications in 18.4.4 must be considered. The maximum spacing between tendons is reduced to 2/3 of that permitted for bars, to account for lesser bond, compared to deformed bars. The quantity Δf_{ps}, the stress in the prestressing steel at service loads less the decompression stress f_{dc} is the stress in the prestressing steel when the stress is zero in the concrete at the same level as the centroid of the tendons. The code permits f_{dc} to be conservatively taken as the effective prestress f_{se}. The following shows Eq. (10-4), and as modified by 18.4.4.

Eq. (10-4) in 10.6.4:

$$ s = 15 \left(\frac{40,000}{f_s} \right) - 2.5c_c \leq 12 \left(\frac{40,000}{f_s} \right) $$

As modified by 18.4.4:

$$ s = \frac{2}{3} \left[15 \left(\frac{40,000}{\Delta f_{ps}} \right) - 2.5c_c \right] $$

The quantity of Δf_{ps} shall not exceed 36,000 psi. If Δf_{ps} is not greater than 20,000 psi, the above spacing limits need not apply.

The 2/3 modifier is to account for bond characteristics of strands, which are less effective than those of deformed bars. When both reinforcement and bonded tendons are used to meet the spacing requirement, the spacing between a bar and a tendon shall not exceed 5/6 of that given by Eq. (10-4).

Where h of a beam of a Class C exceeds 36 in., skin reinforcement consisting of reinforcement or bonded tendons shall be provided as required by 10.6.7.

18.5 PERMISSIBLE STRESSES IN PRESTRESSING STEEL

The permissible tensile stresses in all types of prestressing steel, in terms of the specified minimum tensile strength f_{pu} are summarized in 18.5.1 as follows:

- **a.** Due to tendon jacking force: ... 0.94f_{py} but not greater than 0.80f_{pu}
 - low-relaxation wire and strands ($f_{py} = 0.90f_{pu}$) ... 0.80f_{pu}
 - stress-relieved wire and strands, and plain bars (ASTM A722) ($f_{py} = 0.85f_{pu}$) 0.80f_{pu}
 - deformed bars (ASTM A722) ($f_{py} = 0.80f_{pu}$) ... 0.75f_{pu}

- **b.** Immediately after prestress transfer: ... 0.82f_{py} but not greater than 0.74f_{pu}
 - low-relaxation wire and strands ($f_{py} = 0.90f_{pu}$) ... 0.74f_{pu}
 - stress-relieved wire and strands, and plain bars ($f_{py} = 0.85f_{pu}$) 0.70f_{pu}
 - deformed bars ($f_{py} = 0.80f_{pu}$) .. 0.66f_{pu}
c. Post-tensioning tendons, at anchorages and couplers, immediately after tendon anchorage.....0.70f_{pu}

Note that the permissible stresses given in 18.5.1(a) and (b) apply to both pretensioned and post-tensioned tendons. Pretensioned tendons are often jacked to 75 percent of f_{pu}. This will result in a stress below 0.74 f_{pu} after transfer.

18.6 LOSS OF PRESTRESS

A significant factor which must be considered in design of prestressed members is the loss of prestress due to various causes. These losses can dramatically affect the behavior of a member at service loads. Although calculation procedures and certain values of creep strain, friction factors, etc., may be recommended, they are at best only an estimate. For the design of members whose behavior (deflection in particular) is sensitive to prestress losses, the engineer should establish through tests the time-dependent properties of materials to be used in the analysis/design of the structure. Refined analyses should then be performed to estimate the prestress losses.

Specific provisions for computing friction loss in post-tensioning tendons are provided in 18.6.2. Allowance for other types of prestress losses are discussed in Ref. 24.1. Note that the designer is required to show on the design drawings the magnitude and location of prestressing forces as required by 1.2.1(g).

ESTIMATING PRESTRESS LOSSES

Lump sum values of prestress losses that were widely used as a design estimate of prestress losses prior to the ’83 code edition (35,000 psi for pretensioning and 25,000 psi for post-tensioning) are now considered obsolete. Also, the lump sum values may not be adequate for some design conditions.

Reference 24.3 offers guidance to compute prestress losses adaptable to computer programs. It allows step-by-step computation of losses which is necessary for rational analysis of deformations. The method is too tedious for hand calculations.

Reference 24.4 presents a reasonably accurate and easy procedure for estimating prestress losses due to various causes for pretensioned and post-tensioned members with bonded and unbonded tendons. The procedure, which is intended for practical design applications under normal design conditions, is summarized below. The simple equations enable the designer to estimate the prestress loss from each source rather than using a lump sum value. The reader is referred to Ref. 24.4 for an in-depth discussion of the procedure, including sample computations for typical prestressed concrete beams. Quantities used in loss computations are defined in the summary of notation which follows this section.

COMPUTATION OF LOSSES

Elastic Shortening of Concrete (ES)

For members with bonded tendons:

$$ES = K_{es} E_s \frac{f_{cir}}{E_{ci}}$$ \hspace{1cm} (1)

where

- $K_{es} = 1.0$ for pretensioned members
- $K_{es} = 0.5$ for post-tensioned members where tendons are tensioned in sequential order to the same tension. With other post-tensioning procedures, the value for K_{es} may vary from 0 to 0.5.

- $f_{cir} = K_{cir} f_{cpi} - f_g$ \hspace{1cm} (2)

where

- $K_{cir} = 1.0$ for post-tensioned members
- $K_{cir} = 0.9$ for pretensioned members.
For members with unbonded tendons:

\[ES = K_{es} \frac{f_{cpa}}{E_{ci}} \]

Creep of Concrete (CR)

For members with bonded tendons:

\[CR = K_{cr} \frac{E_s}{E_c} (f_{cir} - f_{cds}) \]

where \(K_{cr} = 2.0 \) for pretensioned members

\(K_{cr} = 1.6 \) for post-tensioned members

For members made of sand-lightweight concrete the foregoing values of \(K_{cr} \) should be reduced by 20 percent.

For members with unbonded tendons:

\[CR = K_{cr} \frac{E_s}{E_c} f_{cpa} \]

Shrinkage of Concrete (SH)

\[SH = 8.2 \times 10^{-6} K_{sh} E_s \left(1 - 0.06 \frac{V}{S}\right) (100 - RH) \]

where \(K_{sh} = 1.0 \) for pretensioned members

\(K_{sh} \) is taken from Table 24-2 for post-tensioned members.

<table>
<thead>
<tr>
<th>Time, days*</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{sh})</td>
<td>0.92</td>
<td>0.85</td>
<td>0.80</td>
<td>0.77</td>
<td>0.73</td>
<td>0.64</td>
<td>0.58</td>
<td>0.45</td>
</tr>
</tbody>
</table>

*Time after end of moist curing to application of prestress

Relaxation of Tendons (RE)

\[RE = [K_{re} - J (SH + CR + ES)] C \]

where the values of \(K_{re} \), \(J \), and \(C \) are taken from Tables 24-3 and 24-4.

<table>
<thead>
<tr>
<th>Type of Tendon</th>
<th>(K_{re}) (psi)</th>
<th>(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>270 Grade stress-relieved strand or wire</td>
<td>20,000</td>
<td>0.15</td>
</tr>
<tr>
<td>250 Grade stress-relieved strand or wire</td>
<td>18,500</td>
<td>0.14</td>
</tr>
<tr>
<td>240 or 235 Grade stress-relieved wire</td>
<td>17,600</td>
<td>0.13</td>
</tr>
<tr>
<td>270 Grade low-relaxation strand</td>
<td>5000</td>
<td>0.040</td>
</tr>
<tr>
<td>250 Grade low-relaxation wire</td>
<td>4630</td>
<td>0.037</td>
</tr>
<tr>
<td>240 or 235 Grade low-relaxation wire</td>
<td>4400</td>
<td>0.035</td>
</tr>
<tr>
<td>145 or 160 Grade stress-relieved bar</td>
<td>6000</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table 24-4 Values of C

<table>
<thead>
<tr>
<th>(\frac{f_{pi}}{f_{pu}})</th>
<th>Stress relieved strand or wire</th>
<th>Stress relieved low relaxation strand or wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>0.79</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>0.78</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>0.77</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>0.76</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>1.45</td>
<td>1.00</td>
</tr>
<tr>
<td>0.74</td>
<td>1.36</td>
<td>0.95</td>
</tr>
<tr>
<td>0.73</td>
<td>1.27</td>
<td>0.90</td>
</tr>
<tr>
<td>0.72</td>
<td>1.18</td>
<td>0.85</td>
</tr>
<tr>
<td>0.71</td>
<td>1.09</td>
<td>0.80</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>0.75</td>
</tr>
<tr>
<td>0.69</td>
<td>0.94</td>
<td>0.70</td>
</tr>
<tr>
<td>0.68</td>
<td>0.89</td>
<td>0.66</td>
</tr>
<tr>
<td>0.67</td>
<td>0.83</td>
<td>0.61</td>
</tr>
<tr>
<td>0.66</td>
<td>0.78</td>
<td>0.57</td>
</tr>
<tr>
<td>0.65</td>
<td>0.73</td>
<td>0.53</td>
</tr>
<tr>
<td>0.64</td>
<td>0.68</td>
<td>0.49</td>
</tr>
<tr>
<td>0.63</td>
<td>0.63</td>
<td>0.45</td>
</tr>
<tr>
<td>0.62</td>
<td>0.58</td>
<td>0.41</td>
</tr>
<tr>
<td>0.61</td>
<td>0.53</td>
<td>0.37</td>
</tr>
<tr>
<td>0.60</td>
<td>0.49</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Friction

Computation of friction losses is covered in 18.6.2. When the tendon is tensioned, the friction losses computed can be checked with reasonable accuracy by comparing the measured tendon elongation and the prestressing force applied by the tensioning jack. Note that frictional losses are variable along the length and are attributed to the wobble of the tendon or the curvature of it.

SUMMARY OF NOTATION

\(A_c = \) area of gross concrete section at the cross-section considered
\(A_{ps} = \) total area of prestressing steel
\(C = \) a factor used in Eq. (5), see Table 24-4
\(CR = \) stress loss due to creep of concrete
\(e = \) eccentricity of center of gravity of prestressing steel with respect to center of gravity of concrete at the cross-section considered
\(E_c = \) modulus of elasticity of concrete at 28 days
\(E_{ci} = \) modulus of elasticity of concrete at time prestress is applied
\(E_s = \) modulus of elasticity of prestressing steel. Usually 28,500,000 psi in Fig. 24-1
\(ES = \) stress loss due to elastic shortening of concrete
\(f_{cds} = \) stress in concrete at center of gravity of prestressing steel due to all superimposed permanent dead loads that are applied to the member after it has been prestressed
\(f_{cir} = \) net compressive stress in concrete at center of gravity of prestressing steel immediately after the prestress has been applied to the concrete. See Eq. (2).
\(f_{cpa} = \) average compressive stress in the concrete along the member length at the center of gravity of the prestressing steel immediately after the prestress has been applied to the concrete
\(f_{cpi} = \) stress in concrete at center of gravity of prestressing steel due to \(P_{pi} \)
The flexural strength of prestressed members can be calculated using the same assumptions as for nonprestressed members. Prestressing steel, however, does not have a well defined yield point as does mild steel reinforcement. As a prestressed cross-section reaches its flexural nominal strength (defined by a maximum compressive
concrete strain of 0.003), stress in the prestressed reinforcement at nominal strength, \(f_{ps} \), will vary depending on the amount of prestressing. The value of \(f_{ps} \) can be obtained using the conditions of equilibrium, stress-strain relations, and strain compatibility (Design Example 24-4 illustrates the procedure). However, the analysis is quite cumbersome, especially in the case of unbonded tendon. For bonded prestressing, the compatibility of strains can be considered at an individual section, while for unbonded tendon, compatibility relations can be written only at the anchorage points and will depend on the entire cable profile and member loading. To avoid such lengthy calculations, the code allows \(f_{ps} \) to be obtained by the approximate Eqs. (18-3), (18-4), and (18-5).

For members with bonded prestressing steel, an approximate value of \(f_{ps} \) given by Eq. (18-3) may be used for flexural members reinforced with a combination of prestressed and nonprestressed reinforcement (partially prestressed members), taking into account effects of any nonprestressed tension reinforcement (\(\omega' \)), any compression reinforcement (\(\omega'' \)), the concrete compressive strength \(f'_c \), rectangular stress block factor \(\beta_1 \), and an appropriate factor for type of prestressing material used (\(\gamma_p \)). For a fully prestressed member (without nonprestressed tension or compression reinforcement), Eq. (18-3) reduces to:

\[
f_{ps} = f_{pu} \left(1 - \frac{\gamma_p}{\beta_1} \frac{\rho_p}{f'_c} \right)
\]

where \(\gamma_p = 0.55 \) for deformed bars \(\left(\frac{f_{py}}{f_{pu}} \geq 0.80 \right) \)
\(= 0.40 \) for stress-relieved wire and strands, and plain bars \(\left(\frac{f_{py}}{f_{pu}} \geq 0.85 \right) \)
\(= 0.28 \) for low-relaxation wire and strands \(\left(\frac{f_{py}}{f_{pu}} \geq 0.90 \right) \)

and \(\beta_1 \), as defined in 10.2.7.3,

\[
\beta_1 = 0.85 \text{ for } f'_c \leq 4000 \text{ psi}
\]
\(= 0.80 \text{ for } f'_c = 5000 \text{ psi} \)
\(= 0.75 \text{ for } f'_c = 6000 \text{ psi} \)
\(= 0.70 \text{ for } f'_c = 7000 \text{ psi} \)
\(= 0.65 \text{ for } f'_c \geq 8000 \text{ psi} \)

Eq. (18-3) can be written in nondimensional form as follows:

\[
\omega_p = \omega_{pu} \left(1 - \frac{\gamma_p}{\beta_1} \omega_{pu} \right)
\] (6)

where

\[
\omega_p = \frac{A_{ps}f_{ps}}{bd_p f'_c}
\] (7)

\[
\omega_{pu} = \frac{A_{ps}f_{pu}}{bd_p f'_c}
\] (8)

The moment strength of a prestressed member with bonded tendons may be computed using Eq. (18-3) only when all of the prestressed reinforcement is located in the tension zone. When part of the prestressed reinforcement is located in the compression zone of a cross-section, Eq. (18-3), involving \(d_p \), is not valid. Flexural strength for such a condition must be computed by a general analysis based on strain compatibility and equilibrium, using the stress-strain properties of the prestressing steel and the assumptions given in 10.2.
For members with unbonded prestressing steel, an approximate value of f_{ps} given by Eqs. (18-4) and (18-5) may be used. Eq. (18-5) applies to members with high span-to-depth ratios (> 35), such as post-tensioned one-way slabs, flat plates and flat slabs, while Eq. (18-4) is for span-to-depth ratios of 35 or less.

\[
f_{ps} = f_{se} + 10,000 + \frac{f'_c}{100 \rho_p} \tag{18-4}
\]

\[
f_{ps} = f_{se} + 10,000 + \frac{f'_c}{300 \rho_p} \tag{18-5}
\]

f_{ps} must not be taken greater than the lesser of:

- f_{py} and $(f_{se} + 60,000)$ for Eq (18-4)
- f_{py} and $(f_{se} + 30,000)$ for Eq (18-5)

With the value of f_{ps} known, the nominal moment strength of a rectangular section, or a flanged section where the stress block is within the compression flange, can be calculated as follows:

\[
M_n = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right) = A_{ps} f_{ps} \left(d_p - 0.59 \frac{A_{ps} f_{ps}}{b f'_c} \right) \tag{9}
\]

where
\[
a = \text{the depth of the equivalent rectangular stress block} = \frac{A_{ps} f_{ps}}{0.85 b f'_c} \tag{10}
\]

or in nondimensional terms:

\[
R_n = \omega_p (1 - 0.59 \omega_p) \tag{11}
\]

where
\[
R_n = \frac{M_n}{b(d_p)^2 f'_c} \tag{12}
\]

18.8 LIMITS FOR REINFORCEMENT OF FLEXURAL MEMBERS

Prestressed concrete sections are classified as tension-controlled, transition, or compression-controlled based on net tensile strain. These classifications are defined in 10.3.3 and 10.3.4, with appropriate ϕ-factors in 9.3.2. These requirements are the same as those for nonprestressed concrete.

Figure 24-4 shows the relationship between the coefficient of resistance $\phi M_n/(bd^2)$ and the reinforcement ratio ρ_p for prestressed flexural members. Grade 270 ksi prestressing steel has a useful strength 4.5 times that of Grade 60 reinforcement. Compare Fig. 24-4 to Fig. 7-3. Higher concrete strengths are normally used with prestressed concrete, so Fig. 24-4 shows curves for f'_c from 5000 to 8000 psi; whereas, Fig. 7-3 shows curves for f'_c from 3000 to 6000 psi. The curves for f'_c of 5000 and 6000 psi are almost identical in the two figures.

In both figures, the curves have a break point corresponding to a net tensile strain of 0.005. Beyond that point, the reduction in ϕ in the transition region almost cancels the benefit of increased reinforcement index. For both nonprestressed and prestressed concrete, the best design is to stay in the tension-controlled region, using compression reinforcement, if necessary, to maintain the net tensile strain, ε_t at 0.005 or more.
As in previous ACI 318 codes, there is no absolute limit on the reinforcement index for prestressed members. But it will always be advantageous to design the tension-controlled region at critical sections, as there is little or no gain in design strength in the transition region.

Critical parameters at the tension-controlled limit may be tabulated. The effective prestress f_{se} will normally be at least 0.6 f_{pu}, or 162 ksi, if a jacking stress of 0.75 f_{pu} is used. This amounts to a 20 percent loss. The total steel strain when $\varepsilon_t = 0.005$ is equal to $162/28,500 + 0.005 = 0.01068$. Using the stress-strain curve shown in Fig. 24-1, $f_{ps} = 270 - 0.04/(0.01068-0.007) = 259$ ksi. A section will be tension-controlled when d_t is taken equal to d_p.

Table 24-5 shows design parameters for prestressed sections at the tension-controlled strain limit, indicated by the added subscript t. The rows for R_{nt}, ϕ_{nt}, and ω_{pt} are identical to those in Table 6-1 for nonprestressed members. The row for ω_{put} shows values slightly higher than ω_{pt}, because ω_{put} is based on f_{pu} of 270 ksi; whereas, ω_{put} is based on f_{ps} of 259 ksi. The final row for ρ_{pt} shows values much smaller than for ρ_t in Table 6-1, because of the much higher strength of the prestressing strand.

The following is a short-cut procedure for finding the flexural strength of sections in which the Grade 270 ksi low-relaxation prestressing steel can reasonably be assumed to be in one layer with $d_p = d_t$, and with $f_{se} \geq 162$ ksi.
1. Assume section is at tension-controlled limit, and $f_{ps} = 259$ ksi.

2. Compute steel tension T and equal compressive force C.

3. Find depth of stress block a and depth to neutral axis c.

4. Is $c/d_p \leq 0.375$? If so, proceed. If not, add compression steel to make $c/d_p \leq 0.375$.

5. Compute provided design strength $\phi M_n = 0.9(T)(d-a/2)$.

6. If provided $\phi M_n \geq \phi M_n$ required, stop. Section is adequate. If not proceed.

7. If the deficiency in provided ϕM_n is more than 4 percent, steel must be added. If deficiency is less than 4 percent, strain compatibility may be used in an attempt to find a higher f_{ps} in order to justify adequacy of the section.

Table 24-5 Design Parameters at Strain Limit of 0.005 for Tension-Controlled Sections

<table>
<thead>
<tr>
<th>f'_c (psi)</th>
<th>β_1</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>8000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{nt}</td>
<td>683</td>
<td>911</td>
<td>1084</td>
<td>1233</td>
<td>1455</td>
<td>1819</td>
<td></td>
</tr>
<tr>
<td>ϕR_{nt}</td>
<td>615</td>
<td>820</td>
<td>975</td>
<td>1109</td>
<td>1310</td>
<td>1637</td>
<td></td>
</tr>
<tr>
<td>ω_{pt}</td>
<td>0.2709</td>
<td>0.2709</td>
<td>0.2550</td>
<td>0.2391</td>
<td>0.2072</td>
<td>0.2072</td>
<td></td>
</tr>
<tr>
<td>ω_{put}</td>
<td>0.2823</td>
<td>0.2823</td>
<td>0.2657</td>
<td>0.2491</td>
<td>0.2159</td>
<td>0.2159</td>
<td></td>
</tr>
<tr>
<td>ρ_{pt}</td>
<td>0.00314</td>
<td>0.00418</td>
<td>0.00492</td>
<td>0.00554</td>
<td>0.00640</td>
<td>0.00800</td>
<td></td>
</tr>
</tbody>
</table>

For $f_{se} \geq 162$ ksi in low-relaxation Grade 270 ksi strand

Section 18.8.2 requires the total amount of prestressed and nonprestressed reinforcement of flexural members with bonded prestressed reinforcement, to be adequate to develop a design moment strength at least equal to 1.2 times the cracking moment strength ($\phi M_n \geq 1.2M_{cr}$), where M_{cr} is computed by elastic theory using a modulus of rupture equal to $7.5\sqrt{f'_c}$. The provisions of 18.8.2 are analogous to 10.5 for nonprestressed members. They are intended as a precaution against abrupt flexural failure resulting from rupture of the prestressing tendons immediately after cracking. The provision ensures that cracking will occur before flexural strength is reached, and by a large enough margin so that significant deflection will occur to warn that the ultimate capacity is being approached. The typical bonded prestressed member will have a fairly large margin between cracking strength and flexural strength, but the designer must be certain by checking it. In the 2008 edition of the Code, the requirement for minimum amount of prestressed and nonprestressed reinforcement in 18.8.2 was limited to members with bonded prestressed reinforcement only. Tests of one-way slabs and beams have shown that unbonded tendons do not rupture or yield at the time of first flexural cracking.

The cracking moment M_{cr} for a prestressed member is determined by summing all the moments that will cause a stress in the bottom fiber equal to the modulus of rupture f'_r. Referring to Fig. 24-5 for an unshored prestressed composite member taking compression as negative and tension as positive:

$$\left(- \frac{P_{se}}{A_c} - \frac{P_{se}e}{S_b}\right) + \left(\frac{M_d}{S_b}\right) + \left(\frac{M_a}{S_c}\right) = +f'_r$$

Solving for $M_a = \left(f'_r + \frac{P_{se}}{A_c} + \frac{P_{se}e}{S_b}\right) S_c - M_d \left(\frac{S_c}{S_b}\right)$.
Since $M_{cr} = M_d + M_a$

$$M_{cr} = \left(f_r + \frac{P_{se}}{A_c} + \frac{P_{se}e}{S_b} \right) S_c - M_d \left(\frac{S_c}{S_b} - 1 \right)$$ \hspace{1cm} (13)

For a prestressed member alone (without composite slab), $S_c = S_b$. Therefore, M_{cr} reduces to

$$M_{cr} = \left(f_r + \frac{P_{se}}{A_c} \right) S_b + P_{se}e$$ \hspace{1cm} (14)

Examples 24.6 and 24.7 illustrate computation of the cracking moment strength of prestressed members.

Note that an exception in 18.8.2 waives the 1.2M_{cr} requirement for flexural members with shear and flexural strength at least twice that required by 9-2.

For flexural strength: \hspace{1cm} $\phi M_n \geq 2M_u = 2 (1.2M_d + 1.6M_a)$

For shear strength: \hspace{1cm} $\phi V_n \geq 2V_u = 2 (1.2V_d + 1.6V_a)$

The 1.2M_{cr} provision often requires excessive reinforcement for certain prestressed flexural members especially for short span hollow-core members. The exception is intended to limit the amount of additional reinforcement required to amounts that provide for ductility, and is comparable in concept to those for nonprestressed members in 10.5.3.

Section 18.8.3 prescribes a qualitative requirement stating that some bonded reinforcement or tendons must be placed as close to the tension face as is practicable.

A_{ps} = area of prestressed reinforcement in tensile zone
A_c = area of precast member
S_b = section modulus for bottom of precast member
S_c = section modulus for bottom of composite member
P_{se} = effective prestress force
e = eccentricity of prestress force
M_d = dead load moment of composite member
M_a = additional moment to cause a stress in bottom fiber equal to modulus of rupture f_r

Figure 24-5 Stress Conditions for Evaluating Cracking Moment Strength
18.9 MINIMUM BONDED REINFORCEMENT

A minimum amount of bonded reinforcement is desirable in members with unbonded tendons. Reference to R18.9 is suggested.

For all flexural members with unbonded prestressing tendons, except two-way solid slabs, a minimum area of bonded reinforcement computed by Eq. (18-6) must be uniformly distributed over the precompressed tensile zone as close as practicable to the extreme tension fiber. Figure 24-6 illustrates application of Eq. (18-6).

\[A_s = 0.004A \]

Figure 24-6 Bonded Reinforcement for Flexural Members

For solid slabs, the special provisions of 18.9.3 apply. Depending on the tensile stress in the concrete at service loads, the requirements for positive moment areas of solid slabs are illustrated in Fig. 24-7(a).

The requirement for minimum area of bonded reinforcement in two-way flat plates at column supports was revised in the 1999 and later Code editions to reflect the intent of the original research recommendations (Ref. 24.5). This revision increases the minimum reinforcement requirement over interior columns for rectangular panels in one direction, and, for square panels, doubles the minimum reinforcement requirement over exterior columns normal to the slab edge. Figure 24-7(b) illustrates the minimum bonded reinforcement requirements for the negative moment areas at column supports. The bonded reinforcement must be located within the width \(c_2 + 2(1.5h) \) as shown, with a minimum of four bars spaced at not more than 12 in. Similarly, minimum bonded reinforcement should be provided parallel to slab edge.

\[f_t > 2\sqrt{f_{ct}} \quad A_s = \frac{N_c}{0.5f_t} \]

\[f_t \leq 2\sqrt{f_{ct}} \quad A_s \text{ not required} \]

\[A_s = 0.0075A_{cf} \]

\[A_{cf} = \text{larger of } \left(\frac{h}{2}\right) \text{ and } \left(\frac{f_{2r} + f_{2l}}{2} h\right) \]

Figure 24-7 Bonded Reinforcement for Flat Plates
18.10.4 Redistribution of Moments in Continuous Prestressed Flexural Members

The special provisions for moment redistribution in 8.4, apply equally to prestressed and nonprestressed continuous flexural members. Section 18.10.4 was modified in 2008 Code to clarify the provisions for redistribution of moments in continuous prestressed flexural members. Allowing inelastic behavior in positive moment regions was made explicit and a limit was put on the amount of inelastic positive moment redistribution, identical to the limit for negative moment in the 2005 Code. See Part 8 for details.

18.11 COMPRESSION MEMBERS — COMBINED FLEXURE AND AXIAL LOADS

Provisions of the code for calculating the strength of prestressed members are the same as for members without prestressing. Additional considerations include (1) accounting for prestressing strains, and (2) using an appropriate stress-strain relation for the prestressing tendons. Example 24.7 illustrates the calculation procedure.

For compression members with an average concrete stress due to prestressing of less than 225 psi, minimum nonprestressed reinforcement must be provided (18.11.2.1). For compression members with an average concrete stress due to prestressing equal to or greater than 225 psi, 18.11.2.2 requires that all prestressing tendons be enclosed by spirals or lateral ties, except for walls.

REFERENCES

24.5 ACI 423.3R-96 Report, “Recommendations for Concrete Members Prestressed with Unbonded Tendons,” American Concrete Institute, Farmington Hills, Michigan.
Example 24.1—Estimating Prestress Losses

For the simply supported double-tee shown below, estimate loss of prestress using the procedures of Ref. 24.4, as outlined earlier under “Computation of Losses.” Assume the unit is manufactured in Green Bay, WI.

live load = 40 psf
roof load = 20 psf
dead load = 47 psf = 468 plf
span = 48 ft
f'_{ci} = 3500 psi
f'_{c} = 5000 psi
8 - 0.5 in. diameter low-relaxation strands
A_p = 8 (0.153 in.²) = 1.224 in.²
e = 9.77 in. (all strands straight)
f_pu = 270,000 psi
f_py = 0.90f_pu
jacking stress = 0.74f_pu = 200 ksi

Assume the following for loss computations:
E_{ci} = 3590 ksi
E_c = 4290 ksi
E_s = 28,500 ksi

\[\text{Section Properties} \]
A_c = 449 in.²
I_c = 22,469 in.⁴
y_b = 17.77 in.
y_t = 6.23 in.
V/S = 1.35 in.

Calculations and Discussion

1. Elastic Shortening of Concrete (ES); using Eq. (1)

\[\text{ES} = K_{es} E_s \frac{f_{cir}}{E_{ci}} = 1.0 \times 28,500 \times \frac{0.725}{3590} = 5.8 \text{ ksi} \]

where

\[K_{es} = 1.0 \text{ for pretensioned members} \]

\[f_{cir} = K_{cir} f_{cpi} - f_g \]

\[= K_{cir} \left(\frac{P_{pi}}{A_c} + \frac{P_{pt}e^2}{I_c} \right) - \frac{M_d e}{I_c} \]

\[= 0.9 \left(\frac{245}{449} + \frac{245 \times 9.77^2}{22,469} \right) - \frac{1617 \times 9.77}{22,469} = 0.725 \text{ ksi} \]

\[K_{cir} = 0.9 \text{ for pretensioned members} \]
<table>
<thead>
<tr>
<th>Example 24.1 (cont’d)</th>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{pi} = 0.74f_{pu}A_{ps} = 0.74 \times 270 \times 1.224 = 245$ kips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M_d = 0.468 \times 48^2 \times \frac{12}{8} = 1617$ in.-kips (dead load of unit)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Creep of Concrete (CR); using Eq. (3)

$$CR = K_{cr} \frac{E_s}{E_c} (f_{cir} - f_{cds}) = 2.0 \times \frac{28,500}{4290} (0.725 - 0.30) = 5.6 \text{ ksi}$$

where $f_{cds} = \frac{M_{ds} \cdot e}{I_c} = 691 \times \frac{9.77}{22,469} = 0.30 \text{ ksi}$

$M_{ds} = 0.02 \times 10 \times 48^2 \times \frac{12}{8} = 691$ in.-kips (roof load only)

and $K_{cr} = 2.0$ for pretensioned members.

3. Shrinkage of Concrete (SH); using Eq. (4)

$$SH = 8.2 \times 10^{-6} K_{sh} E_s \left(1 - 0.06 \frac{V}{S}\right) (100 - RH)$$

$$= 8.2 \times 10^{-6} \times 1.0 \times 28,500 (1 - 0.06 \times 1.35) (100 - 75) = 5.4 \text{ ksi}$$

$RH = \text{average relative humidity surrounding the concrete member from Fig. 24-3.}$

For Green Bay, Wisconsin, $RH = 75\%$

and $K_{sh} = 1.0$ for pretensioned members.

4. Relaxation of Tendon Stress (RE); using Eq. (5)

$$RE = [K_{re} - J (SH + CR + ES)] C$$

$$= [5 - 0.04 (5.4 + 5.6 + 5.8)] 0.95 = 4.1 \text{ ksi}$$

where, for 270 Grade low-relaxation strand:

$K_{re} = 5 \text{ ksi (Table 24-3)}$

$J = 0.040 \text{ (Table 24-3)}$

$C = 0.95 \text{ (Table 24-4 for } \frac{f_{pi}}{f_{pu}} = 0.74)$$

5. Total allowance for loss of prestress

$$ES + CR + SH + RE = 5.8 + 5.6 + 5.4 + 4.1 = 20.9 \text{ ksi}$$

18.6.1
6. Stress, \(f_p \), and force, \(P_p \), immediately after transfer.

Assume that one-fourth of relaxation loss occurs prior to release.

\[
f_p = 0.74 f_{pu} - (ES + 1/4 RE) \\
= 0.74 (270) - [5.8 + 1/4 (4.1)] = 193.0 \text{ ksi}
\]

\[
P_p = f_p A_{ps} = 193.0 \times 1.224 = 236 \text{ kips}
\]

7. Effective prestress stress \(f_{se} \) and effective prestress force \(P_e \) after all losses

\[
f_{se} = 0.74 f_{pu} - \text{allowance for all prestress losses}
\]

\[
= 0.74 (270) - 20.9 = 179 \text{ ksi}
\]

\[
P_e = f_{se} A_{ps} = 179 \times 1.224 = 219 \text{ kips}
\]
Example 24.2—Investigation of Stresses at Prestress Transfer and at Service Load

For the simply supported double-tee considered in Example 24.1, check all permissible concrete stresses immediately after prestress transfer and at service load assuming the unit is used for roof framing. Use losses computed in Example 24.1.

- **live load** = 40 psf
- **roof load** = 20 psf
- **dead load** = 47 psf = 468 plf
- **span** = 48 ft
- $f'_{ci} = 3500 \text{ psi}$
- $f'_c = 5000 \text{ psi}$
- 8 - 0.5 in. diameter low-relaxation strands
- $A_{ps} = 8 (0.153 \text{ in.}^2) = 1.224 \text{ in.}^2$
- $e = 9.77 \text{ in.}$ (all strands straight)
- $f_{pu} = 270,000 \text{ psi}$
- $f_{py} = 0.90f_{pu}$
- jacking stress = $0.74f_{pu} = 200 \text{ ksi}$
- stress after transfer = 193 ksi
- force after transfer = $P_p = 1.224 \times 193 = 236 \text{ kips}$

Section Properties
- $A_c = 449 \text{ in.}^2$
- $I_c = 22,469 \text{ in.}^4$
- $y_b = 17.77 \text{ in.}$
- $y_t = 6.23 \text{ in.}$
- $V/S = 1.35 \text{ in.}$

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Calculate permissible stresses in concrete.</td>
<td>18.4</td>
</tr>
<tr>
<td>At prestress transfer (before time-dependent losses):</td>
<td>18.4.1</td>
</tr>
<tr>
<td>Compression: $0.60f'_{ci} = 0.60(3500) = 2100 \text{ psi}$</td>
<td></td>
</tr>
<tr>
<td>Compression at the ends = $0.70f'_c = 0.70(3500) = 2450 \text{ psi}$</td>
<td></td>
</tr>
<tr>
<td>Tension: $6\sqrt{f'{ci}} = 355 \text{ psi}$ (at ends of simply supported members; otherwise $3\sqrt{f'{ci}}$)</td>
<td></td>
</tr>
<tr>
<td>At service load (after allowance for all prestress losses):</td>
<td>18.4.2</td>
</tr>
<tr>
<td>Compression: $0.45f'_c = 2250 \text{ psi}$ - Due to sustained loads</td>
<td></td>
</tr>
<tr>
<td>Compression: $0.60f'_c = 3000 \text{ psi}$ - Due to total loads</td>
<td></td>
</tr>
<tr>
<td>Tension: $12\sqrt{f'_c} = 849 \text{ psi}$</td>
<td>18.3.3(b)</td>
</tr>
<tr>
<td>2. Calculate service load moments at midspan:</td>
<td></td>
</tr>
</tbody>
</table>

24-21
Example 24.2 (cont’d)

Calculations and Discussion

\[M_d = \frac{w_d \ell^2}{8} = \frac{0.468 \times 48^2}{8} = 134.8 \text{ ft-kips (beam dead load)} \]

\[M_{ds} = \frac{w_{ds} \ell^2}{8} = \frac{0.02 \times 10 \times 48^2}{8} = 57.6 \text{ ft-kips (roof dead load)} \]

\[M_{sus} = M_d + M_{ds} = 134.8 + 57.6 = 192.4 \text{ ft-kips (sustained load)} \]

\[M_{\ell} = \frac{w_{\ell} \ell^2}{8} = \frac{0.04 \times 10 \times 48^2}{8} = 115.2 \text{ ft-kips (live load)} \]

\[M_{\text{tot}} = M_d + M_{ds} + M_{\ell} = 134.8 + 57.6 + 115.2 = 307.6 \text{ ft-kips (total load)} \]

3. Calculate service load moments at transfer point

Assume transfer point located at 50d_b = 25 in. from end of beam. Assume distance from end of beam to center of support is 4 in. Therefore, x = 25 - 4 = 21 in. = 1.75 ft.

\[M_d = \frac{w_d x (\ell - x)}{2} = \frac{0.468 \times 1.75}{2} (48 - 1.75) = 18.9 \text{ ft-kips (beam dead load)} \]

Additional moment calculations at this location are unnecessary because conditions immediately after release govern at this location.

4. Calculate extreme fiber stresses by “linear elastic theory” which leads to the following well known formulas:

\[f_t = \frac{P}{A} - \frac{Pey_t}{I} + \frac{My_t}{I} \]

\[f_b = \frac{P}{A} + \frac{Pey_b}{I} - \frac{My_b}{I} \]

where, from Example 24.1

\[P = P_p = 236 \text{ kips (immediately after transfer)} \]

\[P = P_e = 219 \text{ kips (at service load)} \]
Table 24-4 Stresses in Concrete Immediately after Prestress Transfer (psi)

<table>
<thead>
<tr>
<th></th>
<th>At Assumed Transfer Point</th>
<th>At Mid Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Bottom</td>
</tr>
<tr>
<td>P_p/A</td>
<td>+526</td>
<td>+526</td>
</tr>
<tr>
<td>P_{pey}/I</td>
<td>-639</td>
<td>+1824</td>
</tr>
<tr>
<td>M_{dy}/I</td>
<td>+63</td>
<td>-180</td>
</tr>
<tr>
<td>Total</td>
<td>-50 (O.K.)</td>
<td>+2170 (O.K.)</td>
</tr>
<tr>
<td>Permissible</td>
<td>-355</td>
<td>+2450</td>
</tr>
</tbody>
</table>

Compressions (+)
Tension (-)

Table 24-5 Stresses in Concrete at Service Loads (psi)

<table>
<thead>
<tr>
<th></th>
<th>At Midspan – Sustained Loads</th>
<th>At Midspan – Total Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Bottom</td>
</tr>
<tr>
<td>P_e/A</td>
<td>+488</td>
<td>+488</td>
</tr>
<tr>
<td>P_{ey}/I</td>
<td>-594</td>
<td>+1695</td>
</tr>
<tr>
<td>M_{y}/I</td>
<td>+640</td>
<td>-1826</td>
</tr>
<tr>
<td>Total</td>
<td>+534 (O.K.)</td>
<td>+357 (O.K.)</td>
</tr>
<tr>
<td>Permissible</td>
<td>+2250</td>
<td>+2250</td>
</tr>
</tbody>
</table>

Compressions (+)
Tension (-)
Example 24.3—Flexural Strength of Prestressed Member Using Approximate Value for \(f_{ps} \)

Calculate the nominal moment strength of the prestressed member shown.

\[
f'_c = 5000 \text{ psi} \\
f_{pu} = 270,000 \text{ psi (low-relaxation strands; } f_{py} = 0.90 f_{pu})
\]

Calculations and Discussion

1. Calculate stress in prestressed reinforcement at nominal strength using approximate value for \(f_{ps} \). For a fully prestressed member, Eq. (18-3) reduces to:

\[
f_{ps} = f_{pu} \left(1 - \frac{\gamma_p}{\beta_1} \frac{f_{pu}}{f'_c} \right)
\]

\[
= 270 \left(1 - \frac{0.28}{0.80} \times 0.00348 \times \frac{270}{5} \right) = 252 \text{ ksi}
\]

where

\[
\gamma_p = 0.28 \text{ for } \frac{f_{py}}{f_{pu}} = 0.90 \text{ for low-relaxation strand}
\]

\[
\beta_1 = 0.80 \text{ for } f'_c = 5000 \text{ psi}
\]

\[
\rho_p = \frac{A_{ps}}{b d_p} = \frac{6 \times 0.153}{12 \times 22} = 0.00348
\]

Code Reference

10.2.7.3

Notes:

- \(f_{ps} \) is the prestress force.
- \(f_{pu} \) is the ultimate strength of the prestressed reinforcement.
- \(f'_c \) is the compressive strength of the concrete.
- \(\gamma_p \) and \(\beta_1 \) are constants for stress distribution and relaxation factors, respectively.
- \(A_{ps} \) is the area of prestressed reinforcement.
- \(b d_p \) is the effective width of the member.
2. Calculate nominal moment strength from Eqs. (9) and (10) of Part 24

Compute the depth of the compression block:

\[a = \frac{A_{ps} f_{ps}}{0.85 b f'_c} = \frac{0.918 \times 252}{0.85 \times 12 \times 5} = 4.54 \text{ in.} \quad \text{Eq. (10)} \]

\[M_n = A_{ps} f_{ps} \left(d_p - \frac{a}{2} \right) \quad \text{Eq. (9)} \]

\[M_n = 0.918 \times 252 \left(22 - \frac{4.54}{2} \right) = 4565 \text{ in-kips} = 380 \text{ ft-kips} \]

3. Check if tension controlled

\[c/d_p = (a/\beta_1)/d_p = \left(\frac{4.54}{0.80} \right)/22 \]

\[c/d_p = 0.258 < 0.375 \quad \text{R9.3.2.2} \]

Tension controlled \(\phi = 0.9 \)
Example 24.4—Flexural Strength of Prestressed Member Based on Strain Compatibility

The rectangular beam section shown below is reinforced with a combination of prestressed and nonprestressed strands. Calculate the nominal moment strength using the strain compatibility (moment-curvature) method.

- $f'_c = 5000$ psi
- $f_{pu} = 270,000$ psi (low-relaxation strand; $f_{py} = 0.9f_{pu}$)
- $E_{ps} = 28,500$ ksi
- jacking stress = 0.74f_{pu}
- losses = 31.7 ksi (calculated by method of Ref. 24.4. See 18.6 — Loss of Prestress for procedure.)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Calculate effective strain in prestressing steel.</td>
</tr>
<tr>
<td>$\varepsilon = (0.74f_{pu} - \text{losses})/E_{ps}$</td>
<td></td>
</tr>
<tr>
<td>$(0.74 \times 270 - 31.7)/28,500 = 0.0059$</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Draw strain diagram at nominal moment strength, defined by the maximum concrete compressive strain of 0.003 and an assumed distance to the neutral axis, c. For $f'_c = 5000$, $\beta_1 = 0.80$.</td>
</tr>
<tr>
<td>18.3.1</td>
<td></td>
</tr>
</tbody>
</table>

3. Obtain equilibrium of horizontal forces.

The “strain line” drawn above from point 0 must be located to obtain equilibrium of horizontal forces:

$C = T_1 + T_2$

To compute T_1 and T_2, strains ε_1 and ε_2 are used with the stress-strain relation for the strand to determine the corresponding stresses f_1 and f_2. Equilibrium is obtained using the following iterative procedure:
Example 24.4 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
</table>

a. assume c (location of neutral axis)

b. compute \(\varepsilon_1 \) and \(\varepsilon_2 \)

c. obtain \(f_1 \) and \(f_2 \) from the equations at the bottom of Fig. 24-1.

d. compute \(a = \beta_1 c \)

e. compute \(C = 0.85 f_c' ab \)

f. compute \(T_1 \) and \(T_2 \)

g. check equilibrium using \(C = T_1 + T_2 \)

h. if \(C < T_1 + T_2 \), increase \(c \), or vice versa and return to step b of this procedure. Repeat until satisfactory convergence is achieved.

Estimate a neutral axis location for first trial. Estimate stressed strand at 260 ksi, unstressed strand at 200 ksi.

\[
T = \sum A_p f_s = 0.306 \times 200 + 0.612 \times 260 = 220 \text{ kips} = C
\]

\[
a = C/(0.85 f_c' b) = 220/(0.85 \times 5 \times 12) = 4.32 \text{ in.}
\]

\[
c = a/\beta_1 = 4.32/0.80 = 5.4 \text{ in.} \text{ Use } c = 5.4 \text{ in. for first try}
\]

The following table summarizes the iterations required to solve this problem:

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>c in.</th>
<th>(\varepsilon_1)</th>
<th>(\varepsilon_2)</th>
<th>(f_1) ksi</th>
<th>(f_2) ksi</th>
<th>a in.</th>
<th>C kips</th>
<th>(T_1) kips</th>
<th>(T_2) kips</th>
<th>(T_1 + T_2) kips</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.4</td>
<td>0.0081</td>
<td>0.0151</td>
<td>231</td>
<td>265</td>
<td>4.32</td>
<td>220</td>
<td>71</td>
<td>162</td>
<td>233</td>
</tr>
<tr>
<td>2 O.K.</td>
<td>5.6</td>
<td>0.0077</td>
<td>0.0147</td>
<td>220</td>
<td>265</td>
<td>4.48</td>
<td>228.5</td>
<td>67</td>
<td>162</td>
<td>229</td>
</tr>
</tbody>
</table>

4. Calculate nominal moment strength.

Using \(C = 228.5 \text{ kips} \), \(T_1 = 67 \text{ kips} \) and \(T_2 = 162 \text{ kips} \), the nominal moment strength can be calculated as follows by taking moments about \(T_2 \):

\[
M_n = \left\{ \frac{(d_2 - a/2) \times C - (d_2 - d_1) \times T_1}{12} \right\}
\]

\[
= \left\{ \frac{(22 - (4.48/2) \times 228.5) - (22 - 20) \times 67}{12} \right\} = 365 \text{ ft-kips}
\]
Example 24.5—Tension-Controlled Limit for Prestressed Flexural Member

For the double tee section shown below, check limits for the prestressed reinforcement provided.

\[f'_c = 5000 \text{ psi} \]
\[22 \times 0.5 \text{ in. diameter low-relaxation strands} \]
\[A_{ps} = 22 \times (0.153 \text{ in.}^2) = 3.366 \text{ in.}^2 \]
\[f_{pu} = 270,000 \text{ psi} \]
\[f_{py} = 0.90 f_{pu} \]

\[\omega_{pu} = \frac{A_{ps} f_{pu}}{b d_p f'_c} = \frac{3.366 \times 270}{84 \times 27.5 \times 5} = 0.079 \]

\[f_{ps} = f_{pu} \left(1 - \frac{\gamma_p}{\beta_1} \right) \omega_{pu} = 270 \left(1 - \frac{0.28}{0.8} \times 0.079 \right) = 263 \text{ ksi} \]

\[\gamma_p = 0.28 \text{ for low-relaxation strands} \]
\[\beta_1 = 0.80 \text{ for } f'_c = 5000 \text{ psi} \]

1. Calculate stress in prestressed reinforcement at nominal strength using Eqs. (6) and (8).

2. Calculate required depth of concrete stress block.

\[a = \frac{A_{ps} f_{ps}}{0.85 b f'_c} = \frac{3.366 \times 263}{0.85 \times 84 \times 5} = 2.48 \text{ in.} > h_f = 2 \text{ in.} \]

3. Calculate area of reinforcement to develop compression in the flange.

\[A_{pf} = \frac{0.85 h_f f'_c (b - b_w)}{f_{ps}} = \frac{0.85 \times 2 \times 5 \times (84 - 15.1)}{263} = 2.23 \text{ in.}^2 \]

4. Find depth \(a \) of stress block, and \(c \).

Compression in the web = \((A_{ps} - A_{pf}) \times f_{ps} = 0.85 f'_c a b_w \)
\((3.366 - 2.23) \times 263 = 0.85 \times 5 \times a(15.5 - 0.2a) \)
Solving for \(a \)
\[a = 4.84 \text{ in.} \]
\[c = a/\beta_1 = 4.84/0.8 = 6.05 \text{ in.} \]
Example 24.5 (cont’d) Calculations and Discussion

5. Check to see if tension-controlled

\[\text{c/d_t} = \frac{6.05}{30.0} = 0.202 < 0.375 \]

(By definition, dimension "d_t" should be measured to the bottom strand)

Section is tension-controlled

Note: In Step 1, Eq. 18-3 was used to find \(f_{ps} \). But, with the stress block in the web, the value of \(\omega_{pu} \) used in Eq. (18-5) was not correct, although the error is small in this case. A strain compatibility analysis gives \(c = 6.01 \) in. and \(f_{ps} = 266 \text{ ksi} \).

Example No. 24.5.2

Check the limits of reinforcement using a 3 in. thick flange on the member in Example 24.5.1. The overall depth remains 32 in.

1. \(f_{ps} = 263 \text{ ksi} \) No change from Example 24.5.1

2. \(a = 2.48 \) in. No change from Example 24.5.1, Step 2

 \[< h_f = 3 \text{ in.} \]

 Since the stress block is entirely within the flange, the section acts effectively as a rectangular section.

3. Check \(c/d_p \) ratio

 \[c = \frac{a}{\beta_1} = \frac{2.48}{0.8} = 3.10 \text{ in.} \]

 \[\text{c/d_t} = \frac{3.10}{30.0} = 0.10 < 0.375 \]

 Section is tension controlled.
Example 24.6—Cracking Moment Strength and Minimum Reinforcement Limit for Non-composite Prestressed Member

For the non-composite prestressed member of Example 24.3, calculate the cracking moment strength and compare it with the design moment strength to check the minimum reinforcement limit.

\[f'_c = 5000 \text{ psi} \]
\[f_{pu} = 270,000 \text{ psi} \]
\[\text{jacking stress} = 0.70f_{pu} \]
Assume 20% losses

\[
M_{cr} = f_r + \frac{P_{se}}{A_c}S_b + (P_{se} \times e)
\]

\[f_r = 7.5\sqrt{f'_c} = 530 \text{ psi} \]

Assuming 20% losses:
\[P_{se} = 0.8 \times [6 \times 0.153 \times (0.7 \times 270)] = 139 \text{ kips} \]
\[S_b = \frac{bh^2}{6} = \frac{12 \times 24^2}{6} = 1152 \text{ in.}^3 \]
\[A_c = bh = 12 \times 24 = 288 \text{ in.}^2 \]
\[e = 12 - 2 = 10 \text{ in.} \]
\[M_{cr} = \left(0.530 + \frac{139}{288}\right)1152 + (139 \times 10) = 2557 \text{ in.-kips} = 213 \text{ ft-kips} \]

Note that cracking moment strength needs to be determined for checking minimum reinforcement per 18.8.3.

2. Section 18.8.3 requires that the total reinforcement (prestressed and nonprestressed) must be adequate to develop a design moment strength at least equal to 1.2 times the cracking moment strength. From Example 24.3, \(M_n = 380 \text{ ft-kips} \).
<table>
<thead>
<tr>
<th>Example 24.6 (cont’d)</th>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi M_n \geq 1.2 M_{cr})</td>
<td></td>
<td>18.8.3</td>
</tr>
<tr>
<td>0.9 (380) > 1.2 (213)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>342 > 256 ft-kips O.K.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 24.7—Cracking Moment Strength and Minimum Reinforcement Limit for Composite Prestressed Member

For the 6 in. precast solid flat slab with 2 in. composite topping, calculate the cracking moment strength. The slab is supported on bearing walls with 15 ft span.

Section properties per foot of width:

- $A_c = 72 \text{ in.}^2$ (precast slab)
- $f'_c = 5000 \text{ psi}$ (all-lightweight concrete, $w_c = 125 \text{ pcf}$)
- $S_b = 72 \text{ in.}^3$ (precast slab)
- $f_{pu} = 250,000 \text{ psi}$ (stress-relieved strand)
- $S_c = 132.7 \text{ in.}^3$ (composite section)
- jacking stress $= 0.70f_{pu}$
- Assume 25% losses

Calculations and Discussion

1. Calculate cracking moment strength using Eq. (13) developed for unshored composite members. All calculations are based on one foot width of slab.

 \[
 M_{cr} = \left(f_r + \frac{P_{se}}{A_c} + \frac{P_{se} e}{S_b} \right) S_c - M_d \left(\frac{S_c}{S_b} - 1 \right)
 \]

 \[
 f_r = 0.75 \left(7.5 \sqrt{5000} \right) = 398 \text{ psi reduced for all-lightweight concrete}
 \]

 Assuming 25% losses:

 \[
 P_{se} = 0.75 \left(0.12 \times 0.7 \times 250 \right) = 15.75 \text{ kips}
 \]

 \[
 e = 3 - 1.5 = 1.5 \text{ in.}
 \]

 \[
 w_d = (6 + 2)/12 \times 125 = 83 \text{ psf} = 0.083 \text{ ksf} \text{ (weight of precast slab + composite topping)}
 \]

 \[
 M_d = \frac{w_d e^2}{8} = \frac{0.083 \times 15^2}{8} = 2.33 \text{ ft-kips} = 28.0 \text{ in.-kips}
 \]

 \[
 M_{cr} = \left[\left(0.398 + \frac{15.75}{72} + \frac{15.75 \times 1.5}{72} \right) 132.7 \right] - \left[28.0 \left(\frac{132.7}{72} - 1 \right) \right]
 \]

 \[
 = 125.4 - 23.6 = 101.8 \text{ in.-kips}
 \]
Example 24.7 (cont’d) Calculations and Discussion Code Reference

2. Calculate design moment strength and compare with cracking moment strength. All calculations based on one foot width of slab.

\[A_{ps} = 0.12 \text{ in.}^2, \quad d_p = 8.0 - 1.5 = 6.5 \text{ in.} \]

\[\rho_p = \frac{A_{ps}}{b d_p} = \frac{0.12}{12 \times 6.5} = 0.00154 \]

With no additional tension or compression reinforcement, Eq. (18-3) reduces to:

\[f_{ps} = f_{pu} \left(1 - \frac{\gamma_p}{\beta_1} \rho_p \frac{f_{pu}}{f'_c} \right) = 250 \left(1 - \frac{0.4}{0.8} \times 0.00154 \times \frac{250}{5} \right) = 240.4 \text{ ksi} \]

\[a = \frac{A_{ps} f_{ps}}{0.85 f'_c b} = \frac{0.12 \times 240.4}{0.85 \times 5 \times 12} = 0.57 \text{ in.} \]

\[M_n = A_{ps} f_{ps} (d_p - a/2) = 0.12 \times 240.4 (6.5 - 0.57/2) = 179.3 \text{ in.-kips} \]

\[\phi M_n = 0.9 (179.3) = 161.4 \text{ in.-kips} \]

\[\phi M_n \geq 1.2 (M_{cr}) \quad 18.8.3 \]

161.4 > 1.2 (101.8) = 122.2 \text{ in.-kips} \quad \text{O.K.} \]
Example 24.8—Prestressed Compression Member

For the short column shown, calculate the nominal strength M_n for a nominal axial load $P_n = 30$ kips.

Calculate design strength.

$'f_{c}' = 5000$ psi

$f_{pu} = 270,000$ psi (low-relaxation strand)

Jacking stress $= 0.70f_{pu}$

Assume 10% losses

Calculations and Discussion

Eq. 18-3 should not be used when prestressing steel is in the compression zone. The same “strain compatibility” procedure used for flexure must be used here. The only difference is that for columns the load P_n must be included in the equilibrium of axial forces.

1. Calculate effective prestress.

$$f_{se} = 0.9 \times 0.7f_{pu} = 0.9 \times 0.7 \times 270 = 170 \text{ ksi}$$

$$P_e = A_p f_{se} = 4 \times 0.115 \times 170 = 78.2 \text{ kips}$$

2. Calculate average prestress on column section.

$$f_{pc} = \frac{P_e}{A_g} = \frac{78.2}{12^2} = 0.54 \text{ ksi}$$

Minimum reinforcement as per 10.9.1 not required because $f_{pc} = 0.54 \text{ ksi} > 0.225 \text{ ksi}$.

Since $f_{pc} = 0.54 \text{ ksi} > 0.225 \text{ ksi}$, lateral ties satisfying the requirements of 18.11.2.2 must enclose all prestressing tendons.

3. Calculate effective strain in prestressing steel.

$$\varepsilon = \frac{f_{se}}{E_p} = \frac{170}{28,500} = 0.0060$$

4. Draw strain diagram at nominal moment strength, defined by the maximum concrete compressive strain of 0.003 and an assumed distance to the neutral axis, c. For $f_{c}' = 5000$ psi, $\beta_1 = 0.80$.

18.11.2.1
5. Obtain equilibrium of axial forces. The strain line OA drawn above, must be such that equilibrium of axial forces exists.

\[C = T_1 + T_2 + P_n \]

This can be done by trial-and-error as outlined in Example 24.4. Assuming different values of \(c \), the following trial table is obtained:

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>c (in.)</th>
<th>(\epsilon_1)</th>
<th>(\epsilon_2)</th>
<th>(f_1^*) ksi</th>
<th>(f_2^*) ksi</th>
<th>a (in.)</th>
<th>C (kips)</th>
<th>T_1 (kips)</th>
<th>T_2 (kips)</th>
<th>T_1 + T_2 + P_n (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0</td>
<td>0.0055</td>
<td>0.0125</td>
<td>157</td>
<td>263</td>
<td>2.40</td>
<td>122.4</td>
<td>36.1</td>
<td>60.4</td>
<td>126.5</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>0.0053</td>
<td>0.0119</td>
<td>152</td>
<td>261</td>
<td>2.56</td>
<td>130.6</td>
<td>35.0</td>
<td>60.2</td>
<td>135.2</td>
</tr>
<tr>
<td>3 O.K.</td>
<td>3.1</td>
<td>0.0054</td>
<td>0.0122</td>
<td>154</td>
<td>262</td>
<td>2.48</td>
<td>126.5</td>
<td>35.5</td>
<td>60.3</td>
<td>125.8</td>
</tr>
</tbody>
</table>

\(f_1^* \) and \(f_2^* \) are from equation in Fig. 24-1.

6. Calculate nominal moment strength.

Using \(C = 126.5 \) kips (from the sum of the other forces), \(P_n = 30 \) kips, \(T_1 = 35.5 \) kips, and \(T_2 = 60.3 \) kips, the moment strength can be calculated as follows by taking moments about \(P_n \) located at the centroid of the section:

\[
M_n = \left[\frac{[(h/2 - a/2) \times C] - [(h/2 - 2.5) \times T_1] + [(h/2 - 2.5) \times T_2]}{12} \right]
\]

\[
= \left[\frac{(4.76 \times 126.5) - (3.5 \times 35.5) + (3.5 \times 60.3)}{12} \right] = 57.4 \text{ ft-kips}
\]

7. Calculate design strength

\[
\epsilon_t = \epsilon_2 - 0.0060 = 0.0122 - 0.0060 = 0.0062 > 0.005
\]

Section is tension-controlled \(\phi = 0.9 \)

\[\phi P_n = 0.9 \times 30 = 27 \text{ kips} \]

\[\phi M_n = 0.9 \times 57.4 = 51.7 \text{ ft-kips} \]
Example 24.9—Cracked Section Design When Tension Exceeds $12\sqrt{f'_{c}}$

Do the serviceability analysis for the beam shown.

$f'_{c} = 6000$ psi
depth $d_p = 26$ in.
effective prestress $f_{se} = 150$ ksi
decompression stress $f_{dc} = 162$ ksi
span = 40 ft

<table>
<thead>
<tr>
<th></th>
<th>w k/ft</th>
<th>Midspan moments in.-k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-weight</td>
<td>0.413</td>
<td>992</td>
</tr>
<tr>
<td>Additional dead load</td>
<td>1.000</td>
<td>2400</td>
</tr>
<tr>
<td>Live load</td>
<td>1.250</td>
<td>3000</td>
</tr>
<tr>
<td>Sum</td>
<td>2.663</td>
<td>6392</td>
</tr>
</tbody>
</table>

Calculations and Discussion

1. Check tension at service loads, based on gross section.

\[
P = A_{ps}f_{se} = 1.836 \times 150 = 275.4 \text{ kip} \quad (A_{ps} = 12 \times 0.153 = 1.836 \text{ in.}^2)
\]

\[
P/A = 275.4 / 384 = 0.717 \text{ ksi}
\]

\[
Pe/S = 275.4 \times 10/2048 = 1.345 \left(e = 26 - \frac{32}{2} = 10 \text{ in.} \right)
\]

\[
S = bh^2/6 = 12(32)^2/6 = 2.048 \text{ in.}^3
\]

\[
\Sigma M/S = 6392/2048 = 3.121
\]

\[
- 1.059 \text{ ksi tension}
\]

\[
12\sqrt{f'_{c}} = 12\sqrt{f'_{c}} = 930 \text{ psi} = 0.930 \text{ ksi}
\]

Tension exceeds $12\sqrt{f'_{c}}$. Design as a Class C member

2. A cracked section stress analysis is required

Cracked transformed section properties, similar to those used for working stress analysis of ordinary (nonprestressed) reinforced concrete will be used. The area of steel elements is replaced by a “transformed” area of concrete equal to n times the actual prestressing steel area, where n is the ratio of the modulus of elasticity of prestressing steel to that of concrete.

The modular ratio $n = E_{ps}/E_{c} = 28,500/4415 = 6.455$

where $E_{c} = 57,000\sqrt{f'_{c}} = 57,000\sqrt{6000} = 4415$ ksi

The transformed steel area A_t is:

\[
A_t = nA_{ps} = 6.455 \times 1.836 = 11.85 \text{ in.}^2
\]
The force P_{dc} at decompression (when the stress in the concrete at the same level as the prestressing steel is zero) is:

$$P_{dc} = A_{ps} f_{dc} = 1.836 \times 162 = 297.4 \text{ kips}$$

3. The stress analysis of a cracked section with axial load (from the prestress) requires, at best, the solution of a cubic equation. A more general approach is to find a neutral axis location that satisfies horizontal force equilibrium and produces the given bending moment. Reference 24.2 gives one way to accomplish this. It is too lengthy to be presented in detail here.

The results give a neutral axis depth c of 17.26 in., with a concrete stress f_c of 3.048 ksi and a transformed steel stress $\Delta f_{ps}/n$ of 1.545 ksi. The actual Δf_{ps} is $1.545 \times 6.455 = 9.97$ ksi.

4. The transformed section properties are

$$A = 219 \text{ in.}^2$$
$$I = 8524 \text{ in.}^4$$
$$y_t = 9.57 \text{ in.}$$

5. Equilibrium may be checked manually,

$$C = f_c b c/2 = 3.048 (12)(17.26)/2 = 315.7 \text{ k}$$

C acts at top kern of compression zone

$$= d_c/3 \text{ for rectangular area}$$

$$17.26/3 = 5.75 \text{ in.}$$

$$T = P_{dc} + \Delta f_{ps} (A_{ps}) = 297.4 + 9.97 (1.836) = 315.7 \text{ k} = C \text{ Check}$$

$$M = C \text{ or } T \times \text{lever arm}$$

$$= 315.7 \times 20.25 = 6392 \text{ in.-kips Check}$$
Example 24.9 (cont’d) Calculations and Discussion

6. Check limits on Δf_{ps}

- Δf_{ps} is less than code limit of 36 ksi O.K. 18.4.4.3
- Δf_{ps} is less than 20 ksi, so the spacing requirements of 18.4.4.1 and 18.4.4.2 need not be applied. 18.4.4.3

7. Check deflection

Live load deflection calculations based on a cracked section analysis are required for Class C members.

Use the “bilinear moment-deflection relationship,” as described in Ref. 24.1 9.5.4.2

8. Find cracking moment M_{cr} using P_{dc}

\[
\frac{P}{A} + \frac{P_e}{S} + \frac{M_{cr}}{S} = f_r
\]

modulus of rupture $f_r = \frac{7.5 \sqrt{f_c^2}}{7.5 \sqrt{6000}} = 581$ ksi 9.5.2.3

\[
\frac{297}{384} + 297 \times \frac{10}{2048} + 0.581 = M_{cr}/2048
\]

\[
M_{cr} = 5750 \text{ in.-kips}
\]

\[
M_d = 3392
\]

balance of M 642 = live load moment applied to cracked section

9. Compute deflections before and after cracking

\[
\Delta L = \frac{5}{48} \frac{2358 L^2}{E I_g} + \frac{5}{48} \frac{642 L^2}{E I_{cr}}
\]

\[
= \frac{5}{48} \frac{2358 \times 480^2}{4415 \times 32768} + \frac{5}{48} \frac{642 \times 480^2}{4415 \times 8524}.
\]

\[
\Delta L = 0.39 + 0.41 = 0.80 \text{ in.}
\]

\[
\Delta L < \frac{L}{360} = \frac{480}{365} = 1.33 \text{ in.} \quad \text{O.K.} \quad 9.5.2.6
\]

Table 9.5(b)

The live load deflection is shown graphically below.
Example 24.9 (cont’d) Calculations and Discussion

Live Load Deflection, in.

Live Load Moment, in.-kips

$g = 32,768 \text{ in.}^4$

$I_{el} = 8524 \text{ in.}^4$

$I_0 = 32,769 \text{ in.}^4$
Prestressed Concrete—Shear

UPDATE FOR THE '08 CODE

The new modification factor, \(\lambda \) (2.1 and 8.6), accounts for the reduced mechanical properties of lightweight concrete. The introduction of the modifier \(\lambda \) permits the use of the equations for both lightweight concrete and normalweight concrete. The term \(\sqrt{f'_c} \) is replaced by \(\lambda \sqrt{f'_c} \) in all the equations where the nominal shear strength provided by concrete \(V_c \) is considered.

BACKGROUND

The basic equations for shear design of prestressed concrete, Eqs. (11-10), (11-11), and (11-12), were introduced in the 1963 code. Although well founded on test results, they have been found difficult to apply in practice. A simplified Eq. (11-9) was introduced in the 1971 code.

In order to understand Eqs. (11-10) and (11-12), it is best to review the principles on which ACI shear design is based. These principles are empirical, based on a large number of tests.

- As formulated in the code the shear resisted by concrete and the shear resisted by stirrups are additive.
- The shear resisted by the concrete after shear cracks form is at least equal to the shear existing in the concrete at the location of the shear crack at the time the shear crack forms.

To compute the shear resisted by the concrete at the time a shear crack forms, two possibilities must be considered.

1. Web shear: A diagonal shear crack originates in the web, near the neutral axis, caused by principal tension in the web. These cracks are typically diagonal forming perpendicular to the principal tensile stress, and usually occur in the high shear zones (near supports or concentrated loads).

2. Flexure-shear: A crack starts as a flexural crack on the tension face of a flexural member. It then extends up into the web, and develops into a diagonal shear crack. This can happen at a much lower principal tensile stress than that causing a web shear crack, because of the tensile stress concentration at the tip of the crack. These cracks typically occur in zones where both flexure and shear are present and relatively high, but not necessarily near their maximum.

Web Shear

The apparent tensile strength of concrete in direct tension is about \(4\lambda \sqrt{f'_c} \). When the principal tension at the center of gravity of the cross section reaches \(4\lambda \sqrt{f'_c} \), a web shear crack will occur. Section 11.3.3.2 states “… \(V_{cw} \) shall be computed as the shear…that results in a principal tensile stress of \(4\lambda \sqrt{f'_c} \…”

The compression from the prestress helps to reduce the principal tension. The computation of principal tension due to combined shear and compression can be somewhat tedious. The code gives a simplified procedure.

\[
V_{cw} = \left(3.5\lambda \sqrt{f'_c} + 0.3f_{pc}\right) b_w d_p + V_p
\]
Eq. (11-12)
The term \(V_p \) in Eq. (11-12) is the vertical component of the effective tension force in the prestressing tendons at the considered section. This is additive for web shear strength (but not for flexure-shear strength).

A comparison to test for normalweight concrete \((\lambda = 1.0)\) results is shown below.

![Figure 25-1 Diagonal Cracking in Regions not Previously Cracked](image)

The compression from prestressing increases the shear strength by 30 percent of the \(P/A \) level, indicated by the second term of Eq. (11-12), where \(f_{pc} \) is the compressive stress either at the centroid of the cross section or at the junction of web and flange.

For nonprestressed beams, the principal tension at the center of gravity of the section is equal to the shear. The reason that Eq. (11-3) for shear in nonprestressed members permit only \(2\lambda \sqrt{f_c} \) shear resisted by the concrete as opposed to \(4\lambda \sqrt{f_c} \) is because shear strength is reduced by flexural cracking. In nonprestressed beams, shear is almost always influenced by flexural tension. But, prestressing reduces the flexural cracking.

Flexure-Shear in Prestressed Concrete

In prestressed beams, flexural cracking is delayed by the prestress – usually until loaded beyond service load. It Thus the code accounts for the beneficial effects of prestressing.

In the 1950s, it was thought that draping strands would increase shear strength, by the vertical component \(V_p \) of the prestressing force. Tests showed just the opposite. The reason for shear strength reduction is because draping the strands reduces the flexural cracking strength in the shear span.

The tests were done with concentrated loads; whereas, the dead load of the beam was a uniform load. For this reason, when the shear design method as codified was developed from these test results, the dead load and test load shears were treated separately in the corresponding equation.

Flexure-Shear

Equation (11-10) is the equation for shear resistance provided by the concrete, as governed by flexural cracks that develop into shear cracks. The shear strength of the concrete at a given cross section is taken equal to the shear at the section at the time a flexural crack occurs, plus a small increment of shear which transforms the vertical flexural crack into an inclined crack. Equation (10-10) may be expressed in words as follows.
\(V_{ci} = \text{shear existing at the time of flexural cracking plus an added increment to convert it into a shear crack.} \)

The added increment is \(0.6b_w d_p \lambda \sqrt{f'_c} \).

The shear existing at the time and location of flexural cracking is the dead load shear \(V_d \) plus the added shear \(V_i \frac{M_{cre}}{M_{max}} \).

The origin of the term \(V_i \frac{M_{cre}}{M_{max}} \), is explained in the following discussion:

The term \(V_i \) is the factored ultimate shear at the section, less the dead load shear.

The term \(M_{cre} \) is the added moment (over and above stresses due to prestress and dead load) causing \(6\lambda \sqrt{f'_c} \) tension in the extreme fiber.

The added moment \(M_{cre} \) is calculated by finding the bottom fiber stress \(f_{pc} \) due to prestress, subtracting the bottom fiber stress \(f_d \) due to dead loads, adding \(6\lambda \sqrt{f'_c} \) tension, and multiplying the result by the section modulus for the section resisting live loads. This is Eq. (11-11) of the code.

\[
M_{cr} = \left(\frac{1}{y_1} \right) \left(6\lambda \sqrt{f'_c} + f_{pc} - f_d \right)
\]

\textit{Eq. (11-11)}

Note: In the above discussion, “bottom” is assumed to be the “tension side” for continuous members.

The term \(M_{max} \) is the factored ultimate moment of the section, less the dead load moment.

To better understand the meaning of these terms and their use in Eq. (11-10), refer to Fig. 25-2.

\[\text{Figure 25-2 Origin of } (V_i \frac{M_{cre}}{M_{max}}) \text{ Term in Eq. (11-10)} \]

The quantity \(V_i \frac{M_{cre}}{M_{max}} \) is the shear due to an added load (over and above the dead load) which causes the tensile stress in the extreme fiber to reach \(6\lambda \sqrt{f'_c} \). The added load is applied to the composite section (if composite).

After a flexural crack forms, a small amount of additional shear is needed to transform the crack into a shear crack. This is determined empirically, as shown in Fig. 25-3.
The intercept at 0.6 produces the first term in Eq. (11-10), $0.6b'dp\lambda^f_c$.

Note: The quantity “$-dp/2$” shown in the expressions of Fig. 25-3 was later dropped, as a conservative simplification.

The notation used in Eqs. (11-10) and (11-11) is as follows:

- M_{cre} = moment causing flexural cracking at section due to externally applied loads
- M_{max} = maximum factored moment at section due to externally applied loads
- V_i = factored shear force at section due to externally applied loads occurring simultaneously with M_{max}.

The following should be noted:

- M_{cre} is not the total cracking moment. It is not the same as M_{cr} that is used to check for minimum reinforcement in Example 24.6.
- M_{max} is not the total factored moment. It is the total factored moment less the dead load moment.

It would seem that V_i and M_{max} should have the same subscript, because they both relate to the differences between the same two loadings.

Further, the term “externally applied loads” is ambiguous. Apparently, dead load is not regarded as “externally applied,” perhaps because the weight comes from the “internal” mass of the member. In contrast, R11.4.3 says that superimposed dead load on a composite section should be considered an externally applied load. The commentary explains a good reason for this, but the confusion still exists.

The shear strength must be checked at various locations along the shear span, a process that is tedious. For manual shear calculations, the simplified process described in 11.3.2 is adequate for most cases.
11.1 SHEAR STRENGTH FOR PRESTRESSED MEMBERS

The basic requirement for shear design of prestressed concrete members is formulated the same as for reinforced concrete members: the design shear strength ϕV_n must be greater than the factored shear force V_u at all sections (11.1).

$$\phi V_n \geq V_u$$

Eq. (11-1)

For both reinforced and prestressed concrete members, the nominal shear strength V_n is the sum of two components: the nominal shear strength provided by concrete V_c and the nominal shear strength provided by shear reinforcement V_s.

$$V_n = V_c + V_s$$

Eq. (11-2)

Therefore,

$$\phi V_c + \phi V_s \geq V_u$$

The nominal shear strength provided by concrete V_c is assumed to be equal to the shear existing at the time an inclined crack forms in the concrete.

Beginning with the 1977 code, shear design provisions have been presented in terms of shear forces V_n, V_c, and V_s, to better clarify application of the material strength reduction factor ϕ for shear design. In force format, the ϕ factor is directly applied to the material strengths, i.e., ϕV_c and ϕV_s.

11.1.2 Concrete Strength

Section 11.1.2 restricts the concrete strength that can be used in computing the concrete contribution because of the lack of shear test data for high strength concrete. The limit does not allow f'_c to be greater than 100 psi, which corresponds to $f_c = 10,000$ psi. Note, the limit is expressed in terms of $\sqrt{f'_c}$, as it denotes diagonal tension. The limit can be exceeded if minimum shear reinforcement is provided as specified in 11.1.2.1.

11.1.3 Location for Computing Maximum Factored Shear

Section 11.1.3 allows the maximum factored shear V_u to be computed at a distance from the face of the support when all of the following conditions are satisfied:

a. the support reaction, in the direction of the applied shear, introduces compression into the end regions of the member,

b. loads are applied at or near the top of the member, and

c. no concentrated load occurs between the face of the support and the critical section.

For prestressed concrete sections, 11.1.3.2 states that the critical section for computing the maximum factored shear V_u is located at a distance of $h/2$ from the face of the support. Due to the presence of axial prestressing force this differs from the provisions for reinforced (nonprestressed) concrete members, in which the critical section is located at d from the face of the support. For more details concerning maximum factored shear force at supports, see Part 12.
11.3 SHEAR STRENGTH PROVIDED BY CONCRETE FOR PRESTRESSED MEMBERS

Section 11.3 provides two approaches to determining the nominal shear strength provided by concrete V_c. A simplified approach is presented in 11.3.2 with a more detailed approach presented in 11.3.3. In both cases, the shear strength provided by concrete is assumed to be equal to the shear existing at the time an inclined crack forms in the concrete.

11.3.1 NOTATION

For prestressed members, the depth d used in shear calculations is defined as follows.

$$d = \text{distance from extreme compression fiber to centroid of prestressed and nonprestressed longitudinal tension reinforcement, if any, but need not be less than } 0.8h.$$

11.3.2 Simplified Method

The use of this simplified method is limited to prestressed members with an effective prestress force not less than 40 percent of the tensile strength of the flexural reinforcement, which may consist of only prestressed reinforcement or a combination of prestressed and conventional reinforcement.

$$V_c = \left(0.6\lambda \sqrt{f_c'} + 700 \frac{V_u d_p}{M_u} \right) b_w d$$

but need not be less than $2\lambda \sqrt{f_c'} b_w d$.

V_c must not exceed $5\lambda \sqrt{f_c'} b_w d$ or V_{cw} (11.3.3.2) computed considering the effects of transfer length (11.3.4) and debonding (11.4.5) which apply in regions near the ends of pretensioned members.

It should be noted that for the term $V_u d_p / M_u$ in Eq. (11-9), d_p must be taken as the actual distance from the extreme compression fiber to the centroid of the prestressed reinforcement rather than the 0.8h allowed elsewhere in the code.

The shear strength must be checked at various locations along the shear span. The commentary (R11.3) notes that for simply supported members subjected to uniform loads, the quantity of $V_u d_p / M_u$ may be expressed as:

$$\frac{V_u d_p}{M_u} = \frac{d_p (\ell - 2x)}{x (\ell - x)}$$

Figure 25-4, useful for a graphical solution, is also given in the commentary.
The origin of this method is discussed under General Considerations, at the beginning of Part 25.

Two types of inclined cracking have been observed in prestressed concrete members: flexure-shear cracking and web-shear cracking. Since the nominal shear strength from concrete is assumed to be equal to the shear causing inclined cracking of the concrete, the detailed method provides equations to determine the nominal shear strength for both types of cracking.

The two types of inclined cracking are illustrated in Fig. 25-5 which is found in R11.3.3. The nominal shear strength provided by concrete V_c is taken as the lesser shear causing the two types of cracking, which are discussed below. The detailed expressions for V_c in 11.4.3 may be difficult to apply without design aids or computers, and should be used only when the simplified expression for V_c in 11.3.2 is not adequate.
11.3.3.1 Flexure-Shear Cracking, V_{ci} — Flexure-shear cracking occurs when flexural cracks, which are initially vertical, become inclined under the influence of shear. The shear at which this occurs can be taken as

$$V_{ci} = 0.6\lambda\sqrt{f_c}b_wd_p + V_d + \frac{V_iM_{cre}}{M_{max}}$$ \hspace{1cm} Eq. (11-10)

Note that V_{ci} need not be taken less than $1.7\lambda\sqrt{f_c}b_wd$.

The added moment M_{cre} to cause flexural cracking is computed using the equation

$$M_{cre} = \left(\frac{1}{y_t}\right)(6\lambda\sqrt{f_c} + f_{pe} - f_d)$$ \hspace{1cm} Eq. (11-11)

where f_{pe} is the compressive stress in concrete due to effective prestress force only (after allowance for all prestress losses) at the extreme fiber of the section where tensile stress is caused by externally applied loads.

V_{ci} usually governs for members subject to uniform loading. The total nominal shear strength V_{ci} is assumed to be the sum of three parts:

1. the shear force required to transform a flexural crack into an inclined crack — $0.6\lambda\sqrt{f_c}b_wd$;
2. the unfactored dead load shear force — V_d; and
3. the portion of the remaining factored shear force that will cause a flexural crack to initially occur — V_iM_{cre}/M_{max}.

For non-composite members, V_d is the shear force caused by the unfactored dead load. For composite members, V_d is computed using the unfactored self weight plus unfactored superimposed dead load.

The load combination used to determine V_i and M_{max} is the same load combination that causes maximum moment at the section under consideration. The value V_i is the factored shear force resulting from the externally applied loads occurring simultaneously with M_{max}. For composite members, V_i may be determined by subtracting V_d from the shear force resulting from the total factored loads, V_u. Similarly, $M_{max} = M_n - M_d$. When calculating the cracking moment M_{cre}, the load used to determine f_d is the same unfactored load used to compute V_d.

11.3.3.2 Web-Shear Cracking, V_{cw} — Web-shear cracking occurs when the principal diagonal tension in the web exceeds the tensile strength of the concrete. This shear is approximately equal to

$$V_{cw} = (3.5\lambda\sqrt{f_c} + 0.3f_{pe})b_wd_p + V_p$$ \hspace{1cm} Eq. (11-12)

where f_{pe} is the compressive stress in concrete (after allowance for all prestress losses) at the centroid of the cross-section resisting externally applied loads or at the junction of the web and flange when the centroid lies within the flange.

V_p is the vertical component of the effective prestress force, which is present only when strands are draped or deflected. The expression for web shear strength V_{cw} usually governs for heavily prestressed beams with thin webs, especially when the beam is subject to large concentrated loads near simple supports. Eq. (11-12) predicts the shear strength at first web-shear cracking.

An alternate method for determining the web shear strength V_{cw} is to compute the shear force corresponding to the unfactored dead load plus the unfactored live load that results in a principal tensile stress of $4\lambda\sqrt{f_c}$ at the centroidal axis of the member, or at the interface of web and flange when the centroidal axis is located in the flange. This alternate method may be advantageous when designing members where shear is critical. Note the limitation on V_{cw} in the end regions of pretensioned members as provided in 11.3.4 and 11.3.5.
11.3.4, 11.3.5 Special Considerations for Pretensioned Members

Section 11.3.4 applies to situations where the critical section located at $h/2$ from the face of the support is within the transfer length of the prestressing tendons. This means that the full effective prestress force is not available for contributing to the shear strength. A reduced value of effective prestress force must be used assuming linear interpolation between no stress in the tendons at the end of the member to full effective prestress at the transfer length from the end of the member, which is taken to be 50 diameters (d_b) for strand and 100d_b for a single wire.

Section 11.3.5 is provided to ensure that the effect on shear strength of reduced prestress is properly taken into account when bonding of some of the tendons is intentionally prevented (debonding) near the ends of a pretensioned member, as permitted by 12.9.3.

11.4 SHEAR STRENGTH PROVIDED BY SHEAR REINFORCEMENT FOR PRESTRESSED MEMBERS

The design of shear reinforcement for prestressed members is the same as for reinforced nonprestressed concrete members discussed in Part 12, except that V_c is computed differently (as discussed above) and another minimum shear reinforcement requirement applies (11.4.6.4). Therefore, see Part 12 for a complete discussion of design of shear reinforcement.

11.4.6.1 The code permits a slightly wider spacing of $(3/4)h$ (instead of $d/2$) for prestressed members, because the shear crack inclination is flatter in prestressed members.

As permitted by 11.4.6.2, shear reinforcement may be omitted in any member if shown by physical tests that the required strength can be developed without shear reinforcement. Section 11.4.6.2 clarifies conditions for appropriate tests. Also, commentary discussion gives further guidance on appropriate tests to meet the intent of 11.4.6.2. The commentary also calls attention to the need for sufficient stirrups in all thin-web, post-tensioned members to support the tendons in the design profile, and to provide reinforcement for tensile stresses in the webs resulting from local deviations of the tendons from the design tendon profile.

11.4.6.4 Minimum Reinforcement for Prestressed Members—For prestressed members, minimum shear reinforcement is computed as the smaller of Eqs. (11-13) and (11-14).

$$A_v,\text{min} = 0.75 \sqrt{f'_c} \frac{b_w s}{f_y t} \quad (11-13)$$

$$A_v,\text{min} = \frac{A_{ps} f_{pu}s}{80 f_y t d} \sqrt{\frac{d}{b_w}} \quad (11-14)$$

In general, Eq. (11-13) will give a higher minimum than Eq. (11-14). Note that Eq. (11-14) may not be used for members with an effective prestress force less than 40 percent of the tensile strength of the prestressing reinforcement.

REFERENCE

Example 25.1—Design for Shear (11.4.1)

For the prestressed single tee shown, determine shear requirements using V_c by Eq. (11-9).

Precast concrete: $f'_c = 5000$ psi (sand lightweight, $w_c = 120$ pcf)
Topping concrete: $f'_c = 4000$ psi (normal weight, $w_c = 150$ pcf)
Prestressing steel: Twelve 1/2-in. dia. 270 ksi strands (single depression at midspan)
Span = 60 ft (simple)
Dead load = 725 lb/ft (includes topping)
Live load = 720 lb/ft
f_{se} (after all losses) = 150 ksi

Precast Section:
- $A = 570$ in.2
- $I = 68,917$ in.4
- $y_b = 26.01$ in.
- $y_t = 9.99$ in.

Composite Section:
- $y_{bc} = 29.27$ in.

Calculations and Discussion

1. Determine factored shear force V_u at various locations along the span. The results are shown in Fig. 25-6.

2. Determine shear strength provided by concrete V_c using Eq. (11-9). The effective prestress f_{se} is greater than 40 percent of f_{pu} (150 ksi $> 0.40 \times 270 = 108$ ksi). Note that the value of d need not be taken less than 0.8h for shear strength computations. Typical computations using Eq. (11-9) for a section 8 ft from support are as follows, assuming the shear is entirely resisted by the web of the precast section:

$$w_u = 1.2 (0.725) + 1.6 (0.720) = 2.022 \text{ kips/ft}$$

$$V_u = \left[\left(\frac{60}{2}\right) - 8\right] 2.022 = 44.5 \text{ kips}$$
Example 25.1 (cont’d) Calculations and Discussion Code Reference

\[M_u = (30 \times 2.022 \times 8) - (2.022 \times 8 \times 4) = 421 \text{ ft-kips} \]

For the non-composite section, at 8 ft from support, determine distance \(d \) to centroid of tendons.

\[d = 26.40 \text{ in.} \text{ (see strand profile)} \]

For composite section, \(d = 26.4 + 2.5 = 28.9 \text{ in.} < 0.8h = 30.8 \text{ in.} \) use \(d = 30.8 \text{ in.} \)

\[V_c = 0.85(\phi \sqrt{f_c b_w d}) = 55.5k \]

\[\phi V_c = 0.85(\phi 2 \sqrt{f_c b_w d}) = 22.2k \]

\[\phi V_c \text{ (Eq. 11-9)} \]

\[\frac{V_u - \phi V_c}{f'_c} = 9.5 \text{ kips} \]

Figure 25-6 Shear Force Variation Along Member

\[V_c = \left(0.6\lambda \sqrt{f_c} + 700 \frac{V_u d_p}{M_u}\right) b_w d \quad \text{Eq. (11-9)} \]

but not less than \(2\lambda \sqrt{f_c} b_w d \quad 11.3.2 \)

nor greater than \(5\lambda \sqrt{f_c} b_w d \quad 11.3.2 \)

where \(\lambda = 0.85 \) for sand-lightweight concrete \(8.6.1 \)

Note: Total effective depth, \(d_p = 28.9 \text{ in.} \), must be used in \(V_u d_p / M_u \) term rather than 0.8h which is used elsewhere. \(11.3.1 \)
Example 25.1 (cont’d) Calculations and Discussion

\[V_c = \left(0.6 \times 0.85\sqrt{5000} + 700 \times 44.5 \times 28.90/(421 \times 12)\right) 8 \times 30.8 \]

\[= (36 + 178) 8 \times 30.8 = 52.8 \text{ kips} \quad \text{(governs)} \]

\[\geq 2 \times 0.85\sqrt{5000} \times 8 \times 30.8 = 29.6 \text{ kips} \]

\[\leq 5 \times 0.85\sqrt{5000} \times 8 \times 30.8 = 74.0 \text{ kips} \]

\[\phi V_c = 0.75 \times 52.8 = 39.6 \quad \text{(see Fig. 25-6)} \]

Note: For members simply supported and subject to uniform loading, \(V_u d_p / M_u \) in Eq. (11-9) becomes a simple function of \(d/l \), where \(l \) is the span length,

\[V_c = \left[0.6\sqrt{\phi V_c} + 700d_p \frac{(\ell - 2x)}{x(\ell - x)}\right] b_w d \quad \text{Eq. (11-9)} \]

where \(x \) is the distance from the support to the section being investigated. At 8 ft from the support,

\[V_c = \left[0.6 \times 0.85\sqrt{5000} + 700(60 - 16) \frac{(60 - 16)}{8 (60 - 8) 12}\right] 8 \times 30.8 = 52.8 \text{ kips} \]

3. In the end regions of pretensioned members, the shear strength provided by concrete \(V_c \) may be limited by the provisions of 11.3.4. For this design, 11.3.4 does not apply because the section at \(h/2 \) is farther out into the span than the bond transfer length (see Fig. 25-7). The following will, however, illustrate typical calculations to satisfy 11.3.4. Compute \(V_c \) at the face of support, 10 in. from the end of member.

Bond transfer length for 1/2-in. diameter strand = 50 (0.5) = 25 in. 11.3.3

Prestress force at 10 in. location: \(P_{se} = (10/25) 150 \times 0.153 \times 12 = 110.2 \text{ kips} \)

Vertical component of prestress force at 10 in. location:

\[\text{slope} = \frac{(d_{CL} - d_{end})}{\ell} = \frac{(33 - 24)}{30 \times 12} = 0.025 \]

\[V_p = P \times \text{slope} = (110.2)(0.025) = 2.8 \text{ kips} \]

For composite section, \(d = 28.90 \text{ in.}, \) use \(0.8h = 30.8 \text{ in.} \) 11.3.3

\(M_d \) (unfactored weight of precast unit + topping) = 214.4 in.-kips

Distance of composite section centroid above the centroid of precast unit,
Example 25.1 (cont’d) Calculations and Discussion

\[
c = y_{bc} - y_b = 29.27 - 26.01 = 3.26 \text{ in.}
\]

Tendon eccentricity, \(c = d_{\text{end}} + 10 \text{ in.} \times \text{slope} - y_t = 24 + 10 \times 0.025 - 9.99 \)

\[
= 14.26 \text{ in. below the centroid of the precast section}
\]

\[
f_{pc} \text{ (see notation definition)} = \frac{P}{A_g} - (Pe) \frac{c}{I_g} + \frac{M_d}{I_g} \frac{c}{I_g}
\]

\[
= \frac{110.2}{570} - 110.2 (14.26) \left(\frac{3.26}{68,917} \right) + 214.4 \left(\frac{3.26}{68,917} \right) = 129 \text{ psi}
\]

where \(A_g \) and \(I_g \) are for the precast section alone.

\[
V_{cw} = \left(3.5 \sqrt{f_c^2} + 0.3 f_{pc} \right) b_w d_p + V_p
\]

\[
Eeq. (11-12) = \left(3.5 \times 0.85 \sqrt{5000} + 0.3 \times 129 \right) 8 \times 28.9 + 2800 = 60.4 \text{ kips}
\]

\[
\phi V_{cw} = 0.75 \times 60.4 = 45.3 \text{ kips}
\]

The results of this analysis are shown graphically in Fig. 25-7.
Example 25.1 (cont’d) Calculations and Discussion

4. Compare factored shear V_u with shear strength provided by concrete ϕV_c, where $V_u > \phi V_c$; shear reinforcement must be provided to carry the excess. Minimum shear reinforcement requirement should also be checked.

Shear reinforcement required at 12 ft from support is calculated as follows:

\[
d = 30.10 \text{ in. (use in } V_u d_p / M_u \text{ term)}
\]
\[
M_u = 30 \times 2.24 \times 12 - 2.24 \times 12 \times 6 = 645 \text{ ft-kips}
\]
\[
V_u = \left[\frac{60}{2} - 12 \right] 2.022 = 36.4 \text{ kips}
\]
\[
V_c = \left[(0.6 \times 0.85\sqrt{5000}) + 700 \times 40.3 \times 30.10 / (645 \times 12) \right] 8 \times 30.8 = 35.9 \text{ kips}
\]
\[
\phi V_c = 0.75 \times 35.9 = 26.9 \text{ kips}
\]
\[
A_v = \frac{(V_u - \phi V_c) s}{\phi f_y d} = \frac{(36.4 - 26.9) 12}{0.75 \times 60 \times 30.8} = 0.082 \text{ in.}^2 / \text{ft}
\]

Check minimum required by 11.4.6.3 and 11.4.6.4.

\[
A_v(\text{min}) = 0.75\sqrt{\frac{f_c}{f_y}} b_w s = 0.75\sqrt{5000} \left(\frac{8 \times 12}{60,000} \right) = 0.085 \text{ in.}^2 / \text{ft}
\quad \text{Eq. (11-13)}
\]

but not less than $50 \frac{b_w s}{f_y}$ (not controlling for $f_c > 4444$ psi)

\[
A_v(\text{min}) = \frac{A_{ps}}{80} \frac{f_{pu}}{f_{yt}} \frac{s}{d} \sqrt{\frac{d}{b_w}}
\]
\[
= \frac{1.84}{80} \times \frac{270}{60} \times \frac{12}{30.8} \sqrt{\frac{30.8}{8}} = 0.079 \text{ in.}^2
\]

The lesser A_v (min) from Eqs. (11-13) and (11-14) may be used.

The required A_v is very slightly above minimum A_v.

Maximum stirrup spacing = (3/4)d = (3/4) \times 30.8 = 23.1 \text{ in.}

Use No. 3 stirrups @ 18 in. for entire member length. ($A_v = 0.147 \text{ in.}^2/\text{ft}$)
Example 25.2—Shear Design Using Fig. 25-4

Determine the shear reinforcement for the beam of Example 24.9

- $f'_c = 6000$ psi (normal weight concrete)
- depth $d_p = 26$ in.
- effective prestress $f_{se} = 150$ ksi
- decompression stress $f_{dc} = 162$ ksi
- span $= 40$ ft.

<table>
<thead>
<tr>
<th></th>
<th>w k/ft</th>
<th>Midspan moments in-k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-weight</td>
<td>0.413</td>
<td>992</td>
</tr>
<tr>
<td>Additional dead load</td>
<td>1.000</td>
<td>2400</td>
</tr>
<tr>
<td>Live load</td>
<td>1.250</td>
<td>3000</td>
</tr>
<tr>
<td>Sum</td>
<td>2.663</td>
<td>6392</td>
</tr>
</tbody>
</table>

Calculations and Discussion

1. Calculate factored shear at support

$$V_u = 1.2D + 1.6L = \left[1.2(0.413 + 1.000) + 1.6(1.250)\right] \times \frac{40}{2}$$

$$= 73.9 \text{ kips}$$

2. Prepare to use Fig. 25-4

Note: Figure 25-4 is for $f'_c = 5000$ psi. Its use for $f'_c = 6000$ psi will be about 10 percent conservative.

$$d/\ell = 26/480 = 1/18.5$$

Use curve for $\ell/d = 1/20$

$$\frac{V_u}{\phi b w d} = \frac{73.9}{0.75 \times 12 \times 26} = 0.316 \text{ ksi} = 316 \text{ psi}$$

3. Draw line for required nominal shear strength on Fig. 25-4, and find V_s required.
The area where shear reinforcement is required is shaded. The maximum nominal shear stress to be resisted by shear reinforcement is 29 psi.

\[V_s = 0.03 \text{ ksi} \times b \times d = 0.030 \times 12 \times 26 = 9.4 \text{ kips} \]

\[A_v = \frac{V_s}{f_{yt} d} = \frac{9.4 \times 12}{60 \times 26} = 0.07 \text{ in.}^2 / \text{ft} \quad \text{Eq. (11-15)} \]

4. Check minimum reinforcement.

\[A_v = 0.75 \sqrt{f_c f_w s} \frac{b_w}{f_{yt}}, \text{ but not less than } 50 \frac{b_w}{f_{yt}} \quad \text{Eq. (11-13)} \]

\[0.75 \sqrt{6000} = 58.1 \text{ controls} \]

\[A_v = 58.1 \times 12 \times 12 / 60,000 = 0.14 \text{ in.}^2 / \text{ft} \]

\[A_v = \frac{A_{ps} f_{pu} s}{80 f_{yt} d} \sqrt{\frac{d}{b_w}} \quad \text{Eq. (11-14)} \]

\[A_v = \frac{1.836 \times 270 \times 12 \sqrt{\frac{26}{12}}}{80 \times 60 \times 26} = 0.07 \text{ in.}^2 / \text{ft} \]

The lesser of \(A_v \) by Eqs. (11-13) and (11-14) may be used, but not less than \(A_v \) required.
Example 25.2 (cont’d) **Calculations and Discussion**

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.5.1</td>
</tr>
<tr>
<td>11.4.6.1</td>
</tr>
</tbody>
</table>

5. Select stirrups

\[A_v = 0.07 \text{ in.}^2/\text{ft} \]

Maximum \(s = (3/4)d \leq 24 \text{ in.} \)

\[s = (3/4)(26) = 19.5 \text{ in.} \]

Use twin No. 3 @ 18 in.

\[A_v = 0.22/1.5 = 0.15 \text{ in.}^2/\text{ft} \quad \text{O.K.} \]

This is required where \(V_u \) exceeds \(\phi V_c/2 \)

Most designers would provide it for the full length of the member.
Example 25.3—Shear Design Using 11.4.2

For the simple span pretensioned ledger beam shown, determine shear requirements using V_c by Eqs. (11-10) and (11-12).

\[A = 576 \text{ in.}^2 \quad w_d = 5.486 \text{ kips/ft} \]
\[I = 63,936 \text{ in.}^4 \quad w_\ell = 5.00 \text{ kips/ft} \]
\[h = 36 \text{ in.} \]
\[y_b = 15 \text{ in.} \]
\[f'_c = 6 \text{ ksi (Normalweight concrete)} \]
\[\ell = 24 \text{ feet} \]
\[\text{16 1/2 in. Grade 270 ksi strands, } P = 396.6 \text{ kips} \]
\[e_{\text{end}} = e_{\text{msp}} \text{ (midspan) = 10 in.} \]

Calculations and Discussion

A systematized procedure is needed, to expedite the calculations.

1. Determine midspan moments and end shears

\[M_d = w_d \ell^2/8 = 5.486 \times 24^2/8 = 395 \text{ ft-kips} = 4740 \text{ in.-kips} \]
\[M_\ell = w_\ell \ell^2/8 = 5.00 \times 24^2/8 = 360 \text{ ft-kips} = 4320 \text{ in.-kips} \]
\[M_u = 1.2 M_d + 1.6 M_\ell = 1.2 \times 4740 + 1.6 \times 4320 = 12,600 \text{ in.-kips} \]
\[M_{\text{max}} = M_u - M_d = 12,600 - 4740 = 7860 \text{ in.-kips} \]
\[V_d = w_d \ell/2 = 5.486 \times 24/2 = 65.8 \text{ kips} \]
\[V_\ell - w_\ell \ell/2 = 5 \times 24/2 = 60.0 \text{ kips} \]
\[V_u = 1.2 V_d + 1.6 V_\ell = 1.2 \times 65.8 + 1.6 \times 60 = 175.0 \text{ kips} \]
\[V_i = V_u - V_d = 175 - 65.8 = 109.2 \text{ kips} \]

2. Define factors for converting midspan moments and end shears to moments and shears at a distance x/ℓ from support, for $x/\ell = 0.3$.

\[V \text{ factor} = 1 - 2(x/\ell) = 1 - 2(0.3) = 0.4 \]
\[M \text{ factor} = 4(x/\ell - (x/\ell)^2) = 4 \times (0.3 - 0.3^2) = 0.84 \]
Example 25.3 (cont’d) Calculations and Discussion

3. Compute V_3, the third term in Eq. (11-10)

\[
\begin{align*}
\text{P/A} &= 396.6/576 = 0.689 \\
\text{Pe/S}_b &= 396.6 \times 10/4262 = 0.930 \\
-M_d/S_b &= 0.84 \text{ M}_d (\text{msp})/S_b = -0.934 \\
+6\sqrt{f'_c} &= 6\sqrt{6000} = 465 = 0.465 \\
\end{align*}
\]

1.150 ksi

\[
M_{\text{cre}} = S_b (1.150 \text{ ksi}) = 4900 \text{ in.-kips} \quad \text{Eq. (11-11)}
\]

\[
V_l = 0.4V_{i (\text{end})} = 0.4 \times 109.2 = 43.7 \text{ kips} \quad \text{Eq. (11-10)}
\]

\[
M_{\text{max}} = 0.84 \text{ M}_{\text{max (msp)}} = 0.84 \times 7860 = 6602 \text{ in.-kips} \quad \text{Eq. (11-10)}
\]

\[
V_3 = \frac{V_l M_{\text{cre}}}{M_{\text{max}}} = \frac{43.7 \times 4900}{6602} = 32.4 \text{ kips} \quad \text{Eq. (11-10)}
\]

4. Compute the remaining terms V_1 and V_2 in Eq. (11-10), and solve for V_{ci}

$d = 31 \text{ in.}, \text{ but not less than } 0.8d = 28.8 \text{ in. Use } d = 31 \text{ in.}$

\[
V_1 = 0.6bwd_p \lambda' \sqrt{f'_c} = 0.6 \times 12 \times 31\sqrt{6000} = 17.3 \text{ kips} \quad 11.3.1
\]

\[
V_2 = V_d = 0.4(V_{d (\text{end})}) = 0.4 \times 65.8 = 26.3 \text{ kips} \quad \text{Eq. (11-10)}
\]

\[
V_{ci} = V_1 + V_2 + V_3 = 17.3 + 26.3 + 32.4 = 76.0 \text{ kips} \quad \text{Eq. (11-10)}
\]

5. Compute V_u, and find V_s to be resisted by stirrups

$V_u = 0.4V_{u (\text{end})} = 0.4 \times 175.0 = 70 \text{ kips}$

ϕ for shear = 0.75

\[
V_s = V_n - V_c = V_u/\phi - V_c = 70/0.75 - 76 = 17.3 \text{ kips} \quad 9.3.2.3 \text{ Eq. (11-2)}
\]

6. Find required stirrups

\[
A_v = \frac{V_s}{fytd} = \frac{17.3 \times 12}{60 \times 31} = 0.11 \text{ in.}^2 / \text{ft} \quad \text{Eq. (11-13)}
\]

Minimum requirements

$A_v = 0.75\sqrt{f'_c}b_w/s / fytd$ when $f'_c > 4444 \text{ psi}$

\[
= 0.75\sqrt{6000} \times 12 \times 12/60,000 = 0.14 \text{ in.}^2
\]

\[
A_v = \frac{A_{psf,pu}s}{80fytd} \sqrt{\frac{d}{b_w}} = \frac{2.448 \times 270 \times 12}{80 \times 60 \times 31} \sqrt{\frac{31}{12}} = 0.086 \text{ in.}^2 \quad \text{Eq. (11-14)}
\]

The minimum need only be the lesser of that required by Eqs. (11-13) or (11-14).

So, the required A_v of 0.09 in.2/ft controls
Example 25.3 (cont’d) Calculations and Discussion Code Reference

Maximum spacing = (3/4)d = (3/4)31 = 23.25 in.

Say, twin No. 3 at 18 in., \(A_v = 2 \times 0.11/1.5 = 0.15 \text{ in.}^2/\text{ft} \).

7. Compute required shear reinforcement at support

Because the ledger beam is loaded on the ledges, not “near the top,” shear must be checked at the support, not at \(h/2 \) from the support for prestressed members.

At the support, the prestress force \(P \) is assumed to be zero, for simplicity.

\[
V_{cw} = \left(3.5\lambda \sqrt{f'_c} + 0.3f_{pc} \right) b_w d_p + V_p
\]

\[
= \left(3.5 \times 1.0 \times \sqrt{6000} \right) \times 12 \times 31 = 100.9 \text{ kips}
\]

\[
V_s = V_n - V_c = V_u/\phi - V_c = 175/0.75 - 100.9
\]

\[
V_s = 132.4k
\]

\[
A_v = \frac{V_{ss}}{f_{yd}} = \frac{132.4 \times 12}{60 \times 31} = 0.85 \text{ in.}^2
\]

Say two No. 4 at 4 in., \(A_v = 0.40/0.33 = 1.20 \text{ in.}^2/\text{ft} \) near end.

Referring to Step 6, this is above minimum requirements.

8. Repeat the processes described above for various sections along the shear span (not shown). The results are shown below.

Note: Minimum \(V_c \) of \(2 \sqrt{f_c} b_w d \) permitted by 11.4.2 was used.
9. Notes:

1. A spreadsheet can be set up, with each column containing data for various values of x/ℓ and the shear and moment factors in Step 2.

2. For members with draped tendons, additional factors for varying eccentricity, depth, and tendon slope (for computing V_p) need to be added in Step 2.

3. For composite members, the portions of dead load applied before and after composite behavior is obtained need to be separated. The dead load applied after the beam becomes composite should not be included in V_d and M_d terms. See R11.3.3.
Prestressed Slab Systems

UPDATE FOR THE '08 CODE

Section 18.10.4 – Significant changes are made in requirements for inelastic redistribution of moments. Now both negative and positive moments are adjusted directly, with limits placed on the amount that positive moments can be reduced (none existed prior to 318-08).

Section 18.12.4 – Clarifications are made on how the 125 psi minimum average compression stress is determined in two-way slabs with varying cross sections.

Sections 18.12.6 and 18.12.7 – These new sections of the code address structural integrity reinforcement requirements for two-way prestressed slabs. Section 18.12.7 requires in slabs with unbonded tendons, a minimum of two 1/2-in. diameter strands (or larger), passing over all columns in each direction, located within the vertical column bars. Section 18.12.7 permits a waiver of 18.12.6 provided that bottom reinforcement in accordance with 13.3.8.5 is provided. Section 18.12.7 applies to two-way prestressed slabs with bonded tendons and to slabs where construction constraints make it difficult to provide the integrity tendons required by 18.12.6.

INTRODUCTION

Six code sections are particularly significant with respect to analysis and design of prestressed slab systems:

Section 11.11.2—Shear strength of prestressed slabs
Section 11.11.7—Shear strength of prestressed slabs with moment transfer
Section 18.3.3—Permissible flexural tensile stresses
Section 18.4.2—Permissible flexural compressive stresses
Section 18.7.2—Determination of \(f_{ps} \) for calculation of flexural strength
Section 18.12—Prestressed slab systems

Discussion of each of these code sections is presented below, followed by Example 26.1 of a post-tensioned flat plate. The design example illustrates application of the above code sections as well as general applicability of the code to analysis and design of post-tensioned flat plates.

11.11.2 Shear Strength

Section 11.11.2.2 contains specific provisions for calculation of shear strength in two-way prestressed concrete systems. At columns of two-way prestressed slabs (and footings) utilizing unbonded tendons and meeting the bonded reinforcement requirements of 18.9.3, the shear strength \(V_n \) must not be taken greater than the shear strength \(V_c \) computed in accordance with 11.11.2.1 or 11.11.2.2, unless shear reinforcement is provided in accordance with 11.11.3 or 11.11.4. Section 11.11.2.2 gives the following value of the shear strength \(V_c \) at columns of two-way prestressed slabs:
\[V_c = \left(\beta_p \lambda \sqrt{f'_c} + 0.3f_{pc} \right) b_o d + V_p \] \hspace{1cm} Eq. (11-34)

Equation (11-34) includes the term \(\beta_p \) which is the smaller of 3.5 and \(\left(\alpha_s d/b_o + 1.5 \right) \). The term \(\alpha_s d/b_o \) is to account for a decrease in shear strength affected by the perimeter area aspect ratio of the column, where \(\alpha_s \) is to be taken as 40 for interior columns, 30 for edge columns, and 20 for corner columns. Normally \(f_{pc} \) is the average value of \(f_{pc} \) for two orthogonal directions. If tendons are oriented in more than two directions, \(f_{pc} \) is the average value acting on all planes normal to the tendons. \(V_p \) is the vertical component of all effective prestress forces crossing the critical section. If the shear strength is computed by Eq. (11-34), the following (from 11.11.2.2) must be satisfied; otherwise, 11.11.2.1 for nonprestressed slabs applies:

a. no portion of the column cross-section shall be closer to a discontinuous edge than 4 times the slab thickness,

b. \(f'_c \) in Eq. (11-34) shall not be taken greater than 5000 psi, and

c. \(f_{pc} \) in each direction shall not be less than 125 psi, nor greater than 500 psi.

In accordance with the above limitations, shear strength Eqs. (11-31), (11-32), and (11-33) for nonprestressed slabs are applicable to columns closer to the discontinuous edge than 4 times the slab thickness. The shear strength \(V_c \) is the lesser of the values given by these three equations. For usual design conditions (slab thicknesses and column sizes), the controlling shear strength at edge columns will be \(4 \sqrt{f'_c} b_o d \).

11.11.7 Shear Strength with Moment Transfer

For moment transfer calculations, the controlling shear stress at columns of two-way prestressed slabs with bonded reinforcement in accordance with 18.9.3 is governed by Eq. (11-34), which could be expressed as a shear stress for use in Eq. (11-38) as follows:

\[v_c = \beta_p \lambda \sqrt{f'_c} + 0.3f_{pc} + \frac{V_p}{b_o d} \] \hspace{1cm} Eq. (11-34)

If the permissible shear stress is computed by Eq. (11-34), the limitations in 11.11.2.2(a), (b), and (c), as stated in the above section also apply.

For edge columns under moment transfer conditions, the controlling shear stress will be the same as that permitted for nonprestressed slabs. For usual design conditions, the governing shear stress at edge columns will be \(4 \sqrt{f'_c} \).

18.3.3 Permissible Flexural Tensile Stresses

This section requires that prestressed two-way slab systems be designed as Class U (Uncracked) members, but with the permissible flexural tensile stress limited to \(6 \sqrt{f'_c} \).

18.4.2 Permissible Flexural Compressive Stresses

In 1995, Section 18.4.2 increased the permissible concrete service load flexural compressive stress under total load from \(0.45f'_c \) to \(0.60f'_c \), but imposed a new limit of \(0.45f'_c \) for sustained load. This involves some judgment on the part of designers in determining the appropriate sustained load.
18.7.2 \(f_{ps} \) for Unbonded Tendons

In prestressed elements with unbonded tendons having a span/depth ratio greater than 35, the stress in the prestressed reinforcement at nominal strength is given by:

\[
f_{ps} = f_{sc} + 10,000 + \frac{f'_c}{300 \rho_p}
\]

Eq. (18-5)

but not greater than \(f_{py} \) nor \((f_{sc} + 30,000) \).

Nearly all prestressed one-way slabs and flat plates will have span/depth ratios greater than 35. Equation (18-5) provides values of \(f_{ps} \) which are generally 15,000 to 20,000 psi lower than the values of \(f_{ps} \) given by Eq. (18-4) which was derived primarily from results of beam tests. These lower values of \(f_{ps} \) are more compatible with values of \(f_{ps} \) obtained in more recent tests of prestressed one-way slabs and flat plates. Application of Eq. (18-5) is illustrated in Example 26.1.

18.12 SLAB SYSTEMS

Section 18.12 provides analysis and design procedures for two-way prestressed slab systems, including the following requirements:

1. Use of the Equivalent Frame Method of 13.7 (excluding 13.7.7.4 and 13.7.7.5), or more detailed analysis procedures, is required for determination of factored moments and shears in prestressed slab systems. According to References 26.1 and 26.4, for two-way prestressed slabs, the equivalent frame slab-beam strips would not be divided into column and middle strips as for a typical nonprestressed two-way slab, but would be designed as a total beam strip.

2. Spacing of tendons or groups of tendons in one direction shall not exceed 8 times the slab thickness nor 5 ft. Spacing of tendons shall also provide a minimum average prestress, after allowance for all prestress losses, of 125 psi on the slab section tributary to the tendon or tendon group. Special consideration must be given to tendon spacing in slabs with concentrated loads.

3. A minimum of two tendons shall be provided in each direction through the critical shear section over columns. This provision, in conjunction with the limits on tendon spacing outlined in Item 2 above, provides specific guidance for distributing tendons in prestressed flat plates in accordance with the “banded” pattern illustrated in Fig. 26-1. This method of tendon installation is widely used and greatly simplifies detailing and installation procedures.

Calculation of equivalent frame properties is illustrated in Example 26.1. Tendon distribution is also discussed in this example.

References 26.1 and 26.4 illustrate application of ACI 318 requirements for design of one-way and two-way post-tensioned slabs, including detailed design examples.
Section 18.12.6 — This is a new section which clarifies integrity steel requirements for two-way slabs with unbonded tendons. A minimum of two and 1/2-in. diameter (or larger) tendons are required to pass over each column in both directions. The tendons must pass within the column longitudinal reinforcement. Outside the column, the two integrity tendons must pass below all orthogonal tendons in spans adjacent to the column. This is not substantially different from previous editions of the code. The biggest change is the minimum size (1/2-in.) specified for the two integrity tendons, in previous editions a minimum tendon size was not stated. Application of Section 18.12.6 is shown in Figures 26-2A and 2B.

Section 18.12.7 — This new section 18.12.7 applies to two-way prestressed slabs with bonded tendons, and to unbonded slabs where geometry or other constraints make conformance to 18.12.6 difficult or impossible. In those cases the integrity steel requirements must be satisfied with bonded non-prestressed reinforcement with the minimum cross-sectional area stated in 18.12.7 and anchored in conformance to 13.3.8.5. Application of Section 18.12.7 is shown in Figure 26-2C.
Minimum of 2 “integrity” tendons, 1/2 in. φ or larger, must pass over column, inside column vertical bars, in both directions.

Integrity tendons must pass under all orthogonal tendons which are outside column.

Column vertical (longitudinal) bars

In lieu of tendons passing through columns, integrity steel can be provided by non-prestressed bonded reinforcement at the bottom of the slab.

Column vertical (longitudinal) bars

Figure 26-2B Section B at Slab/Column Joint
(Cut Through Uniform Tendons)

Figure 26-2C Section at Slab/Column Joint
(Showing Application of 18.12.7)

REFERENCES

26-5
Example 26.1—Two-Way Prestressed Slab System

Design a typical transverse equivalent frame strip of the prestressed flat plate with partial plan and section shown in Figure 26-3.

\[
f'_c = 4000 \text{ psi}; \ w = 150 \text{ pcf (slab and columns)}
\]

\[
f_y = 60,000 \text{ psi}
\]

\[
f_{pu} = 270,000 \text{ psi}
\]

Live load = 40 psf
Partition load = 15 psf

Reduce live load in accordance with general building code. For this example live load is reduced in accordance with IBC 2006, Section 1607.9.2.

Required minimum concrete cover to tendons 1.5 in. from the bottom of the slab in end spans, 0.75 in. top and bottom elsewhere.

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

1. Slab Thickness

For two-way prestressed slabs, a span/depth ratio of 45 typically results in overall economy and provides satisfactory structural performance.\(^{26.1}\)

Slab thickness:

Longitudinal span: \(20 \times 12/45 = 5.3\) in.
Transverse span: \(25 \times 12/45 = 6.7\) in.

Use 6-1/2 in. slab.

Slab weight = 81 psf
Partition load = 15 psf
Total dead load = 81 + 15 = 96 psf

Span 2:
Reduced live load (IBC 1607.9.2)
Live load = \(40[1 - 0.08(500 - 150)/100] = 29\) psf
\[R = (1 - 29/40) \times 100 = 28\% \]
\[R_{\text{max}} = 23.1(1 + 96/40) = 79\% > 28\% \] O.K.
Example 26.1 (cont’d) Calculations and Discussion

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
</table>

Factored dead load = 1.2 × 96 = 115 psf
Factored live load = 1.6 × 29 = 47 psf
Total load = 125 psf, unfactored
= 162 psf, factored

Spans 1 and 3:
Reduced live load (IBC 1607.9.2)
Live load = 40[1 – 0.08(340 – 150)/100] = 34 psf
R = (1 – 34/40) × 100 = 15% < 79% O.K.
Factored dead load = 1.2 × 96 = 115 psf
Factored live load = 1.6 × 34 = 55 psf
Total load = 130 psf, unfactored
= 170 psf, factored

2. Design Procedure

Assume a set of loads to be balanced by parabolic tendons. Analyze an equivalent frame subjected to the net downward loads according to 13.7. Check flexural stresses at critical sections, and revise load balancing tendon forces as required to obtain permissible flexural stresses according to 18.3.3 and 18.4.

When final forces are determined, obtain frame moments for factored dead and live loads. Calculate secondary moments induced in the frame by post-tensioning forces, and combine with factored load moments to obtain design factored moments. Provide minimum bonded reinforcement in accordance with 18.9.

Check design flexural strength and increase nonprestressed reinforcement if required by strength criteria. Investigate shear strength, including shear due to vertical load and due to moment transfer, and compare total to permissible values calculated in accordance with 11.11.2.

3. Load Balancing

Arbitrarily assume the tendons will balance 80% of the slab weight (0.8 × 0.081 = 0.065 ksf) in the controlling span (Span 2), with a parabolic tendon profile of maximum permissible sag, for the initial estimate of the required prestress force Fe:

Maximum tendon sag in Span 2 = 6.5 – 1 – 1 = 4.5 in.

\[
F_e = \frac{w_{bal}L^2}{8a} = \frac{0.8(0.081)(25)^2 (12)}{8(4.5)} = 13.5 \text{ kips/ft}
\]

Assume 1/2 in. diameter (cross-sectional area = 0.153 in.²), 270 ksi seven-wire low relaxation strand tendons with 14 ksi long-term losses (Reference 26.3). Effective force per tendon is 0.153 [(0.7 × 270) – 14] = 26.8 kips, where the tensile stress in the tendons immediately after tendon anchorage = 0.70f_{pu}.

For a 20-ft bay, 20 × 13.5/26.8 = 10.1 tendons.

18.5.1(c)
Use 10-1/2 in. diameter tendons per bay

\[F_e = 10 \times \frac{26.8}{20} = 13.4 \text{ kips/ft} \]

\[f_{pc} = \frac{F_e}{A} = \frac{13.4}{(6.5 \times 12)} = 0.172 \text{ ksi} \]

Actual balanced load in Span 2:

\[w_{bal} = \frac{8F_e a}{L^2} = \frac{8(13.4)(4.5)}{12 \times 25^2} = 0.064 \text{ ksf} \]

Adjust tendon profile in Spans 1 and 3 to balance same load as in Span 2:

\[a = \frac{w_{bal} L^2}{8F_e} = \frac{0.064(17)^2(12)}{8(13.4)} = 2.1 \text{ in.} \]

Midspan cgs = \((3.25 + 5.5)/2 - 2.1 = 2.275 \text{ in.}; use 2.25 \text{ in.} \)

Actual sag in Spans 1 and 3 = \((3.25 + 5.5)/2 - 2.25 = 2.125 \text{ in.} \)

Actual balanced load in Spans 1 and 3 =

\[w_{bal} = \frac{8(13.4)(2.125)}{17^2(12)} = 0.066 \text{ ksf} \]

4. Tendon Profile

Net load causing bending:
Span 2:

\[w_{net} = 0.125 - 0.064 = 0.061 \text{ ksf} \]

Spans 1 and 3:

\[w_{net} = 0.130 - 0.066 = 0.064 \text{ ksf} \]
5. Equivalent Frame Properties

a. Column stiffness.

Column stiffness, including effects of “infinite” stiffness within the slab-column joint (rigid connection), may be calculated by classical methods or by simplified methods which are in close agreement. The following approximate stiffness K_c will give results within five percent of “exact” values.26.1

$$K_c = \frac{4EI}{(\ell - 2h)}$$

where ℓ = center-to-center column height and h = slab thickness.

For exterior columns (14 \times 12 in.):

$I = 14 \times 12^{3}/12 = 2016$ in.4

$E_{\text{col}}/E_{\text{slab}} = 1.0$

$K_c = (4 \times 1.0 \times 2016)/[103 - (2 \times 6.5)] = 90$ in.3

$\Sigma K_c = 2 \times 90 = 180$ in.3 (joint total)

Stiffness of torsional members is calculated as follows:

$$C = (1 - 0.63 x/y) x^{3}y/3$$

$$= [1 - (0.63 \times 6.5/12)] (6.5^{3} \times 12)/3 = 724$ in.4

$$K_t = \frac{9CE_{cs}}{\ell_2 (1-c_2/\ell_2)^3}$$

$$= \frac{9 \times 724 \times 1.0}{(20 \times 12) (1-1.17/20)^3} = 32.5$ in.3

$\Sigma K_t = 2 \times 32.5 = 65$ in.3 (joint total)

Exterior equivalent column stiffness (see ACI 318R-89, R13.7.4):

$1/K_{ec} = 1/\Sigma K_t + 1/\Sigma K_c$

$K_{ec} = (1/65 + 1/180)^{-1} = 48$ in.3

For interior columns (14 \times 20 in.):

$I = 14 \times 20^{3}/12 = 9333$ in.4
Example 26.1 (cont’d) Calculations and Discussion

\(K_c = \frac{(4 \times 1.0 \times 9333)}{[103 - (2 \times 6.5)]} = 415 \text{ in.}^3 \)

\(\sum K_c = 2 \times 415 = 830 \text{ in.}^3 \) (joint total)

\(C = [1 - (0.63 \times 6.5/20)] \times (6.5^3 \times 20)/3 = 1456 \text{ in.}^4 \)

\(K_t = \frac{9 \times 1456 \times 1.0}{240 (1 - 1.17/20)^3} = 65 \text{ in.}^3 \) \((13.7.6.2) \)

\(\sum K_t = 2 \times 65 = 130 \text{ in.}^3 \) (joint total)

\(K_{ec} = (1/130 + 1/830)^{-1} = 112 \text{ in.}^3 \)

b. Slab-beam stiffness.

Slab stiffness, including effects of infinite stiffness within slab-column joint, can be calculated by the following approximate expression.26.1

\(K_s = \frac{4EI}{(l_1 - c_1/2)} \)

where \(l_1 = \) length of span in direction of analysis measured center-to-center of supports and \(c_1 = \) column dimension in direction of \(l_1 \).

At exterior column:

\(K_s = \frac{(4 \times 1.0 \times 20 \times 6.5^3)}{[(17 \times 12) - 12/2]} = 111 \text{ in.}^3 \)

At interior column (spans 1 & 3):

\(K_s = \frac{(4 \times 1.0 \times 20 \times 6.5^3)}{[(17 \times 12) - 20/2]} = 113 \text{ in.}^3 \)

At interior column (span 2):

\(K_s = \frac{(4 \times 1.0 \times 20 \times 6.5^3)}{[(25 \times 12) - 20/2]} = 76 \text{ in.}^3 \)

c. Distribution factors for analysis by moment distribution

Slab distribution factors:

At exterior joints = \(111/(111 + 48) = 0.70 \)

At interior joints for spans 1 and 3 = \(113/(113 + 76 + 112) = 0.37 \)

At interior joints for span 2 = \(76/301 = 0.25 \)

6. Moment Distribution—Net Loads

Since the nonprismatic section causes only very small effects on fixed-end moments and carryover factors, fixed-end moments will be calculated from \(\text{FEM} = wL^2/12 \) and carryover factors will be taken as \(\text{COF} = 1/2 \).
Example 26.1 (cont’d) Calculations and Discussion

For Spans 1 and 3, net load \(FEM = 0.064 \times 17^2/12 = 1.54 \text{ ft-kips} \)

For Span 2 net load \(FEM = 0.061 \times 25^2/12 = 3.18 \text{ ft-kips} \)

Note that since live load is less than three-quarters dead load, patterned or “skipped” live load is not required. Maximum factored moments are based upon full live load on all spans simultaneously.

Table 26-1 Moment Distribution—Net Loads
(all moments are in ft-kips)

<table>
<thead>
<tr>
<th>DF</th>
<th>0.70</th>
<th>0.37</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM</td>
<td>-1.54</td>
<td>-1.54</td>
<td>-3.18</td>
</tr>
<tr>
<td>Distribution</td>
<td>+1.08</td>
<td>-0.61</td>
<td>+0.41</td>
</tr>
<tr>
<td>Carry-over</td>
<td>+0.31</td>
<td>-0.54</td>
<td>-0.21</td>
</tr>
<tr>
<td>Distribution</td>
<td>-0.22</td>
<td>+0.12</td>
<td>-0.08</td>
</tr>
<tr>
<td>Final</td>
<td>-0.37</td>
<td>-2.57</td>
<td>-3.06</td>
</tr>
</tbody>
</table>

7. Check Net Stresses (tension positive, compression negative)

a. At interior face of interior column:

Moment at column face = centerline moment + \(Vc/3 \) (see Ref. 26.2):

\[
-M_{\text{max}} = -3.06 + \frac{1}{3} \left(\frac{0.061 \times 25}{2} \right) \left(\frac{20}{12} \right)
\]

\[
= -2.64 \text{ ft-kips}
\]

\(S = bh^2/6 = 12 \times 6.5^2/6 = 84.5 \text{ in}^3 \)

\[
f_{t,b} = - f_{pc} \pm \frac{M_{\text{net}}}{S_{t,b}} = -0.172 \pm \frac{12 \times 2.64}{84.5} = 0.172 \pm 0.375 = +0.203, -0.547 \text{ ksi}
\]

Allowable Tension = \(6\sqrt{4000} = 0.379 \text{ ksi} \)

At top 0.203 ksi applied < 0.379 allowable OK

Allowable compression under total load = \(0.60f'_c = 0.6 \times 4000 = 2.4 \text{ ksi} \)

At bottom 0.547 ksi applied < 2.4 ksi allowable OK

Allowable compression under sustained load = \(0.45 \times 4000 = 1.8 \text{ ksi} \)

0.547 ksi applied under total load < 1.8 ksi allowable under sustained load OK (regardless of value of sustained load).
26-12

Example 26.1 (cont’d) Calculations and Discussion

b. At midspan of Span 2:

\[+M_{\text{max}} = (0.061 \times 25^2/8) - 3.18 = +1.59 \text{ ft-kips} \]

\[f_{t,b} = -f_{pc} \pm \frac{M_{\text{net}}}{S_{t,b}} = -0.172 \pm \frac{12 \times 1.59}{84.5} = -0.172 \pm 0.226 = -0.398, +0.054 \text{ ksi} \]

Compression at top 0.398 < 1.8 ksi allowable sustained load
< 2.4 ksi allowable total load O.K.
Tension at bottom 0.054 ksi applied < 0.379 ksi allowable O.K.

When the tensile stress exceeds \(2\sqrt{4000} = 102.6 \text{ ksi} > 0.054 \text{ ksi} \). Therefore, positive moment bonded reinforcement is not required. When bonded reinforcement is required, the calculation for the required amount of bonded reinforcement is done as follows (refer to Figure 26-5).

\[y = \frac{f_t}{f_t + f_c} (h) \text{ in.} \]

\[N_c = \frac{12(y)(f_t)}{2} \text{ kips/ft} \]

\[A_s = \frac{N_c}{0.5f_y} \text{ in.}^2 / \text{ft} \]

Figure 26-5 Stress Distribution

Determine minimum bar lengths for this reinforcement in accordance with **18.9.4** (Note that conformance to **Chapter 12** is also required.)

Calculate deflections under total loads using usual elastic methods and gross concrete section properties (9.5.4). Limit **computed** deflections to those specified in **Table 9.5(b)**.

This completes the service load portion of the design.

8. Flexural Strength

a. Calculation of design moments.

Design moments for statically indeterminate post-tensioned members are determined by combining frame moments due to factored dead and live loads with secondary moments induced into the frame by the tendons. The load balancing approach directly includes both primary and secondary effects, so that for service conditions only “net loads” need be considered.
At design flexural strength, the balanced load moments are used to determine secondary moments by subtracting the primary moment, which is simply $F_c \times e$, at each support. For multistory buildings where typical vertical load design is combined with varying moments due to lateral loading, an efficient design approach would be to analyze the equivalent frame under each case of dead, live, balanced, and lateral loads, and combine the cases for each design condition with appropriate load factors. For this example, the balanced load moments are determined by moment distribution as follows:

For spans 1 and 3, balanced load FEM = $0.066 \times \frac{17^2}{12} = 1.59$ ft-kips

For span 2, balanced load FEM = $0.064 \times \frac{25^2}{12} = 3.33$ ft-kips

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 26.1 (cont’d)</td>
<td>Calculations and Discussion</td>
</tr>
</tbody>
</table>

Table 26-2 Moment Distribution—Balanced Loads

<table>
<thead>
<tr>
<th>(all moments are in ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
</tr>
<tr>
<td>FEM</td>
</tr>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Carry-over</td>
</tr>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Final</td>
</tr>
</tbody>
</table>

Since the balanced load moment includes both primary (M_1) and secondary (M_2) moments, secondary moments can be found from the following relationship:

$$M_{\text{bal}} = M_1 + M_2, \text{ or } M_2 = M_{\text{bal}} - M_1$$

The primary moment M_1 equals $F_c \times e$ at any point (“e” is the distance between the cgs and the cgc, the “eccentricity” of the prestress force).

Thus, the secondary moments are:

At an exterior column:

$$M_2 = 0.38 - \frac{13.4 \times 0}{12} = 0.38 \text{ ft-kips}$$

At an interior column:

Spans 1 and 3,

$$M_2 = 2.66 - \frac{13.4 \times (3.25 - 1.0)}{12} = 0.15 \text{ ft-kips}$$

Span 2,

$$M_2 = 3.20 - \frac{13.4 \times 2.25}{12} = 0.69 \text{ ft-kips}$$
Factored load moments:
- Span 1 and 3: \(w_u = 170 \text{ psf} \)
- Span 2: \(w_u = 162 \text{ psf} \)

For spans 1 and 3, factored load \(\text{FEM} = 0.170 \times 172/12 = 4.09 \text{ ft-kips} \)

For span 2, factored load \(\text{FEM} = 0.162 \times 252/12 = 8.44 \text{ ft-kips} \)

| Table 26-3 Moment Distribution—Factored Loads (all moments are in ft-kips) |
|------------------|------------------|------------------|
| DF | 0.70 | 0.37 | 0.25 |
| FEM | -4.09 | -4.09 | -8.44 |
| Distribution | +2.86 | -1.61 | +1.09 |
| Carry-over | +0.81 | -1.43 | -0.55 |
| Distribution | -0.57 | +0.33 | -0.22 |
| Final | -0.99 | -6.80 | -8.12 |

Combine the factored load and secondary moments to obtain the total negative design moments. The results are given in Table 26-4.

| Table 26-4 Design Moments at Face of Column (all moments are in ft-kips) |
|------------------|------------------|------------------|
| Span 1 | Span 2 | Span 2 |
| Factored load moments | -0.99 | -6.80 | -8.12 |
| Secondary moments | +0.38 | +0.15 | +0.69 |
| Moments at column centerline | -0.61 | -6.65 | -7.43 |
| Moment reduction to face of column, \(Vc/3 \) | +0.48 | +0.80 | +1.13 |
| Design moments at face of column | -0.13 | -5.85 | -6.30 |
Example 26.1 (cont’d) Calculations and Discussion

Calculate total positive design moments at interior of span:

For span 1,

\[V_{\text{ext}} = (0.170 \times 17/2) - (6.65 - 0.61)/17 \]
\[= 1.45 - 0.36 = 1.09 \text{ kips/ft} \]

\[V_{\text{int}} = 1.45 + 0.36 = 1.81 \text{ kips/ft} \]

Distance \(x \) to location of zero shear and maximum positive moment from centerline of exterior column:

\[x = 1.09/0.170 = 6.42 \text{ ft} \]

End span positive moment = \((0.5 \times 1.09 \times 6.42) - 0.61 = 2.89 \text{ ft-kips/ft} \)
(including \(M_2 \))

For span 2,

\[V = 0.162 \times 25/2 = 2.03 \text{ kips/ft} \]

Interior span positive moment = \(-7.43 + (0.5 \times 2.03 \times 12.5) = 5.26 \text{ ft-kips/ft} \)
(including \(M_2 \))

b. Calculation of flexural strength.

Check slab at interior support. Section 18.9.3.3 requires a minimum amount of bonded reinforcement in negative moment areas at column supports regardless of service load stress levels. More than the minimum may be required for flexural strength. The minimum amount is to help ensure flexural continuity and ductility, and to control cracking due to overload, temperature, or shrinkage.

\[A_s = 0.00075A_{cf} \quad \text{Eq. } (18-8) \]

where

\[A_{cf} = \text{larger cross-sectional area of the slab-beam strips of the two orthogonal equivalent frames intersecting at a column of a two-way slab.} \]

\[A_s = 0.00075 \times 6.5 \times \left(\frac{17 + 25}{2} \right) \times 12 = 1.23 \text{ in.}^2 \]

Try 6-No. 4 bars. Space bars at 6 in. on center, so that they are within the column width plus 1.5 times slab thickness on either side of column.

Bar length = \([2 \times (25 - 20/12)/6] + 20/12 = 9 \text{ ft-5 in.}\)
For average one-foot strip:

$A_s = 6 \times 0.20/20 = 0.06 \text{ in.}^2/\text{ft}$

Initial check of flexural strength will be made considering this reinforcement.

Calculate stress in tendons at nominal strength:

$$f_{ps} = f_{se} + 10,000 + \frac{f'_c}{300 \rho_p}$$ \hspace{1cm} \text{Eq. (18-5)}

With 10 tendons in 20 ft bay:

$$\rho_p = \frac{A_{ps}}{b d_p} = 10 \times 0.153/(20 \times 12 \times 5.5) = 0.00116$$

$$f_{se} = (0.7 \times 270) - 14 = 175 \text{ ksi}$$ \hspace{1cm} 18.5.1, 18.6, Reference 26.3

$$f_{ps} = 175 + 10 + 4/(300 \times 0.00116) = 175 + 10 + 12 = 197 \text{ ksi}$$

$$f_{ps} \text{ shall not be taken greater than } f_{py} = 0.85f_{pu} = 230 \text{ ksi} > 197$$

or

$$f_{se} + 30 = 205 \text{ ksi} > 197 \quad \text{OK}$$ \hspace{1cm} 18.7.2(c)

$$A_{ps}f_{ps} = 10 \times 0.153 \times 197/20 = 15.1 \text{ kips/ft}$$

$$A_s f_y = 0.06 \times 60 = 3.6 \text{ kips/ft}$$

\[\text{Figure 26-7 Moments in ft-kips}\]
Example 26.1 (cont’d) Calculations and Discussion

\[a = \frac{A_{ps}f_{ps} + A_s f_y}{0.85f_{cb}} = \frac{15.1 + 3.6}{0.85 \times 4 \times 12} = 0.46 \text{ in.} \]

\[c = a/\beta_l = 0.46/0.85 = 0.54 \text{ in.} \]

\[\varepsilon_t = (5.5 - 0.54) \times 0.003/0.54 = 0.028 \text{ therefore tension controlled, } \phi = 0.9 \]

Since the bars and tendons are in the same layer:

\[\left(d - \frac{a}{2} \right) = \left(5.5 - \frac{0.46}{2} \right)/12 = 0.44 \text{ ft} \]

\[\phi M_n = 0.9 \times (15.1 + 3.6) \times 0.44 = 7.41 \text{ ft-kips/ft} > 6.30 \text{ ft-kips/ft OK.} \]

Since there is excess negative moment capacity available, use moment redistribution to reduce the positive moment demand in Span 2. Note that the inelastic behavior occurs at the positive moment section of Span 2.

At midspan of Span 2: \[a = \frac{15.1}{0.85 \times 4 \times 12} = 0.37 \text{ in.} \]

\[c = \frac{0.37}{0.85} = 0.44 \text{ in.} \]
Example 26.1 (cont’d) Calculations and Discussion

\[\varepsilon_b = \frac{5.06 \times 0.003}{0.44} = 0.035 \]

Permissible reduction in positive moment = \(1000\varepsilon_b = 1000(0.035) = 35\% > 20\%\) max \(18.10.4.1\ 8.4\)

Available decrease in positive moment = \(0.2 \times 5.26 = 1.06\) ft-kips/ft

Increased negative moment = \(6.30 + 1.06 = 7.36\) ft-kips/ft < 7.41 O.K.

Design positive moment in Span 2 = \(5.26 - 1.06 = 4.20\) ft-kips/ft

Capacity at midspan of Span 2 (no bonded reinforcement required):

\[A_{psf_{ps}} = 15.1 \text{ kips/ft} \]

\[a = \frac{15.1}{0.85 \times 4 \times 12} = 0.37 \text{ in.} \]

\[\frac{c}{d_t} = \frac{0.85}{5.5} = 0.079 < 0.375, \text{ therefore tension controlled.} \]

\[\left(d - \frac{a}{2} \right) = \frac{5.5 - 0.37}{2} = 0.44 \text{ ft} \]

At center of span,

\[\phi M_n = 0.9 \times (15.1) \times 0.44 = 5.98 \text{ ft-kips/ft} > 4.20 \text{ OK at midspan} \]
Example 26.1 (cont’d) Calculations and Discussion

Check positive moment capacity in Span 1:

\[
\left(d - \frac{a}{2} \right) = \frac{ (6.5 - 2.25) - 0.37}{2} = 0.39 \text{ ft}
\]

\[
\frac{c}{d_t} = \frac{0.85}{4.25} = 0.102 < 0.375 , \text{ therefore, tension controlled}
\]

\[
\phi M_n = 0.9 \times (15.1) \times 0.39 = 5.30 \text{ ft-kips/ft} > 2.89 \text{ OK at midspan}
\]

Exterior columns:

\[A_s \text{ minimum} = 0.00075 \times 20 \times 12 \times 6.5 = 1.17 \text{ in}^2 \text{ use 6-#4 bars}\]

\[A_s = 6 \times 0.2/20 = 0.06 \text{ in}^2/\text{ft}\]

\[A_s f_y = 0.06 \times 60 = 3.6 \text{ kips/ft}\]

\[\rho \pi = 10 \times 0.153/(12 \times 20 \times 3.25) = 0.00196\]

\[f_{ps} = 175 + 10 + 4/(300 \times 0.00196) = 192 \text{ ksi}\]

\[A_s f_{ps} = 10 \times 0.153 \times 192/20 = 14.7 \text{ kips/ft}\]

\[a = \frac{14.7 + 3.6}{0.85 \times 4 \times 12} = 0.45 \text{ in}\]

\[\varepsilon_t = (5.5-0.53) \times 0.003/0.53 = 0.028; \text{ therefore, tension controlled, } \phi = 0.9\]

Tendons:

\[
\left(d - \frac{a}{2} \right) = \frac{ (3.25) - 0.45}{2} = 0.25 \text{ ft}
\]

Rebar:

\[
\left(d - \frac{a}{2} \right) = \frac{ (5.5) - 0.45}{2} = 0.44 \text{ ft}
\]

\[
\phi M_n = 0.9 \times [(14.7 \times 0.25) + (3.6 \times 0.44)] = 4.73 \text{ ft-kips/ft} > 0.13 \text{ OK}
\]

This completes the design for flexural strength.
9. Shear and Moment Transfer Strength at Exterior Column

a. Shear and moment transferred at exterior column.
 \[V_u = (0.170 \times 17/2) - (6.65 - 0.61)/17 = 1.09 \text{ kips/ft} \]

 Assume building enclosure is masonry and glass, weighing 0.40 kips/ft.

 Total slab shear at exterior column:
 \[V_u = [(1.2 \times 0.40) + 1.09] \times 20 = 31.4 \text{ kips} \]

 Transfer moment = 20 (0.61) = 12.2 ft-kips
 (factored moment at exterior column centerline = 0.61 ft-kips/ft)

b. Combined shear stress at inside face of critical transfer section.

 For shear strength equations, see Part 16.

 \[v_u = \frac{V_u}{A_c} + \frac{\gamma_v M_u c}{J} \]
 \[R11.11.7.2 \]

 where (referring to Figure 16-13: edge column-bending perpendicular to edge)

 \[d = 0.8 \times 6.5 = 5.2 \text{ in.} \]
 \[c_1 = 12 \text{ in.} \]
 \[c_2 = 14 \text{ in.} \]
 \[b_1 = c_1 + d/2 = 14.6 \text{ in.} \]
 \[b_2 = c_2 + d = 19.2 \text{ in.} \]
 \[c = \frac{b_1^2}{(2b_1 + b_2)} = 4.40 \text{ in.} \]
 \[A_c = (2b_1 + b_2) d = 252 \text{ in.}^2 \]
 \[J/c = [2b_1d (b_1 + 2b_2) + d^3 (2b_1 + b_2)/b_1]/6 = 1419 \text{ in}^3 \]
 \[\gamma_v = 1 - \gamma_f \]
 \[= 1 - \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt[3]{\frac{b_1}{b_2}}} = 0.37 \]
 \[13.5.3.2 \]
Example 26.1 (cont’d) Calculations and Discussion

\[v_u = \frac{31400}{252} + \frac{0.37 \times 12.2 \times 12000}{1419} = 163 \text{ psi} \]

c. Permissible shear stress (for members without shear reinforcement).

\[\phi v_n = \phi \frac{V_c}{(b_o d)} \]

where \(V_c \) is defined in 11.11.2.1 or 11.11.2.2

For edge columns:

\[\phi v_n = \phi 4 f_c' = 0.75 \times 4 \sqrt{4000} = 190 \text{ psi} > 163 \text{ O.K.} \]

11.11.2.1

d. Check moment transfer strength.

Although the transfer moment is small, for illustrative purposes, check the moment strength of the effective slab width (width of column plus 1.5 times the slab thickness on each side) for moment transfer. Assume that of the 10 tendons required for the 20 ft bay width, 3 tendons are anchored within the column and are bundled together across the building. This amount should be noted on the design drawings. Besides providing flexural strength, this prestress force will act directly on the critical section for shear and improve shear strength. As previously shown, a minimum amount of bonded reinforcement is required at all columns. For the exterior column, the required area is:

\[A_s = 0.00075 A_{cf} = 0.00075 \times 6.5 \times 20 \times 12 = 1.17 \text{ in}^2 \]

13.5.3.2

Use 6-No. 4 bars, 5 ft in length (including standard end hook).

Calculate stress in tendons:

Effective slab width = 14 + 2 (1.5 \times 6.5) = 33.5 in.

\[\rho_p = \frac{3 \times 0.153}{33.5 \times 3.25} = 0.0042 \]

\[f_{ps} = 175 + 10 + 4/(300 \times 0.0042) = 188.2 \text{ ksi} \]

Corresponding prestress force = \(3 \times 0.153 \times 188.2 = 86.4 \text{ kips} \)

\[A_s f_y = 6 \times 0.20 \times 60 = 72.0 \text{ kips} \]

\[A_{ps} f_{ps} + A_s f_y = 158.4 \text{ kips} \]

\[a = 158.4/(0.85 \times 4 \times 33.5) = 1.39 \text{ in.} \]

\[\text{tendon } (d_p - a/2) = (3.25 - 1.39/2)/12 = 0.21 \text{ ft} \]
Example 26.1 (cont’d) Calculations and Discussion

rebar (d – a/2) = (5.5 − 1.39/2)/12 = 0.40 ft

φMn = 0.9 [(86.4 × 0.21) + (72 × 0.40)] = 42.25 ft-kips

\[
\gamma_f = \frac{1}{1 + \frac{2}{3} \left(\frac{b_1}{b_2}\right)} = 0.63
\]

\[
\gamma_f M_u = 0.63 (12.2) = 7.69 \text{ ft-kips} \ll 42.25 \text{ ft-kips} \quad \text{O.K.}
\]

10. Shear and Moment Transfer Strength at Interior Column

a. Shear and moment transferred at interior column.

Direct shear and moment to the left and right of interior columns is calculated in Step 8 above.

\[
V_u = (1.81 + 2.03) 20 = 76.8 \text{ kips}
\]

Transfer moment = 20 (7.43 − 6.65) = 15.6 ft-kips

b. Combined shear stress at face of critical transfer section. For shear strength equations, see Part 16.

\[
v_u = \frac{V_u}{A_c} + \frac{\gamma_v M_u c}{J}
\]

where (referring to Figure 16-13: interior column)

\[
d = 0.8 \times 6.5 = 5.2 \text{ in.}
\]

\[
c_1 = 20 \text{ in.}
\]

\[
c_2 = 14 \text{ in.}
\]

\[
b_1 = c_1 + d = 25.2 \text{ in.}
\]

\[
b_2 = c_2 + d = 19.2 \text{ in.}
\]

\[
A_c = 2 (b_1 + b_2) d = 462 \text{ in.}^2
\]

\[
J/c = [b_1 d (b_1 + 3b_2) + d^3] / 3 = 3664 \text{ in.}^3
\]

\[
\gamma_v = 1 - \gamma_f
\]

\[Eq. (13-1)\]
Example 26.1 (cont’d) Calculations and Discussion

\[
= 1 - \frac{1}{1 + \left(\frac{2}{3}\right) \sqrt{\frac{b_1}{b_2}}} = 0.43 \tag{13.5.3.2}
\]

\[
\psi_u = \frac{76,800}{462} + \frac{0.43 \times 15.6 \times 12,000}{3664} = 188 \text{ psi}
\]

c. Permissible shear stress.

For interior columns, Eq. (11-34) applies:

\[
V_c = \phi \left(\beta_p \sqrt{f_c^*} + 0.3 f_{pc} + \frac{V_p}{b_{od}} \right) \tag{Eq. (11-34)}
\]

where \(\beta_p = \left(\frac{\alpha_s d}{b_o} + 1.5 \right) \) but not greater than 3.5

\[
b_o = 2 \cdot [(20 + 5.2) + (14 + 5.2)] = 88.8 \text{ in.}
\]

\(\alpha_s = 40 \) for interior columns

\[
d = 5.2 \text{ in.}
\]

\[
\beta_p = \frac{40 \times 5.2}{88.8} + 1.5 = 3.8 > 3.5, \text{ use 3.5}
\]

\(V_p \) is the shear carried through the critical transfer section by the tendons. For thin slabs, the \(V_p \) term must be carefully evaluated, as field placing practices can have a great effect on the profile of the tendons through the critical section. Conservatively, this term may be taken as zero.

\[
\phi v_c = 0.75 \left[3.5 \sqrt{4000} + (0.3 \times 172) \right] = 205 \text{ psi} > 188 \text{ psi} \text{ O.K.}
\]

d. Check moment transfer strength.

\[
\gamma_f = \frac{1}{1 + \left(\frac{2}{3}\right) \sqrt{\frac{b_1}{b_2}}} = 0.57 \tag{Eq. (13-1)}
\]

Moment transferred by flexure within width of column plus 1.5 times slab thickness on each side = 0.57 (15.6) = 8.89 ft-kips.

Effective slab width = 14 + 2 (1.5 \times 6.5) = 33.5 in.
Example 26.1 (cont’d) Calculations and Discussion Code Reference

Say $A_{psf_p} = 86.4 \text{ kips}$ (same as exterior column)

$$A_s = 0.00075A_{cf} = 0.00075 \times 6.5 \times (17 + 25)/2 \times 12 = 1.23 \text{ in.}^2 \quad \text{Eq. (18-8)}$$

Use 6-No. 4 bars ($A_s = 1.20 \text{ in.}^2$)

$$A_s f_y = 1.20 \times 60 = 72.0 \text{ kips}$$

$$A_{psf_p} + A_s f_y = 86.4 + 72.0 = 158.4 \text{ kips}$$

$$a = \frac{158.4}{0.85 \times 4 \times 33.5} = 1.39 \text{ in.}$$

$$(d - a/2) = (5.5 - 1.39/2)/12 = 0.40 \text{ ft}$$

$$\phi M_n = 0.9 (158.4 \times 0.40) = 57.0 \text{ ft-kips} \gg 8.89 \text{ ft-kips} \quad \text{O.K.}$$

This completes the shear design.

11. Distribution of tendons.

In accordance with 18.12.4 and 18.12.6, the 10 tendons per 20 ft bay will be distributed in a group of 3 tendons directly through the column with the remaining 7 tendons spaced at 2 ft-6 in. on center (4.6 times slab thickness). Tendons in the perpendicular direction will be placed in a narrow band through and immediately adjacent to the columns.
INTRODUCTION

Chapter 19, concerning shells and folded plate members, was completely updated for ACI 318-83. Sections 19.2.10 and 19.2.11 were added to the ‘95 edition. In its present form, Chapter 19 reflects the current state-of-the-knowledge in analysis and design of folded plates and shells. It includes guidance on analysis methods appropriate for different types of shell structures, and provides specific direction as to design and proper placement of shell reinforcement. The Commentary on Chapter 19 should be helpful to designers; its contents reflect current information, including an extended reference listing.

GENERAL CONSIDERATIONS

Code requirements for shells and folded plates must, of necessity, be somewhat general in nature as compared to the provisions for other types of structures where the practice of design has been firmly established. Chapter 19 is specific in only a few critical areas inherent to shell design; otherwise, it refers to standard provisions of the code. It should be noted that strength design is permitted for shell structures, even though most of the shells in the US have been designed using working stress design procedures.

The code, the commentary, and the list of commentary references are an excellent source of information and guidance on shell design. The list of references, however, does not exhaust all possible sources of design assistance. Also, see References 27.1 through 27.3.

1. Chapter 19 covers the design of a large class of concrete structures that are quite different from the ordinary slab, beam and column construction. Structural action varies from shells with considerable bending in the shell portions (folded plates and barrel shells) to those with very little bending except at the junction of shell and support (hyperbolic paraboloids and domes of revolution). The problems of shell design, therefore, cannot be lumped together, as each type has its own peculiar attributes that must be thoroughly understood by the designer. Even shells classified under one type, such as the hyperbolic paraboloid, vary greatly in their structural action. Studies have shown that gabled hyperbolic paraboloids, for example, are much more complex than the simple membrane theory would indicate. This is one explanation for the lack of a rigid set of rules in the code for the design of shells and folded plate structures.

2. For the reasons given above, design of a shell requires considerable lead time to gain an understanding of the design problems for the particular type of shell. An attempt to design a shell without proper study may invite poor performance. Design of shell structures requires the ability to think in terms of three-dimensional space; this is only gained by study and experience. The conceptual stage is the most critical period in shell design, since this is when vital decisions on form and dimensions must be made.

3. Strength of shell structures is inherent in their shape and is not created by boosting the performance of materials to their limit as in the case of other types of concrete structures such as nonprestressed and prestressed concrete beams. Therefore, the design stresses in the concrete should not be raised to their highest acceptable values, except where required for very large structures. Deflections are normally not a problem if the stresses are low.
4. Shell size is a very important determinant in the analytical precision required for its design. Short spans (up to 60 ft) can be designed using approximate methods such as the beam method for barrel shells, provided the exterior shell elements are properly supported by beams and columns. However, the limits and approximations of any method must be thoroughly understood. Large spans may require much more elaborate analyses. For example, a large hyperbolic paraboloid (150-ft span or more) may require a finite element analysis.

Application of the following code provisions warrants further explanation.

19.2 ANALYSIS AND DESIGN

19.2.6 Prestressed Shells

The components of force produced by prestressing tendons draped in a thin shell must be taken into account in the design. In the case of a barrel shell, it should be noted that the tendon does not lie in one plane, as shown in Fig. 27-1.

19.2.7 Design Method

The Strength Design Method is permitted for the design of shells, but it should be noted that for slab elements intersecting at an angle, and having high tensile stresses at inside corners, the ultimate strength is greatly reduced from that at the center of a concrete slab. Therefore, special attention should be given to the reinforcement used in these areas, and thickness should be greater than the minimum allowed by the strength method.

19.4 SHELL REINFORCEMENT

19.4.6 Membrane Reinforcement

For shells with essentially membrane forces, such as hyperbolic paraboloids and domes of revolution, it is usually convenient to place the reinforcement in the direction of the principal forces. Even though folded plates and barrel shells act essentially as longitudinal beams (traditionally having vertical stirrups as shear reinforcement), an orthogonal pattern of reinforcement (diagonal bars) is much easier to place and also assures end anchorage in the barrel or folded plate. With diagonal bars, five layers of reinforcement may be required at some points.

The direction of principal stresses near the supports is usually about 45 degrees, so that equal areas of reinforcement are needed in each direction to satisfy the requirements of 19.4.4. For illustration, Fig. 27-2 shows a plot of the principal membrane forces in a barrel shell with a span of 60 ft, a rise of 6.3 ft, a thickness of 3.5 in., and a snow load of 25 psf and a roof load of 10 psf. Forces, due to service loads, are shown in kips per linear foot.
19.4.8 Concentration of Reinforcement

In the case of long barrel shells (or domes) it is often desirable to concentrate tensile reinforcement near the edges rather than distribute the reinforcement over the entire tensile zone. When this is done, a minimum amount of reinforcement equal to 0.0035bh must be distributed over the remaining portion of the tensile zone, as shown in Fig. 27-3. This amount in practical terms is twice the minimum steel requirement for shrinkage and temperature stresses.

![Figure 27-3 Concentration of Shell Reinforcement](image)

19.4.10 Spacing of Reinforcement

Maximum permissible spacing of reinforcement is the smaller of 5 times the shell thickness and 18 in. Therefore, for shells less than 3.6 in. thick, 5 times the thickness controls. For thicker shells, the spacing of bars must not exceed 18 in.
REFERENCES

Strength Evaluation of Existing Structures

UPDATE FOR ‘08

Section 20.2.3 prescribes a more reliable method to determine f'_c for strength evaluation of existing structures. Strength reduction factor, ϕ, for compression-controlled sections incorporating spiral reinforcement is increased in 20.2.5 for compatibility with changes made to the corresponding ϕ factor in Chapter 9. The load intensity prescribed in 20.3.2 is adjusted for consistency with the load combinations of 9.2.

INTRODUCTION

Chapter 20 was revised in 1995 to flag the need to monitor during load tests not only deflections, but also cracks related to shear and/or bond, along with spalling and crushing of the concrete. In cases involving deterioration of the structure, acceptance of a building should be based on a load test. Further, the acceptance should include a time limit. Periodic inspections and strength reevaluations should be specified depending on the nature of the deterioration. When structure dimensions, size and location of reinforcement, and material properties are known, higher strength reduction factors were introduced in ACI 318-95 for analytical evaluations of the strength of existing structures.

Strength evaluation of an existing structure requires experience and sound engineering judgment. Chapter 20 provides guidance for investigating the safety of a structure when:

1. Materials of a building are considered to be deficient in quality.
2. There is evidence indicating faulty construction.
3. A building has deteriorated.
4. A building will be used for a new function.
5. A building or a portion of it does not appear to satisfy the requirements of the code.

The provisions of Chapter 20 should not be used for approval of special systems of design and construction. Approval of such systems is covered in 1.4.

References 28.1 and 28.2 published by the Concrete Reinforcing Steel Institute (CRSI) are suggested additional guides for strength evaluation of existing structures. Information about reinforcing steel found in old reinforced concrete structures is given in CRSI Engineering Data Report Number 11.28.3

20.1 STRENGTH EVALUATION - GENERAL

Strength evaluation of structures can be performed analytically or experimentally. Applicability of the analytical procedure depends on whether the source of deficiency is critical to the structure’s strength under: (1) flexural and/or axial load, or (2) shear, torsion, and/or bond. The behavior and strengths of structural concrete under flexural and/or axial load strengths can be accurately predicted based on Navier’s hypothesis of “plane section
before loading remains plane after loading.” On the other hand, available theories and models are not as reliable to predict the shear, torsion, and bond behavior and strengths of structural concrete. Code provisions for one- and two-way shear, and for bond are semi-empirical. Shear, torsion, and bond failures can be brittle.

Analytical strength evaluations suffice for acceptance of buildings if two conditions are met (20.1.2). First, the source of deficiency should be critical to flexural, axial load, or combined flexural and axial load strengths. It cannot be critical to shear or bond strengths. Second, it should be possible to establish the actual building dimensions, size and location of reinforcement, and material properties. If both conditions are not met, strength evaluations should be determined by a load test as prescribed in 20.3. If causes of concern relate to flexure or axial load, but it is not possible or feasible to determine material properties, a physical test may be appropriate. Analytical evaluations of shear strength are not precluded if they are “well understood.” If shear, torsion, or bond strength is critical to the safety concerns, physical test may be the most efficient solution. Wherever possible and appropriate, it is desirable to support the results of the load tests by analysis (R20.1.3).

If the safety concerns are due to deterioration, strength evaluation may be through a load test. If the building satisfies the acceptance criteria of 20.5, the building should be allowed to remain in service for a specified period of time as a function of the nature of the deterioration. Periodic reevaluations of the building should be conducted.

20.2 DETERMINATION OF REQUIRED DIMENSIONS AND MATERIAL PROPERTIES

If strength evaluation of a building is performed through analysis, actual dimensions, location and size of reinforcement, and material properties should be established. Measurements should be taken at critical sections where calculated stress would reach a maximum value. When shop drawings are available, spot checks should be made to confirm location and size of reinforcing bars shown on the drawings. Nondestructive testing techniques are available to determine location and size of reinforcement, and estimate the strength of concrete. Unless they are already known, actual properties of reinforcing steel or prestressing tendons should be determined from samples extracted from the structure.

In ACI 318-95 through ACI 318-05, Section 20.2.3 referenced 5.6.5 for determination of concrete strength from cores when evaluating the strength of an existing structure. Section 5.6.5 addresses investigation of low-strength test results, not strength evaluation of existing structures. Since this requirement first appeared in the code, ACI Committee 214 has developed procedures for determining concrete strength from cores for strength evaluation of an existing structure. See Ref. 28.4.

An analytical strength evaluation requires the use of the load factors of 9.2 and the strength reduction factors of 20.2.5. One of the purposes of the strength reduction factors \(\phi \) given in R9.3.1 is “to allow for the probability of understrength members due to variations in material strengths and dimensions.” When actual member dimensions, size and location of reinforcement, and concrete and reinforcing steel properties are measured, Chapter 20 permits higher strength reduction factors. A comparison of the strength reduction factors of 20.2.5 to those of 9.3 is given in Table 28-1. The ratios of strength reduction factors of Chapter 20 to those of Chapter 9 are listed in the last column of the table. For analytical evaluation of columns and bearing on concrete, strength reduction factors \(\phi \) of 20.2.5 are about 20 percent higher than those of 9.3. For flexure in beams and axial tension, the increase is 11 percent, while for shear and torsion it is 7 percent.

An increase in strength reduction factors, as specified in Chapter 20, results in an increase in computed member strengths. Nominal axial compressive strength of columns is in great part a function of the product of the column cross sectional area and the concrete compressive strength. As concrete compressive strength is subject to large variability, the strength reduction factors of Chapter 9 are lower for axial compression than for flexure. Because the actual concrete compressive strength is measured for strength evaluation of existing structures (20.1.2), a higher increase in strength reduction factor \(\phi \) is permitted for columns by 20.2.5.
Starting with the 2008 edition of the Code, strength reduction factor, ϕ, for compression-controlled sections incorporating spiral reinforcement was increased from 0.85 to 0.90 in 20.2.5 for compatibility with an increase made to the corresponding ϕ factor in Chapter 9.

Table 28-1 Comparison of Strength Reduction Factors

<table>
<thead>
<tr>
<th></th>
<th>Strength reduction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ch. 20</td>
</tr>
<tr>
<td>Tension-controlled sections, as defined in 10.3.4</td>
<td>1.00</td>
</tr>
<tr>
<td>Compression-controlled sections, as defined in 10.3.3</td>
<td></td>
</tr>
<tr>
<td>Members with spiral reinforcement conforming to 10.9.3</td>
<td>0.90</td>
</tr>
<tr>
<td>Other reinforced members</td>
<td>0.80</td>
</tr>
<tr>
<td>Shear and torsion</td>
<td>0.80</td>
</tr>
<tr>
<td>Bearing on concrete</td>
<td>0.80</td>
</tr>
</tbody>
</table>

20.3 LOAD TEST PROCEDURE

The number and arrangement of spans or panels loaded should be selected to maximize the deflection and stresses in the critical regions of the structural elements of which strength is in doubt (20.3.1). If adjoining elements are expected to contribute to the load carrying capacity, magnitude of the test load or placement should be adjusted to compensate for this contribution. The total test load includes the dead load already in place (20.3.2). The portion of the structure being load tested should be at least 56 days old, unless all concerned parties agree to conduct the test at an earlier age (20.3.3).

The test load factors of Chapter 20 were not changed when the load factors of ASCE 7 were introduced in 9.2 of ACI 318-02. From the 1971 code through the 2005 edition, the intensity of the total test load was given as 0.85 (1.4D + 1.7L). This format is confusing to practitioners as it appears to relate only to the load combinations of Appendix C. The factored test load combinations introduced in 2008 are more general in format. They are summarized in Table 28-2. They include snow and rain loads, without significantly changing the test load magnitude of previous editions of the Code. As noted in 20.3.2, the term 0.9L in Case (b) of Table 28-2 applies to garages, areas used to public assemblies, and where L is greater than 100 lb/ft². For all other cases, 0.9L can be reduced to 0.45L. This is in addition to reducing the magnitude of live load, L, as permitted in the general building code or the ASCE/SEI 7 Standard in effect.

Table 28-2 Test Load Intensity

<table>
<thead>
<tr>
<th>Case</th>
<th>Total Test Load*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.15D + 1.5L + 0.4(Lr or S or R)</td>
</tr>
<tr>
<td>(b)</td>
<td>1.15D + 0.9L + 1.5(Lr or S or R)</td>
</tr>
<tr>
<td>(c)</td>
<td>1.3D</td>
</tr>
</tbody>
</table>

*Test Load shall be the largest of Cases (a), (b), and (c).

20.4 LOADING CRITERIA

Loading criteria are specified in 20.4. Initial values of all response measurements (deflection, strain, crack width, etc.) should be read and recorded not more than one hour before load application. When simulating uniformly distributed loads, arching of the applied loads must be avoided. Figure 28-1 illustrates arching action. Sufficient gap should be provided between loading stacks so as to prevent contact, and hence arching, after member deflection, while assuring stability of the test loads.
Test load should be applied in not less than four approximately equal increments. A set of test load and response measurements is to be recorded after each load increment and after the total load has been applied for at least 24 hours. A set of final response measurements is to be recorded 24 hours after the test load is removed.

20.5 ACCEPTANCE CRITERIA

Evidence of failure includes spalling or crushing of concrete (20.5.1), excessive deflections (20.5.2), shear cracks (20.5.3 and 20.5.4), and bond cracks (20.5.5). No simple rules can be developed for application to all types of structures and conditions. However, in members without transverse reinforcement, projection of diagonal (inclined) cracks on an axis parallel to the longitudinal axis of the member should be monitored. If the projection of any diagonal crack is longer than the member depth at mid length of the crack, the member may be deficient in shear. If sufficient damage has occurred so that the structure is considered to have failed that test, retesting is not permitted since it is considered that damaged members should not be put into service even at a lower rating (R20.5.1).

Deflection criteria must satisfy the following conditions (20.5.2):

1. When maximum deflection exceeds $\ell_1^2/(20,000 \ h)$, the percentage recovery must be at least 75 percent after 24 hours, where

 \[h = \text{overall thickness of member, in.} \]
 \[\ell_1 = \text{span of member under load test, in.} \]
 (The shorter span for two-way slab systems.) Span is the smaller of (a) distance between centers of supports, and (b) clear distance between supports plus thickness h of member. Span for a cantilever must be taken as twice the distance from support to cantilever end, in.

2. When maximum deflection is less than $\ell_1^2/(20,000 \ h)$, recovery requirement is waived. Figures 28-2 and 28-3 illustrate application of the limiting deflection criteria to the first load test. Figure 28-2 illustrates the limiting deflection versus member thickness for a sample span of 20 ft. Figure 28-3 depicts the limiting deflection versus span for a member 8 in. thick.
3. Members failing to meet the 75 percent recovery criterion may be retested.

4. Before retesting, 72 hours must have elapsed after load removal. On retest, the recovery must be 80 percent.

![Graph 1](image1.png)

Figure 28-2 Load Testing Acceptance Criteria for Members with Span Length \(l_t = 20 \text{ ft} \)

![Graph 2](image2.png)

Figure 28-3 Load Testing Criteria for Members with Overall Thickness \(h = 8 \text{ in.} \)

20.6 PROVISION FOR LOWER LOAD RATING

If analytical strength evaluations (20.1.2) indicate that a structure is inadequate, if the deflections of 20.5.2 are exceeded, or if cracks criteria of 20.5.3 are not met, the structure can be used for a lower load rating, if approved by the building official.

20.7 SAFETY

During load testing, shoring normally must be provided under the loaded members to assure safety. The shoring must not interfere with the test procedure or affect the test results. At no time during the load test should the deformed structure touch or bear against the shoring.
REFERENCES

28.1 “Applications of ACI 318 Load Test Requirements,” Structural Bulletin No. 16, Concrete Reinforcing Steel Institute, Schaumburg, IL, November 1987.

28.2 “Proper Load Tests Protect the Public,” Engineering Data Report Number 27, Concrete Reinforcing Steel Institute, Schaumburg, IL.

28.4 ACI Committee 214, “Guide for Obtaining Cores and Interpreting Compressive Strength Results (ACI 214.4R-03),” American Concrete Institute, Farmington Hills, MI, 2003, 16 pp.
Earthquake-Resistant Structures

UPDATE FOR THE ’08 CODE

A number of significant changes have been made in the provisions and organization of Chapter 21. The title of the chapter has been revised to Earthquake-Resistant Structures to better reflect the major reorganization of the seismic design requirements based on order of increasing Seismic Design Category (SDC). ACI 318-08 has adopted the ASCE/SEI 7-05 seismic-related terminology as a means of facilitating uniformity and reducing the number of exceptions that appear in ASCE/SEI 7-05.

The word “special” has been deleted from the chapter title as well as from certain portions of Chapter 21 and Chapter 1 to remove unnecessary and confusing use of the term in seismic design requirements.

In keeping with the overall style of ACI 318, definitions that were previously in Chapter 21 have migrated to Chapter 2.

A number of changes occurred to the requirements for reinforcement in special moment frames and special structural walls, which are now found in 21.1.5. Coupling beams, which have been inadvertently overlooked in earlier editions of ACI 318 in regard to the types of deformed reinforcement that is to be utilized in such members, have been added to 21.1.5.2. Also, it is now permitted to use prestressing steel complying with ASTM A416 or A722 to resist earthquake-induced forces (21.1.5.3). Finally, the design yield stress for confinement reinforcement has been increased to 100,000 psi based on recent research results (21.1.5.4).

Provisions for structures assigned to SDC B are now included in Chapter 21. New 21.2 contains design requirements for ordinary moment frames that are part of the seismic-force-resisting system in structures assigned to SDC B.

New design requirements are introduced in 21.3.5.6 for columns supporting reactions from discontinuous stiff members, such as walls, in intermediate moment frames. Also, design requirements are revised for such columns in structures assigned to SDC D and higher (21.6.4.6).

Revised shear design requirements for slab-column joints in intermediate moment frames can be found in 21.3.6.8. The requirements of this section can be waived if the slab-column connection satisfies the provisions of 21.13.6 for members not designated as part of the seismic-force-resisting system. The design shear strength of joints in intermediate moment frames is no longer the lesser of the sum of the shears associated with development of the nominal moment strengths of the members and the factored gravity loads or the maximum shear obtained from design load combinations that include E where E is twice that prescribed by the governing code for earthquake-resistant design (see revised 21.3.3).
Prestressing used in flexural members of special moment frames must satisfy the four requirements in 21.5.2.5, unless used in a special moment frame as permitted by 21.8.3 (special moment frames with strong connections constructed using precast concrete).

The provisions of special moment frame members subjected to bending and axial load have been modified to clarify that the provisions apply to such members for all load combinations if the axial load exceeds $0.1A_g f_c'$ in any load combination (21.6.1).

Section 21.6.4 (formerly 21.4.4), which contains requirements for transverse reinforcement in special moment frame members subjected to bending and axial load, was reorganized and some of the provisions were modified. In particular, the cross-sectional dimension of the column core b_c is now measured to the outside edges of the transverse reinforcement (previously it was measured center-to-center of outside legs), which makes it consistent with the definition of A_{ch}. Both b_c and A_{ch} are used in determining the required area of transverse reinforcement. Revised R21.6.4.2 clarifies the requirements and provides an updated Figure R21.6.4.2. Also, it is now permitted to have crossies that are smaller in diameter than the hoops (21.6.4.2). Finally, the requirements of 21.4.4.1(d) were eliminated, which allowed the design of columns with less than the specified confinement reinforcement where the column core satisfied the design load combinations including earthquake effects.

Section 21.7.3 contains revised transverse reinforcement requirements for joints of special moment frames. Maximum beam width, joint confinement requirements, and design provisions for beams that are wider than the column at a joint are addressed. Maximum effective beam width is given in 21.5.1.4 and is illustrated in Figure R21.5.1.

Commentary R21.8.4 now alerts the designer to the existence of ACI T1.2 Special Hybrid Moment Frames Composed of Discretely Joined Precast and Post-Tensioned Concrete Members (T1.2-03) and Commentary (T1.2R-03) as an option to satisfy the provisions of 21.1.1.8.

The requirements of 21.9.6.4(c) (formerly 21.7.6.4(c)) have been modified to permit increased spacing of transverse reinforcement in boundary elements of special structural walls with relatively thin boundary zones.

New 21.9.7.3 has been added that permits moderate-aspect-ratio coupling beams that are not governed by 21.9.7.1 or 21.9.7.2 to be reinforced either with two intersecting groups of diagonally placed bars symmetrical about the midspan that satisfy 21.9.7.4 or according to the provisions in 21.5.2 through 21.5.4 for longitudinal and transverse reinforcement in flexural members of special moment frames. The spacing requirements for transverse reinforcement confining diagonally placed reinforcement has been relaxed and an alternate detail involving confinement of the beam cross section has been introduced in 21.9.7.4. Figure R21.9.7 (formerly Figure R21.7.7) has been updated based on these modified requirements.

New 21.10.3 has been added that allows the use of unbonded post-tensioned precast concrete walls (coupled or uncoupled) as special structural walls provided the requirements of ACI ITG-5.1 Acceptance Criteria for Special Unbonded Post-Tensioned Precast Structural Walls Based on Validation Testing are satisfied.

Design procedures for diaphragms and trusses have been updated in 21.11 (formerly 21.9). New 21.11.3 has been added to clarify that a complete transfer of seismic forces is required for all diaphragms, including composite topping-slab diaphragms and non-composite diaphragms. This section also
specifically identifies the provisions that must be satisfied for strut-like elements that are commonly present around openings, diaphragm edges, and other discontinuities. Updated requirements for flexural strength and shear strength can be found in 21.11.8 and 21.11.9, respectively. Requirements for structural trusses are now located in the standalone 21.11.11.

Revised requirements for location of lap splices in columns that are not designated as part of the seismic-force-resisting system are given in 21.13.3 (formerly 21.11.3). These revisions remove an inconsistency in detailing requirements in previous editions of the code.

BACKGROUND

Provisions for earthquake resistance were first introduced into the 1971 edition of the ACI code in Appendix A, and were included with minor revisions in ACI 318-77. The original provisions of Appendix A were intended to apply only to reinforced concrete structures located in regions of high seismicity, and designed with a substantial reduction in total lateral seismic forces (as compared with the elastic response forces), in anticipation of inelastic structural behavior. Also, several changes were incorporated into the main body of the 1971 code specifically to improve toughness, in order to increase the resistance of concrete structures to earthquakes or other catastrophic loads. While Appendix A was meant for application to seismic force-resisting frames and walls in regions of high seismicity, the main body of the code was supposed to be sufficient for regions where there is a probability of only moderate or light earthquake damage.

The provisions of Appendix A were extensively revised for the 1983 code, to reflect current knowledge and practice of the design and detailing of monolithic reinforced concrete structures for earthquake resistance. Appendix A to ACI 318-83 for the first time included detailing for frames in zones of moderate seismic hazard.

Since publication of the 1989 code, the provisions for seismic design have been located in the main body of the code to ensure adoption of the seismic design provisions when a jurisdiction adopts the ACI code as part of its general building code. With the continuing high interest nationally in the proper design of buildings for earthquake performance, the code’s emphasis on seismic design of concrete buildings continues with this edition. Chapter 21 represents the latest in seismic detailing of reinforced concrete buildings for earthquake performance.

The landmark volume, *Design of Multistory Concrete Buildings for Earthquake Motions* by Blume, Newmark, and Corning29.1, published by the Portland Cement Association (PCA) in 1961, gave major impetus to the design and construction of concrete buildings in regions of high seismicity. In the decades since, significant strides have been made in the earthquake-resistant design and construction of reinforced concrete buildings. Significant developments have occurred in the building codes arena as well. However, a comprehensive guide to aid the designer in the detailed seismic design of concrete buildings was not available until PCA published *Design of Concrete Buildings for Earthquake and Wind Forces* in 199229.2.

That design manual illustrated the detailed design of reinforced concrete buildings utilizing the various structural systems recognized in U.S. seismic codes. All designs were according to the provisions of the 1991 edition of the *Uniform Building Code* (UBC)29.3, which had adopted, with modifications, the seismic detailing requirements of the 1989 edition of *Building Code Requirements for Reinforced Concrete* (ACI 318-89, Revised 1992). Design of the same building was carried out for regions of high, moderate, and low seismicity, and for wind, so that it would be apparent how design and detailing changed with increased seismic risk at the site of the structure.

The above publication was updated to the 1994 edition of the UBC, in which ACI 318-89, Revised 1992, remained the reference standard for concrete design and construction, although a new procedure for the design of reinforced concrete shear walls in combined bending and axial compression was introduced in the UBC itself. The updated publication by S.K. Ghosh, August W. Domel, Jr., and David A. Fanella was issued by PCA in 199529.4.
Since major changes occurred between the 1994 and 1997 editions of the UBC as discussed above, a new book titled *Design of Concrete Buildings for Earthquake and Wind Forces According to the 1997 Uniform Building Code* was developed. It discussed the major differences in the design requirements between the 1994 and the 1997 editions of the UBC. Three different types of concrete structural framing systems were designed and detailed for earthquake forces representing regions of high seismicity (Seismic Zones 3 and 4). Although the design examples focused on regions of high seismicity, one chapter discussed the detailing requirements for structures located in regions of low, moderate, and high seismicity. Design of the basic structural systems for wind was also illustrated. As in this “Notes” publication, the emphasis was placed on “how-to-use” the various seismic design and detailing provisions of the last UBC.

PCA publication, *Design of Low-Rise Concrete Buildings for Earthquake Forces*, was a companion document to that described above; however, its focus was on designing concrete buildings under the 1996 and 1997 editions of *The BOCA National Building Code* (NBC) and the *Standard Building Code* (SBC), respectively. As indicated previously, the seismic provisions of the last editions of the NBC and SBC were almost identical, and were based on the 1991 edition of the *NEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings*. With the two exceptions noted below, the book was also applicable to the 1993 and 1999 editions of the NBC, and the 1994 and 1999 editions of the SBC. The only difference between the loading requirements of the 1993 and the 1996 and 1999 NBC was that the load combinations to be used for seismic design under the 1993 edition of the NBC were identical to those that had to be used under all three editions of the SBC. Whereas, the 1996 and 1999 NBC adopted by reference the strength design load combinations of ASCE 7-95. The second exception was that different editions of ACI 318 were adopted by the various editions of the codes as illustrated in the Table 29-1.

Table 29-1 ACI 318 Code Editions Adopted in Model Codes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NBC</td>
<td>1993</td>
<td>1989, Revised 1992</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>1995</td>
</tr>
<tr>
<td>SBC</td>
<td>1994</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>1995</td>
</tr>
<tr>
<td>IBC</td>
<td>2000</td>
<td>1999</td>
</tr>
<tr>
<td>IBC</td>
<td>2003</td>
<td>2002</td>
</tr>
<tr>
<td>IBC</td>
<td>2006</td>
<td>2005</td>
</tr>
<tr>
<td>NFPA 5000</td>
<td>2003</td>
<td>2002</td>
</tr>
<tr>
<td>NFPA 5000</td>
<td>2006</td>
<td>2005</td>
</tr>
</tbody>
</table>

Since designing for seismic forces in areas that had traditionally adopted the NBC or SBC was relatively new, the book provided excellent background information for the structural engineer. Since the overwhelming majority of all buildings constructed in this country are low-rise, that was the focus of this book. For its purpose, low-rise was defined as less than 65 feet in height or having a fundamental period of vibration of less than 0.7 second.

To assist the designer in understanding and using the detailing requirements of Chapter 21 of the Code, PCA developed a publication titled *Seismic Detailing of Concrete Buildings*. Numerous tables and figures illustrated the provisions for buildings located in regions of moderate and high seismic risk – IBC Seismic Design Categories C, D, E and F. While the book was based on the '99 edition of the Code, which was referenced by the 2000 IBC, most of the provisions are applicable to ACI 318-02, ACI 318-05, and ACI 318-08. This publication was recently updated to the provisions of ACI 318-05, and contains a CD that includes reinforcement details for beams, columns, two-way slabs, walls, and foundations presented in various electronic formats for reproduction and adaptation by the user.
In recent years, the building code situation in this country has changed drastically. The seismic design provisions of the IBC represent revolutionary changes from those of model codes it was developed to replace. This created a need for a new publication similar to the volume first issued by PCA in 1992. To fill that need, PCA and the International Code Council (ICC) published *Seismic and Wind Design of Concrete Buildings: 2000 IBC, ASCE 7-98, ACI 318-99* by S.K. Ghosh and David A. Fanella in 2003. An update of the above publication to the 2003 IBC, *Seismic and Wind Design of Concrete Buildings: 2003 IBC, ASCE 7-02, ACI 318-02* by S.K. Ghosh, David A. Fanella, and Xuemei Liang was published by PCA and ICC. In Chapter 1, an introduction to earthquake-resistant design is provided, along with summaries of the seismic and wind design provisions of the 2003 IBC. Chapter 2 is devoted to an office building utilizing a dual shear wall-frame interactive system in one direction and a moment-resisting frame in the orthogonal direction. Designs for Seismic Design Categories (SDC) A, C, D, and E are illustrated in both directions. Chapter 3 features a residential building, which utilizes a shear-wall frame interactive system in SDC A and B and a building frame system for lateral resistance in SDC C, D, and E. Chapter 4 presents the design of a school building with a moment-resisting frame system in SDC B, C, and D. A residential building utilizing a bearing wall system is treated in Chapter 5. Design is illustrated for SDC A, B, C, D, and E. The final (sixth) chapter is devoted to design of a precast parking structure utilizing the building frame system in SDC B, C, and D. While design is always for the combination of gravity and wind or seismic forces, wind forces typically govern the design in the low seismic design categories (particularly A), and earthquake forces typically govern in the high seismic design categories (particularly D and above). Detailing requirements depend on the seismic design category, regardless of whether wind or seismic forces govern the design. This publication is designed to provide an appreciation on how design and detailing change with changes in the seismic design category.

GENERAL CONSIDERATIONS

Economical earthquake-resistant design should aim at providing appropriate dynamic characteristics in structures so that acceptable response levels would result under the design earthquake. The structural properties that can be modified to achieve the desired results are the magnitude and distribution of stiffness and mass and the relative strengths of the structural members.

In some structures, such as slender free-standing towers or smoke stacks, which depend for their stability on the stiffness of the single element making up the structure, or in nuclear containment buildings where a more-than-usual conservatism in design is required, yielding of the principal elements in the structure cannot be tolerated. In such cases, the design needs to be based on an essentially elastic response to moderate-to-strong earthquakes, with the critical stresses limited to the range below yield.

In most buildings, particularly those consisting of frames and other multiply-redundant systems, however, economy is achieved by allowing yielding to take place in some members under moderate-to-strong earthquake motion.

The performance criteria implicit in most earthquake code provisions require that a structure be able to:

1. Resist earthquakes of minor intensity without damage; a structure would be expected to resist such frequent but minor shocks within its elastic range of stresses.
2. Resist moderate earthquakes with negligible structural damage and some nonstructural damage; with proper design and construction, it is expected that structural damage due to the majority of earthquakes will be repairable.
3. Resist major catastrophic earthquakes without collapse; some structural and nonstructural damage is expected.

The above performance criteria allow only for the effects of a typical ground shaking. The effects of landslides, subsidence or active faulting in the immediate vicinity of the structure, which may accompany an earthquake, are not considered.
While no clear quantitative definition of the above earthquake intensity ranges has been given, their use implies the consideration not only of the actual intensity level but also of their associated probability of occurrence with reference to the expected life of a structure.

The principal concern in earthquake-resistant design is the provision of adequate strength and toughness to assure life safety under the most intense earthquake expected at a site during the life of a structure. Observations of building behavior in recent earthquakes, however, have made engineers increasingly aware of the need to ensure that buildings that house facilities essential to post-earthquake operations—such as hospitals, power plants, fire stations and communication centers—not only survive without collapse, but remain operational after an earthquake. This means that such buildings should suffer a minimum amount of damage. Thus, damage control is at times added to life safety as a second design consideration.

Often, damage control becomes desirable from a purely economic point of view. The extra cost of preventing severe damage to the nonstructural components of a building, such as partitions, glazing, ceiling, elevators and other mechanical systems, may be justified by the savings realized in replacement costs and from continued use of a building after a strong earthquake.

The principal steps involved in the earthquake-resistant design of a typical concrete structure according to building code provisions are as follows:

1. Determination of seismic design category
 Seismic design category combines the seismic hazard at the site of the structure, the occupancy of the structure, and the soil characteristics at the site of the structure. It’s a relatively new concept, for an understanding of which, the reader may consult Ref. 29.16.

2. Determination of design earthquake forces
 a. Calculation of base shear corresponding to computed or estimated fundamental period of vibration of the structure (a preliminary design of the structure is assumed here)
 b. Distribution of the base shear over the height of the building

 Reference 29.17 presents flowcharts, step-by-step procedures, and worked-out examples on how to calculate and distribute seismic forces in accordance with the 2006 IBC and ASCE/SEI 7-05.29.18

3. Analysis of the structure under the (static) lateral earthquake forces calculated in step 2, as well as under gravity and wind loads, to obtain member design forces.

4. Designing members and joints for the critical combinations of gravity and lateral (wind or seismic) loads.

5. Detailing members for ductile behavior in accordance with the seismic zone, or the seismic performance or design category of the structure.

It is important to note that some buildings are required to be designed by a dynamic, rather than a static, lateral force procedure when one or more criteria of the static procedure are not satisfied.

In the IBC, as well as in the model codes that preceded it, the design base shear represents the total horizontal seismic force that may be assumed acting parallel to the axis of the structure considered. The force in the other horizontal direction is usually assumed to act non-concurrently. Depending on the building and the seismic design category, the seismic forces may need to be applied in the direction that produces the most critical load effect. The requirement that orthogonal effects be considered in the proportioning of a structural element may be satisfied by designing the element for 100 percent of the prescribed seismic forces in one direction plus 30 percent of the prescribed forces in the perpendicular direction. The combination requiring the greater component strength must be used for design. The vertical component of the earthquake ground motion is included in
the load combinations involving earthquake forces that are prescribed in the IBC. Special provisions are also required for structural elements that are susceptible to vertical earthquake forces (cantilever beams and slabs; prestressed members).

The code-specified design lateral forces have a general distribution that is compatible with the typical envelope of maximum horizontal shears indicated by elastic dynamic analyses for regular structures. However, the code forces are substantially smaller than those that would be developed in a structure subjected to the anticipated earthquake intensity, if the structure were to respond elastically to such ground excitation. Thus, buildings designed under the present codes would be expected to undergo fairly large deformations when subjected to a major earthquake. These large deformations will be accompanied by yielding in many members of the structure, which is the intent of the codes. The reduced code-specified forces must be coupled with additional requirements for the design and detailing of members and their connections in order to ensure sufficient deformation capacity in the inelastic range.

The capacity of a structure to deform in a ductile manner (i.e., to deform beyond the yield limit without significant loss of strength), allows such a structure to dissipate a major portion of the energy from an earthquake without collapse. Laboratory tests have demonstrated that cast-in-place and precast concrete members and their connections, designed and detailed by the present codes, do possess the necessary ductility to allow a structure to respond inelastically to earthquakes of major intensity without significant loss of strength.

21.1 GENERAL REQUIREMENTS

21.1.1 Scope

Chapter 21 contains the minimum requirements that must be satisfied for cast-in-place and precast concrete structures subject to design earthquake forces prescribed in a legally adopted general building code, such as the 2006 IBC. Since the design earthquake forces are considered less than those corresponding to linear response at the anticipated earthquake intensity, the integrity of the structure in the inelastic range of response should be maintained provided the applicable detailing requirements of Chapter 21 are satisfied.

Section 21.1.1.2 requires that all structures be assigned to a Seismic Design Category (SDC) in accordance with the legally adopted general building code (also see 1.1.9.1). In areas without such a code, the SDC is determined by the local authority having jurisdiction. SDCs in the 2008 ACI Code are adopted directly from ASCE/SEI 7-05 and are a function of the seismic risk level at the site, soil type, and occupancy or use of the structure.

Before the 2008 Code, low, intermediate, and high seismic risk designations were used to define detailing requirements. A comparison of SDCs and seismic risk designations used in various codes, standards, and resource documents is given in Table R1.1.9.1.

The provisions in Chapter 21 relate detailing requirements to the type of structural framing and the SDC. As noted previously, the provisions in this chapter were revised and renumbered to present seismic requirements in order of increasing SDC.

Traditionally, seismic risk levels have been classified as low, moderate, and high. Table R1.1.9.1 contains a summary of the seismic risk levels, seismic performance categories (SPC), and seismic design categories (SDC) specified in the IBC, the three prior model building codes now called legacy codes, as well as other resource documents (see R21.1.1).

According to 1.1.9.2, all structures must satisfy the applicable provisions of Chapter 21, except for those assigned to SDC A or exempted by the legally adopted building code. The design and detailing requirements of Chapters 1 through 19 and Chapter 22 are considered to provide adequate toughness for these structures subjected to low-level earthquake intensities.
The designer should be aware that the general requirements of the code include several provisions specifically intended to improve toughness, in order to increase resistance of concrete structures to earthquake and other catastrophic or abnormal loads. For example, when a beam is part of the seismic force-resisting system of a structure, a portion of the positive moment reinforcement must be anchored at supports to develop its yield strength (see 12.11.2). Similarly, hoop reinforcement must be provided in certain types of beam-column connections (see 11.10.2). Other design provisions introduced since publication of the 1971 code, such as those requiring minimum shear reinforcement (see 11.4.5) and improvements in bar anchorage and splicing details (Chapter 12), also increase toughness and the ability of concrete structures to withstand reversing loads due to earthquakes. With publication of the 1989 code, provisions addressing special reinforcement for structural integrity (see 7.13) were added, to enhance the overall integrity of concrete structures in the event of damage to a major supporting element or abnormal loading.

In addition to Chapters 1 to 19 and 22, structures assigned to SDC B, C, D, E, or F must also comply with the applicable requirements of 21.1.1.4 through 21.1.1.8 (21.1.1.3).

The analysis and proportioning requirements of 21.1.2 must be satisfied for structures assigned to SDC B (21.1.1.4). Structures assigned to SDC C must satisfy both 21.1.2 and the anchoring to concrete provisions in 21.1.8 (21.1.1.5), while structures assigned to SDC D, E, or F must satisfy all of the aforementioned requirements plus those in 21.11 through 21.13 pertaining to structural diaphragms and trusses, foundations, and members not designated as part of the seismic-force-resisting system (21.1.1.6).

In essence, design and detailing requirements should be compatible with the level of energy dissipation or toughness assumed in the computation of the design earthquake forces. To facilitate this compatibility, the code uses throughout Chapter 21 the terms “ordinary,” “intermediate,” and “special” in the description of different types of structural systems. The degree of required detailing (and, thus, the degree of required toughness), which is directly related to the SDC, increases from ordinary to intermediate to special types of structural systems.

The legally adopted building code (or the authority having jurisdiction in areas without a legally adopted building code) prescribes the type of seismic-force-resisting system that can be utilized as a function of SDC. There are essentially no restrictions on the type of seismic-force-resisting system that can be used for structures assigned to SDC A or B; as noted previously, only the requirements of 21.1.2 must be satisfied in addition to those in Chapters 1 to 19 and 22 for structures assigned to SDC B.

The seismic-force-resisting systems that typically can be utilized in structures assigned to SDC C are ordinary cast-in-place structural walls, intermediate precast walls, intermediate moment frames, or any combination thereof. Ordinary structural walls need not satisfy any provisions of Chapter 21 (21.1.1.7(b)). Walls proportioned by the general requirements of the code are considered to have sufficient toughness at anticipated drift levels. Intermediate precast walls must satisfy 21.4 (21.1.1.7(d)) in addition to the general requirements of the code. Section 21.4 does not address the intermediate precast structural wall itself, but covers the connection between individual wall panels to the foundation. Wherever precast wall panels are used to resist seismic forces in structures assigned to SDC C, they must comply with the requirements for an intermediate precast structural wall, or special precast structural wall. By implication, a wall composed of precast elements designed in accordance with Chapters 1 through 19 and 22, but not complying with either of these requirements can only be used in structures assigned to SDC A or B.

According to 21.1.1.7(c), intermediate moment frames must satisfy 21.3. This section includes certain reinforcing details, in addition to those contained in Chapters 1 through 19 and 22, that are applicable to reinforced concrete moment frames (beam-column or slab-column framing systems) required to resist earthquake effects. These so-called “intermediate” reinforcement details will serve to accommodate an appropriate level of inelastic behavior if the frame is subjected to an earthquake of such magnitude as to require it to perform inelastically.

The type of framing system provided for earthquake resistance in a structure assigned to SDC C will dictate whether any special reinforcement details need to be incorporated in the structure.
If the seismic force-resisting system consists of moment frames, the details of 21.3 for Intermediate Moment Frames must be provided, and 21.1.5 shall also apply. Note that even if a load combination including wind load effects (see 9.2.1) governs design versus a load combination including earthquake force effects, the intermediate reinforcement details must still be provided to ensure a limited level of toughness in the moment resisting frames. Whether or not the specified earthquake forces govern design, the frames are the only defense against the effects of an earthquake.

For a combination frame-shearwall structural system, inclusion of the intermediate details will depend on how the earthquake loads are “assigned” to the shearwalls and the frames. If the total earthquake forces are assigned to the shearwalls, the intermediate detailing of 21.3 is not required for the frames. If frame-shearwall interaction is considered in the analysis, with some of the earthquake forces to be resisted by the frames, then the intermediate details of 21.3 are required to toughen up the frame portion of the dual framing system. Model codes have traditionally considered a dual system to be one in which at least 25% of the design lateral forces are capable of being resisted by the moment frames. If structural walls resist total gravity and lateral load effects, no intermediate details are required for the frames; the general requirements of the code apply.

Since there is no provision for an intermediate moment frame made of precast elements, by implication such frames erected in structures in regions of moderate seismic hazard, or assigned to SDC C must either be special moment frames, or be qualified under the performance criteria of 21.1.2.3.

Structures assigned to SDC D, E, or F are to have seismic-force-resisting systems consisting of special moment frames (cast-in-place and precast), special structural walls (cast-in-place and precast), or a combination of the two, and must satisfy 21.5 through 21.8, 21.9, and 21.10, respectively. Sections 21.1.3 through 21.1.7 must be satisfied as well (see 21.1.1.7). These provisions are intended to provide adequate toughness for the high demands expected for these SDCs.

A precast concrete special moment frame must comply with all of the requirements for cast-in-place frames plus 21.8.

If, for purposes of design, some of the frame members are not considered as part of the seismic-force-resisting system, special consideration is still required in the proportioning and detailing of these frame members (see 21.13).

Table R21.1.1. contains the sections of Chapter 21 that need to be satisfied for components resisting earthquake effects as a function of the SDC.

21.1.2 Analysis and Proportioning of Structural Members

The interaction of all structural and nonstructural components affecting linear and nonlinear structural response are to be considered in the analysis (21.1.2.1). Consequences of failure of structural and nonstructural components not forming part of the seismic-force-resisting system shall also be considered (21.1.2.2). The intent of 21.1.2.1 and 21.1.2.2 is to draw attention to the influence of nonstructural components on structural response and to hazards from falling objects.

Section 21.1.2.3 alerts the designer to the fact that the base of the structure as defined in analysis may not necessarily correspond to the foundation or ground level. It requires that structural members below base, which transmit forces resulting from earthquake effects to the foundation, shall also comply with the requirements of Chapter 21.

21.1.3 Strength Reduction Factors

The strength reduction factors of 9.3.2 are not based on the observed behavior of cast-in-place or precast concrete members under load or displacement cycles simulating earthquake effects. Some of those factors have been modified in 9.3.4 in view of the effects on strength due to large displacement reversals into the inelastic range of response.

Note that 9.3.4 is applicable to intermediate precast structural walls in structures assigned to SDC D, E, or F, special moment frames, or special structural walls.
Section 9.3.4(a) refers to members such as low-rise walls or portions of walls between openings, which are proportioned such as to make it impractical to raise their nominal shear strength above the shear corresponding to nominal flexural strength for the pertinent loading conditions.

21.1.4, 21.1.5 Limitations on Materials

A minimum specified concrete compressive strength f'_c of 3,000 psi and a maximum specified reinforcement yield strength f_y of 60,000 psi are mandated for concrete in special moment frames and special structural walls. These limits are imposed as reasonable bounds on the variation of material properties, particularly with respect to their unfavorable effects on the sectional ductilities of members in which they are used. A decrease in the concrete strength and an increase in the yield strength of the tensile reinforcement tend to decrease the ultimate curvature and hence the sectional ductility of a member subjected to flexure.

Section 21.1.1.3, references Chapter 1, which states in 1.1.1 that no maximum specified compressive strength applies. Limitations on the compressive strength of lightweight aggregate concrete is discussed below.

There is evidence suggesting that lightweight concrete ranging in strength up to 12,500 psi can attain adequate ultimate strain capacities. Testing to examine the behavior of high-strength, lightweight concrete under high-intensity, cyclic shear loads, including a critical study of bond characteristics, has not been extensive in the past. However, there are test data showing that properly designed lightweight concrete columns, with concrete strength ranging up to 6,200 psi, maintained ductility and strength when subjected to large inelastic deformations from load reversals. Committee 318 feels that a limit of 5,000 psi on the strength of lightweight concrete is advisable, pending further testing of high-strength lightweight concrete members under reversed cyclic loading. Note that lightweight concrete with a higher design compressive strength is allowed if it can be demonstrated by experimental evidence that structural members made with that lightweight concrete possess strength and toughness equal to or exceeding those of comparable members made with normal weight concrete of the same strength.

Chapter 21 requires that deformed reinforcement for resisting flexure and axial forces in special moment frame members and special structural walls be ASTM A 706 Grade 60 low-alloy steel, which is intended for applications where welding or bending, or both, are important. However, ASTM A 615 billet steel bars of Grade 40 or 60 may be used in these members if the following two conditions are satisfied:

$$\frac{\text{actual } f_y}{\text{actual tensile strength}} \geq 1.25$$

The first requirement helps to limit the magnitude of the actual shears that can develop in a flexural member above that computed on the basis of the specified yield strength of the reinforcement when plastic hinges form at the ends of a beam. Note that retests shall not exceed this value by more than an additional 3,000 psi. The second requirement is intended to ensure steel with a sufficiently long yield plateau.

In the “strong column-weak beam” frame intended by the code, the relationship between the moment strengths of columns and beams may be upset if the beams turn out to have much greater moment strengths than intended. Thus, the substitution of Grade 60 steel of the same area for specified Grade 40 steel in beams can be detrimental. The shear strength of beams and columns, which is generally based on the condition of plastic hinges forming at the ends of the members, may become inadequate if the moment strengths of member ends would be greater than intended as a result of the steel having a substantially greater yield strength than specified.

New to the 2008 code, prestressing steel conforming to ASTM A416 or A722 is permitted to be used in members resisting earthquake-induced flexural and axial loads in special moment frames and precast structural walls (21.1.5.3).
Sections 9.4 and 10.9.3 allow the use of spiral reinforcement with specified yield strength of up to 100 ksi. New section 21.1.5.4 permits an upper limit of 100,000 psi on the specified yield strength of transverse reinforcement f_{yt} used in special moment frames and special structural walls. The restriction on the value of f_{yt} applies to all types of transverse reinforcement, including spirals, circular hoops, rectilinear hoops, and crossties. Research has shown that higher yield strengths can be utilized effectively as confinement reinforcement. The value of f_y or f_{yt} used in the design of shear reinforcement is limited to 60,000 psi for deformed bars or 80,000 psi for welded deformed wire reinforcement (21.1.5.5). These restrictions are intended to limit the width of shear cracks.

21.1.6 Mechanical Splices in Special Moment Frames and Special Structural Walls

Section 21.1.6 contains provisions for mechanical splices. According to 21.1.6.1, a Type 1 mechanical splice shall conform to 12.14.3.2, i.e., the splice shall develop in tension or compression at least 125 percent of the specified yield strength f_y of the reinforcing bar. A Type 2 mechanical splice shall also conform to 12.14.3.2 and shall develop the specified tensile strength of the spliced bar.

During an earthquake, the tensile stresses in the reinforcement may approach the tensile strength of the reinforcement as the structure undergoes inelastic deformations. Thus, Type 2 mechanical splices can be used at any location in a member (21.1.6.2). The locations of Type 1 mechanical splices are restricted since the tensile stresses in the reinforcement in yielding regions of the member can exceed the strength requirements of 12.14.3.2. Consequently, Type 1 mechanical splices are not permitted within a distance equal to twice the member depth from the face of the column or beam or from sections where yielding of the reinforcement is likely to occur due to inelastic lateral displacements (21.1.6.2).

21.1.7 Welded Splices in Special Moment Frames and Special Structural Walls

The requirements for welded splices are in 21.1.7. Welded splices shall conform to the provisions of 12.14.3.4, i.e., the splice shall develop at least 125 percent of the specified yield strength f_y of the reinforcing bar (21.1.7.1). Similar to Type 1 mechanical splices, welded splices are not permitted within a distance equal to twice the member depth from the face of the column or beam or from sections where yielding of the reinforcement is likely to occur due to inelastic lateral displacements; in yielding regions of the member, the tensile stresses in the reinforcement can exceed the strength requirements of 12.14.3.4 (21.1.7.1).

According to 21.1.7.2, welding of stirrups, ties, inserts or other similar elements to longitudinal reinforcement that is required by design for earthquake forces is not permitted. Welding of crossing reinforcing bars can lead to local embrittlement of the steel. If such welding will facilitate fabrication or field installation, it must be done only on bars added expressly for construction. Note that this provision does not apply to bars that are welded with welding operations under continuous competent control, as is the case in the manufacture of welded wire reinforcement.

21.1.8 Anchoring to Concrete

The requirements in this section pertain to anchors resisting earthquake-induced forces in structures assigned to SDC C, D, E, or F. The design of such anchors must conform to the additional requirements of D.3.3 of Appendix D. See Part 34 for additional information.

21.2 Ordinary Moment Frames

The new provisions in 21.2 apply only to ordinary moment frames assigned to SDC B that are part of the seismic-force-resisting system.

Section 21.2.2 requires that at least two longitudinal bars be continuous along the top and bottom faces of beam members in ordinary moment frames. This provision is intended to improve continuity in the beam frame
members as compared to similar provisions in Chapters 1 through 18. As a result, overall lateral force resistance and structural integrity should be improved. It is important to note that this provision applies to beam-column moment frames only and not to slab-column moment frames.

Columns in ordinary frames that have clear height to column dimension \(c_1 \) ratio less than or equal to 5 must be designed for shear in accordance with the intermediate moment frame requirements of 21.3.3 (21.2.3). This provision is intended to provide additional toughness to resist shear in columns with proportions that make them more susceptible to shear failure when subjected to earthquake loads.

A summary of the provisions for ordinary cast-in-place moment frames is provided in the right-hand column of Tables 29-3 and 29-4, which can be found in 21.5 and 21.6, respectively.

Precast concrete frame members assumed not to contribute to lateral resistance must also conform to 21.13.2 through 21.13.4. In addition, the following requirements of 21.13.5 must be satisfied: (a) ties specified in 21.13.3.2 must be provided over the entire column height, including the depth of the beams; (b) structural integrity reinforcement of 16.5 must be provided in all members; and (c) bearing length at the support of a beam must be at least 2 in. longer than the computed bearing length according to 10.14. The 2 in. increase in bearing length is based on an assumed 4% story drift ratio and a 50 in. beam depth, and is considered to be conservative for ground motions expected for structures assigned to SDC D, E, or F.

Provisions for shear reinforcement at slab-column joints are contained in 21.13.6, which reduce the likelihood of punching shear failure in two-way slabs without beams. A prescribed amount and detailing of shear reinforcement is required unless either 21.13.6(a) or (b) is satisfied.

Section 21.13.6(a) requires calculation of shear stress due to the factored shear force and induced moment according to 11.11.7. The induced moment is the moment that is calculated to occur at the slab-column joint where subjected to the design displacement defined in 2.2. Section 13.5.1.2 and the accompanying commentary provide guidance on selection of the slab stiffness for the purpose of this calculation.

Section 21.13.6(b) does not require the calculation of induced moments, and is based on research that identifies the likelihood of punching shear failure considering interstory drift and shear due to gravity loads. The requirement is illustrated in Fig. R21.13.6. The requirement can be satisfied in several ways: adding slab shear reinforcement, increasing slab thickness, designing a structure with more lateral stiffness to decrease interstory drift, or a combination of two or more of these.

If column capitals, drop panels, or other changes in slab thickness are used, the requirements of 21.13.6 must be evaluated at all potential critical sections.

21.3 INTERMEDIATE MOMENT FRAMES

The provisions for beams (21.3.4) and columns (21.3.5) in intermediate moment frames are presented in Table 29-3 and Table 29-4, respectively, which can be found in 21.5 and 21.6, respectively. The shear provisions of 21.3.3 are also included in those tables.

Hoops instead of stirrups are required at both ends of beams for a distance not less than 2h from the faces of the supports. The likelihood of spalling and loss of shell concrete in some regions of the frame are high. Both observed behavior under actual earthquakes and experimental research have shown that the transverse reinforcement will open at the ends and lose the ability to confine the concrete unless it is bent around the longitudinal reinforcement and its ends project into the core of the element. Similar provisions are given in 21.3.5 for columns.

New provisions in 21.3.5.6 address detailing requirements for columns supporting reactions from discontinuous stiff members such as walls. In such cases, discontinuous walls or other stiff members impose, among other
things, large axial forces on supporting columns during an earthquake. Thus, transverse reinforcement as defined in 21.3.5.2 for columns in intermediate moment frames is required over the entire length of the column if the portion of the factored axial compressive force due to earthquake effects exceeds $A_g f_c/10$. The limit of $A_g f_c/10$ is increased to $A_g f_c/4$ where design forces have been magnified by the overstrength factor Ω_o required by ASCE/SEI 7-05. The transverse reinforcement over the height of the column and over the lengths above and below the column defined in 21.6.4.6(b) is to improve column toughness when subjected to anticipated earthquake loads.

Two-way slabs without beams are acceptable seismic-force-resisting systems in structures assigned to SDC B or C. They are not permitted to be part of the seismic-force-resisting system in structures assigned to SDC D or above. Table 29-2, Fig. 29-1, and Fig. 29-2 summarize the detailing requirements for two-way slabs of intermediate moment frames. Provisions for two-way slabs of ordinary moment frames are also presented in Table 29-2.

The provisions of 21.3.6.2 for the band width within which flexural moment transfer reinforcement must be placed at edge and corner slab-column connections were introduced in the 2002 code. For these connections, flexural moment-transfer reinforcement perpendicular to the edge is not considered fully effective unless it is placed within the specified narrow band width (see Fig. R21.3.6.1).

The shear strength requirements of 21.3.6.8 were modified in the 2008 code. Slab-column frames are susceptible to punching shear failures during earthquakes if the shear stresses due to gravity loads are high. Thus, a limit was introduced on the allowable shear stress caused by gravity loads, which in turn permits the slab-column connection to have adequate toughness to withstand the anticipated inelastic moment transfer. The requirements of 21.3.6.8 are permitted to be waived if the slab design satisfies the requirements of 21.1.3.6, which are applicable to slab-column connections of two-way slabs without beams in members not designated as part of the seismic-force-resisting system.

21.4 INTERMEDIATE PRECAST STRUCTURAL WALLS

This section applies to intermediate precast structural walls used to resist forces induced by the design earthquake.

Connections between precast wall panels or between wall panels and the foundation are required to resist forces due to earthquake motions and must provide for yielding that is restricted to steel elements or reinforcement (21.4.2). When Type 2 mechanical splices are used for connecting the primary reinforcement, the strength of the splice should be greater than or equal to 1.5 times f_y of the reinforcement (21.4.3).

21.5 FLEXURAL MEMBERS OF SPECIAL MOMENT FRAMES

The left-hand column of Table 29-3 contains the requirements for flexural members of special moment frames (as noted above, special moment frames, which can be cast-in-place or precast, are required in structures assigned to SDC D or above). These requirements typically apply to beams of frames and other flexural members with negligible axial loads (21.5.1.1). Special precast moment frames must also satisfy the provisions of 21.8, which are discussed below. For comparison purposes, Table 29-3 also contains the corresponding requirements for flexural members of intermediate and ordinary cast-in-place moment frames. See Chapter 16 and Part 23 for additional information on precast systems.

21.5.1 Scope

Flexural members of special moment frames must meet the general requirements of 21.5.1.1 through 21.5.1.4. These limitations have been guided by experimental evidence and observations of reinforced concrete frames that have performed well in past earthquakes. Members must have sufficient ductility and provide efficient moment transfer to the supporting columns. Note that columns subjected to bending and having a factored axial load $P_u \leq A_g f_c/10$ may be designed as flexural members, where A_g is the gross area of the section.
Table 29-2 Two-Way Slabs Without Beams*

Intermediate — All reinforcement provided to resist M_{slab}, the portion of slab moment balanced by the support moment, must be placed within the column strip defined in 13.2.1.

21.3.6.1

Ordinary — The middle strip is allowed to carry a portion of the unbalanced moment.

<table>
<thead>
<tr>
<th>Intermediate — The fraction, defined by Eq. (13-1), of the moment M_{slab} shall be resisted by reinforcement placed within the band width specified in 13.5.3.2. Band width for edge and corner connections shall not extend beyond the column face a distance greater than c_t measured perpendicular to the slab span.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.6.2</td>
</tr>
<tr>
<td>Ordinary — Similar requirement, except band width restriction for edge and corner connections does not apply.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate — Not less than one-half of the reinforcement in the column strip at the support shall be placed within the effective slab width specified in 13.5.3.2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.6.3</td>
</tr>
<tr>
<td>Ordinary — No similar requirement.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate — Not less than one-fourth of the top reinforcement at the support in the column strip shall be continuous throughout the span.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.6.4</td>
</tr>
<tr>
<td>Ordinary — No similar requirement.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate — Continuous bottom reinforcement in the column strip shall not be less than one-third of the top reinforcement at the support in the column strip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.6.5</td>
</tr>
<tr>
<td>Intermediate — Not less than one-half of all middle strip bottom reinforcement and all column strip bottom reinforcement at midspan shall be continuous and shall develop its yield strength at the face of the support as defined in 13.6.2.5.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>21.3.6.6</td>
</tr>
<tr>
<td>Ordinary — All bottom bars within the column strip shall be continuous or spliced with Class A tension splices or with mechanical or welded splices satisfying 12.14.3.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>13.3.8.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate — At discontinuous edges of the slab, all top and bottom reinforcement at the support shall be developed at the face of support as defined in 13.6.2.5.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.6.7</td>
</tr>
<tr>
<td>Ordinary — Positive moment reinforcement perpendicular to a discontinuous edge shall extend to the edge of the slab and have embedment of at least 6 in. in spandrel beams, columns, or walls. Negative moment reinforcement perpendicular to a discontinuous edge must be anchored and developed at the face of the support according to provisions in Chapter 12.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>13.3.3, 13.3.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate — At the critical sections for columns defined in 11.11.1.2, two-way shear caused by factored gravity loads shall not exceed $0.4\phi V_c$ where V_c is calculated by 11.11.2.1 for nonprestressed slabs and 11.11.2.2 for prestressed slabs. This requirement may be waived if the slab design satisfies 21.13.6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.6.8</td>
</tr>
<tr>
<td>Ordinary — No similar requirement.</td>
</tr>
</tbody>
</table>

Not permitted as part of the seismic-force-resisting system in structures assigned to SDC D or above.
Figure 29-1 Location of Reinforcement in Two-way Slabs without Beams

All reinforcement necessary to resist M_{slab} to be placed in column strip

\[h = \text{slab thickness} \]

\[\frac{1}{2} \text{Middle strip} \]

Column strip

\[c_{2a} \]

\[c_{2a} + 3h \]

\[\frac{1}{2} \text{Middle strip} \]

Note: applies to both top and bottom reinforcement

Figure 29-2 Details of Reinforcement in Two-way Slabs without Beams

\[A_s \geq \begin{cases} \text{reinforcement necessary to resist } \gamma M_{slab} \\ \frac{1}{2} \text{of reinforcement in column strip} \end{cases} \]

\[A_s \geq \begin{cases} \frac{1}{4} \left[(A_s)_\ell \text{ or } (A_s)_r \right] \end{cases} \]

\[(A_s)_\ell \text{ and } (A_s)_r \text{ to be fully developed} \]

(a) Column Strip

\[A'_s \text{(continuous)} \geq \frac{1}{3} \left[(A_s)_\ell \text{ or } (A_s)_r \right] \]

(b) Middle Strip

\[A'_s \text{(continuous)} \geq \frac{1}{2} (A'_s)_m \]
Revised geometric constraints have been included in 21.5.1.4. The limits in this section recognize that the maximum effective beam width depends primarily on the column dimensions rather than on the depth of the beam. Figure R21.5.1 shows maximum effective beam width of wide beams and required transverse reinforcement.

21.5.2 Longitudinal Reinforcement

The reinforcement requirements for flexural members of special moment frames are shown in Fig. 29-3. To allow for the possibility of the positive moment at the end of a beam due to earthquake-induced lateral displacements exceeding the negative moment due to gravity loads, 21.5.2.2 requires a minimum positive moment strength at the ends of the beam equal to at least 50 percent of the corresponding negative moment strength. The minimum moment strength at any section of the beam is based on the moment strength at the faces of the supports. These requirements ensure strength and ductility under large lateral displacements. The limiting ratio of 0.025 is based primarily on considerations of steel congestion and also on limiting shear stresses in beams of typical proportions. The requirement that at least two bars be continuous at both the top and the bottom of the beam is for construction purposes.

The flexural requirements for flexural members of intermediate moment frames are similar to those shown in Fig. 29-3 (see Table 29-3).

Figure 29-3 Reinforcement Requirements for Flexural Members of Special Moment Frames
Table 29-3 Flexural Members of Frames

<table>
<thead>
<tr>
<th>Special Moment Frames</th>
<th>Intermediate and Ordinary CIP Moment Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Flexural frame members shall satisfy the following conditions:</td>
<td>Intermediate — Factored axial compressive force (\leq A_g f_c' / 10)</td>
</tr>
<tr>
<td>• Factored axial compressive force (\leq A_g f_c' / 10)</td>
<td>21.3.2</td>
</tr>
<tr>
<td>• Clear span (r_n \geq 4 \times) effective depth</td>
<td>Ordinary — No similar requirements.</td>
</tr>
<tr>
<td>• Width to depth ratio (b_w / h \geq 0.3)</td>
<td></td>
</tr>
<tr>
<td>• Width (b_w \geq 10) in.</td>
<td></td>
</tr>
<tr>
<td>• Width (b_w \leq) width of supporting member (c_2) + distances on each side of the supporting member equal to the smaller of the width of the supporting member (c_2) or three-fourths of the overall dimension of supporting member (c_1)</td>
<td></td>
</tr>
<tr>
<td>21.5.1</td>
<td></td>
</tr>
<tr>
<td>Minimum reinforcement shall not be less than</td>
<td>Same requirement, except as provided in 10.5.2, 10.5.3, and 10.5.4, although minimum reinforcement need only be provided at sections where tensile reinforcement is required by analysis.</td>
</tr>
<tr>
<td>[3 \sqrt{f_y} b_w d / f_y] and [200 b_w d / f_y] at any section, top and bottom, unless provisions in 10.5.3 are satisfied.</td>
<td>10.5</td>
</tr>
<tr>
<td>21.5.2.1</td>
<td></td>
</tr>
<tr>
<td>The reinforcement ratio ((\rho)) shall not exceed 0.025.</td>
<td>The net tensile strain (\varepsilon_t) at nominal strength shall not be less than 0.004.</td>
</tr>
<tr>
<td>21.5.2.1</td>
<td></td>
</tr>
<tr>
<td>At least two bars shall be provided continuously at both top and bottom of section.</td>
<td>Provide minimum structural integrity reinforcement.</td>
</tr>
<tr>
<td>7.13</td>
<td></td>
</tr>
<tr>
<td>Positive moment strength at joint face (\geq) 1/2 negative moment strength at that face of the joint.</td>
<td>Intermediate — Positive moment strength at joint face (\geq) 1/3 negative moment strength at that face of the joint.</td>
</tr>
<tr>
<td>21.5.2.2</td>
<td></td>
</tr>
<tr>
<td>Neither the negative nor the positive moment strength at any section along the member shall be less than 1/4 the maximum moment strength provided at the face of either joint.</td>
<td>Ordinary — No similar requirement.</td>
</tr>
<tr>
<td>21.5.2.2</td>
<td></td>
</tr>
<tr>
<td>Prestressing steel, where used, shall satisfy the following:</td>
<td>Intermediate — Same requirement, except it is needed to provide only 1/5 of the maximum moment strength at the face of either joint at every section along the member.</td>
</tr>
<tr>
<td>• The average prestress (f_{pc}) shall not exceed the smaller of 500 psi and (f_c' / 10).</td>
<td>21.3.4.1</td>
</tr>
<tr>
<td>• Prestressing steel shall be unbonded in potential plastic hinge regions and the calculated strains in the prestressing steel under the design displacement shall be less than 0.01.</td>
<td>Ordinary — No similar requirement.</td>
</tr>
<tr>
<td>• Prestressing steel shall not contribute to more than 0.25 of the positive or negative flexural strength at the critical section in a plastic hinge region and shall be anchored at or beyond the exterior face of the joint.</td>
<td></td>
</tr>
<tr>
<td>• Anchorages of the post-tensioning tendons resisting earthquake-induce forces shall be capable of allowing tendons to withstand 50 cycles of loading, bounded by 0.40 and 0.85 of the specified tensile strength of the prestressing steel.</td>
<td>21.5.2.5</td>
</tr>
</tbody>
</table>

Table 29-3 Flexural Members of Frames (cont’d)

<table>
<thead>
<tr>
<th>Splices</th>
<th>Special Moment Frames</th>
<th>Intermediate and Ordinary CIP Moment Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap splices of flexural reinforcement are permitted only if hoop or spiral reinforcement is provided over the lap length. Hoop and spiral reinforcement spacing shall not exceed (d/4) or 4 in. Mechanical splices shall conform to 21.1.6 and welded splices shall conform to 21.1.7. 21.5.2.3, 21.5.2.4</td>
<td>There is no requirement that splices be enclosed in hoops.</td>
<td></td>
</tr>
</tbody>
</table>
| Lap splices are not to be used:
• Within joints.
• Within a distance of twice the member depth from the face of the joint.
• At locations where analysis indicates flexural yielding caused by inelastic lateral displacements of the frame. | No similar requirement. |
| Hoops are required over a length equal to twice the member depth from the face of the supporting member toward midspan at both ends of the flexual member. | Intermediate—Same requirement. 21.3.4.2
Ordinary—No similar requirement. |
| Hoops are required over lengths equal to twice the member depth on both sides of a section where flexural yielding may occur in connection with inelastic lateral displacements of the frame. | Reinforcement for flexural members subject to stress reversals shall consist of closed stirrups extending around flexural reinforcement. Also, provide minimum structural integrity reinforcement. 7.11.2, 7.13 |
| Where hoops are required, the spacing shall not exceed:
\[
\begin{align*}
\frac{d}{4} \\
8 \times \text{diameter of smallest longitudinal bar} \\
24 \times \text{diameter of hoop bars} \\
12 \text{ in.}
\end{align*}
\]
The first hoop shall be located not more than 2 in. from the face of the supporting member. | Intermediate—Same requirement 21.3.4.2
Ordinary—No similar requirement. |
| Where hoops are required, longitudinal bars on the perimeter shall have lateral support conforming to 7.10.5.3. | No similar requirement. |
| Where hoops are not required, struts with seismic hooks at both ends shall be spaced at a distance not more than \(d/2 \) throughout the length of the member. | Intermediate—Similar requirement except that seismic hooks are not required. 21.13.4.3 |
| Transverse reinforcement must also be proportioned to resist the entire design shear force, neglecting the contribution of concrete to shear strength, if certain conditions are met. | Intermediate—Transverse reinforcement must also be proportioned to resist the design shear force. 21.13.3
Ordinary—Provide sufficient transverse reinforcement for shear and torsion. 11.4, 11.5 |

\(A_g = \text{gross area of section, } b_w = \text{width of web, } d = \text{effective depth of section} \)
\(f_c = \text{specifed compressive strength of concrete, } f_y = \text{specifed yield strength of reinforcement} \)
Lap splices of flexural reinforcement must be placed at locations away from potential hinge areas subjected to stress reversals under cyclic loading (see Fig. 29-4). Where lap splices are used, they should be designed as tension lap splices and must be properly confined. Mechanical splices and welded splices must conform to 21.1.6 and 21.1.7, respectively.

The new provisions in 21.5.2.5 that allow the use of prestressing steel to resist earthquake-induced forces in beams of special moment frames (other than special moment frames using precast concrete; 21.8.3) were developed, in part, based on observations of building performance in earthquakes. The limitation on strain of unbonded tendons in the potential plastic hinge regions is intended to prevent fracture of the tendons under inelastic earthquake deformations. The flexural strength provided by the prestressing steel of such members is limited to one-quarter of the positive or negative flexural strength at the critical section in a plastic hinge region. In essence, this restriction was implemented to allow the use of the same response modification factor and deflection amplification factor prescribed in ASCE/SEI 7-05 for special moment frames without prestressing steel.

21.5.3 Transverse Reinforcement

Adequate confinement is required at the ends of flexural members, where plastic hinges are likely to form, in order to ensure sufficient ductility of the members under reversible loads. Transverse reinforcement is also required at these locations to assist the concrete in resisting shear and to maintain lateral support for the reinforcing bars. For flexural members of special moment frames, the transverse reinforcement for confinement must consist of hoops as shown in Fig. 29-5. Hoops must be used for confinement in flexural members of intermediate moment frames as well (21.3.4.2). Shear strength requirements for flexural members are given in 21.5.4 for special moment frames and 21.3.3 for intermediate moment frames.

21.5.4 Shear Strength Requirements

Typically, larger forces than those prescribed by the governing building code are induced in structural members during an earthquake. Designing for shear forces from a combined gravity and lateral load analysis using the code-prescribed load combinations is not conservative, since in reality the reinforcement may be stressed beyond its yield strength, resulting in larger than anticipated shear forces. Adequate shear reinforcement must be provided so as to preclude shear failure prior to the development of plastic hinges at the ends of the beam. Thus, a flexural member of a special moment frame must be designed for the shear forces associated with probable moment strengths \(M_{pr} \) acting at the ends and the factored tributary gravity load along its span (21.5.4.1). The probable moment strength \(M_{pr} \) is associated with plastic hinging in the flexural member, and is defined as the strength of the beam with the stress in the reinforcing steel equal to 1.25fy and a strength reduction factor of 1.0:

\[
M_{pr} = A_s \left(1.25f_y\right) \left(d - \frac{a}{2}\right) \quad \text{(rectangular section with tension reinforcement only)}
\]

where \(a = \frac{A_s (1.25f_y)}{0.85f'c b} \)

Note that sidesway to the right and to the left must both be considered to obtain the maximum shear force (see Fig. 29-6). The use of 1.25fy for the stress in the reinforcing steel reflects the possibility that the actual yield strength may be in excess of the specified value and the likelihood that the deformation in the tensile reinforcement will be in the strain-hardening range. By taking 1.25fy as the stress in the reinforcement and 1.0 as the strength reduction factor, the chance of shear failure preceding flexural yielding is reduced.

In determining the required shear reinforcement over the lengths identified in 21.5.3.1, the contribution of the shear strength of the concrete \(V_c \) is taken as zero if the shear force from seismic loading is one-half or more of the required shear strength and the factored axial compressive force including earthquake effects is less than \(A_g f'c / 20 \) (21.5.4.2). The purpose of this requirement is to provide adequate shear reinforcement to increase the
probability of flexural failure. Note that the strength reduction factor ϕ to be used is 0.75 or 0.85, depending on whether Chapter 9 or Appendix C load combinations are used (see 9.3.2.3 or C.9.3.2.3).

Shear reinforcement must be in the form of hoops over the lengths specified in 21.5.3.1 (21.5.3.5); at or near regions of flexural yielding, spalling of the concrete shell is very likely to occur. Details of hoop reinforcement are given in 21.5.3.6 (see Fig. 29-4). Where hoops are not required, stirrups with seismic hooks at both ends may be used (21.5.3.4, 21.5.3.5). A minimum amount of transverse reinforcement is required throughout the entire length of flexural members to safeguard against any loading cases that were unaccounted for in design.
The transverse reinforcement provided within the lengths specified in 21.5.3.1 must satisfy the requirement for confinement or shear, whichever governs.

A similar analysis is required for frame members of intermediate moment frames except that the nominal moment strength M_n of the member is used instead of the probable moment strength (21.3.3). Also to be found in 21.3.3 is an alternate procedure where the earthquake effects are doubled in lieu of using the nominal moment strength.

21.6 SPECIAL MOMENT FRAME MEMBERS SUBJECTED TO BENDING AND AXIAL LOAD

The left hand column of Table 29-4 contains the requirements for special moment frame members subjected to combined bending and axial loads. These requirements would typically apply to columns of frames and other flexural members that carry a factored axial load $P_u > A_g f'_c / 10$ in any load combination. For comparison purposes, Table 29-4 also contains the corresponding requirements for intermediate and ordinary cast-in-place moment frame members subject to combined bending and axial loads.

21.6.1 Scope

Section 21.6.1 is intended primarily for columns of special moment frames. Frame members other than columns that do not satisfy 21.5.1 are proportioned and detailed according to 21.6. The geometric constraints are largely reflective of prior practice. Unlike in the case of flexural members, a column-like member violating the dimensional limitations of 21.6.1 need not be excluded from the seismic-force-resisting system if it is designed as a wall in accordance with 21.9.

21.6.2 Minimum Flexural Strength of Columns

Columns must be provided with sufficient strength so that they will not yield prior to the beam at a beam-column joint. Lateral sway caused by column hinging may result in excessive damage. Yielding of the columns prior to the beams could also result in total collapse of the structure. For these reasons, columns are designed with 20% higher flexural strength as compared to beams meeting at the same joint, as shown in Fig. 29-7. In 21.6.2.2, nominal strengths of the columns and girders are calculated at the joint faces, and those strengths are used in Eq. (21-1).
When computing the nominal flexural strength of girders in T-beam construction, slab reinforcement within an effective slab width defined in 8.12 shall be considered as contributing to the flexural strength if the slab reinforcement is developed at the critical section for flexure. Research has shown that using the effective flange width in 8.12 gives reasonable estimates of the negative bending strength of girders at interior joints subjected to interstory displacements approaching 2% of the story height.

If Eq. (21-1) is not satisfied at a joint, columns supporting reactions from that joint are to conform to 21.13, and shall be ignored in determining the calculated strength and stiffness of the structure (21.6.2.3).

No similar provisions are included for intermediate or ordinary moment frames.

21.6.3 Longitudinal Reinforcement

The maximum allowable reinforcement ratio is reduced from 8% allowed in gravity framing (10.9) to 6% for columns in special moment frames (21.6.3.1). This lower ratio prevents congestion of steel, which reduces the chance of improperly placed concrete. It also prevents the development of large shear stresses in the columns. Typically, providing a reinforcement ratio larger than about 3% is not practical or economical.

Mechanical splices shall conform to 21.1.6 and welded splices shall conform to 21.1.7 (21.6.3.2). When lap splices are used, they are permitted only within the center half of the member length and are to be designed as tension lap splices (see Fig. 29-8). Transverse reinforcement conforming to 21.6.4.2 and 21.6.4.3 is required along the length of the lap splice.

There are no restrictions on the location of lap splices in intermediate or ordinary moment frames.
Table 29-4 Frame Members Subjected to Bending and Axial Loads

<table>
<thead>
<tr>
<th>Special Moment Frames</th>
<th>Intermediate and Ordinary CIP Moment Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Intermediate — Factored axial compressive force > $A_g f_c' / 10$.</td>
</tr>
<tr>
<td></td>
<td>Ordinary — No similar requirements.</td>
</tr>
<tr>
<td>Flexural Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.6.1</td>
</tr>
<tr>
<td>The flexural strengths of columns shall satisfy the following:</td>
<td></td>
</tr>
<tr>
<td>$\Sigma M_{nc} = (6/5) \Sigma M_{nb}$</td>
<td></td>
</tr>
<tr>
<td>where ΣM_{nc} = sum of moments at the faces of the joint, corresponding to the nominal flexural strengths of the columns.</td>
<td></td>
</tr>
<tr>
<td>ΣM_{nb} = sum of moments at the faces of the joint, corresponding to the nominal flexural strengths of the beams. In T-beam construction, slab reinforcement within an effective slab width defined in 8.12 shall be considered as contributing to flexural strength.</td>
<td></td>
</tr>
<tr>
<td>If this requirement is not satisfied, the lateral strength and stiffness of the column shall not be considered when determining the strength and stiffness of the structure, and the column shall conform to 21.13.</td>
<td></td>
</tr>
<tr>
<td>21.6.2</td>
<td></td>
</tr>
<tr>
<td>No similar requirements.</td>
<td></td>
</tr>
<tr>
<td>Splices</td>
<td>21.6.3.1</td>
</tr>
<tr>
<td>The reinforcement ratio (ρ_g) shall not be less than 0.01 and shall not exceed 0.06.</td>
<td></td>
</tr>
<tr>
<td>21.6.4.1</td>
<td></td>
</tr>
<tr>
<td>Mechanical splices shall conform to 21.1.6 and welded splices shall conform to 21.1.7. Lap splices are permitted only within the center half of the member length, must be tension lap splices, and shall be enclosed within transverse reinforcement conforming to 21.6.4.2 and 21.6.4.3.</td>
<td></td>
</tr>
<tr>
<td>21.6.3.2</td>
<td></td>
</tr>
<tr>
<td>The transverse reinforcement requirements discussed in the following five items on the next page need only be provided over a length (l_o) from each joint face and on both sides of any section where flexural yielding is likely to occur. The length (l_o) shall not be less than:</td>
<td></td>
</tr>
<tr>
<td>depth of member</td>
<td></td>
</tr>
<tr>
<td>1/6 clear span</td>
<td></td>
</tr>
<tr>
<td>18 in.</td>
<td></td>
</tr>
<tr>
<td>21.6.4.1</td>
<td></td>
</tr>
<tr>
<td>Intermediate — The length (l_o) is the same as for special moment frames.</td>
<td></td>
</tr>
<tr>
<td>Ordinary — No similar requirements.</td>
<td></td>
</tr>
</tbody>
</table>

$A_{ch} =$ cross-sectional area of member measured out-to-out of transverse reinforcement |

$A_g =$ gross area of section |

$f_c' =$ specified compressive strength of concrete |

$f_{yt} =$ specified yield stress of transverse reinforcement |

$b_c =$ cross-sectional dimension of column core measured center-to-center of outer legs of the transverse reinforcement comprising area A_{ch} |

$h_x =$ maximum horizontal spacing of hoop or crosstie legs on all faces of the column |

$s =$ spacing of transverse reinforcement |

$s_o =$ longitudinal spacing of transverse reinforcement within the length l_o. |
Ratio of spiral reinforcement (ρ_s) shall not be less than the value given by:

$$\rho_s = 0.12 \frac{f'c}{f_{yt}} \geq 0.45 \left(1 - \frac{A_g}{A_{ch}}\right) \frac{f'c}{f_{yt}}.$$

21.6.4.4

Total cross-sectional area of rectangular hoop reinforcement for confinement (A_{sh}) shall not be less than that given by the following two equations:

$$A_{sh} = 0.3 \left(\frac{s_b f'c}{f_{yt}}\right) \left[A_g / A_{ch}\right]^{-1}.$$

$$A_{sh} = 0.09 \left(\frac{s_b f'c}{f_{yt}}\right).$$

21.6.4.4

If the thickness of the concrete outside the confining transverse reinforcement exceeds 4 in., additional transverse reinforcement shall be provided at a spacing ≤ 12 in. Concrete cover on the additional reinforcement shall not exceed 4 in.

21.6.4.7

Transverse reinforcement shall be spaced at distances not exceeding 1/4 minimum member dimension, 6 × longitudinal bar diameter, 4 in. ≤ s_o = 4 + [(14 - h_x)/3] ≤ 6 in.

21.6.4.3

Cross ties or legs of overlapping hoops shall not be spaced more than 14 in. on center in the direction perpendicular to the longitudinal axis of the member. Vertical bars shall not be farther than 6 in. clear from a laterally supported bar.

21.6.4.2, 7.10.5.3

Where the transverse reinforcement as discussed above is no longer required, the remainder of the column shall contain spiral or hoop reinforcement satisfying 7.10 spaced at distances not to exceed 6 × longitudinal bar diameter 6 in.

21.6.4.5

unless a larger amount of transverse reinforcement is required by 21.6.3.2 or 21.6.5

21.6.4.4

Transverse reinforcement must also be proportioned to resist the design shear force (V_e).

21.6.5

Columns supporting reactions from discontinued stiff members, such as walls, shall have transverse reinforcement as specified in 21.6.4.2 through 21.6.4.4 over their full height, if the factored axial compressive force, related to earthquake effects exceeds ($A_g f'c / 10$). Where design forces have been magnified to account for the overstrength of the vertical elements of the seismic-force-resisting system, the limit of $A_g f'c / 10$ shall be increased to $A_g f'c / 4$. This transverse reinforcement shall extend into the discontinued member for at least the development length of the largest longitudinal reinforcement in the column in accordance with 21.7.4.

If the column terminates on a footing or mat, the transverse reinforcement shall extend at least 12 in. into the footing or mat.

21.6.4.6

Intermediate of spiral reinforcement (ρ_s) shall not be less than the value given by:

$$\rho_s = 0.45 \left(\frac{A_g}{A_{ch}} - 1\right) \frac{f'c}{f_{yt}}.$$

and shall conform to the provisions in 7.10.4.

10.9.3

Transverse reinforcement must be provided to satisfy both shear and lateral support requirements for longitudinal bars.

7.10.5, 11.1

Intermediate — Maximum spacing s_o is 8 × smallest longitudinal bar diameter, 24 × hoop bar diameter, 1/2 smallest cross-sectional dimension, or 12 in. First hoop to be located no further than s_o/2 from the joint face.

21.3.5.2

Ordinary — No similar requirement.

7.10.5.3

Transverse reinforcement to conform to 7.10 and 11.4.5.1.

21.3.5.4

Ordinary — Transverse reinforcement to conform to 7.10 and 11.4.5.1.

21.6.4.5

Intermediate — Transverse reinforcement must also be proportioned to resist the design shear forces specified in 21.3.3.

Ordinary — Provide sufficient transverse reinforcement for shear.

11.5.4, 11.5.6

Intermediate — Similar to 21.6.4.6

21.3.5.6

Ordinary — No similar requirements.

7.10.5.4

Intermediate and Ordinary CIP Moment Frames

Ordinary — No similar requirements.

Columns supporting reactions from discontinued stiff members, such as walls, shall have transverse reinforcement as specified in 21.6.4.2 through 21.6.4.4 over their full height, if the factored axial compressive force, related to earthquake effects exceeds ($A_g f'c / 10$). Where design forces have been magnified to account for the overstrength of the vertical elements of the seismic-force-resisting system, the limit of $A_g f'c / 10$ shall be increased to $A_g f'c / 4$. This transverse reinforcement shall extend into the discontinued member for at least the development length of the largest longitudinal reinforcement in the column in accordance with 21.7.4.

If the column terminates on a footing or mat, the transverse reinforcement shall extend at least 12 in. into the footing or mat.
21.6.4 Transverse Reinforcement

Column ends require adequate confinement to ensure column ductility in the event of hinge formation. They also require adequate shear reinforcement in order to prevent shear failure prior to the development of flexural yielding at the column ends. The correct amount, spacing, and location of the transverse reinforcement must be provided so that both the confinement and the shear strength requirements are satisfied. For special moment frames, the transverse reinforcement must be spiral or circular hoop reinforcement or rectangular hoop reinforcement, as shown in Fig. 29-9. Spiral reinforcement is generally the most efficient form of confinement reinforcement; however, the extension of the spirals into the beam-column joint may cause some construction difficulties.
Clear spacing*

\[
\rho_s \geq \begin{cases}
0.12 \frac{f'_c}{f_{yt}} \\
0.45 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f'_c}{f_{yt}}
\end{cases}
\]

*Clear spacing for spiral reinforcement. Circular hoops to be spaced per 21.6.4.3.

Figure 29-9 Confinement Requirements at Column Ends

(a) spiral or circular hoop reinforcement
For intermediate moment frames, \(s \) shall conform to 7.10 and 11.4.5.1. For intermediate moment frames, \(s \leq \frac{1}{6} \) (Clear span).

\[6 \text{ in.} \geq s_o = 4 + \left(\frac{14 - h_x}{3} \right) \geq 4 \text{ in.} \]

\[s \leq \frac{c_1}{4}, \quad \frac{c_2}{4}, \quad 6d_b \]

\[s \leq \frac{6d_b}{6 \text{ in.}} \]

\[c_1 \leq 4 \text{ in.} \text{ (see 21.6.4.7 when cover > 4 in.)} \]

\[\frac{0.3s_b \left(\frac{A_b}{A_{ch}} - 1 \right)}{f_y} f_{ct} \]

\[0.09s_b \frac{f_{ct}}{f_y} \]

\[A_{ch} \geq \]

\[\begin{align*}
8 & \times \text{smallest long. bar diameter} \\
24 & \times \text{transverse bar diameter} \\
\frac{1}{2} & \times \text{smaller of } c_1 \text{ or } c_2 \\
12 & \text{in.}
\end{align*} \]

For intermediate moment frames, \(s \)

\[\leq 4 \text{ in.} \]

\[\frac{c_1}{4}, \quad \frac{c_2}{4}, \quad 6d_b \]

Figure 29-9 Confinement Requirements at Column Ends

(b) rectangular hoop reinforcement

Figure 29-10 shows an example of transverse reinforcement provided by one hoop and three crossties. 90-degree hooks are not as effective as 135-degree hooks. Confinement will be sufficient if crosstie ends with 90-degree hooks are alternated.

The requirements of 21.6.4.2, 21.6.4.3, and 21.6.4.4 must be satisfied for the configuration of rectangular hoop reinforcement. The requirement that spacing not exceed one-quarter of the minimum member dimension is to obtain adequate concrete confinement. Restraining longitudinal reinforcement buckling after spalling is the rationale behind the spacing being limited to 6 bar diameters. Section 21.6.4.3 permits the 4 in. spacing for confinement to be relaxed to a maximum of 6 in. if the horizontal spacing of crossties or legs of overlapping hoops is limited to 8 in.
Additional transverse reinforcement at a maximum spacing of 12 in. is required when concrete thickness outside the confining transverse reinforcement exceeds 4 in. This additional reinforcement will help reduce the risk of portions of the shell falling away from the column. The required amount of such reinforcement is not specifically indicated; the 1997 UBC 29.19 specifies a minimum amount equal to that required for columns that are not part of the seismic-force-resisting system.

For columns supporting discontinued stiff members (such as walls) as shown in Fig. 29-11, transverse reinforcement in compliance with 21.6.4.2 through 21.6.4.4 needs to be provided over the full height of the column if the factored axial compressive force related to the earthquake effects exceeds $A_g f_y/10$ and must be extended at least the development length of the largest longitudinal column bars into the discontinued member (wall). The transverse reinforcement must also extend at least 12 in. into the footing or mat, if the column terminates on a footing or mat. Where design forces have been magnified by the overstrength factor in accordance with ASCE/SEI 7-05, the limit of $A_g f_y/10$ shall be increased to $A_g f_y/4$.

Transverse reinforcement requirements for columns of intermediate moment frames are given in 21.3.5.

21.6.5 Shear Strength Requirements

In addition to satisfying confinement requirements, the transverse reinforcement in columns must resist the maximum shear forces associated with the formation of plastic hinges in the frame (21.6.5.1). Although the provisions of 21.6.2 are intended to have most of the inelastic deformation occur in the beams, the provisions of 21.6.5.1 recognize that hinging can occur in the column. Thus, as in the case of beams, the shear reinforcement in the columns is based on the probable moment strengths M_{pr} that can be developed at the ends of the column.
The probable moment strength is to be the maximum consistent with the range of factored axial loads on the column; sidesway to the right and to the left must both be considered (see Fig. 29-12). It is obviously conservative to use the probable moment strength corresponding to the balanced point.

\[
V_{ul} = V_{ub} = M_{prb} + M_{prt} + \frac{M_{prb}}{\phi_c}
\]

(a) Sidesway to right
(b) Sidesway to left

Figure 29-12 Loading Cases for Design of Shear Reinforcement in Columns of Special Moment Frames

Section 21.6.5.1 points out that the column shear forces need not exceed those determined from joint strengths based on the probable moment strengths of the beams framing into the joint. When beams frame on opposite sides of a joint, the combined probable moment strength may be taken as the sum of the negative probable moment strength of the beam on one side of the joint and the positive probable moment strength of the beam on the other side. The combined probable moment strength of the beams is then distributed appropriately to the columns above and below the joint, and the shear forces in the column are computed based on this distributed moment. It is important to note that in no case is the shear force in the column to be taken less than the factored shear force determined from analysis of the structure under the code-prescribed seismic forces (21.6.5.1).

Provisions for proportioning the transverse reinforcement are contained in 21.6.5.2. As in the case of beams, the strength reduction factor \(\phi \) to be used with the Chapter 9 load combinations is 0.75 (see 9.3.4 and 9.3.2.3).

The shear forces in intermediate frame members subjected to combined bending and axial force are determined in the same manner as for flexural members of intermediate moment frames, i.e., nominal moment strengths at member ends are used to compute the shear forces (21.3.3).

21.7 JOINTS OF SPECIAL MOMENT FRAMES

The overall integrity of a structure is dependent on the behavior of the beam-column joint. Degradation of the joint can result in large lateral deformations which can cause excessive damage or even failure. The left-hand column of Table 29-5 contains the requirements for joints of special moment frames. For intermediate and ordinary cast-in-place frames, the beam-column joints do not require the special design and detailing requirements as for special moment frames. It may be prudent, however, to apply the same line of thinking to intermediate frame joints as to special moment frame joints.

Slippage of the longitudinal reinforcement in a beam-column joint can lead to an increase in the joint rotation. Longitudinal bars must be continued through the joint or must be properly developed for tension (21.7.5) and compression (Chapter 12) in the confined column core. The minimum column size requirement of 21.7.2.3 reduces the possibility of failure from loss of bond during load reversals.
21.7.3 Transverse Reinforcement

The transverse reinforcement in a beam-column joint is intended to provide adequate confinement of the concrete to ensure its ductile behavior and to allow it to maintain its vertical load-carrying capacity even after spalling of the outer shell.

Table 29-5 Joints of Frames

<table>
<thead>
<tr>
<th>Transverse Reinforcement</th>
<th>Special Moment Frames</th>
<th>Intermediate and Ordinary CIP Moment Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Beam Reinforcement</td>
<td>Beam longitudinal reinforcement terminated in a column shall be extended to the far face of the confined column core and anchored in tension according to 21.7.5 and in compression according to Chapter 12.</td>
<td>No similar requirement.</td>
</tr>
<tr>
<td>21.7.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal Beam Reinforcement</td>
<td>Where longitudinal beam reinforcement extends through a joint, the column dimension parallel to the beam reinforcement shall not be less than 20 times the diameter of the largest longitudinal bar for normal weight concrete. For lightweight aggregate concrete, this dimension shall be not less than 26 times the bar diameter.</td>
<td>No similar requirements.</td>
</tr>
<tr>
<td>21.7.2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transverse Reinforcement</td>
<td>The transverse reinforcement required for column ends 21.6.4.4(a) or 21.6.4.4(b), and 21.6.4.2, 21.6.4.3, and 21.6.4.7 shall be provided within the joint, unless the joint is confined by structural members as specified in 21.7.3.2. If members frame into all four sides of the joint and the member width at the column face is at least 3/4 the column width, the transverse reinforcement can be reduced to 50% of the requirements of 21.6.4.4(a) or 21.6.4.4(b). The spacing required in 21.6.4.3 shall not exceed 6 in. within the overall depth h of the shallowest framing member. Longitudinal beam reinforcement outside of the column core shall be confined by transverse reinforcement passing through the column that satisfies 21.5.3.2, 21.5.3.3, and 21.5.3.6, if such confinement is not provided by a beam framing into the joint.</td>
<td>No similar requirements.</td>
</tr>
<tr>
<td>21.7.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘\(f_c \) = specified compressive strength of concrete

‘\(f_y \) = specified yield strength of reinforcement
Table 29-5 Joints of Frames (cont’d)

<table>
<thead>
<tr>
<th>Special Moment Frames</th>
<th>Intermediate and Ordinary CIP Moment Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>The nominal shear strength of the joint shall not exceed the forces specified below for normal-weight aggregate concrete.</td>
<td>Although it is not required, it may be prudent to check the shear strength of the joint in intermediate moment frames. The force in the longitudinal beam reinforcement may be taken as 1.0(f_y) rather than the 1.25(f_y) required for special moment frames.</td>
</tr>
<tr>
<td>For joints confined on all four faces............ 20(\sqrt{f_c} A_j).</td>
<td></td>
</tr>
<tr>
<td>For joints confined on three faces or on two opposite faces................................ 15(\sqrt{f_c} A_j).</td>
<td></td>
</tr>
<tr>
<td>For other joints:.. 12(\sqrt{f_c} A_j).</td>
<td></td>
</tr>
<tr>
<td>where:</td>
<td></td>
</tr>
<tr>
<td>(A_j) = effective cross-sectional area within a joint computed from joint depth times effective joint width. The joint depth shall be the overall depth of the column. Effective joint width shall be the overall width of the column, except where a beam frames into a wider column, effective joint width shall not exceed the smaller of:</td>
<td></td>
</tr>
<tr>
<td>(a) Beam width plus the joint depth</td>
<td></td>
</tr>
<tr>
<td>(b) Twice the smaller perpendicular distance from the longitudinal axis of the beam to the column side.</td>
<td></td>
</tr>
<tr>
<td>A joint is considered to be confined if confining members frame into all faces of the joint. A member that frames into a face is considered to provide confinement at the joint if at least 3/4 of the face of the joint is covered by the framing member.</td>
<td></td>
</tr>
<tr>
<td>21.7.4</td>
<td></td>
</tr>
<tr>
<td>In determining shear forces in the joints, forces in the longitudinal beam reinforcement at the joint face shall be calculated by assuming that the stress in the flexural tensile reinforcement is 1.25(f_y).</td>
<td>No similar requirement.</td>
</tr>
<tr>
<td>21.7.2.1</td>
<td></td>
</tr>
<tr>
<td>For lightweight aggregate concrete, the nominal shear strength of the joint shall not exceed 3/4 of the limits given in 21.7.4.1.</td>
<td>No similar requirement.</td>
</tr>
<tr>
<td>21.7.4.2</td>
<td></td>
</tr>
</tbody>
</table>
Minimum confinement reinforcement of the same amount required for potential hinging regions in columns, as specified in 21.6.4, must be provided within a beam-column joint around the column reinforcement, unless the joint is confined by structural members as specified in 21.7.3.2.

For joints confined on all four faces, a 50% reduction in the amount of confinement reinforcement is allowed. A member that frames into a face is considered to provide confinement to the joint if at least three-quarters of the face of the joint is covered by the framing member. The code further allows that where a 50% reduction in the amount of confinement reinforcement is permissible, the spacing specified in 21.6.4.3 may be increased to 6 in. (21.7.3.2).

The minimum amount of confinement reinforcement, as noted above, must be provided through the joint regardless of the magnitude of the calculated shear force in the joint. The 50% reduction in the amount of confinement reinforcement allowed for joints having horizontal members framing into all four sides recognizes the beneficial effect provided by these members in resisting the bursting pressures that can be generated within the joint.

New transverse reinforcement requirements have been added in 21.7.3.3 for longitudinal beam reinforcement that is outside of a column core; this situation is typically encountered in beams that are fairly wider than the columns that they frame into. In cases where confinement is not provided by a beam framing into the joint in the transverse direction, the longitudinal beam reinforcement outside of the column core must be confined by transverse reinforcement that passes through the column that satisfies 21.5.3.2, 21.5.3.3, and 21.5.3.6. An example of such reinforcement is illustrated in Fig. R21.5.1.

21.7.4 Shear Strength

The most significant factor in determining the shear strength of a beam-column joint is the effective area \(A_j \) of the joint, as shown in Fig. 29-13. For joints that are confined by beams on all four faces, the shear strength of the joint is equal to \(20 \sqrt{f_c} A_j \). If the joint is confined only on three faces, or on two opposite faces, the strength must be reduced by 25% to \(15 \sqrt{f_c} A_j \). For other cases, the shear strength is equal to \(12 \sqrt{f_c} A_j \). It is important to note that the shear strength is a function of the concrete strength and the cross-sectional area only. Test results show that the shear strength of the joint is not altered significantly with changes in transverse reinforcement, provided a minimum amount of such reinforcement is present. Thus, only the concrete strength or the member size can be modified if the shear strength of the beam-column joint is inadequate. The strength reduction factor \(\phi \) for shear in joints is 0.85 (9.3.4).

![Figure 29-13 Effective Area of Joint (A)](image-url)
The larger the tension force in the longitudinal beam steel, the greater the shear in the joint (Fig. 29-14). Thus, the tensile force in the reinforcement is conservatively taken as $1.25f_yA_s$. The multiplier of 1.25 takes into account the likelihood that due to strain-hardening and actual strengths higher than the specified yield strengths, a larger tensile force may develop in the bars, resulting in a larger shear force.

Figure 29-14 Horizontal Shear in Beam-Column Joint

Development Length of Bars in Tension

A standard 90-degree hook located within the confined core of a column or boundary element is depicted in Fig. 29-15. Equation (21-6), based on the requirements of 12.5, includes the factors for hooks enclosed in ties (0.8), satisfaction of minimum cover requirements (0.7), a cyclic load factor (1.1), and a factor of 1.25 for overstrength in the reinforcing steel. The equation for the development length in 12.5.2

$$l_{dh} = 0.8 \times 0.7 \times 1.25 \times 1.1 \times 0.02 \times 1.0 \times 60,000 \times d_b$$

For bar sizes No. 3 through No. 11, the development length l_{dh} for a bar with a standard 90-degree hook in normalweight aggregate concrete shall not be less than the largest of $8d_b$, 6 in., and the length obtained from Eq. (21-6) shown above. For lightweight aggregate concrete, the development length shall be increased by 25%.

The development length for No. 11 and smaller straight bars is determined by multiplying the development length for hooked bars required by 21.7.5.1 by (a) two-and-a-half (2.5) if the depth of the concrete cast in one
lift beneath the bar does not exceed 12 in., and (b) three-and-a-quarter (3.25) if the depth of the concrete cast in one lift beneath the bar exceeds 12 in. (21.7.5.2). If a portion of a straight bar is not located within the confined core of a column or boundary element, the length of that bar shall be increased by an additional 60%. Provisions for epoxy-coated bars are given in 21.7.5.4.

![Figure 29-15 Standard 90-Degree Hook](image)

21.8 SPECIAL MOMENT FRAMES CONSTRUCTED USING PRECAST CONCRETE

In addition to the requirements of 21.5 through 21.7, special moment frames constructed using precast concrete must satisfy the requirements of 21.8. The detailing provisions in 21.8.2 for frames with ductile connections and 21.8.3 for frames with strong connections are intended to produce frames that respond to design displacements essentially like cast-in-place special moment frames. Section 21.8.4 provides a design procedure for special moment frames that do not satisfy the appropriate prescriptive requirements of Chapter 21.

21.8.2 Special Moment Frames with Ductile Connections

Special moment frames with ductile connections are designed and detailed so that flexural yielding occurs within the connection regions. Type 2 mechanical splices or any other technique that provides development in tension and compression of at least the specified tensile strength of the bars and $1.25f_y$, respectively, can be used to make the reinforcement continuous in the connections.

According to 21.8.2(a), the nominal shear strength V_n at the connection must be computed in accordance with the shear-friction design method of 11.6.4. In order to help prevent sliding at the faces of the connection, V_n must be greater than or equal to $2V_e$, where V_e is the design shear force in the beams that is computed according to 21.5.4.1 or the design shear force in the columns that is computed according to 21.6.5.1. Since the ductile connections may be at locations that are not adjacent to the joints, using V_e may be conservative.

Mechanical splices of beam reinforcement must satisfy the requirements of 21.1.6 and must be located at least $h/2$ from the face of the joint, where h is the overall depth of the beam. This additional requirement is intended to avoid strain concentrations over a short length of reinforcement adjacent to a splice device.

21.8.3 Special Moment Frames with Strong Connections

Special moment frames with strong connections are designed and detailed so that flexural yielding occurs away from the connection regions. Examples of beam-to-beam, beam-to-column, and column-to-footing connections are shown in Fig. R21.8.3.

According to 21.8.3(a), the geometric constraint in 21.5.1.2 related to the clear span to effective depth ratio must be satisfied for any segment between locations where flexural yielding is intended to occur due to the design displacements.
To ensure that strong connections remain elastic and do not slip following the formation of plastic hinges, the design strength of the connection, ϕS_n, in both flexure and shear must be greater than or equal to the bending moment and shear force, S_e, respectively, corresponding to the development of probable flexural or shear strengths at intended locations of flexural or shear yielding (21.8.3(b)). These provisions are illustrated in Figs. 29-16 and 29-17 for a beam-to-beam and a beam-to-column strong connection, respectively, with sidesway to the right. Sidesway to the left must also be considered.

Section 21.8.3(c) requires that primary longitudinal reinforcement be continuous across connections and be developed outside both the strong connection and the plastic hinge region. Laboratory tests of precast beam-column connections showed that strain concentrations caused brittle fracture of reinforcing bars at the faces of mechanical splices. To avoid this premature fracture, designers should carefully select the locations of strong connections or take other measures, such as using debonded reinforcement in highly stressed regions.

The column-to-column connection requirements of 21.8.3(d) are provided to avoid hinging and strength deterioration of these connections. For columns above the ground floor level, the moments at a joint may be limited by the flexural strengths of the beams framing into that joint (21.6.5.1). Dynamic inelastic analysis and studies of strong ground motion have shown that for a strong column-weak beam deformation mechanism, the beam end moments are not equally divided between the top and bottom columns, even where columns have equal stiffness. From an elastic analysis, the moments would be distributed as shown in Fig. 29-18, while the actual distribution is likely to be as shown in Fig. 29-19.
Fig. 29-17 Design Requirements for Beam-to-Column Strong Connections

\[
M_{pr}^+ = A_s^\phi (1.25f_y) \left(d - \frac{A_s f_y}{1.36f_c b} \right) \\
V_L = \frac{w_u (\ell_n - 2x)}{2} - \frac{M_{pr}^+ + M_{pr}^-}{\ell_n - 2x} \\
V_R = \frac{w_u (\ell_n - 2x)}{2} + \frac{M_{pr}^+ + M_{pr}^-}{\ell_n - 2x} \\
M_{e,r}^+ = M_{pr}^+ + V_L x \\
M_{e,r}^- = M_{pr}^- + V_R x \\
\phi M_{n,e,r}^+ = \phi A_s^\phi (1.25f_y) \left(d - \frac{A_s f_y}{1.36f_c b} \right) \geq M_{e,r}^+ \\
\phi M_{n,e,r}^- = \phi A_s^\phi (1.25f_y) \left(d - \frac{A_s f_y}{1.36f_c b} \right) \geq M_{e,r}^-
\]

Fig. 29-18 Bending Moments at Beam-to-Column Connection – Elastic Analysis

\[
M_{br} + M_{br} = M_{cb} + M_{ct}
\]
Figure 29-20 shows the distribution of the elastic moments M_E (dashed lines) due to the seismic forces and the corresponding envelopes of dynamic moments ωM_E (solid lines) over the full column height, where ω is a dynamic amplification factor. In regions outside of the middle third of the column height, ω is to be taken as 1.4 (21.8.3(d)); thus, connections within these regions must be designed such that $\phi M_{n} \geq 1.4 M_E$. For connections located within the middle third of the column height, 21.8.3(d) requires that $\phi M_{n} \geq 0.4 M_{pr}$, where M_{pr} is the maximum probable flexural strength of the column within the story height. Also, the design shear strength ϕV_{n} of the connection must be greater than or equal to the design shear force V_{c} computed according to 21.5.4.1.

21.8.4 Non-emulative Design

It has been demonstrated in experimental studies that special moment frames constructed using precast concrete that do not satisfy the provisions of 21.8.2 for frames with ductile connections or 21.8.3 for frames with strong connections can provide satisfactory seismic performance characteristics. For these frames, the requirements of ACI 374.1 Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary29,21, as well as the provisions of 21.8.4(a) and 21.8.4(b), must be satisfied.

ACI 374.1 defines minimum acceptance criteria for weak beam/strong column moment frames designed for regions of high seismic risk that do not satisfy the prescriptive requirements of Chapter 21 of ACI 318-99. According to ACI 374.1, acceptance of such frames as special moment frames must be validated by analysis and laboratory tests.
Prior to testing, a design procedure must be developed for prototype moment frames that have the same generic form as those for which acceptance is sought (see 4.0 of ACI 374.1). The design procedure should account for the effects of material nonlinearity (including cracking), deformations of members and connections, and reversed cyclic loading, and must be used to proportion the test modules (see 5.0 for requirements for the test modules). It is also important to note that the overstrength factor (column-to-beam strength ratio) used for the columns of the prototype frame should not be less than 1.2, which is specified in 21.4.2.2 of ACI 318-99.

The test method is described in 7.0. In short, the test modules are to be subjected to a sequence of displacement-controlled cycles that are representative of the drifts expected during the design earthquake for the portion of the frame that is represented by the test module. Figure R5.1 of ACI 374.1 illustrates connection configurations for interior and exterior one-way joints and, if applicable, corner joints that must be tested as a minimum.

The first loading cycle must be within the linear elastic response range of the module. Subsequent drift ratios are to be between 1.25 and 1.5 times the previous drift ratio, with 3 fully reversed cycles applied at each drift ratio. Testing continues until the drift ratio equals or exceeds 0.035. Cyclic deformation history that satisfies 7.0 is illustrated in Fig. R7.0. Drift ratio is defined in Fig. R2.1.

Section 9.0 provides the detailed acceptance criteria that apply to each module of the test program. The performance of the test module is deemed satisfactory when these criteria are met for both directions of response.

The first criterion is that the test module must attain a lateral resistance greater than or equal to the calculated nominal lateral resistance E_n (see 1.0 for definition of E_n) before the drift ratio exceeds the allowable story drift limitation of the governing building code (see Fig. R9.1). This criterion helps provide adequate initial stiffness.

In order to provide weak beam/strong column behavior, the second criterion requires that the maximum lateral resistance E_{max} recorded in the test must be less than or equal to λE_n where λ is the specified overstrength factor for the test column, which must be greater than or equal to 1.2. Commentary section R9.1.2 provides a detailed discussion on this requirement. Also see Fig. R9.1.

The third criterion requires that the characteristics of the third complete cycle for each test module, at a drift ratio greater than or equal to 0.035, must satisfy 3 criteria regarding peak force value, relative energy dissipation ratio, and drift at zero stiffness. The first of these criteria limits the level of strength degradation, which is inevitable at high drift ratios under revised cyclic loading. A maximum strength degradation of 0.25E_{max} is specified (see Fig. R9.1). The second of these criteria sets a minimum level of damping for the frame as a whole by requiring that the relative energy dissipation ratio β be greater than or equal to 1/8. If β is less than 1/8, oscillations may continue for a long time after an earthquake, resulting in low-cycle fatigue effects and possible excessive displacements. The definition of β is illustrated in Fig. R2.4. The third of these criteria helps ensure adequate stiffness around zero drift ratio. The structure would be prone to large displacements following a major earthquake if this stiffness becomes too small. A hysteresis loop for the third cycle between peak drift ratios of 0.035, which has the form shown in Fig. R9.1, is acceptable. An unacceptable hysteresis loop form is shown in Fig. R9.1.3 where the stiffness around the zero drift ratio is unacceptably small for positive, but not for negative, loading.

As noted above, 21.8.4 has additional requirements to those in ACI 374.1. According to 21.8.4(a), the details and materials used in the test specimen shall be representative of those used in the actual structure. Section 21.8.4(b) stipulates additional requirements for the design procedure. Specifically, the design procedure must identify the load path or mechanism by which the frame resists the effects due to gravity and earthquake forces and shall establish acceptable values for sustaining that mechanism. Any portions of the mechanism that deviate from code requirements shall be contained in the test specimens and shall be tested to determine upper bounds for acceptance values. In other words, deviations are acceptable if it can be demonstrated that they do not adversely affect the performance of the framing system.
21.9 SPECIAL STRUCTURAL WALLS AND COUPLING BEAMS

When properly proportioned so that they possess adequate lateral stiffness to reduce interstory distortions due to earthquake-induced motions, structural walls (also called shearwalls) reduce the likelihood of damage to the nonstructural elements of a building. When used with rigid frames, a system is formed that combines the gravity-load-carrying efficiency of the rigid frame with the seismic-load-resisting efficiency of the structural wall.

Observations of the comparative performance of rigid-frame buildings and buildings stiffened by structural walls during earthquakes have pointed to the consistently better performance of the latter. The performance of buildings stiffened by properly designed structural walls has been better with respect to both safety and damage control. The need to ensure that critical facilities remain operational after a major tremor and the need to reduce economic losses from structural and nonstructural damage, in addition to the primary requirement of life safety (i.e., no collapse), has focused attention on the desirability of introducing greater lateral stiffness into earthquake-resistant multistory structures. Structural walls, which have long been used in designing for wind resistance, offer a logical and efficient solution to the problem of lateral stiffening of multistory buildings.

Structural walls are normally much stiffer than regular frame elements and are therefore subjected to correspondingly greater lateral forces due to earthquake motions. Because of their relatively greater depth, the lateral deformation capacities of walls are limited, so that, for a given amount of lateral displacement, structural walls tend to exhibit greater apparent distress than frame members. However, over a broad period range, a structure with structural walls, which is substantially stiffer and hence has a shorter period than a structure with frames, will suffer less lateral displacement than the frame, when subjected to the same ground motion intensity. Structural walls with a height-to-horizontal length ratio, h_w/l_w, in excess of 2 behave essentially as vertical cantilever beams and should therefore be designed as flexural members, with their strength governed by flexure rather than by shear.

Isolated structural walls or individual walls connected to frames will tend to yield first at the base where the bending moment is the greatest. Coupled walls, i.e., two or more walls linked by short, rigidly-connected beams at the floor levels, on the other hand, have the desirable feature that significant energy dissipation through inelastic action in the coupling beams can be made to precede hinging at the bases of the walls.

The left-hand column of Table 29-6 contains the requirements for special reinforced concrete structural walls (recall that special reinforced concrete structural wall are required in structures assigned to SDC D or higher). For comparison purposes, the requirements of ordinary reinforced concrete structural walls are also contained in Table 29-6.

21.9.2 Reinforcement

Special reinforced concrete structural walls are to be provided with reinforcement in two orthogonal directions in the plane of the wall (see Fig. 29-21). The minimum reinforcement ratio for both the longitudinal and the transverse reinforcement is 0.0025, unless the design shear force is less than or equal to $2A_{cv}\lambda \sqrt{f'_c}$, where A_{cv} is the area of concrete bounded by the web thickness and the length of the wall in the direction of analysis and λ is the modification factor of lightweight concrete, in which case, the minimum reinforcement must not be less than that given in 14.3. The reinforcement provided for shear strength must be continuous and distributed uniformly across the shear plane with a maximum spacing of 18 in. At least two curtains of reinforcement are required if the in-plane factored shear force assigned to the wall exceeds $2A_{cv}\lambda \sqrt{f'_c}$. This serves to reduce fragmentation and premature deterioration of the concrete under load reversals into the inelastic range. Uniform distribution of reinforcement across the height and horizontal length of the wall helps control the width of the inclined (diagonal) cracks.
<table>
<thead>
<tr>
<th>Special Reinforced Concrete Structural Wall</th>
<th>Ordinary Reinforced Concrete Structural Wall</th>
</tr>
</thead>
</table>
| The distributed web reinforcement ratios ρ_t and ρ_t shall not be less than 0.0025. If the design shear force $V_u \leq A_{cv} \lambda f'c$, provide minimum reinforcement per 14.3. | Minimum vertical reinforcement ratio = 0.0012 for No. 5 bars or smaller
Minimum horizontal reinforcement ratio = 0.0020 for No. 5 bars or smaller
Minimum horizontal reinforcement ratio = 0.0025 for No. 6 bars or larger |
| At least two curtains of reinforcement shall be used in a wall if the in-plane factored shear force (V_u) assigned to the wall exceeds $2A_{cv} \lambda f'c$. | Walls more than 10 in. thick require two curtains of reinforcement (except basement walls). |
| Reinforcement spacing each way shall not exceed 18 in. | Reinforcement spacing shall not exceed: 3 × wall thickness
18 in. |

Reinforcement in structural walls shall be developed or spliced for f_y in tension in accordance with Chapter 12, except:
(a) The effective depth shall be permitted to be 0.8 l_w for walls.
(b) The requirements of 12.11, 12.12 and 12.13 need not apply.
(c) At locations where yielding of longitudinal reinforcement may occur as a result of lateral displacements, development lengths of such reinforcement must be 1.25 times the values calculated for f_y, in tension.
(d) Mechanical and welded splices of reinforcement must conform to 21.1.6 and 21.1.7, respectively.

A$_{cv}$ = gross area of concrete section bounded by web thickness and length of section in the direction of shear force considered
A$_{cw}$ = area of concrete section of an individual pier
A$_g$ = gross area of section
b$_w$ = width of web
d = effective depth of section
f'$_c$ = specified compressive strength of concrete
f$_{yh}$ = specified yield strength of transverse reinforcement
h = overall thickness of member
h$_w$ = height of entire wall or segment of wall considered
l$_w$ = length of entire wall or segment of wall in direction of shear force
s = center-to-center spacing of transverse reinforcement
ρ_t = ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to that reinforcement
ρ_l = ratio of area of distributed longitudinal reinforcement to gross concrete area perpendicular to that reinforcement

21.9.2.1	14.3
21.9.2.2	14.3.4
21.9.2.3	14.3.5

— continued on next page —
Table 29-6 Structural Walls (cont’d)

<table>
<thead>
<tr>
<th>Special Reinforced Concrete Structural Wall</th>
<th>Ordinary Reinforced Concrete Structural Wall</th>
</tr>
</thead>
</table>
| The nominal shear strength \((V_n) \) for structural walls shall not exceed:
 \[
 V_n = A_{cw} \left(\alpha_c \lambda \sqrt{f'_c} + \rho_t f_y \right)
 \]
 where \(\alpha_c \) is 3.0 for \(h_w/l_w \leq 1.5 \), is 2.0 for \(h_w/l_w \geq 2.0 \), and varies linearly between 3.0 and 2.0 for \(h_w/l_w \) between 1.5 and 2.0. | The nominal shear strength \((V_n) \) for walls can be calculated using the following methods:
 \[
 V_c = 3.3 \lambda \sqrt{f'_c} \frac{d}{h} + \frac{N_u d}{4 t_w}
 \]
 or
 \[
 V_c = \left[\frac{0.6 \lambda \sqrt{f'_c}}{ \frac{M_u}{V_u} - \frac{f_w}{2} } \right] \frac{\ell_w}{h} \left(1.25 \lambda \sqrt{f'_c} + 0.2 \frac{N_u h}{f_w h} \right)
 \]
 where \(\frac{M_u}{V_u} - \frac{f_w}{2} \geq 0 \)
 \[
 \rho_t = \frac{A_{vt} f_y d}{s}
 \]
 \[
 V_n = V_c + V_s
 \] |
| 21.9.4.1 | 21.9 |
| Walls shall have distributed shear reinforcement providing resistance in two orthogonal directions in the plane of the wall. If the ratio \((h_w/l_w) \) does not exceed 2.0, reinforcement ratio \((\rho_t) \) shall not be less than reinforcement ratio \((\rho_t) \). | Ratio \((\rho_t) \) of horizontal shear reinforcement area to gross concrete area of vertical section shall not be less than 0.0025.
 11.9.9.2
 Spacing of horizontal shear reinforcement shall not exceed the smallest of \(\ell_w/5 \), 3\(h \), and 18 in.
 11.9.9.3
 The minimum vertical reinforcement ratio \((\rho_v) \) is a function of \((h_w/l_w) \) and of the horizontal reinforcement as shown below:
 \[
 \rho_n = 0.0025 + 0.5 \left(2.5 - \frac{h_w}{\ell_w} \right) \left(\rho_t - 0.0025 \right) \geq 0.0025
 \]
 Also, the vertical shear reinforcement ratio need not exceed the required horizontal shear reinforcement ratio.
 11.9.9.4
 Spacing of vertical shear reinforcement shall not exceed the smallest of \(\ell_w/3 \), 3\(h \), and 18 in.
 11.9.9.5 |
| 21.9.4.3 | 11.9.3 |
| Nominal shear strength of all wall piers sharing a common lateral force shall not be assumed to exceed \(8A_{cw} \sqrt{f'_c} \). and the nominal shear strength of any one of the individual wall piers shall not be assumed to exceed \(10A_{cw} \sqrt{f'_c} \). | No similar requirement.
 21.9.4.4 |
| 21.9.4.4 | 11.9.3 |
| Nominal shear strength of horizontal wall segments and coupling beams shall not be assumed to exceed \(10A_{cw} \sqrt{f'_c} \). | This limitation also exists for ordinary walls, except \(A_{cw} \) is replaced by \(hd \) where \(d \) may be taken equal to 0.8\(\ell_w \).
 21.9.4.5 | 11.9.3 |
Because actual forces in longitudinal reinforcement of structural walls may exceed calculated forces, it is required that reinforcement in structural walls be developed or spliced for f_y in tension in accordance with Chapter 12. The effective depth of member referenced in 12.10.3 is permitted to be taken as $0.8\ell_w$ for walls. Requirements of 12.11, 12.12, and 12.13 need not be satisfied, because they address issues related to beams and do not apply to walls. At locations where yielding of longitudinal reinforcement is expected, $1.25f_y$ is required to be developed in tension, to account for the likelihood that the actual yield strength exceeds the specified yield strength, as well as the influence of strain-hardening and cyclic load reversals. Where transverse reinforcement is used, development lengths for straight and hooked bars may be reduced as permitted in 12.2 and 12.5, respectively, because closely spaced transverse reinforcement improves the performance of splices and hooks subjected to repeated cycles of inelastic deformation. The requirement that mechanical splices of reinforcement conform to 21.1.6, and welded splices to 21.1.7, can be found in 21.9.2.3(d).

![Min. reinforcement ratio each way = 0.0025
Maximum reinforcement spacing = 18 in.
Two curtains of reinforcement are required if $V_c > 2A_{Acv}\lambda_{fc}$.

Figure 29-21 Structural Wall Design and Detailing Requirements

21.9.3 Design Forces

A condition similar to that used for the shear design of beams and columns is not as readily established for structural walls, primarily because the shear force at any section is significantly influenced by the forces and deformations at the other sections. Unlike the flexural behavior of beams and columns in a frame, with the forces and deformations determined primarily by the displacements in the end joints, the flexural deformation at any section of a structural wall is substantially influenced by the displacements at locations away from the section under consideration. Thus, for structural walls, the design shear force is determined from the lateral load analysis in accordance with the factored load combinations (21.9.3). The possibility of local yielding, as in the portion of a wall between two window openings, must also be considered; the actual shear forces may be much greater than that indicated by the lateral load analysis based on the factored design forces.

21.9.4 Shear Strength

The nominal shear strength V_n of structural walls is given in 21.9.4.1. The equation for V_n recognizes the higher shear strength of walls with high ratios of shear to moment. Additional requirements for wall segments and wall piers are contained in 21.9.4.2, 21.9.4.4, and 21.9.4.5.

The strength reduction factor ϕ is determined in accordance with 9.3.4. Note that ϕ for shear must be 0.60 for any structural member that is designed to resist earthquake effects if its nominal shear strength is less than the shear corresponding to the development of the nominal flexural strength of the member. This is applicable to brittle members, such as low-rise walls or portions of walls between openings, which are impractical to reinforce to raise their nominal shear strength above the nominal flexural strength for the pertinent loading conditions.
Walls are to be provided with distributed shear reinforcement in two orthogonal directions in the plane of the wall (21.9.4.3). If the ratio of the height of the wall to the length of the wall is less than or equal to 2.0, the reinforcement ratio ρ_l shall be greater than or equal to the reinforcement ratio ρ_t.

21.9.5 Design for Flexural and Axial Loads

Structural walls subjected to combined flexural and axial loads shall be designed in accordance with 10.2 and 10.3, excluding 10.3.6 and the nonlinear strain requirements of 10.2.2 (21.9.5.1). This procedure is essentially the same as that commonly used for columns. Reinforcement in boundary elements and distributed in flanges and webs must be included in the strain compatibility analysis. Openings in walls must also be considered.

Provisions for the influence of flanges for wall sections forming L-, T-, C-, or other cross-sectional shapes are in 21.9.5.2. Effective flange widths shall be assumed to extend from the face of the web a distance equal to the smaller of one-half the distance to an adjacent wall web and 25 percent of the total wall height.

21.9.6 Boundary Elements of Special Structural Walls

Two approaches for evaluating the need for special boundary elements at the edges of structural walls are provided in 21.9.6. Section 21.9.6.2 allows the use of a displacement-based approach. In this method, the wall is displaced an amount equal to the expected design displacement, and special boundary elements are required to confine the concrete when the calculated neutral axis depth exceeds a certain critical value. Confinement is required over a horizontal length equal to a portion of the neutral axis depth (21.9.6.4). This approach is applicable to walls or wall piers that are essentially continuous in cross-section over the entire height of the wall and designed to have one critical section for flexure and axial loads, i.e., where the inelastic response of the wall is dominated by flexure at a critical, yielding section (21.9.6.2).

According to 21.9.6.2, compression zones must include special boundary elements where

$$c \geq \frac{\ell_w}{600(\delta_u / h_w)}, \quad \delta_u / h_w \geq 0.007$$

Eq. (21-8)

where $c =$ distance from the extreme compression fiber to the neutral axis per 10.2, excluding 10.2.2, calculated for the factored axial force and nominal moment strength, consistent with the design displacement δ_u, resulting in the largest neutral axis depth

$\ell_w =$ length of the entire wall or segment of wall considered in the direction of the shear force
$\delta_u =$ design displacement
$h_w =$ height of entire wall or of the segment of wall considered

The design displacement δ_u is the total lateral displacement expected for the design-basis earthquake, as specified by the governing code for earthquake-resistant design. In the *International Building Code*, ASCE 7 starting with its 1998 edition, and the NEHRP Provisions (1997 edition onwards), the design-basis earthquake is two-thirds of the maximum considered earthquake (MCE), which, in most of the country, has a two percent chance of being exceeded in 50 years. In these documents, the design displacement is computed using a static or dynamic linear-elastic analysis under code-specified actions. Considered in the analysis are the effects of cracking, torsion, P-Δ effects, and modification factors to account for expected inelastic response. In particular, δ_u is determined by multiplying the deflections from an elastic analysis under the prescribed seismic forces by a deflection amplification factor, which is given in the governing code. The deflection amplification factor, which depends on the type of seismic-force-resisting system, is used to increase the elastic deflections to levels that would be expected for the design-basis earthquake. The lower limit of 0.007 on the quantity δ_u / h_w is specified to require a moderate wall deformation capacity for stiff buildings.
Typically, the reinforcement for a structural wall section is determined first for the combined effects of bending and axial load, and shear forces in accordance with the provisions outlined above for all applicable load combinations. The distance \(c \) can then be obtained from a strain compatibility analysis for each load combination that includes seismic effects, considering sidesway to the left and to the right. The largest \(c \) is used in Eq. (21-8) to determine if special boundary elements are required.

When special boundary elements are required, they must extend horizontally from the extreme compression fiber a distance not less than the larger of \(c - 0.1\ell_w \) and \(c/2 \) (21.9.6.4(a); see Fig. 29-22). In the vertical direction, the special boundary elements must extend from the critical section a distance greater than or equal to the larger of \(\ell_w \) or \(M_u/4V_u \) (21.9.6.2). This distance is based on upper bound estimates of plastic hinge lengths, and is beyond the zone over which concrete spalling is likely to occur.

The second approach for evaluating the need for special boundary elements is contained in 21.9.6.3. These provisions have been retained from earlier editions of the code since they are conservative for assessing transverse reinforcement requirements at wall boundaries for many walls. Compression zones shall include special boundary elements where the maximum extreme fiber stress corresponding to the factored forces, including earthquake effects, exceeds 0.2\(f'_c \) (see Fig. 29-23). Special boundary elements can be discontinued where the compressive stress is less than 0.15\(f'_c \). Note that the stresses are calculated assuming a linear response of the gross concrete section. The extent of the special boundary element is the same as when the approach of 21.9.6.2 is followed.

Section 21.9.6.4 contains the details of the reinforcement when special boundary elements are required by 21.9.6.2 or 21.9.6.3. The transverse reinforcement must satisfy the same requirements as for special moment frame members subjected to bending and axial load (21.6.4.2 through 21.6.4.4), excluding Eq. (21-4) and the transverse reinforcement spacing limit of 21.6.4.3(a) shall be one-third of the least dimension of the boundary.
element (21.9.6.4(c); see Fig. 29-24). Also, the transverse reinforcement shall extend into the support a distance not less than the development length of the largest longitudinal bar in the special boundary element determined by 21.9.2.3; for footings or mats, the transverse reinforcement shall extend at least 12 in. into the footing or mat (21.9.6.4(d)). Horizontal reinforcement in the wall web shall be anchored within the confined core of the boundary element to develop its specified yield strength (21.9.6.4(e)). To achieve this anchorage, 90-degree hooks or mechanical anchorages are recommended. Mechanical splices and welded splices of the longitudinal reinforcement in the boundary elements shall conform to 21.1.6 and 21.1.7, respectively (21.9.2.3(d)).

When special boundary elements are not required, the provisions of 21.9.6.5 must be satisfied. For the cases when the longitudinal reinforcement ratio at the wall boundary is greater than 400/f_y, transverse reinforcement, spaced not more than 8 in. on center, shall be provided that satisfies 21.6.4.2 and 21.9.6.4(a) (21.9.6.5(a)). This requirement helps in preventing buckling of the longitudinal reinforcement that can be caused by cyclic load reversals. The longitudinal reinforcement ratio to be used includes only the reinforcement at the end of the wall as indicated in Fig. R21.9.6.5. Horizontal reinforcement terminating at the edges of structural walls must be properly anchored per 21.9.6.5(b) in order for the reinforcement to be effective in resisting shear and to help in preventing buckling of the vertical edge reinforcement. The provisions of 21.9.6.5(b) are not required to be satisfied when the factored shear force \(V_u \) is less than \(A_{cv} \lambda' \sqrt{f_c} \).

21.9.7 Coupling Beams

When adequately proportioned and detailed, coupling beams between structural walls can provide an efficient means of energy dissipation under seismic forces, and can provide a higher degree of overall stiffness to the structure. Due to their relatively large depth to clear span ratio, ends of coupling beams are usually subjected to large inelastic rotations. Adequate detailing and shear reinforcement are necessary to prevent shear failure and to ensure ductility and energy dissipation.

Coupling beams with \(\ell_n/h \geq 4 \) must satisfy the requirement of 21.5 for flexural members of special moment frames, excluding 21.5.1.3 and 21.5.1.4 if it can be shown that the beam has adequate lateral stability (21.9.7.1). Two intersecting groups of diagonally-placed bars symmetrical about the midspan are required for deep coupling beams (\(\ell_n/h < 2 \)) with a factored shear force \(V_u \) greater than \(4 \lambda' \sqrt{f_c} A_{cw} \) unless it can be shown otherwise that safety and stability are not compromised (21.9.7.2). Experiments have shown that diagonally oriented reinforcement is effective only if the bars can be placed at a large inclination. Two options are given for coupling beams that are not governed by 21.9.7.1 or 21.9.7.2: two intersecting groups of diagonally placed bars symmetrical about the midspan may be provided or the beam can be reinforced according to the requirements of 21.5.2 through 21.5.4 (21.9.7.3).

Section 21.9.7.4 contains the reinforcement details for the two intersecting groups of diagonally placed bars. The nominal shear strength of a coupling beam is computed from the following (21.9.7.4(a)):

\[
V_n = 2A_{vd}f_y \sin \alpha \leq 10 \sqrt{f_c} A_{cw}
\]

Eq. (21-9)

Two options are provided in the 2008 code regarding confinement of the diagonal bars. In the first option, which was in the 2005 and earlier editions of the code, the individual diagonals are confined in accordance with 21.9.7.4(c), as illustrated in Fig. R21.9.7(a). In the second option, which was introduced in the 2008 code, the cross-section of the coupling beam is confined instead of confining the individual diagonals (see 21.9.7.4(d) and Fig. R21.9.7(b)). This new option greatly facilitates placement of the reinforcing bars in the field, especially for coupling beams with relatively narrow webs.
Special boundary element transverse reinforcement per 21.9.6.4

Boundary elements required

\[
\frac{P_u}{A_g} + \frac{M_u}{l_y} \times \frac{l_w}{2} \geq 0.2l_e
\]

\[
M_u \geq \text{larger of } \begin{cases}
 c - 0.1l_w \\
 c/2
\end{cases}
\]

Special boundary elements may be discontinued where the calculated compressive strength < 0.15f'_c

Figure 29-23 Special Boundary Element Requirements per 21.9.6.3 (NTS)

\[
A_{sh} \geq 0.09b_d \frac{f_p}{f_{yt}}
\]

spacing = lesser of
\[
\begin{cases}
 \text{min. member dimension/3} \\
 6d_b \\
 \frac{6}{s_o} = 4 + \frac{14 - h_x}{3} \geq 4''
\end{cases}
\]

\[h_x \text{ is defined in Fig. R21.6.4.2}\]

Reinforcement ratio \(\geq 0.0025 \)

Maximum spacing = 18 in.

Fig. 29-24 Reinforcement Details for Special Boundary Elements
21.10 SPECIAL STRUCTURAL WALLS CONSTRUCTED USING PRECAST CONCRETE

According to 21.10.2, special structural walls constructed using precast concrete shall satisfy all requirements of 21.9 for cast-in-place special structural walls and the requirements in 21.4.2 and 21.4.3 for intermediate precast structural walls. Thus, the left-hand column of Table 29-6 may be utilized.

21.11 STRUCTURAL DIAPHRAGMS AND TRUSSES

In building construction, diaphragms are structural elements, such as floor or roof slabs, that perform some or all of the following functions:

- Provide support for building elements such as walls, partitions, and cladding, and resist horizontal forces but not act as part of the vertical seismic-force-resisting system
- Transfer lateral forces to the vertical seismic-force-resisting system
- Interconnect various components of the seismic-force-resisting system with appropriate strength, stiffness, and toughness to permit deformation and rotation of the building as a unit

Sections 21.11.2 and 21.11.3 contain requirements on the design forces and the seismic load path that need to be considered in the design of diaphragms, respectively. Diaphragms are to be designed for forces obtained from the legally adopted general building code using applicable load combinations. Typically, such forces are computed at each level based on provisions that amplify the corresponding story forces. A complete load path must be designed and detailed to transfer diaphragm forces to the vertical elements of the seismic-force-resisting system and collector elements where applicable. In general, collectors are designed for load combinations that amplify the seismic effects by the amplification factor \(\Omega_o \). Requirements for collectors are given in 21.11.7.5 and 21.11.7.6 and are discussed below.

Section 21.11.6 prescribes a minimum thickness of 2 in. for concrete slabs and composite topping slabs serving as diaphragms used to transmit earthquake forces. The minimum thickness is based on what is currently used in joist and waffle slab systems and composite topping slabs on precast floor and roof systems. A minimum of 2.5 in. is required for topping slabs placed over precast floor or roof systems that do not act compositely with the precast system to resist the seismic forces.

Sections 21.11.4 and 21.11.5 provide design criteria for cast-in-place diaphragms. For the case of a cast-in-place composite topping slab on a precast floor or roof system, bonding is required so that the floor or roof system can provide restraint against slab buckling; also, reinforcement is required to ensure shear transfer across the precast joints. Composite action is not required for a cast-in-place topping slab on a precast floor or roof system, provided the topping slab acting alone is designed to resist the seismic forces.

21.11.7 Reinforcement

The minimum reinforcement ratio for structural diaphragms is the same as that required by 7.12 for temperature and shrinkage reinforcement. The maximum reinforcement spacing of 18 in. is intended to control the width of inclined cracks. Sections 21.11.7.1 and 21.11.7.2 contain provisions for welded wire reinforcement used in topping slabs placed over precast floor and roof elements and bonded prestressing tendons used as primary reinforcement in diaphragm chords or collectors, respectively.

According to 21.11.7.5, collector elements must have transverse reinforcement as specified in 21.6.4.4 through 21.6.4.6 when the compressive stress at any section exceeds 0.2\(f'_c \). Note that compressive stress is calculated for
the factored forces using a linearly elastic model and gross section properties. The transverse reinforcement is no longer required where the compressive stress is less than 0.15f'_c.

In recent seismic codes and standards, collector elements of diaphragms are required to be designed for forces amplified by a factor Ω_0, to account for the overstrength in the vertical elements of the seismic-force-resisting system. The amplification factor Ω_0, ranges between 2 and 3 for concrete structures, depending upon the document selected and on the type of seismic system. To account for this, 21.11.7.5 additionally states that where design forces have been amplified to account for the overstrength of the vertical elements of the seismic-force-resisting system, the limits of 0.2f'_c and 0.15f'_c shall be increased to 0.5f'_c and 0.4f'_c, respectively.

Bar development and lap splices in diaphragms and collectors are to be determined according to the requirements of Chapter 12 (21.11.7.3). As indicated in 12.2.5, reduction in development or splice length for calculated stresses less than f_y is not permitted.

21.11.8 Flexural strength

Flexural strength for diaphragms is calculated using the same assumptions in 10.2 and 10.3 for beams, columns, or walls, except the nonlinear distribution of strain requirements of 10.2.2 for deep beams are not applicable. The influence of slab openings on flexural and shear strength must also be considered.

In earlier editions of the code, it was idealized that design moments in diaphragms were resisted entirely by chord reinforcement acting at opposite edges of the diaphragm perpendicular to the direction of analysis. In the 2008 code, it is assumed that all longitudinal reinforcement within the limits prescribed in 21.11.7 contributes to flexural strength. In general, this reduces the required area of reinforcement at the edges of the diaphragm; however, this should not be interpreted as a requirement to eliminate all boundary reinforcement.

21.11.9 Shear Strength

The shear strength requirements for monolithic structural diaphragms are similar to those for structural walls. In particular, the nominal shear strength V_n is computed from:

\[
V_n = A_{cv} \left(2\lambda \sqrt{f'_c} + \rho f_y \right) \leq 8A_{cv} \sqrt{f'_c} \quad \text{Eq. (21-10)}
\]

where A_{cv} is the gross area of the diaphragm, which may not exceed the thickness times the width of the diaphragm. Shear reinforcement should be placed perpendicular to the span of the diaphragm.

Sections 21.11.9.3 and 21.11.9.4 must be satisfied for cast-in-place topping slab diaphragms in addition to 21.11.9.1 and 21.11.9.2. Such topping slabs on a precast floor or roof system tend to have shrinkage cracks that are aligned with the joints between adjacent precast members. Thus the additional shear strength requirement of 21.11.9.3 must be satisfied, which is based on a shear friction model:

\[
\dot{V}_n = A_{vf} f_y \mu \quad \text{Eq. (21-11)}
\]

where A_{vf} is the total area of distributed and boundary reinforcement within the topping slab oriented perpendicular to the joints in the precast system and μ is the coefficient of friction, which is equal to 1.0λ, where λ is given in 11.6.4.3. The coefficient μ in this shear friction model is taken equal to 1.0 for normalweight concrete due to the presence of shrinkage cracks.

The distributed topping slab reinforcement must contribute at least half of the nominal shear strength.
Section 21.11.9.4 limits the maximum shear strength that may be transmitted by shear friction within a topping slab to that given in 11.6.5. In this case, A_c is to be computed using the thickness of the topping slab only.

21.11.11 Structural Trusses

Similar to structural diaphragms, structural truss elements must have transverse reinforcement satisfying 21.6.4.2 through 21.6.4.4 and 21.6.4.7 over the full length of the element where the compressive stresses exceed 0.2f'_c.

All continuous reinforcement must be developed or spliced to develop f_y in tension.

21.12 FOUNDATIONS

Requirements for foundations supporting buildings assigned to SDC D, E, or F are contained in 21.12. It is important to note that the foundations must also comply with all other applicable provisions of the code. For piles, drilled piers, caissons, and slabs on grade, the provisions of 21.12 supplement other applicable design and construction criteria (see also 1.1.4, 1.1.6, and 1.1.7).

21.12.2 Footings, Foundation Mats, and Pile Caps

Detailing requirements are contained in 21.12.2.1 through 21.12.2.4 for footings, mats, and pile caps supporting columns or walls, and are illustrated in Fig. 29-25.

21.12.3 Grade Beams and Slabs on Grade

Grade beams that are designed as ties between pile caps or footings must have continuous reinforcement that is developed within or beyond the supported column, or must be anchored within the pile cap or footing at discontinuities (21.12.3.1).

Section 21.12.3.2 contains geometrical and reinforcement requirements. The smallest cross-sectional dimension of the grade beam shall be greater than or equal to the clear spacing between the connected columns divided by 20; however, this dimension need not be greater than 18 in. Closed ties shall be provided over the length of the beam spaced at a maximum of one-half the smallest orthogonal cross-sectional dimension of the beam or 12 in., whichever is smaller. Both of these provisions are intended to provide reasonable beam proportions.

According to 21.12.3.3, grade beams and beams that are part of a mat foundation that is subjected to flexure from columns that are part of the seismic-force-resisting system shall have reinforcing details conforming to 21.5 for flexural members of special moment frames.

Slabs on grade shall be designed as diaphragms according to the provisions of 21.11 when they are subjected to seismic forces from walls or columns that are part of the seismic-force-resisting system (21.12.3.4). Such slabs shall be designated as structural members on the design drawings for obvious reasons.

21.12.4 Piles, Piers, and Caissons

When piles, piers, or caissons are subjected to tension forces from earthquake-induced effects, a proper load path is required to transfer these forces from the longitudinal reinforcement of the column or boundary element through the pile cap to the reinforcement of the pile or caisson. Thus, continuous longitudinal reinforcement is required over the length resisting the tensile forces, and it must be properly detailed to transfer the forces through the elements (21.12.4.2). When grouted or post-installed reinforcing bars are used to transfer tensile forces between the pile cap or mat foundation and a precast pile, a test must be performed to ensure that the grouting system can develop at least 125 percent of the specified yield strength of the reinforcing bar, (21.12.4.3). In lieu of a test, reinforcing bars can be cast in the upper portion of a pile, exposed later by chipping away the concrete, and then mechanically connected or welded to achieve the proper extension.
Transverse reinforcement in accordance with 21.6.4.2 through 21.6.4.4 is required at the top of piles, piers, and caissons over a length equal to at least 5 times the cross-sectional dimension of the member, but not less than 6 ft below the bottom of the pile cap (21.12.4.4(a)). This requirement is based on numerous failures that were observed in earthquakes just below the pile cap, and provides ductility in this region of the pile. Also, for portions of piles in soil that is not capable of providing lateral support, or for piles in air or water, the entire unsupported length plus the length specified in 21.12.4.4(a) must be confined by transverse reinforcement per 21.6.4.2 through 21.6.4.4 (21.12.4.4(b)). Additional requirements for precast concrete driven piles, foundations supporting one- and two-story stud bearing wall construction, and pile caps with batter piles are contained in 21.12.4.5 through 21.12.4.7.

21.13 MEMBERS NOT DESIGNATED AS PART OF THE SEISMIC-FORCE-RESISTING SYSTEM

In structures assigned to SDC D, E, or F, frame members that are assumed not to contribute to lateral resistance shall comply with the requirements of 21.13. Specifically, these members are detailed depending on the magnitude of the moments and shears that are induced when they are subjected to the design displacements. This requirement is intended to enable the gravity load system to maintain its vertical load carrying capacity when subjected to the maximum lateral displacement of the seismic-force-resisting system expected for the design-basis earthquake.

The following summarizes the requirements of 21.13:

1. Compute moments and shears (E) in all elements that are not part of the seismic-force-resisting system due to the design displacement δ_u. The displacement δ_u is determined based on the provisions of the governing building code. In the IBC, in ASCE 7 starting with its 1998 edition, and in the NEHRP Provisions (1997 and subsequent editions), δ_u is determined from the design-basis earthquake, (two-thirds of the Maximum Considered Earthquake, which for most of the country is an earthquake having a 98% probability of non-exceedance in 50 years) using a static or dynamic linear-elastic analysis, and considering the effects of cracked sections, torsion, and P-Δ effects. δ_u is determined by multiplying the deflections from an elastic analysis under the prescribed seismic forces by a deflection amplification factor, which accounts for expected inelastic response and which is given in the governing code for various seismic-force-resisting systems.
(2) Determine the factored moment M_u and the factored shear V_u in each of the elements that are not part of the seismic-force-resisting system from the more critical of the following load combinations:

$U = 1.2D + 1.0L + 0.2S + E$

$U = 0.9D + E$

The local factor on L can be reduced to 0.5 except for garages, areas occupied as places of public assembly, and all areas where $L > 100$ psf.

Note that the E-values (moments and shears) in the above expressions are determined in step 1 above.

(3) If $M_u \leq \phi M_n$ and $V_u \leq \phi V_n$ for an element that is not part of the seismic-force-resisting system, and if such an element is subjected to factored gravity axial forces $P_u \leq A_g f_c/10$, it must satisfy the longitudinal reinforcement requirements in 21.5.2.1; in addition, stirrups spaced at no more than $d/2$ must be provided throughout the length of the member. If such an element is subjected to $P_u > A_g f_c/10$ where $P_u \leq 0.35P_o$ (P_o is the nominal axial load strength at zero eccentricity), it must conform to 21.6.3.1, 21.6.4.2, and 21.6.5. In addition, ties at a maximum spacing of s_n must be provided throughout the height of the column, where s_n must not exceed the smaller of six times the smallest longitudinal bar diameter and 6 in. If the factored gravity axial force $P_u > 0.35P_o$, the requirements of 21.13.3.2 and 21.6.4.7 must be satisfied and the amount of transverse reinforcement provided shall be one-half of that required by 21.6.4.4, with the spacing not exceeding s_o for the full column height.

(4) If M_u or V_u determined in step 2 for an element that is not part of the seismic-force-resisting system exceeds ϕM_n or ϕV_n, or if induced moments and shears due to the design displacements are not calculated, then the structural materials must satisfy 21.1.4.2, 21.1.4.3, 21.1.5.2, and 21.1.5.5, and the splices of reinforcement must satisfy 21.1.6 and 21.1.7. If such an element is subjected to $P_u > A_g f_c/10$, it must conform to 21.5.2.1 and 21.5.4; in addition, stirrups spaced at no more than $d/2$ must be provided throughout the length of the member. If such an element is subjected to $P_u > A_g f_c/10$, it must be provided with full ductile detailing in conformance with 21.6.3, 21.6.4, 21.6.5, and 21.7.3.1.

Precast concrete frame members assumed not to contribute to lateral resistance must also conform to 21.13.2 through 21.13.4. In addition, the following requirements of 21.13.5 must be satisfied: (a) ties specified in 21.13.3.2 must be provided over the entire column height, including the depth of the beams; (b) structural integrity reinforcement of 16.5 must be provided in all members; and (c) bearing length at the support of a beam must be at least 2 in. longer than the computed bearing length according to 10.14. The 2 in. increase in bearing length is based on an assumed 4% story drift ratio and a 50 in. beam depth, and is considered to be conservative for ground motions expected in for structures assigned to SDC D, E, or F.

Provisions for shear reinforcement at slab-column joints are contained in section 21.13.6, which reduce the likelihood of punching shear failure in two-way slabs without beams. A prescribed amount and detailing of shear reinforcement is required unless either 21.13.6(a) or (b) is satisfied.

Section 21.13.6(a) requires calculation of shear stress due to the factored shear force and induced moment according to 11.11.7. The induced moment is the moment that is calculated to occur at the slab-column joint where subjected to the design displacement defined in 2.2. Section 13.5.1.2 and the accompanying commentary provide guidance on selection of the slab stiffness for the purpose of this calculation.

Section 21.13.6(b) does not require the calculation of induced moments, and is based on research 29.22, 29.23 that identifies the likelihood of punching shear failure considering interstory drift and shear due to gravity loads. The requirement is illustrated in Fig. R21.13.6. The requirement can be satisfied in several ways: adding slab shear reinforcement, increasing slab thickness, designing a structure with more lateral stiffness to decrease interstory drift, or a combination of two or more of these.
If column capitals, drop panels, or other changes in slab thickness are used, the requirements of 21.1.5 must be evaluated at all potential critical sections.

REFERENCES

29.21 Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, ACI 374.1, American Concrete Institute, Farmington Hills, MI, 2005.

Example 29.1—Design of a 12-Story Cast-in-Place Frame-Shearwall Building and its Components

This example, and the 5 examples that follow, illustrate the design and detailing requirements for typical members of a 12-story cast-in-place concrete building.

A typical plan and elevation of the structure are shown in Figs. 29-26(a) and (b) respectively. The columns and structural walls have constant cross-sections throughout the height of the building*, and the bases of the lowest story segments are assumed fixed. The beams and the slabs also have the same dimensions at all floor levels. Although the member dimensions in this example are within the practical range, the structure itself is a hypothetical one, and has been chosen mainly for illustrative purposes. Other pertinent design data are as follows:

Material properties:

Concrete: \(f'_c = 4000 \text{ psi}, \ w_c = 145 \text{pcf} \)
Reinforcement: \(f_y = 60,000 \text{ psi} \)

Service loads:

Live load:
- Floors = 50 psf
- Additional average value to allow for heavier load on corridors = 25 psf
- Total average live load (floors) = 75 psf
- Roof = 20 psf

Superimposed dead load:
- Average for partitions = 20 psf
- Ceiling and mechanical = 10 psf
- Total average superimposed dead load (floors) = 30 psf
- Roof = 10 psf

Seismic design data:

The building is assigned to SDC D.

Dual system (special reinforced concrete structural walls with special moment frames) in the N-S direction

Special moment frames in the E-W direction

* The uniformity in member dimensions used in this example has been adopted mainly for simplicity.
Exterior columns: 24 x 24 in.
Interior columns: 30 x 30 in.
Beams: 20 x 24 in.
Slab: 8 in.
Walls: 18 in. web + 32 x 32 in. boundary elements

Figure 29-26 Example Building
1. Lateral analysis

 The computation of the seismic and wind design forces is beyond the scope of this example. For guidance on the calculations of the lateral forces the reader is referred to Ref. 29.15.

 A three-dimensional analysis of the building was performed in both the N-S and E-W directions for both seismic and wind load cases. The effects of the seismic forces governed; thus, load combinations containing the effects of wind loads are not considered in the following examples.

2. Gravity analysis

 The Equivalent Frame Method of 13.7 was used to determine the gravity load moments in the members.

 Cumulative service axial loads for the columns and walls were computed considering live load reduction according to ASCE/SEI 7.
Example 29.2—Proportioning and Detailing of Flexural Members of Building in
Example 29.1

Design a beam on the first floor of a typical interior E-W frame of the example building (Fig. 29-26). The beam has dimensions of \(b = 20 \text{ in.} \) and \(h = 24 \text{ in.} \) (\(d = 21.5 \text{ in.} \)). The slab is 8 in. thick. Use \(f'_c = 4000 \text{ psi} \) and \(f_y = 60,000 \text{ psi} \).

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check satisfaction of limitations on section dimensions.</td>
<td></td>
</tr>
<tr>
<td>Factored axial compressive force on beams is negligible. O.K.</td>
<td>21.5.1.1</td>
</tr>
</tbody>
</table>
| \[
\frac{f_n}{d} = \frac{(26 \times 12) - 30}{21.5} = 13.1 > 4 \quad \text{O.K.}
\] | 21.5.1.2 |
| \[
\frac{\text{width}}{\text{depth}} = \frac{20}{24} = 0.83 > 0.3 \quad \text{O.K.}
\] | 21.5.1.3 |
| \[
\text{width} = 20 \text{ in.} > 10 \text{ in.} \quad \text{O.K.}
\] | 21.5.1.4 |
| \[
< c_2 + 2c_2 = 3 \times 24 = 72 \text{ in.}
\] | |
| \[
< c_2 + 1.5c_1 = 24 + 1.5 \times 24 = 60 \text{ in.} \quad \text{(governs)} \quad \text{O.K.}
\] | |
| where \(c_1 \) and \(c_2 \) are the column dimensions | |
| 2. Determine required flexural reinforcement. | |
| The required reinforcement for the beams on the first floor level is shown in Table 29-7. The provided areas of steel are within the limits specified in 21.5.2.1. Also given in Table 29-7 are the design moment strengths \(\phi M_n \) at each section. The positive moment strength at a joint face must be at least equal to 50% of the negative moment strength provided at that joint. At the exterior negative location, this provision is satisfied since the positive design moment strength of 220.8 ft-kips is greater than 351.2/2 = 175.6 ft-kips. The provision is also satisfied at the interior negative location since 220.8 ft-kips is greater than 414.0/2 = 207.0 ft-kips. | 21.5.2.2 |
| Neither the negative nor the positive moment strength at any section along the length of the member shall be less than 25% of the maximum moment strength provided at the face of either joint. In this case, 25% of the maximum design moment strength is equal to 414.0/4 = 103.5 ft-kips. Providing at least 2-No. 8 bars (\(\phi M_n = 147.9 \text{ ft-kips} \)) or 2-No. 7 bars (\(\phi M_n = 113.2 \text{ ft-kips} \)) at any section will satisfy this requirement. However, to satisfy the minimum reinforcement requirement of 21.5.2.1 (i.e., minimum \(A_s = 1.43 \text{ in.}^2 \)), a minimum of 2-No. 8 bars (\(A_s = 1.58 \text{ in.}^2 \)) or 3-No. 7 bars (\(A_s = 1.80 \text{ in.}^2 \)) must be provided at any section. This also automatically satisfies the requirement that 2 bars be continuous at both the top and the bottom of any section. | 21.5.2.1 |
3. Calculate required length of anchorage of flexural reinforcement in exterior column.

Beam longitudinal reinforcement terminated in a column shall be extended to the far face of the confined column core and shall be anchored in tension according to 21.7.5 and in compression according to Chapter 12.

Minimum development length \(\ell_{dh} \) for a bar with a standard 90-degree hook in normal-weight concrete is

\[
\ell_{dh} = \frac{f_yd_b}{65\sqrt{f_c}}
\]

\[\geq 8d_b \]

\[\geq 6 \text{ in.} \]

A standard hook is defined as a 90-degree bend plus a 12d\(_b\) extension at the free end of the bar.

For the No. 8 top bars (bend diameter \(\geq 6d_b \)):

\[
\ell_{dh} = \begin{cases}
(60,000 \times 1.00)/(65\sqrt{4000}) = 14.6 \text{ in.} & \text{(governs)} \\
8 \times 1.00 = 8 \text{ in.} \\
6 \text{ in.}
\end{cases}
\]

For the No. 7 bottom bars (bend diameter \(\geq 6d_b \)):

\[
\ell_{dh} = \begin{cases}
(60,000 \times 0.875)/(65\sqrt{4000}) = 12.8 \text{ in.} & \text{(governs)} \\
8 \times 0.875 = 7 \text{ in.} \\
6 \text{ in.}
\end{cases}
\]

Note that the development length \(\ell_{dh} \) is measured from the near face of the column to the far edge of the vertical 12-bar-diameter extension (see Fig. 29-27).
When reinforcing bars extend through a joint, the column dimension must be at least 20 times the diameter of the largest longitudinal bar for normal weight concrete. In this case, the minimum required column dimension is $20 \times 1.0 = 20$ in., which is less than each of the two column widths that is provided.

Figure 29-27 Detail of Flexural Reinforcement Anchorage at Exterior Column

4. Determine shear reinforcement requirements.

Design for shear forces corresponding to end moments that are calculated by assuming the stress in the tensile flexural reinforcement equal to $1.25f_y$ and a strength reduction factor, $\phi = 1.0$ (probable flexural strength), plus shear forces due to factored tributary gravity loads.

The following equation can be used to compute M_{pr}^*:

$$M_{pr} = A_s \left(1.25f_y\right)\left(d - \frac{a}{2}\right)$$

where $a = \frac{A_s \left(1.25f_y\right)}{0.85f'c'b}$.

* The slab reinforcement within the effective slab width defined in 8.12 is not included in the calculation of M_{pr} (note that this reinforcement must be included when computing the flexural strength of the beam when checking the requirements of 21.6.2). It is unlikely that all or even most of the reinforcement within the slab effective width away from the beam will yield when subjected to the forces generated from the design-basis earthquake. Furthermore, including the slab reinforcement in the calculation of M_{pr} would result in a major deviation from how members have been designed in the past. In particular, the magnitude of the negative probable moment strength of the beam would significantly increase if the slab reinforcement were included. This in turn would have a significant impact on the shear strength requirements of the beam (21.5.4) and most likely the columns framing into the joint as well (21.6.5). Such significant increases seem unwarranted when compared to the appropriate provisions in previous editions of the ACI Code and other codes.
Example 29.2 (cont’d) Calculations and Discussion Code Reference

For example, for sidesway to the right, the interior joint must be subjected to the negative moment M_{pr} which is determined as follows:

For 6-No. 8 top bars, $A_s = 6 \times 0.79 = 4.74 \text{ in.}^2$

$$a = \frac{A_s (1.25f_y)}{0.85 f_c b} = \frac{4.74 \times 1.25 \times 60}{0.85 \times 4 \times 20} = 5.23 \text{ in.}$$

$$M_{pr} = A_s (1.25f_y) \left(d - \frac{a}{2} \right) = 4.74 \times 1.25 \times 60 \times \left(21.5 - \frac{5.23}{2} \right) = 6713.6 \text{ in.-kips} = 559.5 \text{ ft kips}$$

Similarly, for the exterior joint, the positive moment M_{pr} based on the 4-No. 7 bottom bars is equal to 302.6 ft-kips. The probable flexural strengths for sidesway to the left can be obtained in a similar fashion.

The factored gravity load at midspan is:

$$w_D = \frac{8}{12} \left(\frac{145}{12} \right) + 30 \times 22 + \frac{16}{144} \times 20 \times \frac{145}{144} = 3109 \text{ lbs/ft}$$

$$w_L = 75 \times 22 = 1650 \text{ lbs/ft}$$

$$w_u = 1.2 \times w_D + 0.5 w_L = 4.56 \text{ kips/ft} \quad \text{Eq. (9-5)}$$

Figure 29-28 shows the exterior beam span and the shear forces due to the gravity loads. Also shown are the probable flexural strengths M_{pr} at the joint faces for sidesway to the right and to the left and the corresponding shear forces due to these moments. Note that the maximum combined design shear forces are larger than those obtained from the structural analysis.

The shear strength of concrete V_c is to be taken as zero when the earthquake-induced shear force calculated in accordance with 21.5.4.1 is greater than or equal to 50% of the total shear force and the factored axial compressive force is less than $A_g f_c / 20$ where A_g is the gross cross-sectional area of the beam. The beam carries negligible axial forces, and the maximum earthquake-induced shear force, which is equal to 36.3 kips (see Fig. 29-28), is greater than one-half the total design shear force which is equal to $0.5 \times 68.1 = 34.1$ kips. Thus, V_c must be taken equal to zero. The maximum shear force V_s is:

$$\phi V_s = V_u - \phi V_c$$

$$V_s = \frac{V_u}{\phi} - V_c$$

$$= \frac{68.1}{0.75} - 0 = 90.8 \text{ kips}$$

* Note that in seismic design complying with ASCE/SEI 7, the factor would be $(1.2 + 0.2S_{DS})$, where S_{DS} is the design spectral response acceleration at short periods at the site of the structure.
where the strength reduction factor ϕ is 0.75.

Shear strength contributed by shear reinforcement must not exceed $(V_s)_{max}$:

$$(V_s)_{max} = 8 \sqrt{f'c b_w d} = 8 \sqrt{4000 \times 20 \times 21.5/1000} = 217.6 \text{ kips} > 90.8 \text{ kips} \quad \text{O.K.}$$

Also, V_s is less than $4 \sqrt{f'c b_w d} = 108.8 \text{ kips}$.

Required spacing of No. 3 closed stirrups (hoops) for a factored shear force of 90.8 kips is:

$$s = \frac{A_v f_y d}{V_s} = \frac{(4 \times 0.11) \times 60 \times 21.5}{90.8} = 6.3 \text{ in.}$$

![Figure 29-28 Design Shear Forces for Exterior Beam Span of Typical E-W Frame on Floor Level 1](image)
Note that 4 legs are required for lateral support of the longitudinal bars.

Maximum allowable hoop spacing \((s_{\text{max}}) \) within a distance of \(2h = 2 \times 24 = 48 \) in. from the face of the support is the smallest of the following:

\[
s_{\text{max}} = \frac{d}{4} = \frac{21.5}{4} = 5.4 \text{ in. (governs)}
\]

\[
= 8 \times \text{ (diameter of smallest longitudinal bar)} = 8 \times 0.875 = 7.0 \text{ in.}
\]

\[
= 24 \times \text{ (diameter of hoop bar)} = 24 \times 0.375 = 9.0 \text{ in.}
\]

\[
= 12 \text{ in.}
\]

Therefore, hoops must be spaced at 5 in. on center with the first one located at 2 in. from the face of the support. Eleven hoops are to be placed at this spacing.

Where hoops are no longer required, stirrups with seismic hooks at both ends may be used.

At a distance of 52 in. from the face of the interior support, \(V_u = 63.7 \) kips.

With \(V_c = 2 \sqrt{4000} \times 20 \times 21.5/1000 = 54.4 \) kips, the spacing required for No. 3 stirrups with two legs is 9.3 in. \(< d/2 = 10.8 \) in.

A 9 in. spacing, starting at 52 in. from the face of the support will be sufficient for the remaining portion of the beam.

5. Negative reinforcement cutoff points.

For the purpose of determining cutoff points for the negative reinforcement at the interior support, a moment diagram corresponding to the probable flexural strengths at the beam ends and 0.9* times the dead load on the span will be used. The cutoff point for four of the six No. 8 bars at the top will be determined.

With the design flexural strength of a section with 2-No. 8 top bars = 147.9 ft-kips (calculated using \(f_y = 60 \) ksi and \(\phi = 0.9 \), since a section with such light reinforcement will be tension-controlled), the distance from the face of the support to where the moment under the loading considered equals 147.9 ft-kips is readily obtained by summing moments about section a-a in Fig. 29-29, and equating these to 147.9 ft-kips:

\[
\frac{x}{2} \left(\frac{2.8x}{9.75} \right) + \frac{x}{3} \left(55.8x + 559.5 \right) = 147.9
\]

* Note that in seismic design complying with ASCE/SEI 7, the factor would be \((0.9 - 0.2S_{DS}) \), where \(S_{DS} \) is the design spectral response acceleration at short periods at the site of the structure.
Solving for x gives a distance of 7.8 ft. The 4-No. 8 bars must extend a distance $d = 21.5$ in. or
$12d_b = 12 \times 1.0 = 12$ in. beyond the distance x. Thus, from the face of the support, the total bar
length must be at least equal to $7.8 + (21.5/12) = 9.6$ ft. Also, the bars must extend a full develop-
ment length ℓ_d beyond the face of the support:

$$\ell_d = \left(\frac{3}{40} \frac{f_y}{\lambda \sqrt{f'_c}} \frac{\psi_t \psi_e \psi_s}{\left(\frac{c_b + K_{tr}}{d_b} \right)} \right) d_b$$

Eq. (12-1)

where
- $\psi_t =$ reinforcement location factor = 1.3 (top bar)
- $\psi_e =$ coating factor = 1.0 (uncoated reinforcement)
- $\psi_s =$ reinforcement size factor = 1.0 (No. 8 bar)
- $\lambda =$ lightweight aggregate concrete factor = 1.0 (normal weight concrete)

$$c_b = \text{spacing or cover dimension} = \left\{ \begin{array}{l}
1.5 + 0.375 + \frac{1.0}{2} = 2.375 \text{ in.} \\
20 - 2(1.5 + 0.375) - 1.0 \times 5 = 1.525 \text{ in. (governs)}
\end{array} \right.$$

Figure 29-29 Moment Diagram for Cutoff Location of Negative Bars at Interior Support
Example 29.2 (cont’d) Calculations and Discussion

\[K_{tr} = \text{transverse reinforcement index} = 0 \text{ (conservative)} \]

\[\frac{c_b + K_{tr}}{d_b} = \frac{1.525 + 0}{1.0} = 1.525 < 2.5 \]

\[\ell_d = \frac{3}{40} \times \frac{60,000}{1.0 \times \sqrt{4000}} \times \frac{1.3 \times 1.0 \times 1.0}{1.525} \times 1.0 = 60.7 \text{ in.} = 5.1 \text{ ft} < 9.6 \text{ ft} \]

The total required length of the 4-No. 8 bars must be at least 9.6 ft beyond the face of the support.

Flexural reinforcement shall not be terminated in a tension zone unless one or more of the conditions of 12.10.5 are satisfied. In this case, the point of inflection is approximately 11.25 ft from the face of the right support which is greater than 9.6 ft. The 4-No. 8 bars can not be terminated here unless one of the conditions of 12.10.5 is satisfied.

Check if the factored shear force \(V_u \) at the cutoff point does not exceed two-thirds of \(\psi V_n \). 12.10.5.1

For No. 3 stirrups spaced at 9 in. on center that are provided in this region:

\[\psi V_n = \psi (V_s + V_c) = 0.75 \times \left(\frac{0.22 \times 60 \times 21.5}{9} + 54.4 \right) = 64.5 \text{ kips} \]

\[\frac{2}{3} \psi V_n = 43.0 \text{ kips} > V_u = 42.7 \text{ kips at 9.6 ft from face of support} \]

Since \(2\psi V_n / 3 > V_u \), the cutoff point for the 4-No. 8 bars can be 9.6 ft beyond the face of the interior support.

The cutoff point for three of the 5-No. 8 bars at the exterior support can be determined in a similar fashion. These bars can be cut off at 8.4 ft from the face of the exterior support.

6. Flexural reinforcement splices.

Lap splices of flexural reinforcement must not be placed within a joint, within a distance 2h from faces of supports or within regions of potential plastic hinging. Note that all lap splices have to be confined by hoops or spirals with a maximum spacing or pitch of d/4 or 4 in. over the length of the lap. Lap splices will be determined for the No. 7 bottom bars.

Since all of the bars will be spliced within the required length, use a Class B splice. 12.15.2

Required length of splice = \(1.3\ell_d \geq 12 \text{ in.} \) 12.15.1

where

\[\ell_d = \frac{3}{40} \frac{f_y}{\lambda \sqrt{f'c'}} \left(\frac{\psi_t \psi_e \psi_s}{c_b + K_{tr}} \right) d_b \]

Eq. (12-1)
reinforcement location factor $\psi_t = 1.0$ (other than top bars)
coating factor $\psi_e = 1.0$ (uncoated bars)
reinforcement size factor $\psi_s = 1.0$ (No. 7 bar)
lightweight aggregate concrete factor $\lambda = 1.0$ (normal weight concrete)

\[c_b = 1.5 + 0.375 + \frac{0.875}{2} = 2.31 \text{ in.} \quad (\text{governs}) \]

\[= \frac{1}{2} \left[\frac{20 - 2(1.5 + 0.375) - 0.875}{3} \right] = 2.56 \text{ in.} \]

\[K_{tr} = \frac{40A_{tr}}{sn} = \frac{40 \times (2 \times 0.11)}{4.0 \times 4} = 0.55 \]

\[\frac{c_b + K_{tr}}{d_b} = \frac{2.31 + 0.55}{0.875} = 3.3 > 2.5, \text{ use 2.5} \]

Therefore,

\[l_d = \frac{3}{40} \times \frac{60000}{1.0 \times \sqrt{40000}} \times \frac{1.0 \times 1.0 \times 1.0 \times 0.875}{2.5} = 24.9 \text{ in.} \]

Class B splice length $= 1.3 \times 24.9 = 32.4$ in.

7. Reinforcement details for the beam are shown in Fig. 29-30.
Example 29.3—Proportioning and Detailing of Columns of Building in Example 29.1

Determine the required reinforcement for an edge column supporting the first floor of a typical E-W interior frame. The column dimensions have been established at 24-in. square. Use $f'_{c} = 4000$ psi and $f_y = 60,000$ psi.

Calculations and Discussion

Table 29-8 contains a summary of the factored axial loads and bending moments for an edge column in the first floor level for seismic forces in the E-W direction.

From Table 29-8, maximum P_u ranges from 459.8 kips to 1012.0 kips

$A_g f'_{c} / 10 = (24 \times 24) \times 4/10 = 230$ kips $< P_u \quad 21.6.1$

Thus, the provisions of 21.6 governing special moment frame members subjected to bending and axial load apply.

<table>
<thead>
<tr>
<th>Load Combination</th>
<th>Axial Load, P_u (kips)</th>
<th>Bending Moment, M_u (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2D + 1.6L</td>
<td>1002.9</td>
<td>-78.2</td>
</tr>
<tr>
<td>1.2D + 0.5L + E</td>
<td>722.8</td>
<td>166.4</td>
</tr>
<tr>
<td>1.2D + 0.5L – E</td>
<td>1012.0</td>
<td>-275.6</td>
</tr>
<tr>
<td>0.9D + E</td>
<td>459.8</td>
<td>188.1</td>
</tr>
<tr>
<td>0.9D – E</td>
<td>749.0</td>
<td>-253.9</td>
</tr>
</tbody>
</table>

1. Check satisfaction of limitations on section dimensions.

- Shortest cross-sectional dimension = 24 in. > 12 in. O.K. $\quad 21.6.1.1$
- Ratio of shortest cross-sectional dimension to perpendicular dimension = 1.0 > 0.4 O.K. $\quad 21.6.1.2$

2. Determine required longitudinal reinforcement.

Based on the load combinations in Table 29-8, a 24 \times 24 in. column with 8-No. 8 bars ($\rho_g = 1.10\%$) is adequate for the column supporting the first floor level.

Note that $0.01 < \rho_g \leq 0.06$ O.K. $\quad 21.6.3.1$
3. Nominal flexural strength of columns relative to that of beams in E-W direction.

\[\Sigma M_{nc} \text{ (columns)} \geq \frac{6}{5} \Sigma M_{nb} \text{ (beams)} \]

The nominal negative flexural strength \(M_{nb} \) of the beam framing into the column must include the slab reinforcement within an effective slab width equal to:

\begin{align*}
(16 \times 8) + 20 &= 148 \text{ in.} \\
22 \times 12 &= 264 \text{ in.} \\
(26 \times 12)/4 &= 78 \text{ in. (governs)}
\end{align*}

The minimum required \(A_s \) in the 78-in. effective width is equal to \(0.0018 \times 78 \times 8 = 1.12 \text{ in.}^2 \), which corresponds to 6-No. 4 bars @ 78/6 = 13 in. spacing. This spacing is less than the maximum bar spacing (= 2h = 16 in.). Provide No. 4 @ 13 in. at both the top and bottom of the slab (according to Fig. 13.3.8, 100 percent of both the top and the bottom reinforcement in the column strip must be continuous or anchored at the support).

A strain compatibility analysis of the section yields \(M_{nb} \) of the beam equal to 632 ft-kips.

For the lower end of the upper column framing into the joint, the minimum nominal flexural strength is 578 ft-kips, which corresponds to \(P_u = 922 \text{ kips} \). Similarly, the minimum \(M_{nc} \) is 522 ft-kips for the upper end of the lower column framing into the joint; this corresponds to \(P_u = 1012 \text{ kips} \).

Therefore,

\[\Sigma M_{nc} = 578 + 522 = 1100 \text{ ft-kips} \]
\[\Sigma M_{nb} = 632 \text{ ft-kips} \]

\[1100 \text{ ft-kips} > \frac{6}{5} \times 632 = 758 \text{ ft-kips} \quad \text{O.K.} \]

\[21.6.2.2 \quad \text{Eq. (21-1)} \]
4. Nominal flexural strength of columns relative to that of beams in the N-S direction.

The beams in the N-S direction framing into columns at the first floor level require 4-No. 7 bars at both the top and the bottom of the section.

The nominal negative flexural strength M_{nb} of the beams framing into the column must include the slab reinforcement within an effective slab width equal to:

\[
\frac{(22 \times 12)}{12} + 20 = 42 \text{ in. (governs)}
\]

\[
(6 \times 8) + 20 = 68 \text{ in.}
\]

\[
\frac{(23.75 \times 12)}{2} + 20 = 162.5 \text{ in.}
\]

The minimum A_s in the 42-in. effective width is equal to $0.0018 \times 42 \times 8 = 0.6 \text{ in.}^2$, which corresponds to 3-No. 4 bars @ $42/3 = 14$ in. spacing. This spacing is less than the maximum bar spacing ($= 2h = 16$ in.). Provide No. 4 @ 14 in. at both the top and the bottom of the slab (according to Fig. 13.3.8, 100 percent of both the top and the bottom reinforcement in the column strip must be continuous or anchored at the support).

A strain compatibility analysis of the section yields $M_{nb} = 354 \text{ ft-kips}$ and $M_{nb}^+ = 277 \text{ ft-kips}$.

For the lower end of the upper column framing into the joint, the minimum nominal flexural strength is 580.4 ft-kips, which corresponds to $P_u = 918$ kips. Similarly, the minimum M_{nc} is 528.6 ft-kips for the upper end of the lower column framing into the joint; this corresponds to $P_u = 1,003$ kips.

\[
\sum M_{nb} = 354 + 277 = 631 \text{ ft-kips}
\]

\[
\sum M_{nc} = 580 + 529 = 1109 \text{ ft-kips} > \frac{6}{5} \sum M_{nb} = \frac{6}{5} \times 631 = 757 \text{ ft-kips} \quad \text{O.K.}
\]
5. Determine transverse reinforcement requirements.

a. Confinement reinforcement (see Fig. 29-9(b)).

Transverse reinforcement for confinement is required over a distance \(\ell_o \) from the column ends where

\[
\ell_o \geq \begin{cases}
\text{depth of member} = 24 \text{ in.} \\
\frac{1}{6} \text{(clear height)} = \frac{14 \times 12}{6} = 28 \text{ in. (governs)} \\
18 \text{ in.}
\end{cases}
\]

Maximum allowable spacing of rectangular hoops assuming No. 4 hoops with a No. 4 crosstie in each direction:

\[
s_{\text{max}} = 0.25 \text{ (smallest dimension of column)} = 0.25 \times 24 = 6 \text{ in.} \\
s_{\text{o}} = 4 + \left(\frac{14 - h_x}{3} \right) = 4 + \left(\frac{14 - 11}{3} \right) = 5 \text{ in.} < 6 \text{ in. (governs)} \\
> 4 \text{ in.}
\]

where

\[
h_x = \frac{24 - 2 \left(1.5 + 0.5 + \frac{1.0}{2} \right)}{2} + 2 \left(\frac{1.0}{2} + 0.5 \right) = 11 \text{ in.}
\]

Required cross-sectional area of confinement reinforcement in the form of hoops:

\[
A_{sh} \geq \begin{cases}
0.3b_c \left[\frac{A_g}{A_{ch}} - 1 \right] \frac{f'_c}{f_{yt}} \\
0.09b_c \frac{f'_c}{f_{yt}}
\end{cases}
\]

where

\[
s = \text{spacing of transverse reinforcement (in.)} \\
b_c = \text{cross-sectional dimension of column core, measured to the outside edges of transverse reinforcement (in.)} = 24 - (2 \times 1.5) = 21.0 \text{ in.} \\
A_{ch} = \text{cross-sectional area of column measured to the outside edges of the transverse reinforcement (in.}^2 = [24 - (2 \times 1.5)]^2 = 441 \text{ in.}^2 \\
f_{yt} = \text{specified yield strength of transverse reinforcement (psi)}
For a hoop spacing of 5 in. and \(f_y = 60,000 \) psi, the required cross-sectional area is:

\[
A_{sh} \geq \begin{cases}
(0.3 \times 5 \times 21.0) \left(\frac{576}{441} - 1 \right) \frac{4000}{60,000} = 0.64 \text{ in.}^2 \quad \text{(governs)} \\
(0.009 \times 5 \times 21.0) \frac{4000}{60,000} = 0.63 \text{ in.}^2
\end{cases}
\]

No. 4 hoops with one crosstie, as shown in the sketch below, provides \(A_{sh} = 3 \times 0.20 = 0.60 \text{ in.}^2 < 0.64 \text{ in.}^2 \). Either accept or reduce hoop spacing to 4 in. so that governing \(A_{sh} = 0.51 \text{ in.}^2 < \text{provided } A_{sh} = 0.60 \text{ in.}^2 \)

b. Transverse reinforcement for shear.

As in the design of shear reinforcement for beams, the design shear for columns is based not on the factored shear forces obtained from a lateral load analysis but rather on the nominal flexural strengths provided in the columns. The column design shear forces shall be determined from the consideration of the maximum forces that can be developed at the faces of the joints, with the probable flexural strengths calculated for the factored axial compressive forces resulting in the largest moments acting at the joint faces.

The largest probable flexural strength that may develop in the column can conservatively be assumed to correspond to the balanced point of the column interaction diagram.

With the strength reduction factors equal to 1.0 and \(f_y = 1.25 \times 60 = 75 \text{ ksi} \), the moment corresponding to balanced failure is 742 ft-kips. Thus, \(V_u = (2 \times 742)/14 = 106 \text{ kips} \).
The shear force need not exceed that determined from joint strengths based on the probable flexural strengths M_{pr} of the members framing into the joint. For seismic forces in the E-W direction, the negative probable flexural strength of the beam framing into the joint at the face of the edge column is 477.0 ft-kips (see Fig. 29-28).

Distribution of this moment to the columns is proportional to EI/l of the columns above and below the joint. Since the columns above and below the joint have the same cross-section, reinforcement, and concrete strength, EI is a constant, and the moment is distributed according to $1/l$. Therefore, the moment at the top of the first story column is

$$477.0 \left(\frac{12}{12 + 16} \right) = 204.4 \text{ ft-kips}$$

It is possible for the base of the first story column to develop the probable flexural strength of 742.0 ft-kips. Thus, the shear force is

$$V_u = \frac{204.4 + 742.0}{14} = 67.6 \text{ kips}$$

For seismic forces in the N-S direction, the negative probable flexural strength of the beam framing into one side of the column is 302.6 ft-kips (4-No. 7 top bars). The positive probable flexural strength of the beam framing into the other side of the column is also 302.6 ft-kips (4-No. 7 bottom bars). Therefore, at the top of the first story column, the moment is

$$\left(2 \times 302.6 \right) \left(\frac{12}{12 + 16} \right) = 259.4 \text{ ft-kips}$$

The shear force is

$$V_u = \frac{259.4 + 742.0}{14} = 71.5 \text{ kips}$$

Both of these shear forces are greater than those obtained from analysis.

Since the factored axial forces are greater than $A_g f'_c / 20 = 115$ kips, the shear strength of the concrete may be used:

$$V_c = 2\lambda \sqrt{f'_c b_w} d \left(1 + \frac{N_u}{2000 A_g} \right)$$

Eq. (11-4)
Conservatively using the minimum axial load from Table 29-7,

\[V_c = \frac{2 \times 1.0 \sqrt{4000 \times (24 \times 17.7)}}{1000} \left[1 + \frac{459,800}{2000 \times (24)^2} \right] = 75.2 \text{ kips} \]

\[V_s = \frac{A_v f_y d}{s} = \left(\frac{3 \times 0.20}{4.5} \times 60 \times 17.7 \right) = 141.6 \text{ kips} \]

\[\phi (V_c + V_s) = 0.75 (75.2 + 141.6) = 162.6 \text{ kips} > V_u = 71.5 \text{ kips} \text{ O.K.} \]

Thus, the transverse reinforcement spacing over the distance \(\ell_o = 28 \text{ in.} \) near the column ends required for confinement is also adequate for shear.

The remainder of the column length must contain hoop reinforcement satisfying 7.10 \(21.6.4.6 \) with center-to-center spacing not to exceed either six times the diameter of the column longitudinal bars (= 6 \(\times \) 1.0 = 6.0 in.) or 6 in.

Use No. 4 hoops and crossties spaced at 4 in. within a distance of 28 in. from the column ends and No. 4 hoops spaced at 6 in. or less over the remainder of the column.

6. Minimum length of lap splices of column vertical bars.

The location of lap splices of column bars must be within the center half of the member length. Also, the splices are to be designed as tension splices. If all the bars are spliced at the same location, the splices need to be Class B. Transverse reinforcement at 4.5 in. spacing is to be provided over the full lap splice length.

Required length of Class B splice = 1.3\(\ell_d \)

where

\[\ell_d = \left(\frac{3}{40} \frac{f_y}{\lambda \sqrt{f_c}} \left(\frac{\psi_t \psi_e \psi_s}{c_b + K_{tr}} \right) \right) d_b \]

reinforcement location factor \(\psi_t = 1.0 \) (other than top bars)

coating factor \(\psi_e = 1.0 \) (uncoated bars)

reinforcement size factor \(\psi_s = 1.0 \) (No. 7 and larger bars)

lightweight aggregate concrete factor \(\lambda = 1.0 \) (normal weight concrete)

\[c_b = 1.5 + 0.5 + \frac{1.0}{2} = 2.5 \text{ in.} \text{ (governs)} \]
Example 29.3 (cont’d) Calculations and Discussion

\[
= \frac{1}{2} \left[\frac{24 - 2(1.5 + 0.5) - 1.0}{2} \right] = 4.75 \text{ in.}
\]

\[
K_{tr} = \frac{40A_{tr}}{s_n} = \frac{40 \times (3 \times 0.20)}{4.5 \times 3} = 1.8
\]

where \(A_{tr} \) is for 3-No. 4 bars, \(s \) (the maximum spacing of transverse reinforcement within \(\ell_d \)) = 4.5 in., and \(n \) (number of bars being developed) = 3

\[
\frac{c_b + K_{tr}}{d_b} = \frac{2.5 + 1.8}{1.0} = 4.3 > 2.5, \text{ use 2.5}
\]

Therefore,

\[
\ell_d = \frac{3}{40} \times \frac{60,000}{1.0 \times \sqrt{4000}} \times \frac{1.0 \times 1.0 \times 1.0}{2.5} \times 1.0 = 28.5 \text{ in.}
\]

Class B splice length = \(1.3 \times 28.5 = 37.1 \) in.

Use a 3 ft-2 in. splice length.

7. Reinforcement details for the column are shown in Fig. 29-31. Note that for practical purposes, a 4-in. hoop spacing is used over the entire length of the column.
Figure 29-31 Reinforcement Details for Edge Column Supporting Level 1
Example 29.4—Proportioning and Detailing of Exterior Beam-Column Connection of Building in Example 29.1

Determine the transverse reinforcement and shear strength requirements for an exterior beam-column connection between the beam considered in Example 29.2 and the column of Example 29.3. Assume the joint to be located at the first floor level.

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Transverse reinforcement for confinement.</td>
<td></td>
</tr>
<tr>
<td>Section 21.7.3.1 requires the same amount of confinement reinforcement within the joint as for the length ℓ_o at column ends, unless the joint is confined by beams framing into all vertical faces of the column. A member that frames into a face is considered to provide confinement if at least three-quarters of the face of the joint is covered by the framing member.</td>
<td></td>
</tr>
<tr>
<td>In the case of the beam-column joint considered here, beams frame into only three sides of the column. In Example 29.3, confinement requirements at column ends were satisfied by No. 4 hoops with crossties spaced at 4 in.</td>
<td></td>
</tr>
<tr>
<td>2. Check shear strength of joint in E-W direction.</td>
<td></td>
</tr>
<tr>
<td>The shear force across section x-x (see Fig. 29-32) of the joint is obtained as the difference between the tensile force from the top flexural reinforcement of the framing beam (stressed to 1.25f_y) and the horizontal shear from the column above.</td>
<td>21.7.2.1</td>
</tr>
<tr>
<td>$T = A_s (1.25f_y) = (5 \times 0.79) (1.25 \times 60) = 296$ kips</td>
<td></td>
</tr>
<tr>
<td>An estimate of the horizontal shear from the column, V_h, can be obtained by assuming that the beams in the adjoining floors are also deformed so that plastic hinges form at their junctions with the column, with M_{pr} (beam) = 477.0 ft-kips (see Fig. 29-28). By further assuming that the end moments in the beams are resisted by the columns above and below the joint inversely proportional to the column lengths, the average horizontal shear in the column is approximately:</td>
<td></td>
</tr>
<tr>
<td>$V_h = \frac{2 \times 477.0}{12 + 16} = 34.1$ kips</td>
<td></td>
</tr>
<tr>
<td>Thus, the net shear at section x-x of the joint is $V_u = 296 - 34.1 = 261.9$ kips. Section 21.7.4.1 gives the nominal shear strength of a joint as a function of the area of the joint cross-section, A_j, and the degree of confinement by framing beams. For the joint confined on three faces considered here (note: beam width = 20 in. > 0.75 (column width) = 0.75 $/H11003$ 24 = 18 in.):</td>
<td></td>
</tr>
<tr>
<td>$\phi V_c = \phi 15 \sqrt{f_c'} A_j$</td>
<td>21.7.4.1 9.3.4</td>
</tr>
<tr>
<td>$= 0.85 \times 15 \sqrt{4000} \times 24^2 / 1000 = 464.5$ kips > 261.9 kips O.K.</td>
<td></td>
</tr>
</tbody>
</table>
3. Check shear strength of joint in N-S direction.

The shear force across section x-x (see Fig. 29-33) of the joint is determined as follows:

\[T_1 = A_y (1.25 f_y) = (4 \times 0.60) (1.25 \times 60) = 180 \text{ kips} \]

The negative and positive probable flexural strengths at the joint are 302.6 ft-kips (4-No. 7 bars top and bottom).

The average horizontal shear in the column is approximately:

\[V_u = \frac{2(302.6 + 302.6)}{12 + 16} = 43.2 \text{ kips} \]

Thus, the net shear at section x-x of the joint is

\[V_u = T_1 + C_2 - V_u = 180 + 180 - 43.2 = 316.8 \text{ kips} < \phi V_c = 464.5 \text{ kips} \text{ O.K.} \]
Note that if the shear strength of the concrete in the joint as calculated above were inadequate, any adjustment would have to take the form of either an increase in the column cross-section (and hence A_j) or an increase in the beam depth (to reduce the amount of flexural reinforcement required and hence the tensile force T) since transverse reinforcement is considered not to have a significant effect on shear strength.

4. Reinforcement details for the exterior joint are shown in Fig. 29-34.
Example 29.5—Proportioning and Detailing of Interior Beam-Column Connection of Building in Example 29.1

Determine the transverse reinforcement and shear strength requirements for the interior beam-column connection at the first floor of the interior E-W frame considered in the previous examples. The column is 30-in. square and is reinforced with 12-No. 8 bars. The beams have dimensions of \(b = 20 \text{ in.} \) and \(d = 21.5 \text{ in.} \) and are reinforced as noted in Example 29.2 (see Fig. 29-30).

Calculations and Discussion

1. Determine transverse reinforcement requirements.
 a. Confinement reinforcement

 Maximum allowable spacing of rectangular hoops assuming No. 4 hoops with two crossties in both directions:

 \[
 s_{\text{max}} = 0.25 \text{ (least dimension of column)} = 0.25 \times 30 = 7.5 \text{ in.} \\
 = 6 \text{ (diameter of longitudinal bar)} = 6 \times 1.00 = 6 \text{ in.} \]

 \[
 s_o = 4 + \left(\frac{14 - h_x}{3} \right) = 4 + \left(\frac{14 - 9.83}{3} \right) = 5.4 \text{ in.} < 6 \text{ in.} \quad \text{(governs)} \\
 > 4 \text{ in.} \quad \text{Eq. (21-2)}
 \]

 where \(h_x = \frac{30 - 2 \left(1.5 + 0.5 + \frac{1.00}{2} \right)}{3} + 2 \left(\frac{1.00}{2} + \frac{1}{4} \right) = 9.83 \text{ in.} \)

 With a hoop spacing of 5 in., the required cross-sectional area of confinement reinforcement in the form of hoops is:

 \[
 A_{sh} \geq \left\{ \begin{align*}
 0.3sb_c \left(\frac{A_{ch}}{A_{ch}} - 1 \right)
 \frac{f_c'}{f_{yt}} &= (0.3 \times 5 \times 27.0) \left(\frac{900}{729} - 1 \right) \frac{4000}{60,000} = 0.63 \text{ in.}^2 \\
 0.09sb_c \frac{f_c'}{f_{yt}} &= (0.09 \times 5 \times 27.0) \frac{4000}{60,000} = 0.81 \text{ in.}^2 \quad \text{(governs)}
 \end{align*} \right. \quad \text{Eq. (21-4)}
 \]

 \[
 A_{sh} \geq \left\{ \begin{align*}
 0.63 \text{ in.}^2 \\
 0.81 \text{ in.}^2
 \end{align*} \right. \quad \text{Eq. (21-5)}
 \]

 Since the joint is framed by beams having widths = 20 in. < 3/4 width of column = 22.5 in. on all four sides, it is not considered confined and a 50% reduction in the amount of confinement reinforcement indicated above is not allowed.

 No. 4 hoops spaced at 5 in. on center provide \(A_{sh} = 0.20 \times 4 = 0.80 \text{ in.}^2 \times 0.81 \text{ in.}^2 \)

 b. Transverse reinforcement for shear

 Following the same procedure in Example 29.4, the shear forces in the column are obtained for seismic forces in the E-W and N-S directions.
The largest probable flexural strength that may develop in the column can conservatively be assumed to correspond to the balanced point of the column interaction diagram.

With the strength reduction factor equal to 1.0 and $f_y = 1.25 \times 60 = 75$ psi, the moment corresponding to balanced failure is 1438 ft-kips. Thus, $V_u = (2 \times 1438)/14 = 205.4$ kips.

The shear force need not exceed that determined from joint strengths based on the M_{pr} of the beams framing into the joint.

For seismic forces in the E-W direction, M_{pr}^- of the beam framing into the joint at the face of the interior column is 477.0 ft-kips (5-No. 8 top bars). The M_{pr}^+ is 302.6 ft-kips (4-No. 7 bottom bars) based on the beam framing into the other face of the joint. Distributing the moment to the columns in proportion to $1/l$, the moment at the top of the first story column is:

$$
\frac{(477.0 + 302.6)}{12 + 16} = 334.1 \text{ ft-kips}
$$

It is possible for the base of the first story column to develop M_{pr} of the column. Thus, the shear force is:

$$
V_u = \frac{334.1 + 1438}{14} = 259.4 \text{ ft-kips}
$$

For seismic forces in the N-S direction, M_{pr}^- of the beam is 302.6 ft-kips (4-No. 7 top bars) and M_{pr}^+ is 302.6 ft-kips (4-No. 7 bottom bars). Therefore, at the top of the first story column, the moment is approximately:

$$
(2 \times 302.6) \frac{12}{12 + 16} = 259.4 \text{ ft-kips}
$$

The shear force is:

$$
V_u = \frac{259.4 + 1438}{14} = 121.2 \text{ kips}
$$

Both of these shear forces are greater than those obtained from analysis.

Since the factored axial forces are greater than $A_g f'_c / 20 = 180$ kips, the shear strength of the concrete may be used:

$$
V_c = 2\lambda \sqrt{f'_c b_w d} \left(1 + \frac{N_u}{2000 A_g} \right)
$$

Eq. (11-4)
Conservatively using the minimum axial force on the column:

\[V_c = 2 \times 1.0 \sqrt{4000 \times (30 \times 27.5)} \left[1 + \frac{1,192,700}{2000 \times (30)^2} \right] = 173.5 \text{ kips} \]

\[\phi V_c = 0.75 \times 173.5 = 130.1 \text{ kips} > V_u = 126.6 \text{ kips} \quad \text{O.K.} \]

Thus, the transverse reinforcement spacing over the distance \(\ell_o = 28 \text{ in.} \) near the column ends required for confinement is also adequate for shear.

Use No. 4 hoops and crossties spaced at 5 in. at the ends of the column.

2. Check shear strength of joint in E-W direction

Following the same procedure as used in Example 29.4, the forces affecting the horizontal shear across a section near mid-depth of the joint shown in Fig. 29-35 are obtained.

Net shear force across section \(x-x = T_1 + C_2 - V_h = 296.3 + 180.0 - 55.7 = 420.6 \text{ kips} = V_u \)

Shear strength of joint, noting that the joint is not confined on all faces is (i.e., beam width = 20 in. < 0.75 (column width) = 0.75 \times 30 = 22.5 in.):

\[\phi V_c = \phi 12 \sqrt{f_c A_j} \]

\[= 0.85 \times 12 \sqrt{4000 \times 30^2 / 1000} = 580.6 \text{ kips} > 420.6 \text{ kips} \quad \text{O.K.} \]

21.7.4.1

\[M_u = (477.0 + 302.6) \left(\frac{16}{12 + 16} \right) = 445.5^k \]

\[V_h = \frac{2(477.0 + 302.6)}{12 + 16} = 55.7^k \]

\[M_{pr} = 302.6^k \]

\[T_2 = 2.4 \times 1.25 \times 60 = 180^k \]

\[V_n = 55.7^k \]

\[M_u = (477.0 + 302.6) \left(\frac{12}{12 + 16} \right) = 334.1^k \]

29-80

Figure 29-35 Shear Analysis of Interior Beam-Column Joint in E-W Direction
3. Check shear strength of joint in N-S direction

At both the top and the bottom of the beam, 4-No. 7 bars are required \((M_{pr} = 302.6 \text{ ft-kips})\).

Net shear force across section \(x-x = T_1 + C_2 - V_u = 180 + 180 - 43.2 = 316.8 \text{ kips} = V_u\)

where \(T_1 = C_2 = 2.4 \times 1.25 \times 60 = 180 \text{ kips}\)

\[V_u = 2(302.6 + 302.6)/(12 + 16) = 43.2 \text{ kips}\]

\[\phi V_c = \phi 12 \sqrt{f_c'} A_j = 580.6 \text{ kips} > V_u = 316.8 \text{ kips} \text{ O.K.}\]
Example 29.6—Proportioning and Detailing of Structural Wall of Building in Example 29.1

Design the wall section at the first floor level of the building in Example 29.1. At the base of the wall, \(M_u = 49,142 \text{ ft-kips} \) and \(V_u = 812 \text{ kips} \).

Calculations and Discussion

Code Reference

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Equation/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Determine minimum longitudinal and transverse reinforcement requirements in the wall.</td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>Check if two curtains of reinforcement are required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two curtains of reinforcement shall be provided in a wall if the in-plane factored shear force assigned to the wall exceeds (2A_{cv} \lambda \sqrt{f'c}), where (A{cv}) is the cross-sectional area bounded by the web thickness and the length of section in the direction of the shear force considered.</td>
<td>21.9.2.2</td>
</tr>
<tr>
<td></td>
<td>(2A_{cv} \lambda \sqrt{f'_c} = 2 \times 1.0 \times 18 \times 24.5 \times 12 \times \sqrt{4000} / 1000 = 669 \text{ kips} < V_u = 812 \text{ kips})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Therefore, two curtains of reinforcement are required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note that (V_u = 812 \text{ kips}) < upper limit on shear strength = (\phi A_{cv} \sqrt{f'_c} = 2,008 \text{ kips}) O.K.</td>
<td>21.9.4.4</td>
</tr>
<tr>
<td>b.</td>
<td>Required longitudinal and transverse reinforcement in wall.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum distributed web reinforcement ratios = 0.0025 with max. spacing = 18 in.</td>
<td>21.9.2.1</td>
</tr>
<tr>
<td></td>
<td>With (A_{cv}) (per foot of wall) = 18 \times 12 = 216 in.(^2), minimum required area of reinforcement in each direction per foot of wall = 0.0025 \times 216 = 0.54 \text{ in.}^2/\text{ft}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assuming No. 5 bars in two curtains ((A_s = 2 \times 0.31 = 0.62 \text{ in.}^2)), required spacing is (s = \frac{0.62}{0.54} \times 12 = 13.8 \text{ in.} < 18 \text{ in.})</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Determine reinforcement requirements for shear.</td>
<td>21.9.4</td>
</tr>
<tr>
<td></td>
<td>Assume two curtains of No. 5 bars spaced at 12 in. on center. Shear strength of wall:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\phi V_n = \phi A_{cv} \left(\alpha_c \lambda \sqrt{f'_c} + \rho_t f_y \right))</td>
<td>Eq. (21-7)</td>
</tr>
<tr>
<td></td>
<td>where (\phi = 0.75) and (\alpha_c = 2.0) for (h_w/\ell_w = 148/24.5 = 6 > 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_{cv} = 18 \times 24.5 \times 12 = 5292 \text{ in.}^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\rho_t = \frac{0.62}{18 \times 12} = 0.0029)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\phi V_n = (0.75 \times 5292) \left[2 \times 1.0 \times \sqrt{4000} + (0.0029 \times 60,000) \right] / 1000 = 1193 \text{ kips} > 812 \text{ kips}) O.K.</td>
<td></td>
</tr>
</tbody>
</table>
Example 29.6 (cont’d) Calculations and Discussion Code Reference

Therefore, use two curtains of No. 5 bars spaced at 12 in. on center in the horizontal direction.

The reinforcement ratio ρ_l shall not be less than the ratio ρ_t when the ratio h_w/l_w is less than 2.0. Since h_w/l_w is equal to 6.0, the minimum reinforcement ratio will be used.

Use 2 curtains of No. 5 bars spaced at 12 in. on center in the vertical direction.

3. Determine reinforcement requirements for combined flexural and axial loads.

Structural walls subjected to combined flexural and axial loads shall be designed in accordance with 10.2 and 10.3 except that 10.3.6 and the nonlinear strain requirements of 10.2.2 do not apply.

Assume that each 30×30 in. column at the end of the wall is reinforced with 24-No. 11 bars. It was determined above that 2-No. 5 bars at a spacing of 12 in. are required as vertical reinforcement in the web. With this reinforcement, the wall is adequate to carry the factored load combinations per 9.2.

4. Determine if special boundary elements are required.

The need for special boundary elements at the edges of structural walls shall be evaluated in accordance with 21.9.6.2 or 21.9.6.3. The provisions of 21.9.6.2 are used in this example.

Compression zones shall be reinforced with special boundary elements where

$$c \geq \frac{l_w}{600(\delta_u/h_w)}, \quad \delta_u/h_w \geq 0.007$$

Eq. (21-8)

In this case, $l_w = 24.5 \text{ ft} = 294 \text{ in.}, h_w = 148 \text{ ft} = 1776 \text{ in.}, \delta_u = 13.5 \text{ in.}$ and $\delta_u/h_w = 0.007 > 0.007$. Therefore, special boundary elements are required if c is greater than or equal to

$$294/(600 \times 0.0076) = 64.5 \text{ in.}$$

The distance c to be used in Eq. (21-8) is the largest neutral axis depth calculated for the factored axial force and nominal moment strength consistent with the design displacement δ_u. From a strain compatibility analysis, the largest c is equal to 68.1 in. corresponding to an axial load of 3649 kips and nominal moment strength of 97,302 ft-kips, which is greater than 64.5 in. Thus, special boundary elements are required.

The special boundary element shall extend horizontally from the extreme compression fiber a distance not less than

$$c - 0.1l_w = 68.1 - (0.1 \times 294) = 38.7 \text{ in.} \quad (\text{governs}) \quad \text{or} \quad c/2 = 68.1/2 = 34.1 \text{ in.}$$

Considering the placement of the vertical bars in the web, confine 45 in. at both ends of the wall.

5. Determine special boundary element transverse reinforcement.

Transverse reinforcement shall satisfy the requirements of 21.6.4.2 through 21.6.4.4 except Eq. (21-4) need not be satisfied.
Example 29.6 (cont’d) Calculations and Discussion

- Confinement of 30 × 30 in. boundary elements

Maximum allowable spacing of rectangular hoops assuming No. 4 hoops and crossties around every longitudinal bar in both directions of the 30 × 30 in. boundary elements:

\[
s_{max} = 0.33 \text{ (minimum member dimension)} = 0.33 \times 30 = 9.9 \text{ in.}
\]
\[
= 6 \text{ (diameter of longitudinal bar)} = 6 \times 1.41 = 8.5 \text{ in.}
\]
\[
= s_0 = 4 + \left(\frac{14 - h_x}{3} \right) = 4 + \left(\frac{14 - 6.0}{3} \right) = 6.7 \text{ in.} \geq 6.0 \text{ in.; use 6 in. (governs)} \quad \text{Eq. (21-2)}
\]

where \(h_x \) = maximum horizontal spacing of hoop or crosstie legs on all faces of the 30 × 30 in. boundary element.

Required cross-sectional area of transverse reinforcement in the 30 × 30 in. boundary elements, assuming \(s = 6.0 \) in.:

\[
A_{sh} = A_{sh} = \frac{0.09sbc'f_y}{f_y} = \frac{0.09 \times 6.0 \times [30 - (2 \times 1.5)] \times 4}{60} = 0.97 \text{ in.}^2 \quad \text{Eq. (21-5)}
\]

No. 4 hoops with crossties around every longitudinal bar in the 30 × 30 in. boundary elements provide \(A_{sh} = 7 \times 0.2 = 1.40 \text{ in.}^2 > 0.97 \text{ in.}^2 \)

- Confinement of web

Maximum allowable spacing of No. 5 transverse reinforcement:

\[
s_{max} = 0.33 \text{ (minimum member dimension)} = 0.33 \times (45 - 30) = 5.0 \text{ in.}
\]
\[
= 6 \text{ (diameter of longitudinal bar)} = 6 \times 0.625 = 3.75 \text{ in. (governs)}
\]
\[
= s_0 = 4 + \left(\frac{14 - 13.25}{3} \right) = 4.25 \text{ in.}
\]

For confinement in the direction parallel to the wall, assuming \(s = 3.0 \) in.:

\[
b_c = 18 - (2 \times 1.5) = 15.0 \text{ in.}
\]
\[
A_{sh} = \frac{0.09 \times 3.0 \times 15.0 \times 4}{60} = 0.27 \text{ in.}^2
\]

Using 2-No. 5 horizontal bars, \(A_{sh} = 2 \times 0.31 = 0.62 \text{ in.}^2 > 0.27 \text{ in.}^2 \)

For confinement in the direction perpendicular to the wall:

\[
b_c = 45 - 30 = 15 \text{ in.}
\]
\[
A_{sh} = \frac{0.09 \times 3.0 \times 15.0 \times 4}{60} = 0.27 \text{ in.}^2
\]

With a No. 5 hoop and crosstie, \(A_{sh} = 2 \times 0.31 = 0.62 \text{ in.}^2 > 0.27 \text{ in.}^2 \)
Example 29.6 (cont’d) Calculations and Discussion Code Reference

The transverse reinforcement of the boundary element shall extend vertically a distance of
\[\ell_w = 24.5 \text{ ft (governs)} \] or
\[M_u / 4V_u = 49,142 / (4 \times 812) = 15.1 \text{ ft from the critical section.} \]

6. Determine required development and splice lengths.

Reinforcement in structural walls shall be developed or spliced for \(f_y \) in tension in accordance with Chapter 12, except that at locations where yielding of longitudinal reinforcement is likely to occur as a result of lateral displacements, development of longitudinal reinforcement shall be 1.25 times the values calculated for \(f_y \) in tension.

a. Lap splice for No. 11 vertical bars in boundary elements.*

Class B splices are designed for the No. 11 vertical bars.

Required length of Class B splice = 1.3 \(\ell_d \)

where

\[\ell_d = \left(\frac{3}{40} \frac{f_y \psi_t \psi_e \psi_s}{\lambda \sqrt{f_c^*}} \left(\frac{c_b + K_{tr}}{d_b} \right) \right) \]

\(\psi_t = 1.3 \) for top bars; \(\psi_e = 1.0 \) for other bars

\(\psi_s = 1.0 \) for uncoated bars

\(\lambda = 1.0 \) for normal weight concrete (0.75 for lightweight concrete)

Assume no more than 50% of the bars spliced at any one location.

\[c_b = 1.5 + 0.5 + \frac{1.41}{2} = 2.7 \text{ in. (governs)} \]

\[= \frac{1}{2} \left[30 - 2(1.5 + 0.5) - 1.41 \right] = 4.1 \text{ in.} \]

\[K_{tr} = \frac{40A_{tr}}{sn} = \frac{40 \times (4 \times 0.20)}{6.0 \times 4} = 1.3 \]

where \(A_{tr} \) is for 4-No. 5 bars, \(s = 6.0 \) in., and \(n \) (number of bars being developed) = 4 in one layer at one location.

\[\left(\frac{c_b + K_{tr}}{d_b} \right) = \frac{(2.7 + 1.3)}{1.41} = 2.8 > 2.5, \text{ use 2.5} \]

* The use of mechanical connectors may be considered as an alternative to lap splices for these large bars.
Therefore,
\[
\ell_d = \frac{3}{40} \times \frac{1.25 \times 60,000}{1.0 \times \sqrt{4000}} \times \frac{1.0}{2.5} \times 1.41 = 50.2 \text{ in.}
\]

Class B splice length = \(1.3 \times 50.2 = 65.3\) in.

Use a 5 ft-6 in. splice length.

Note that splices beyond the first story can be 25\% shorter, or 4 ft-6 in. long, as long as the same reinforcement continues.

b. Lap splice for No. 5 vertical bars in wall web.

Again assuming no more than 50\% of bars spliced at any one location, the length of the Class B splice is determined as follows:

\[
\ell_d = \frac{3}{40} \times \frac{f_y}{\lambda \sqrt{f'_c}} \times \frac{\Psi_t \Psi_e \Psi_s}{c_b + K_{tr}} \frac{d_b}{d_b}
\]

reinforcement location factor \(\Psi_t = 1.0\) (other than top bars)

c\(\text{coating factor } \Psi_e = 1.0\) (uncoated bars)

reinforcement size factor \(\Psi_s = 0.8\) (No. 6 and smaller bars)

lightweight aggregate concrete factor \(\lambda = 1.0\) (normal weight concrete)

\[
c_b = 0.75 + 0.625 + \frac{0.625}{2} = 1.7 \text{ in. (governs)}
\]

\[
= \frac{1}{2} \times 12 = 6 \text{ in.}
\]

\[
K_{tr} = 0
\]

\[
\frac{(c_b + K_{tr})}{d_b} = \frac{1.7}{0.625} = 2.7 > 2.5, \text{ use } 2.5
\]

Therefore,
\[
\ell_d = \frac{3}{40} \times \frac{1.25 \times 60,000}{1.0 \times \sqrt{4000}} \times \frac{0.8}{2.5} \times 0.625 = 17.8 \text{ in.}
\]
Example 29.6 (cont’d) Calculations and Discussion

Class B splice length \(= 1.3 \times 17.8 = 23.1 \text{ in.} \)

Use a 2 ft-0 in. splice length.

Although all the No. 5 bars will not yield at the base, it is simpler to base the splice
lengths of all No. 5 bars on possible yielding. Beyond the first story, the splice lengths
may be reduced to 1 ft-8 in.

c. Development length for No. 5 horizontal bars in wall assuming no hooks are used
within boundary element.

\[
\ell_d = \left(\frac{3 \times f_y}{40 \times \sqrt{f'_c}} \cdot \frac{\psi_t \psi_e \psi_s}{c_b + K_{tr}} \right) d_b
\]

Since it is reasonable to assume that the depth of concrete cast in one lift beneath a
horizontal bar will be greater than 12 in., reinforcement factor \(\psi_t = 1.0 \)
coating factor \(\psi_e = 1.0 \) (uncoated bars)
reinforcement size factor \(\psi_s = 0.8 \) (No. 6 and smaller bars)
lightweight aggregate concrete factor \(\lambda = 1.0 \) (normal weight concrete)

\[
c_b = 0.75 + \frac{0.625}{2} = 1.06 \text{ in.} \quad \text{(governs)}
\]

\[
= \frac{1}{2} \times 12 = 6 \text{ in.}
\]

\[K_{tr} = 0\]

\[
\frac{(c_b + K_{tr})}{d_b} = \frac{1.06}{0.625} = 1.7 < 2.5
\]

Therefore,

\[
\ell_d = \frac{3}{40} \times \frac{1.25 \times 60,000}{1.0 \times \sqrt{4000}} \times \frac{1.3 \times 0.8}{1.7} \times 0.625 = 34.0 \text{ in.}
\]

This length cannot be accommodated within the confined core of the boundary element,
thus hooks are needed.

Anchor horizontal bars to longitudinal reinforcement in boundary element. 21.9.6.4(e)

No lap splices would be required for the No. 5 horizontal bars (full length bars weigh
approximately 25 lbs. and are easily installed).

7. Reinforcement details for structural wall are shown in Fig. 29-36.

Note that the No. 5 bars at 3 in. that are required for confinement in the direction parallel to
the web are developed into the boundary element and into the web beyond the face of the
2 ft-6 in. boundary element [see Fig. 29-36(b)].
Example 29.6 (cont’d) Calculations and Discussion

Figure 29-36(a) Reinforcement Details for the Structural Wall

Figure 29-36(b) Reinforcement Details for the Structural Wall
Example 29.7—Design of 12-Story Precast Frame Building using Strong Connections*

This example illustrates the design and detailing requirements for typical beam-to-beam, column-to-column, and beam-to-column connections for the precast building shown in Fig. 29-37. In particular, details are developed for: (1) a strong connection near midspan of an interior beam that is part of an interior frame on the third floor level, (2) a column-to-column connection at mid-height between levels 2 and 3 of an interior column stack that is part of an interior frame, and (3) a strong connection at the interface between an exterior beam at the second floor level of an exterior frame and the continuous corner column to which it is connected. Pertinent design data are as follows:

Material Properties:
- Concrete ($w_c = 150 \text{pcf}$): $f_c = 6000 \text{ psi}$ for columns in the bottom six stories
 - $f_c = 4000 \text{ psi}$ elsewhere
- Reinforcement: $f_y = 60,000 \text{ psi}$

Service Loads:
- Live load = 50 psf
- Superimposed dead load = 42.5 psf

Member Dimensions:
- Beams in N-S direction: $24 \times 26 \text{ in.}$
- Beams in E-W direction: $24 \times 20 \text{ in.}$
- Columns: $24 \times 24 \text{ in.}$
- Slab: 7 in.

Calculations and Discussion

1. Seismic design forces
 - The computation of the seismic design forces is beyond the scope of this example. Traditional analysis methods can be used for precast frames, although care should be taken to approximate the component stiffness in a way that is appropriate for the precast components being used. For emulation design (as illustrated in this example), it is reasonable to model the beams and columns as if they were monolithic concrete.

2. Strong connection near beam midspan
 a. Required flexural reinforcement
 - Special moment frames with strong connections constructed using precast concrete shall satisfy all requirements for special moment frames constructed with cast-in-place concrete, in addition to the provisions of 21.6.2.

 The required reinforcement for the beams on the third floor level is shown in Table 29-8. The design moments account for all possible load combinations per 9.2.1, and the provided areas of steel are within the limits specified in 21.5.2.1. Also given in Table 29-9 are the flexural moment strengths ϕM_n at each section. Note that at each location, the section is tension-controlled, so that $\phi = 0.9$.

*This example has been adapted from Ref. 29.20.
Example 29.7 (cont’d) Calculations and Discussion

Reference

Fig 29-39 Example Building

Fig 29-37 Example Building
Table 29-9 Required Reinforcement for E-W Third Floor Beam

<table>
<thead>
<tr>
<th>Location</th>
<th>M_u (ft-kips)</th>
<th>A_s^* (in.2)</th>
<th>Reinforcement</th>
<th>ϕM_n (ft-kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports</td>
<td>-510.8</td>
<td>7.79</td>
<td>8-No. 9</td>
<td>-522.0</td>
</tr>
<tr>
<td></td>
<td>+311.7</td>
<td>4.38</td>
<td>5-No. 9</td>
<td>+351.0</td>
</tr>
<tr>
<td>Interior</td>
<td>+63.0</td>
<td>1.40</td>
<td>2-No. 9</td>
<td>+150.3</td>
</tr>
</tbody>
</table>

$A_s^* = 0.025 \times 24 \times 17.44 = 10.46 \text{ in.}^2 \ (21.5.2.1)$

$A_s \leq 3 \sqrt{\frac{4000}{24 \times 17.44/60,000}} = 1.32 \text{ in.}^2 \ (10.5.1)$

$= 200 \times 24 \times 17.44/60,000 = 1.40 \text{ in.}^2 \ (\text{governs})$

Three No. 9 bars are made continuous at the top and bottom throughout the spans, providing negative and positive design moment strengths of 220.6 ft-kips.

Check provisions of 21.5.2.2 for moment strength along span of beam:

At the supports, $\phi M_n^+ (5\text{-No. 9}) = 351.0 \text{ ft-kips} > \phi M_n^- / 2 = 261.0 \text{ ft-kips} \quad \text{O.K.} \ 21.5.2.2$

At other sections, $\phi M_n^- (3\text{-No. 9}) = 220.6 \text{ ft-kips} > \phi M_n^- / 4 = 130.5 \text{ ft-kips} \quad \text{O.K.}$

b. Lap splice length

Lap splices of flexural reinforcement must not be placed within a joint, within a distance $2h$ from faces of supports or within regions of potential plastic hinging. Note that all lap splices must be confined by hoops or spirals with a maximum spacing or pitch of $d/4 = 4.4$ in. or 4 in. (governs) over the length of the lap. Lap splice lengths will be determined for the No. 9 top and bottom bars.

$$
\ell_d = \left(\frac{3}{40} \frac{f_y}{\lambda \sqrt{f_c'}} \frac{\psi_t \psi_c \psi_s}{c_b + K_{tr}} \right)_{db}
$$

Eq. (12-1)

where $\frac{c_b + K_{tr}}{d_b} \leq 2.5$

$\psi_t = 1.3$ for top bars; $\psi_t = 1.0$ for other bars \ 12.2.4

$\psi_c = 1.0$ for uncoated bars

$\psi_s = 1.0$ for No. 7 and larger bars

$\lambda = 1.0$ for normal weight concrete (0.75 for lightweight concrete)
Example 29.7 (cont’d) Calculations and Discussion

\[c_b = 1.5 + 0.5 + \frac{1.128}{2} = 2.56 \text{ in. (governs)}\]

\[= \frac{24-2(1.5 + 0.5)-1.128}{2 \times 2} = 4.72 \text{ in.}\]

\[\frac{c_b}{d_b} = \frac{2.56}{1.128} = 2.27, \text{ which makes it reasonable to take } \frac{c_b + K_{tr}}{d_b} = 2.5\]

Thus, for top bars:

\[\ell_d = \frac{3}{40} \frac{60,000}{1 \times \sqrt{4000}} \frac{1.3}{2.5} d_b = 37d_b = 37 \times 1.128 = 41.7 \text{ in.}\]

For bottom bars:

\[\ell_d = \frac{3}{40} \frac{60,000}{1 \times \sqrt{4000}} \frac{1.0}{2.5} d_b = 28.5d_b = 28.5 \times 1.128 = 32.2 \text{ in.}\]

Note that 2-No. 9 top bars are adequate in the interior of the span, i.e., \(\phi M_n/2\) = 150.3 ft-kips > \(\phi M_n/4 = 130.5 \text{ ft-kips}\). Thus, the top bar development length can be reduced by an excess reinforcement factor of \((A_s \text{ required}/A_s \text{ provided}) = 2/3\):

\[\ell_d = 2/3 \times 41.7 = 27.8 \text{ in.}\]

Since all of the reinforcement is spliced at the same location, Type B splices are to be used for both the top and bottom bars.

Type B splice length = 1.3 \times 32.2 = 41.9 in. > 12 in. for the bottom bar

Provide 3 ft-6 in. splice length for both the top and the bottom bars.

c. Reinforcing bar cutoff points

For the purpose of determining the cutoff points for the reinforcement, a moment diagram corresponding to the probable moment strengths at the beam ends and 0.9 times the dead load on the span will be used, since this will result in the longest bar lengths. The cutoff point for 5 of the 8-No. 9 bars at the top will be determined.

Determine probable moment strengths \(M^+_{pr}\) and \(M^-_{pr}\) with \(f_s = 1.25f_y = 75 \text{ ksi}\) and \(\phi = 1.0\), ignoring compression steel.

For 5-No.9 bottom bars:

\[a = \frac{A_s f_s}{0.85 f_y b} = \frac{5 \times 75}{0.85 \times 4 \times 24} = 4.6 \text{ in.}\]

\[M^+_{pr} = A_s f_s \left(d - \frac{a}{2} \right) = (5 \times 75) \left(17.44 - \frac{4.6}{2} \right)/12 = 473.1 \text{ ft-kips}\]

where \(d = 20 - 1.5 \) (clear cover) \(- 0.5 \) (diameter of No. 4 stirrup) \(- 0.564 \) (diameter of No. 9 bar/2) = 17.44 in.

Similarly, for 8-No. 9 top bars: \(M^-_{pr} = 688.2 \text{ ft-kips}\)
Dead load on beam:

\[w_D = \left(\frac{7}{12} \times 0.150 \times 24 \right) + (0.0425 \times 24) + \left(\frac{24 \times 13 \times 0.150}{144} \right) = 3.45 \text{ kips-ft at midspan} \]

\[0.9w_D = 0.9 \times 3.45 = 3.11 \text{ kips/ft} \]

The distance from the face of the interior support to where the moment under the loading considered equals \(\phi M_n (3-\text{No. 9}) = 220.6 \text{ ft-kips} \) is readily obtained by summing moments about section A-A (see Fig. 29-38):

\[\frac{x}{2} \left(\frac{3.11x}{11} \right) \left(\frac{x}{3} \right) + 688.2 - 220.6 - 69.9x = 0 \]

Solving for \(x \) gives a distance of 6.91 ft from the face of the support.

The 5-No. 9 bars must extend a distance \(d = 17.44 \text{ in.} \) or \(12d_b = 13.54 \text{ in.} \) beyond the distance \(x \). Thus, from the face of the support, the total bar length must be at least equal to 6.91 + (17.44/12) = 8.4 ft. Also, the bars must extend a full development length \(\ell_d \) beyond the face of the support:

\[\ell_d = \frac{3}{40} \frac{f_y}{\lambda \sqrt{f'_c}} \left(\frac{\psi_t \psi_e \psi_s}{c_b + K_{tr}} \right) d_b \]

where \(\frac{c_b + K_{tr}}{d_b} \leq 2.5 \)

\(\psi_t = 1.3 \) for top bars

\(\psi_e = 1.0 \) for uncoated bars

\(\psi_s = 1.0 \) for No. 7 and larger bars

\(\lambda = 1.0 \) for normal weight concrete
Example 29.7 (cont’d) Calculations and Discussion

$\frac{24 - 2(1.5 + 0.5) - 1.128}{2 \times 7} = 1.35 \text{ in. (governs)}$

$K_{tr} = 0 \text{ (conservative)}$

$\frac{c_b + K_{tr}}{d_b} = \frac{1.35 + 0}{1.128} = 1.2$

$\ell_d = \frac{3}{40} \frac{60,000}{1.0 \times \sqrt{4000}} = \frac{1.3}{1.2} d_b = 77d_b = 77 \times 1.128 = 86.9 \text{ in.} = 7.2 \text{ ft.} < 8.4 \text{ ft}$

The total required length of the 5-No. 9 bars must be at least 8.4 ft beyond the face of the support.

Flexural reinforcement shall not be terminated in a tension zone unless one or more of the conditions of 12.10.5 are satisfied. In this case, the point of inflection is approximately 10.7 ft from the face of the right support, which is greater than 8.4 ft. The 5-No. 9 bars cannot be terminated here unless one of the conditions of 12.10.5 is satisfied.

Check if the factored shear force V_u at the cutoff point does not exceed two-thirds of ϕV_n. In this region of the beam, it can be shown that No. 4 stirrups @ 8 in. are required. However, No. 4 stirrups @ 6 in. will be provided to satisfy 12.10.5.1.

$\phi V_n = \phi(V_c + V_s) = 0.75 \times \left(\frac{2 \times \sqrt{4000} \times 24 \times 17.44 + \frac{0.4 \times 60,000 \times 17.44}{6}}{1000} \right) = 92.0 \text{ kips}$

$\frac{2}{3} \phi V_n = 61.3 \text{ kips} > V_u = 60.0 \text{ kips}$ at 8.4 ft from face of support

Since $2\phi V_n / 3 > V_u$, the cutoff point for the 5-No. 9 bars can be 8.4 ft beyond the face of the interior support.

The cutoff point for 2 of the 5-No. 9 bottom bars can be determined in a similar fashion. These bars can be cut off at 8.4 ft from the face of the exterior support as well, which is short of the splice closure.

d. Check connection strength

For strong connections: $\phi S_n \geq S_e$ \hspace{1cm} 21.8.3(b)

where $S_n = \text{nominal flexural or shear strength of the connection}$ \hspace{1cm} 2.1

$S_e = \text{moment or shear at connection corresponding to development of probable strength at intended yield locations, based on the governing mechanism of inelastic lateral deformation, considering both gravity and earthquake load effects}$

At the connection,

$\phi V_n = \phi(V_c + V_s) = 0.75 \times \left(2 \times 1.0 \sqrt{4000} \times 24 \times 17.44 + \frac{0.4 \times 60,000 \times 17.44}{4} \right)/1000 = 118.2 \text{ kips}$
Example 29.7 (cont’d) Calculations and Discussion

Gravity load on beam:

\[1.2w_D + 0.5w_L = (1.2 \times 3.45) + (0.5 \times 0.05 \times 24) = 4.74 \text{ kips/ft} \]

Eq. (9-5)

Maximum shear force at connection due to gravity and earthquake load effects occurs at 9.125 ft from face of right support (see Fig. 29-39):

\[V_e = 78.9 - \left(\frac{1}{2} \times 9.125 \times \frac{4.74 \times 9.125}{11} \right) = 61.0 \text{ kips} < \phi V_n = 118.2 \text{ kips} \quad O.K. \]

At the connection, \(\phi M_n \) (3-No. 9) = 220.6 ft-kips

Maximum moment at connection due to gravity and earthquake load effects occurs at 9.125 ft from face of left support (see Fig. 29-39):

\[M_e = 473.1 - (26.8 \times 9.125) - \left(\frac{1}{2} \times 9.125 \right) \left(\frac{4.74 \times 9.125}{11} \right) \left(\frac{1}{3} \times 9.125 \right) = 174.0 \text{ ft-kips} \]

\[< \phi M_n = 220.6 \text{ ft-kips} \quad O.K. \]

![Fig. 29-39 Connection Strength](image)

e. Reinforcement details

The reinforcement details for the beam are shown in Fig. 29-40.
3. Column-to-column connection at mid-height
 a. Determine required longitudinal reinforcement

 A summary of the design forces for the interior column between levels 2 and 3, which is part of an interior longitudinal frame, is contained in Table 29-10. The design forces account for all possible load combinations per 9.2.1.
Table 29-10 Design Forces for Interior Column between the Second and Third Floors

<table>
<thead>
<tr>
<th>Load Combination</th>
<th>Axial load, P_u (kips)</th>
<th>Moment, M_u (ft-kips)</th>
<th>Shear, V_u (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top</td>
<td>Bottom</td>
</tr>
<tr>
<td>1.2D + 1.6L</td>
<td>1402.6</td>
<td>-8.0</td>
<td>5.5</td>
</tr>
<tr>
<td>1.2D + 0.5L + E</td>
<td>1609.8</td>
<td>-408.3</td>
<td>467.5</td>
</tr>
<tr>
<td>1.2D + 0.5L - E</td>
<td>1195.4</td>
<td>392.3</td>
<td>-456.5</td>
</tr>
<tr>
<td>0.9D + E</td>
<td>1125.8</td>
<td>-405.5</td>
<td>466.3</td>
</tr>
<tr>
<td>0.9D - E</td>
<td>711.4</td>
<td>395.1</td>
<td>-457.8</td>
</tr>
</tbody>
</table>

It can be shown that 12-No. 10 bars are adequate for all load combinations.

Check longitudinal reinforcement ratio:

\[\rho_g = \frac{A_{st}}{bh} = \frac{12 \times 1.27}{24 \times 24} = 0.0265 \]

\[\rho_{\text{min}} = 0.01 < \rho_g = 0.0265 < \rho_{\text{max}} = 0.06 \quad \text{O.K.} \]

b. Nominal flexural strength of columns relative to that of beams

\[\sum M_{nc} \text{ (columns)} \geq \frac{6}{5} \sum M_{nb} \text{ (beams)} \]

For the top end of the lower column framing into the joint between the second and the third floor levels, $M_{nc} = 1182.3$ ft-kips, which corresponds to $P_u = 711.4$ kips. Similarly, for the bottom end of the upper column framing into the same joint, $M_{nc} = 1168.4$ ft-kips, which corresponds to $P_u = 655.5$ kips.

Thus,

\[\sum M_{nc} = 1182.3 + 1168.4 = 2350.7 \text{ ft-kips} \]

The nominal negative flexural strength M_{nb} of the beam framing into the column must include the slab reinforcement within an effective slab width equal to:

\[16 \text{ (slab thickness)} + \text{beam width} = (16 \times 7) + 24 = 136 \text{ in.} \]

\[\text{Center-to-center beam spacing} = 24 \times 12 = 288 \text{ in.} \]

\[\text{Span}/4 = (24 \times 12)/4 = 72 \text{ in. (governs)} \]

The minimum required A_s in the 72-in. effective width = $0.0018 \times 72 \times 7 = 0.91 \text{ in.}^2$ which corresponds to 5-No. 4 bars @ 72/5 = 14.4 in. Since maximum bar spacing = 2h = 14 in., provide No. 4 @ 14 in. at both the top and the bottom of the slab (according to ACI 318 Fig. 13.3.8, 100 percent of both the top and the bottom reinforcement in the column strip must be continuous or anchored at the support).
Example 29.7 (cont’d) Calculations and Discussion

From a strain compatibility analysis, \(M_{nb}^- = 736.0\text{ ft-kips}\) and \(M_{nb}^+ = 459.0\text{ ft-kips}\)

Thus,

\[
\sum M_{nb} = 736.0 + 459.0 = 1195.0\text{ ft-kips}
\]

\[
2350.7\text{ ft-kips} > \frac{6}{5} \times 1195.0 = 1434.0\text{ ft-kips} \quad \text{O.K.}
\]

The intent of 21.6.2.2 is to prevent a story mechanism, rather than prevent local yielding in a column. The 6/5 factor is clearly insufficient to prevent column yielding if the adjacent beams both hinge. Therefore, confinement reinforcement is required in the potential hinge regions of a frame column.

c. Minimum connection strength

At column-to-column connections, \(\phi M_n \geq 0.4 M_{pr}\) when bars are spliced within the middle third of the clear column height.

For the column between the second and the third floor levels with \(P_u = 711.4\text{ kips}\), it can be shown from a strain compatibility analysis that \(M_{pr} = 1244.1\text{ ft-kips}\).

Also, as indicated above, \(M_n = 1182.3\text{ ft-kips}\) for \(P_u = 711.4\text{ kips}\). From a strain compatibility analysis, \(\varepsilon_t = 0.00223\), so that \(\phi = 0.48 + (83 \times 0.00223) = 0.67\).

Therefore,

\[
\phi M_n = 0.67 \times 1182.3 = 792.1\text{ ft-kips} > 0.4 M_{pr} = 0.4 \times 1244.1 = 497.6\text{ ft-kips} \quad \text{O.K.}
\]

Splice all twelve bars at mid-height, as shown in Fig. 29-41.

Fig. 29-41 Reinforcement Details for Column-to-Column Connection
4. Column-face strong connection in beam

A strong connection is to be designed at the interface between a precast beam at the second floor level of the building that forms the exterior span of an exterior transverse frame and the continuous corner column to which it is connected.

a. Required flexural reinforcement

From the combined effects of gravity and earthquake forces, the required flexural reinforcement at the top of the beam is 5-No. 9 bars and is 4-No. 9 bars at the bottom. All possible load combinations of 9.2.1 were considered.

b. Strength design of connection

The beam-to-column connection similar to the one depicted in ACI 318 Fig. R21.8.3(c) will be provided.

The strong connection must be designed for the probable moment strength of the beam plus the moment at the face of the column due the shear force at the critical section.

Determine probable moment strengths M_{pr}^+ and M_{pr}^- with $f_s = 1.25f_y = 75$ ksi and $\phi = 1.0$, ignoring compression steel.

For 4-No. 9 bottom bars:

\[
a = \frac{A_s f_s}{0.85 f_c' b} = \frac{4 \times 75}{0.85 \times 4 \times 24} = 3.7 \text{ in.}
\]

\[
M_{pr}^+ = A_s f_s \left(d - \frac{a}{2} \right) = (4 \times 75) \left(23.44 - \frac{3.7}{2} \right) / 12 = 539.8 \text{ ft-kips}
\]

where $d = 26 - 1.5$ (clear cover) - 0.5 (diameter of No. 4 stirrup) - 0.564 (diameter of No. 9 bar/2) = 23.44 in.

Similarly, for 5-No. 9 top bars:

\[
M_{pr}^- = 660.6 \text{ ft-kips}
\]

Assuming a 2 ft-6 in. cast-in-place closure, the shear forces at the critical sections, and the moments at the connections can be determined for the two governing load combinations as follows (see Fig. 29-42).

Load combination 1: $U = 1.2D + 0.5L + E$

\[
w_D = \left(\frac{7}{12} \times 0.150 \times 13 \right) + (0.0425 \times 13) + \left(\frac{24 \times 19 \times 0.150}{144} \right) = 2.17 \text{ kips/ft at midspan}
\]

\[
w_L = 0.05 \times 13 = 0.65 \text{ kips/ft at midspan}
\]

\[
w_{u, \text{ mid}} = (1.2 \times 2.17) + (0.5 \times 0.65) = 2.93 \text{ kips/ft}
\]

and

\[
w_{u, \text{ end}} = 2.93 \times \frac{2.5}{11} = 0.67 \text{ kips/ft}
\]
Example 29.7 (cont’d) Calculations and Discussion

From Fig. 29-42:

\[
V_R(17) = \left(0.67 \times 17 \times \frac{17}{2} \right) + \left[\frac{1}{2} \times 17 \times (2.93 - 0.67) \times \frac{17}{2} \right] + 539.8 + 660.6
\]

or, \(V_R = 85.9 \) kips

\[
V_L = 85.9 - (0.67 \times 17) - \frac{1}{2} \times (2.93 - 0.67) \times 17 = 55.3 \text{ kips}
\]

\[
M_{e,\ell}^+ = 539.8 + (55.3 \times 2.5) = 678.1 \text{ ft-kips}
\]

\[
M_{e,r}^- = 660.6 + (85.9 \times 2.5) = 875.4 \text{ ft-kips}
\]

Load combination 2: \(U = 0.9D + E \) \hspace{1cm} Eq. (9-7)

\[w_{u,\text{mid}} = 0.9w_D = 0.9 \times 2.17 = 1.95 \text{ kips/ft} \]

and

\[w_{u,\text{end}} = 1.95 \times \frac{2.5}{11} = 0.44 \text{ kips/ft} \]

From Fig. 29-42:

\[
V_R(17) = \left(0.44 \times 17 \times \frac{17}{2} \right) + \left[\frac{1}{2} \times 17 \times (1.95 - 0.44) \times \frac{17}{2} \right] + 539.8 + 660.6
\]
or, \(V_R = 80.8 \text{ kips} \)

\[
V_L = 80.8 - (0.44 \times 17) - \frac{1}{2}[(1.95 - 0.44) \times 17] = 60.5 \text{ kips}
\]

\[
M_{e,l}^+ = 539.8 + (60.5 \times 2.5) = 691.1 \text{ ft-kips}
\]

\[
M_{e,r}^- = 660.6 + (80.8 \times 2.5) = 862.6 \text{ ft-kips}
\]

Thus, the governing moments at the connections are

\(M_{e,l}^+ = 691.1 \text{ ft-kips} \) and \(M_{e,r}^- = 875.4 \text{ ft-kips} \).

At the bottom of the connection, provide an additional 4-No. 9 bars to the 4-No. 9 bars (2 layers) and at the top of the section, provide an additional 5-No. 9 bars to the 5-No. 9 bars (2 layers). From a strain compatibility analysis considering all of the reinforcement in the section:

\[
\phi M_{n}^+ = 729.3 \text{ ft-kips} > M_{e,l}^+ = 691.1 \text{ ft-kips} \quad \text{O.K.}
\]

\[
\phi M_{n}^- = 888.2 \text{ ft-kips} > M_{e,r}^- = 875.4 \text{ ft-kips} \quad \text{O.K.}
\]

For both the positive and negative moment capacities, the strain in the extreme tension steel was determined from the strain compatibility analysis to be greater than 0.005 so that the section is tension-controlled.

Maximum reinforcement ratio = \(\frac{10 \times 1.0}{24 \times 22.33} = 0.019 < 0.025 \quad \text{O.K.} \quad 21.5.2.1 \)

where the effective depth \(d \) was determined from the strain compatibility analysis.

c. Anchorage and splices

Per 21.7.5.1, the minimum development length for a bar with a standard 90-degree hook in normal weight aggregate concrete is:

\[
\ell_{dh} = \frac{f_y d_b}{65 \sqrt{f'(c)}} = \frac{(60,000)(1.128)}{65 \sqrt{4000}} = 16.5 \text{ in.} \quad \text{Eq. (21-6)}
\]

Figure 29-43 shows the reinforcement details for the connection.
Example 29.7 (cont’d) Calculations and Discussion

Fig. 29-43 Reinforcement Details for Connection
Example 29.8—Design of Slab Column Connections According to 21.13.6

Figure 29-44 shows the partial plan of a 5-story building assigned to SDC D. The seismic-force-resisting system consists of a building frame, where shear walls (not shown in figure) resist the seismic forces. Check the slab-column connections at columns B1 and B2 for the provisions of 21.13.6 assuming that the induced moments transferred between the slab and column under the design displacement are not computed.

Material Properties:
- Concrete ($w_c = 150$ pcf): $f'_c = 4000$ psi
- Reinforcement: $f_y = 60$ ksi

Service Loads:
- Live load = 50 psf
- Superimposed dead load = 30 psf

Member Dimensions:
- Slab thickness = 9 in.
- Columns = 24 × 24 in.

Additional Data:
- Story height = 10 ft

Design displacements and story drifts in the N-S direction:

<table>
<thead>
<tr>
<th>Story</th>
<th>Design Displacement (in.)</th>
<th>Story Drift (in.)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* Story drift = design displacement at top of story — design displacement at bottom of story

Calculations and Discussion

1. Column B1
 a. Determine factored shear force V_{ug} due to gravity loads on slab critical section for two-way action

$$w_D = (9/12) \times 0.15 + 0.03 = 0.143 \text{ ksf}$$
Example 29.8 (cont’d) Calculations and Discussion Code Reference

\[w_L = 0.05 \text{ ksf} \]
\[w_u = 1.2w_D + 0.5w_L = 1.2 \times 0.143 + 0.5 \times 0.05 = 0.2 \text{ ksf} \]

Critical section dimensions: \(\frac{1}{11003} \)

Use average \(d = 9 - 1.25 = 7.75 \text{ in.} \)

\[b_1 = 24 + \frac{7.75}{2} = 27.875 \text{ in.} \]
\[b_2 = 24 + 7.75 = 31.75 \text{ in.} \]
\[V_{ug} = 0.2[(24 \times 12) - (27.875 \times 31.75/144)] = 56 \text{ kips} \]

b. Determine two-way shear design strength \(\phi V_c \)

For square columns, Eq. (11-33) governs:

\[V_c = 4\lambda f'_{cd} b_o d \]

where \(b_o = b_2 + 2b_1 = 31.75 + 2 \times 27.875 = 87.5 \text{ in.} \)

Thus,

\[V_c = (4 \times 1.0)\sqrt{4000 \times 87.5 \times 7.75 / 1000} = 172 \text{kips} \]

\[\phi V_c = 0.75 \times 172 = 129 \text{kips} \]

9.3.2.3

b) Check criterion in 21.13.6(b)

Since induced moments are not computed, the requirements of 21.13.6(b) must be satisfied.

Maximum story drift at 4th floor level = 0.4 in.

Design story drift ratio = story drift/story height = 0.4/(10 \times 12) = 0.003

Limiting design story drift ratio:

\[0.035 - 0.05(V_{ug} / \phi V_c) = 0.035 - 0.05(56/129) = 0.013 > 0.005 \]

Since the design story drift ratio = 0.003 < 0.013, slab shear reinforcement satisfying the requirements of 21.13.6 need not be provided.

2. Column B2

a. Determine factored shear force \(V_{ug} \) due to gravity loads on slab critical section for two-way action
Example 29.8 (cont’d) Calculations and Discussion

\[w_u = 1.2w_D + 0.5w_L = 1.2 \times 0.143 + 0.5 \times 0.05 = 0.2 \text{ ksf} \]

21.13.6, 9.2.1(a)

Critical section dimensions:

\[b_1 = b_2 = 24 + 7.75 = 31.75 \text{ in.} \]

\[V_{ug} = 0.2[(24 \times 22) - (31.75^2/144)] = 104 \text{ kips} \]

b. Determine two-way shear design strength \(\phi V_c \)

For square columns, Eq. (11-33) governs:

\[V_c = 4\lambda \sqrt{f'_c b_0 d} \]

where \(b_0 = 4 \times 31.75 = 127.0 \text{ in.} \)

Thus,

\[V_c = (4 \times 1.0)\sqrt{4000 \times 127.0 \times 7.75 / 1000} = 249 \text{ kips} \]

\(\phi V_c = 0.75 \times 249 = 187 \text{ kips} \)

9.3.2.3

c. Check criterion in Section 21.13.6(b)

Maximum story drift at 4th floor level = 0.4 in.

Design story drift ratio = story drift/story height = 0.4/(10 \times 12) = 0.003

Limiting design story drift ratio:

\[0.035 - 0.05(V_u / \phi V_c) = 0.035 - 0.05(104/187) = 0.007 > 0.005 \]

Since the design story drift ratio = 0.003 < 0.007, slab shear reinforcement satisfying the requirements of 21.13.6 need not be provided.
UPDATE FOR ’08 CODE

The major change in the ’08 code that impacts the design of structural plain concrete members took place in Section 9.3.5 where the strength reduction factor, ϕ, was increased from 0.55 to 0.60. Everything else remaining the same, this will result in an increase in design strength of structural plain concrete of 9%.

BACKGROUND

With publication of the 1983 edition of ACI 318, provisions for structural plain concrete were incorporated into the code by reference. The document referenced was ACI 318.1, Building Code Requirements for Structural Plain Concrete. This method of regulating plain concrete continued with the 1989 edition of ACI 318. For the 1995 edition, the provisions formally contained in the ACI 318.1 standard were incorporated into Chapter 22 of the code and publication of ACI 318.1 was discontinued. While the presentation of some provisions is different, few technical changes have been made since the 1989 edition of ACI 318.1. Technical changes that were made are discussed at the appropriate location in this part.

22.1, 22.2 SCOPE AND LIMITATIONS

By definition, plain concrete is structural concrete in members that either contain no reinforcement or contain less reinforcement than the minimum amount specified for reinforced concrete in other chapters of ACI 318 and Appendices A through C (2.2). The designer should take special note of 22.2.1. Since the structural integrity of structural plain concrete members depends solely on the properties of the concrete, it limits the use of plain concrete to: members that are continuously supported by soil or by other structural members capable of providing vertical support continuous throughout the length of the plain concrete member; members in which arch action assures compression under all conditions of loading; and walls and pedestals. Chapter 22 of ACI 318 contains specific design provisions for structural plain concrete walls, footings and pedestals.

Section 1.1.7 indicates that slabs-on-ground are not regulated by the code unless they transmit vertical loads or lateral forces from other parts of the structure to the soil. In addition, 22.2.2 points out that the design and construction of portions of structural plain concrete foundation piers and cast-in-place piles and piers embedded in ground capable of providing adequate lateral support are not governed by Chapter 22. Provisions for these elements are typically found in the general building code.

22.3 JOINTS

Structural plain concrete members must be small enough or provided with contraction (control) joints so as to create elements that are flexurally discontinuous (22.3.1). This requires that the build-up of tensile stresses due to external loads and internal loads, such as from drying shrinkage, temperature and moisture changes, and creep, must be limited to permissible values. Section 22.3.2 emphasizes several items that will influence the size of elements and, consequently, the spacing of contraction joints. These include: climatic conditions; selection and proportioning of materials; mixing, placing and curing of concrete; degree of restraint to movement; stresses due to external and internal loads to which the element is subjected; and construction techniques. Where contraction
joints are provided, the member thickness should be reduced a minimum of 25% if the joint is to be effective. For additional information on drying shrinkage of concrete, other causes of volume changes of concrete, and the use of contraction joints to relieve stress build-up, see Ref. 30.1.

While not a part of the provisions, R22.3 gives an exception to the above requirement for contraction joints. It indicates that where random cracking due to creep, shrinkage and temperature effects will not affect the structural integrity, and is otherwise acceptable, such as transverse cracks in a continuous wall footing, contraction joints are not necessary.

22.4 DESIGN METHOD

As for reinforced concrete designed in accordance with Chapters 1 through 21, the provisions of Chapter 22 are based on the strength design methodology. Load combinations and load factors are found in 9.2, and are the same as those used for the design of reinforced concrete. The load combinations and load factors in the 1999 and earlier ACI codes were replaced with load combinations and load factors from ASCE 7-98 in the ‘02 code. In the ‘02 code, the load and strength reduction factors previously in Chapter 9 were moved to Appendix C. The strength reduction factor, \(\phi \), is found in 9.3.5. It was reduced from 0.65 (found in the 1999 and earlier editions of the ACI code) to 0.55 in the 2002 code. For the ‘08 code, the strength reduction factor, which continues to apply for all stress conditions (i.e., flexure, compression, shear and bearing), has been increased to 0.60. Everything else remaining the same, the reduction in \(\phi \) from 0.65 to 0.55 resulted in a 15.4% decrease in the design strength. The increase from 0.55 to 0.60 means that the design strength is 92.3% of that permitted by the 1999 and earlier codes. The increase in \(\phi \) in the ‘08 code was based on reliability analyses, statistical study of concrete properties, and calibration to previous practice (i.e., the 1999 and earlier codes). Although some load factors in 9.2 are less than those in C.9.2 (i.e., same as those found in the 1999 and earlier codes), they have not been reduced enough to completely compensate for the lower design strength. While each case needs to be investigated, generally speaking a more economical design will be obtained by using the load and strength reduction factors of Appendix C. If snow loads or roof live loads are included in the controlling gravity load, depending on the magnitude of these loads with respect to floor live load, use of the load and strength reduction factors of Chapter 9 may be more economical.

To quickly determine which one of the two sets of load and strength reduction factors should be used, compute the governing load/load effect (e.g., \(P_u \) or \(M_u \)) using the load factors in 9.2 and C.9.2. These values can then be divided by the corresponding strength reduction factors from 9.3.5 and C.9.3.5, respectively, to determine the nominal loads/load effects. Satisfying the lower nominal load/load effect may be more economical.

Numerous figures and tables are provided in the main body of this part to assist the user in designing structural members of plain concrete. They are based on the load factors and strength reduction factor (0.60) of Chapter 9. An appendix to this part contains similar figures and tables based on the load factors and strength reduction factor (0.65) found in Appendix C. To facilitate comparing companion figures and tables, their assigned numbers are the same except those corresponding to the appendix, are prefaced with the letter “C.”

A linear stress-strain relationship in both tension and compression is assumed for members subject to flexure and axial loads. The allowable stress design procedures contained in Appendix A - Alternate Design Method of the 1999 and earlier editions of the code do not apply to structural members of plain concrete. That Appendix was removed from the 2002 code.

Where the provisions for contraction joints and/or size of members have been observed in accordance with 22.3, tensile strength of plain concrete is permitted to be considered (22.4.4). Tension is not to be considered beyond the outside edges of the panel, contraction joints or construction joints, nor is flexural tension allowed to be assumed between adjacent structural plain concrete elements (22.4.6).

Section 22.4.7 permits the entire cross-section to be considered effective in resisting flexure, combined flexure and axial load, and shear; except that for concrete cast on the ground, such as a footing, the overall thickness, \(h \), shall be assumed to be 2 in. less than actual. The commentary indicates that this provision is necessary to allow for unevenness of the excavation and for some contamination of the concrete adjacent to the soil. No strength shall be assigned to any steel reinforcement that may be present (22.4.5).
As in the past, 22.2.3, through its reference to 1.1.1, requires that the minimum specified compressive strength of concrete, f'_c, used in design of structural plain concrete elements shall not be less than 2500 psi. This provision is considered necessary due to the fact that performance, safety and load-carrying capability is based solely on the strength and quality of the concrete. Starting with the ’08 Code, 22.2.3 requires that minimum specified compressive strength also must comply with the durability requirements of Chapter 4. Starting with the ’95 code, Chapter 22 indicated that structural plain concrete basement walls were exempt from the special exposure conditions of 4.2.2 (of previous editions of the code), which is comparable to Exposure Classes F1, F2, P1 and/or C2 of the ’08 code. This exemption has been removed from the ’08 Code which means that concrete used in structural plain concrete elements must comply with the same durability requirements as concrete used in reinforced concrete elements.

22.5 STRENGTH DESIGN

Permissible stresses of ACI 318.1-89 were replaced with formulas for calculating nominal strengths for flexure, compression, shear and bearing. The nominal moment strength, M_n, is given by:

$$M_n = 5\lambda \sqrt{f'_c} S_m$$ \hspace{1cm} Eq. (22-2)

for flexural tension controlled sections where λ is the modification factor reflecting the reduced mechanical properties of lightweight concrete, and

$$M_n = 0.85f'_c S_m$$ \hspace{1cm} Eq. (22-3)

where flexural compression controls design.

The nominal axial compression strength, P_n, is given by:

$$P_n = 0.60f'_c \left[1 - \left(\frac{\ell_c}{32h} \right)^2 \right] A_1$$ \hspace{1cm} Eq. (22-5)

Note that the effective length factor, k, is missing from the numerator of the ratio $\ell_c/32h$. This change from ACI 318.1 was made because it was felt that it is always conservative to assume $k = 1$, which is based on both ends being fixed against translation. Also, it was recognized that it is difficult to obtain fixed connections in typical types of construction utilizing structural plain concrete walls. If a connection fixed against rotation is provided at one or both ends, the engineer can always assume $k = 0.8$ as in the past. However, before doing so the engineer should verify that the member providing rotational restraint has a flexural stiffness EI/ℓ at least equal to that of the wall.

For members subject to combined flexural and axial compression, two interaction equations are given and both must be satisfied. For the compression face:

$$\frac{P_u}{\phi P_n} + \frac{M_u}{\phi M_n} \leq 1$$ \hspace{1cm} Eq. (22-6)

where $M_n = 0.85f'_c S_m$

and for the tension face:

$$\frac{M_u}{S_m} - \frac{P_u}{A_g} \leq 5\phi\lambda \sqrt{f'_c}$$ \hspace{1cm} Eq. (22-7)

The nominal moment strength, M_n, for use in Eq. (22-6) (i.e., $0.85f'_c S_m$) is more conservative than in the 1989 edition of ACI 318.1 in which it was $f'_c S_m$. Other nominal strengths of Chapter 22 are consistent with those calculated using permissible stresses of ACI 318.1-89.

The nominal shear strength, V_n, is given by:
\[V_n = \frac{4}{3} \lambda \sqrt{f_c'} b w h \]

for beam action, and by

\[V_n = \left[\frac{4}{3} + \frac{8}{3\beta} \right] \lambda \sqrt{f_c'} b_o h \leq 2.66 \lambda \sqrt{f_c'} b_o h \]

Eq. (22-10)

for two-way action, or punching shear.

In Eq. (22-10), the expression \([4/3 + 8/(3\beta)]\) reduces the nominal shear strength for concentrated loads with long-to-short-side ratios \(\beta\) greater than 2. Where the ratio is equal to or less than 2, the expression takes on the maximum permitted value of 2.66.

In the ’08 code, the equations for computing nominal flexural tension (22-2) and shear (22-9) strengths have been modified to apply to normalweight and lightweight concrete by inclusion of \(\lambda\), the modification factor for lightweight concrete, which is determined in accordance with 8.6.1.

Nominal bearing strength, \(B_n\), is given by:

\[B_n = 0.85 f_c' A_1 \]

where \(A_1\) is the loaded area. If the supporting surface is wider on all sides than \(A_1\), the bearing strength may be increased by \(\sqrt{A_2 / A_1}\), but by not more than 2. \(A_2\) is the area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained wholly within the support and having for its upper base the loaded area, \(A_1\), and having side slopes of 1 vertical to 2 horizontal. See Part 6 for determination of \(A_2\).

22.6 WALLS

22.6.5 Empirical Design Method

The code offers two alternatives for designing plain concrete walls. The simpler of the two is referred to as the **empirical design method**. It is only permitted for walls of solid rectangular cross-section where the resultant of all factored loads falls within the middle one-third of the overall thickness of the wall. In determining the effective eccentricity, the moment induced by lateral loads must be considered in addition to any moment induced by the eccentricity of the axial load. Limiting the eccentricity to one-sixth the wall thickness assures that all portions of the wall remain under compression. Under the empirical design method, the nominal axial load strength, \(P_n\), is determined from:

\[P_n = 0.45 f_c' A_g \left[1 - \left(\frac{f_c}{32h} \right)^2 \right] \]

Eq. (22-14)

This is a single-strength equation considering only the axial load. Moments due to eccentricity of the applied axial load and/or lateral loads can be ignored since an eccentricity not exceeding \(h/6\) is assumed.

To assist the code user in the design of plain concrete walls using the empirical design method, Fig. 30-1 has been provided. By entering the figure with the required axial load strength, \(P_u\), one can select the wall thickness that will yield a design axial load strength, \(\phi P_n\), that is equal to or greater than required. For intermediate values of \(f_c'\), the required wall thickness can be determined by interpolation.

22.6.3 Combined Flexure and Axial Load

The second method, which may be used for all loading conditions, must be used where the resultant of all factored loads falls outside of the middle one-third of the wall thickness (i.e., \(e > h/6\)). In this procedure the wall must be proportioned to satisfy the provisions for combined flexure and axial loads of interaction Eqs. (22-6)
Figure 30-1 Design Axial Load Strength, ϕP_n, of Plain Concrete (Normalweight) Walls using the Empirical Design Method
and (22-7). Where the effective eccentricity is less than 10% of the wall thickness, \(h \), an assumed eccentricity of not less than 0.10\(h \) is required.

To utilize this method, one must generally proceed on a trial and error basis by assuming a wall thickness and specified compressive strength of concrete, \(f'_c \), and determine if the two interaction equations are satisfied.

This process can proceed on a more structured basis if it is first determined whether Eq. (22-6) or Eq. (22-7) controls. Each equation can be rearranged to solve for \(M_u \). Then, by setting the two resulting equations equal to one another, and then rearranging them to get both terms with \(P_u \) on the left side, and introducing constants to make units consistent, the resulting equation (1), shown below, can be solved for the axial load, \(P_u \).

\[
\frac{S_m P_u}{12A_g} + \frac{M_n P_u}{P_n} = \phi M_n - \frac{5\phi \lambda \sqrt{f'_c S_m}}{12,000}
\]

(1)

where \(M_n \) is determined from Eq. (22-3) for a one-foot strip of wall, axial loads are in kips, moments are in ft-kips, section modulus is in in.\(^3\), area is in in.\(^2\), and \(\sqrt{f'_c} \) is in psi. The computed value of \(P_u \) is the axial load at which the moment strength is greatest and is the same regardless of whether Eq. (22-6) or (22-7) is used.

If the required axial load strength, \(P_{u'} \), is greater than the computed value of \(P_u \), the design is governed by Eq. (22-6), in which case the required wall thickness is determined by trial and error. If the required wall thickness is more than that first assumed, another iteration is necessary. If it is significantly less than assumed, it may be advisable to repeat the process to determine if a smaller thickness and/or lower concrete strength can be used; thus resulting in a more economical design. Several iterations may be necessary before the most economical design solution is achieved.

If the required axial load strength, \(P_{u'} \), is less than or equal to the computed value of \(P_u \), the design is governed by Eq. (22-7). In this case, Eq. (22-7) can be rearranged, with \(A_g \) and \(S_m \) expressed in terms of \(h \) for a one-foot strip of wall. The rearrangement results in quadratic equation (2) shown below

\[
0.06\phi \lambda \sqrt{f'_c} h^2 + P_u h - 72M_u = 0
\]

(2)

which can be solved for the required wall thickness, \(h \), by using the quadratic formula and substituting as shown in equation (3),

\[
h = \frac{\sqrt{P_u^2 + (17.32\phi \lambda \sqrt{f'_c} M_u)}}{0.12\phi \lambda \sqrt{f'_c}} - P_u
\]

(3)

where the axial load is in kips, the moment is in ft-kips, \(\sqrt{f'_c} \) is in psi, and the thickness, \(h \), is in inches.

The design process can be greatly simplified with the use of axial load-moment strength curves such as those shown in Figs. 30-2 and 30-3. To use the curves, enter with the known factored axial load strength, \(P_{u'} \), and determine if the design moment strength, \(\phi M_{n'} \), equals or exceeds the required factored moment strength, \(M_{u'} \). Of course, the curves can also be used by entering with the required factored moment strength, \(M_{u'} \), and determining if the design axial load strength, \(\phi P_{n'} \), equals or exceeds the required factored axial load strength, \(P_{u'} \).

If the effective eccentricity due to all factored loads is less than 0.10\(h \), the design axial load strength, \(\phi P_{n'} \), is determined by projecting horizontally to the left from the intersection of the line labeled “\(e = h/10 \)” and the curve representing the specified compressive strength of concrete, \(f'_c \). For example, Fig. 30-2 shows that for an 8-in. wall, 8 ft in height constructed of concrete with a specified compressive strength, \(f'_c \), of 2500 psi, the design axial load strength, \(\phi P_{n'} \), is approximately 74 kips/ft of wall. This assumes that the wall is loaded concentrically and there are no lateral loads.
Figure 30-2 Design Strength Interaction Diagrams for 8.0-in. Plain Concrete (Normalweight) Wall, 8 ft in Height

Figure 30-3 Design Strength Interaction Diagrams for 8.0-in. Plain Concrete (Normalweight) Wall, 12 ft in Height
to induce moments (i.e., \(\phi M_n = 0 \)). However, when the axial load is applied at the required minimum eccentricity of 0.10h, the design axial load strength is reduced to approximately 55 kips/ft of wall. The moment corresponding to the 55-kip load being applied at the minimum eccentricity of 0.10h is approximately 3.6 ft-kips/ft of wall.

A line labeled “\(e = h/6 \)” has also been included on Figs. 30-2 and 30-3 to assist the user in identifying when the effective eccentricity exceeds this value. If the intersection of the axial load, \(P_u \), and moment, \(M_u \), lies to the right of the line, a portion of the wall is under tension due to the induced moment.

Walls of plain concrete are typically used as basement walls and above grade walls in residential and small commercial buildings. In most cases the axial loads are small compared to the design axial load compressive strength, \(\phi P_n \), of the wall. Therefore, Figs. 30-4 through 30-6 have been developed which include only the lower range of values of axial loads from Figs. 30-2 and 30-3. Where small axial loads are acting in conjunction with moments, the design is governed by flexural tension [Eq. (22-7)] rather than by combined axial and flexural compression [Eq. (22-6)].

An examination of Eq. (22-7) will reveal that the design moment strength for lightly-loaded walls is not a function of the wall’s height; therefore, the format of Figs. 30-4 through 30-6 is somewhat different than that of Figs. 30-2 and 30-3. To assist the user in verifying that the wall being designed is controlled by Eq. (22-7) instead of Eq. (22-6), Figs. 30-7 through 30-9 have been provided. These figures show the value of the design axial load strength, \(\phi P_n \), that corresponds to the maximum value of the design moment strength, \(\phi M_n \). For example, Fig. 30-7 shows an 8-in. wall 8 ft high has a design axial load strength, \(\phi P_n \), of approximately 40.7 kips/ft of wall when a moment equal to the maximum design moment strength, \(\phi M_n \), is applied. From Fig. 30-2 the maximum design moment strength, \(\phi M_n \), is approximately 6.2 ft-kips/ft of wall when a factored load of approximately 41 kips/ft of wall is applied (actual calculated value is 40.78 ft-kips/ft). When using Figs. 30-4 through 30-6, the user should always verify that the required axial load strength, \(P_u \), is less than the value determined from Figs. 30-7 through 30-9. Also, the provisions of 22.6.6.2 should not be overlooked. They require that the thickness of the wall be not less than the larger of 1/24 the unsupported height or length of the wall and 5-1/2 in. A close examination of Figs. 30-7 through 30-9 will show that in almost every case covered, the design axial load strength, \(\phi P_n \), exceeds 15 kips/ft of wall, which is significantly greater than the factored load on typical walls in low-rise residential buildings.

![Figure 30-4 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls](f'c = 2500 psi)

\(\phi = 0.60 \)

\(\lambda = 1.0 \)

\(h = 5.5", 7.5", 8", 10", 12" \)
Figure 30-5 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls
\(f'_c = 3500 \text{ psi} \)

Figure 30-6 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls
\(f'_c = 4500 \text{ psi} \)
Figure 30-7 Design Axial Load Strength, ϕP_n, of Plain Concrete (Normalweight) Walls at Maximum Design Moment Strength, ϕM_n ($f'_c = 2500$ psi)

Figure 30-8 Design Axial Load Strength, ϕP_n, of Plain Concrete (Normalweight) Walls at Maximum Design Moment Strength, ϕM_n ($f'_c = 3500$ psi)
In typical construction of basement or foundation walls retaining unbalanced backfill, some walls of the building are generally nonload-bearing walls. In this case, especially where the wall may be backfilled before all the dead load that will eventually be on the wall is in place, it is prudent to design the wall assuming no axial load is acting in conjunction with the lateral soil load. For this condition, equation (2) simplifies to:

\[0.06\phi\lambda f'_c h^2 - 72M_u = 0 \]

In this form, the equation can be rearranged to solve for required wall thickness:

\[h = \left(\frac{72M_u}{0.06\phi\lambda f'_c} \right)^{1/2} \]

or to solve for required specified compressive strength of concrete:

\[f'_c = \left(\frac{72M_u}{0.06\phi\lambda h^2} \right)^{2} \]

In Eq. (3), (4), and (5), \(f'_c \) is in psi, \(h \) is in inches, and \(M_u \) is in ft-kips/ft of wall.

Comparison of the Two Methods

Section 22.6.6.3 requires that exterior basement and foundation walls must be not less than 7-1/2 in. thick. Note though, some building codes permit these walls to be 5-1/2 in. in thickness. Section 22.6.6.2 requires the thickness of other walls to be not less than 5-1/2 in., but not less than 1/24 the unsupported height or length of the wall, whichever is shorter.

Other limitations of 22.6.6 must also be observed. They include: the wall must be braced against lateral translation (22.6.6.4); and not less than 2-No. 5 bars, extending at least 24 in. beyond the corners, shall be provided around all door and window openings (22.6.6.5). See Errata to the first printing of ACI 318-08.
To facilitate the design of simply-supported walls subject to lateral loads from wind and/or soil, Tables 30-1 and 30-2 have been provided. The tables give factored moments due to various combinations of wind and soil lateral loads, and varying backfill heights. The tables also accommodate exterior walls completely above grade (no lateral load due to backfill), as well as walls that are not subject to lateral loading from wind. Tables 30-1 and 30-2 are to be used with the load factors of 9.2, and Tables C30-1 and C30-2 are to be used with the load factors of C.9.2. Note that the only difference between the two tables in each set is that the first table was developed using a load factor on wind of 1.6, whereas, the second table utilizes a load factor of 1.3. In each set of tables the load factor on the lateral load due to the soil is the same; either 1.6 or 1.7 as indicated in the title of the table. Table 30-1 or C30-1 is to be used where load combinations in 9.2 or C.9.2, respectively, are being investigated where the wind load has been reduced by a directionality factor as in all editions of the IBC and in ASCE 7 starting with the 1998 edition (9.2.1b). Table 30-2 or C30-2 is to be used where load combinations in 9.2 or C.9.2, respectively, are being investigated where the wind load has not been reduced by a directionality factor, such as in the NBC, SBC, and UBC, and in editions of ASCE 7 prior to 1998.

For exterior walls partially above and below grade, the moments in the table assume that the wind pressure is acting in the same direction as the lateral load due to the soil (i.e., inward). Most contemporary wind design standards require that exterior walls be designed for both inward and outward acting pressures due to wind. Generally, the higher absolute value of design wind pressure occurs where the wall is under negative pressure (i.e., the force is acting outward on the wall). Section 9.2.1(d) stipulates that where earth pressure counteracts wind load, which is the case with wind acting outward, the load factor on H must be set equal to zero in load combination Eq. (9-6). Except for situations where the backfill height is small compared to the overall wall height, and depending upon the relative magnitude of the design wind pressure and lateral soil pressure, the moment due to lateral soil loads and inward-acting wind of Tables 30-1 and 30-2 will generally apply. For situations where outward-acting wind controls, it is simpler to design the wall as though the full height of the wall is exposed to the outward-acting wind pressure. Tables 30-1, 30-2, C30-1, and C30-2 can be used in this manner by assuming the backfill height is zero.

Before designing a structural plain concrete wall that will be resisting wind uplift and/or overturning forces, the appropriate load combinations of 9.2 or C.9.2 need to be investigated. If the entire wall cross-section will be in tension due to the factored axial and lateral forces, the wall must be designed as a reinforced concrete wall, or other means must be employed to transfer the uplift forces to the foundation. This condition can occur frequently in the design of walls supporting lightweight roof systems subject to net uplift forces from wind loads.

22.7 FOOTINGS

It is common practice throughout the United States, including in structures assigned to Seismic Design Category C, D, E or F, to use structural plain concrete footings for the support of walls for all types of structures. In addition, plain concrete is frequently used for footings supporting columns and pedestals, and foundation walls, including basement walls, particularly in residential construction. These uses of structural plain concrete are permitted by 22.10, which are generally consistent with contemporary building codes, including the IBC, IRC and NFPA 5000. In any event, regardless of the provisions in ACI 318, the use of plain concrete elements in structures assigned to Seismic Design Category C, D, E or F must comply with the general building code adopting the ACI 318 Code by reference.

Many architects and engineers specify that two No. 4 or No. 5 longitudinal bars be included in footings supporting walls. However, typically these footings have no reinforcement in the transverse direction, or the amount provided is less than that required by the code to consider the footing reinforced. Such footings must be designed as structural plain concrete, since in the transverse direction the footing is subjected to flexural and possibly shear stresses due to the projection of the footing beyond the face of the supported member.

The base area of footings must be determined from unfactored loads and moments, if any, using permissible soil bearing pressures. Once the base area of the footing is selected, factored loads and moments are used to proportion the thickness of the footing to satisfy moment and, where applicable, shear strength requirements. Sections 22.7.5 and 22.7.6 define the critical sections for computing factored moments and shears, respectively.
The locations are summarized in Table 30-3. Figure 22-2 illustrates the location of the critical sections for beam action and two-way action shear for a footing supporting a column or pedestal.

Footings must be proportioned to satisfy the requirements for moment in accordance with Eq. (22-2). For footings supporting columns, pedestals or concrete walls, if the projection of the footing beyond the face of the supported member does not exceed the footing thickness, h, it is not necessary to check for beam action shear since the location of the critical section for calculating shear falls outside the footing. Where beam action shear must be considered, the requirements of Eq. (22-9) must be satisfied. In addition, for footings supporting columns, pedestals or other concentrated loads, if the projection of the footing beyond the critical section exceeds h/2, it is necessary to determine if the requirements of Eq. (22-10) are satisfied for two-way action (punching) shear. Generally, flexural strength will govern the thickness design of plain concrete footings; however, the engineer should not overlook the possibility that beam action shear or two-way action shear may control. It must be remembered that the provisions of 22.4.7 require that for plain concrete members cast on soil, the thickness, h, used to compute flexural and shear strengths is the overall thickness minus 2 in. Thus, for a footing with an overall thickness of 8 in. (which is the minimum overall thickness permitted by 22.7.4), the thickness, h, used to compute strengths is 6 in. Some building codes permit 6-in. thick footings for residential and other small buildings. In this case the thickness, h, for strength computation purposes is 4 in.

Figure 30-10 has been provided to aid in the selection of footing thickness to satisfy flexural strength requirements. The figure is entered with the factored soil bearing pressure. Project vertically upward to the curve that represents the length that the footing projects beyond the critical section at which the moment must be calculated (see Table 30-3). Read horizontally to the left to determine the minimum required footing thickness. Two (2) in. must be added to this value to satisfy 22.4.7. The thicknesses in the figure are based on a specified compressive strength of concrete, f'_c of 2500 psi. For higher strength concrete, the thickness can be reduced by multiplying by the factor:

$$(2500/\text{specified compressive strength of concrete})^{0.25}$$

As the exponent in the equation suggests, a large increase in concrete strength results in only a small decrease in footing thickness. For example, doubling the concrete strength only reduces the thickness 16 percent.

22.8 PEDESTALS

Pedestals of plain concrete are permitted by 22.8.2 provided the unsupported height does not exceed three times the average least plan dimension. The design must consider all vertical and lateral loads to which the pedestal will be subjected. The nominal bearing strength, B_{n}, must be determined from Eq. (22-12). Where moments are induced due to eccentricity of the axial load and/or lateral loads, the pedestal shall be designed for both flexural and axial loads and satisfy interaction Eqs. (22-6) and (22-7). In Eq. (22-6), P_{n} is replaced with B_{n}, nominal bearing strength.

Pedestal-like members with heights exceeding three times the average least lateral dimension are defined as columns by the code and must be designed as reinforced concrete members. Columns of structural plain concrete are prohibited by Chapter 22.

Some contemporary building codes prohibit the use of structural plain concrete pedestals to resist seismic lateral forces in most structures assigned to Seismic Design Category C, D, E or F. See Table 1-3 and section below on 22.10.
<table>
<thead>
<tr>
<th>Wall Ht. (ft.)</th>
<th>Backfill</th>
<th>Unfactored Design Lateral Soil Load (psf per foot of depth)</th>
<th>Unfactored Design Wall Ht. (ft.)</th>
<th>Unfactored Lateral Soil Pressure (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>30</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.20</td>
<td>0.40</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table 30-1 Factored Moments Induced in Walls by Lateral Soil and/or Wind Load (ft·kips/linear ft)
(For Use with Chapter 9 Load Factors: Soil 1.6, Wind 1.6)
Table 30-2 Factored Moments Induced in Walls by Lateral Soil and/or Wind Load (ft-kips/linear ft)

(For Use with Chapter 9 Load Factors: Soil 1.6, Wind 1.3)

<table>
<thead>
<tr>
<th>Unfactored Design Lateral Soil Load (psf per foot of depth)</th>
<th>Backfill Ht. (ft.)</th>
<th>Unfactored Design Wind Pressure (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 30 30 30 30 45 45 45 45 45 60 60 60 60 60 100 100 100 100 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 10 20 40 80 0 10 20 40 80 0 10 20 40 80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 30-3 Locations for Computing Moments and Shears in Footings*

* * = thickness of footing for moment and shear computation purposes.

<table>
<thead>
<tr>
<th>Supported Member</th>
<th>Moment</th>
<th>Shear – Beam Action</th>
<th>Shear – Two-Way (punching)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Wall</td>
<td>at face of wall</td>
<td>h from face of wall</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Masonry Wall</td>
<td>1/2 way between center of wall and face of wall</td>
<td>h from face of wall</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Column or Pedestal</td>
<td>at face of column or pedestal</td>
<td>h from face of column or pedestal</td>
<td>h/2 from face of column or pedestal</td>
</tr>
<tr>
<td>Column with Steel Base Plate</td>
<td>1/2 way between face of column and edge of steel base plate</td>
<td>h from 1/2 way between face of column and edge of steel base plate</td>
<td>h/2 from 1/2 way between face of column and edge of steel base plate</td>
</tr>
</tbody>
</table>

^h = thickness of footing for moment and shear computation purposes.

30-15
Figure 30-10 Thickness of Plain Concrete (Normalweight) Footing Required to Satisfy Flexural Strength for Various Projection Distances, in. \((f'_c = 2500 \text{ psi}) \)

Since 1999, the code includes a section (22.10) to address a seismic design issue not covered previously. This concerns the use of plain concrete elements in structures subject to earthquake ground motions. The requirements prohibit the use of structural plain concrete elements in structures assigned to Seismic Design Category D, E or F, except for three specific cases cited in the provisions. They are:

1. In detached one-and two-family dwellings not exceeding three stories in height and constructed with wood or steel stud bearing walls, the following are permitted:
 a. plain concrete footings supporting walls, columns or pedestals; and
 b. plain concrete foundation or basement walls provided
 i. the wall is not less than 7-1/2 in. thick, and
 ii. it retains no more than 4 ft of unbalanced fill.

\[f'_c \text{ greater than } 2500 \text{ psi, multiply thickness determined from above chart by } (2500/f'_c)^{0.25} \]
2. In structures other than covered by 1 above, plain concrete footings supporting cast-in-place reinforced concrete walls or reinforced masonry walls are permitted provided the footing has at least two continuous No. 4 longitudinal reinforcing bars that provide an area of steel of not less than 0.002 times the gross transverse cross-sectional area of the footing. Continuity of reinforcement must be provided at corners and intersections. In the 2002 ACI code, the requirement was added to limit the use of this provision to situations where the supported wall is either of cast-in-place reinforced concrete or reinforced masonry.

Although Chapter 22 of the code has no restrictions on the use of structural plain concrete elements in structures assigned to Seismic Design Category C, contemporary building codes, including the IBC, IRC and NFPA 5000, generally apply the restrictions of 22.10 to structures assigned to Seismic Design Category C. Use of structural plain concrete elements in accordance with Chapter 22, not including 22.10, is permitted in structures assigned to Seismic Design Category A or B.

REFERENCE

This Appendix includes figures and tables that parallel those of Part 30. The figures of this Appendix are compatible with the load factors and strength reduction factor (φ = 0.65) of ACI 318-02, ACI 318-05, and ACI 318-08, Appendix C. (In the body of Part 30, figures and tables are compatible with load factors and strength reduction factor (φ = 0.60) of ACI 318-08, Chapter 9.)

Included are the following:

- **Table C30-1**
 Factored Moments Induced in Walls by Lateral Soil and/or Wind Loads (ft/kips/linear ft) (For Use with Appendix C Load Factors: Soil 1.7, Wind 1.6)

- **Table C30-2**
 Factored Moments Induced in Walls by Lateral Soil and/or Wind Loads (ft/kips/linear ft) (For Use with Appendix C Load Factors: Soil 1.7, Wind 1.3)

- **Figure C30-1(a-c)**
 Design Axial Load Strength of Plain Concrete (Normalweight) Walls using the Empirical Design Method

- **Figure C30-2**
 Design Strength Interaction Diagrams for 8.0-in Plain Concrete (Normalweight) Wall, 8 ft in Height

- **Figure C30-3**
 Design Strength Interaction Diagrams for 8.0-in Plain Concrete (Normalweight) Wall, 12 ft in Height

- **Figure C30-4**
 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls (f'_c = 2500 psi)

- **Figure C30-5**
 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls (f'_c = 3500 psi)

- **Figure C30-6**
 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls (f'_c = 4500 psi)

- **Figure C30-7**
 Design Axial Load Strength, φPn of Plain Concrete (Normalweight) Walls at Maximum Design Moment Strength, φMn (f'_c = 2500 psi)

- **Figure C30-8**
 Design Axial Load Strength, φPn of Plain Concrete (Normalweight) Walls at Maximum Design Moment Strength, φMn (f'_c = 3500 psi)

- **Figure C30-9**
 Design Axial Load Strength, φPn of Plain Concrete (Normalweight) Walls at Maximum Design Moment Strength, φMn (f'_c = 4500 psi)

- **Figure C30-10**
 Thickness of Plain Concrete (Normalweight) Footing Required to Satisfy Flexural Strength for Various Projection Distances, in. (f'_c = 2500 psi)
Table C30-1 Factored Moments Induced in Walls by Lateral Soil and/or Wind Loads (ft-kips/linear ft)
(For Use with Appendix C Load Factors: Soil 1.7, Wind 1.6)

<table>
<thead>
<tr>
<th>Wall Ht. (ft.)</th>
<th>Backfill Ht. (ft.)</th>
<th>Unfactored Design Lateral Soil Load (psf per foot of depth)</th>
<th>Unfactored Design Wind Pressure (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Wall

Ht.

Backfill Ht.

Desig Lateral Soil Load (psf per foot of depth)

Desig Wind Pressure (psf)
Table C30-2 Factored Moments Induced in Walls by Lateral Soil and/or Wind Loads (ft-kips/linear ft)
(For Use with Appendix C Load Factors: Soil 1.7, Wind 1.3)
Wall
Ht.
(ft.)

Back
fill
Ht.
(ft.)

8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
12
12
12
12
12
12
12
12
12
12
12
12
12

0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
11
12

30

30

30

30

30

45

0
0.00
0.01
0.05
0.16
0.35
0.60
0.92
1.28
1.68
0.00
0.01
0.06
0.17
0.36
0.64
1.00
1.42
1.89
2.39
0.00
0.01
0.06
0.18
0.38
0.68
1.06
1.53
2.07
2.66
3.27
0.00
0.01
0.06
0.18
0.40
0.73
1.17
1.71
2.36
3.10
3.91
4.76
5.65

10
0.10
0.11
0.13
0.21
0.38
0.62
0.93
1.29
1.68
0.13
0.13
0.15
0.23
0.41
0.68
1.02
1.43
1.89
2.39
0.16
0.16
0.18
0.26
0.44
0.73
1.10
1.55
2.08
2.66
3.27
0.23
0.24
0.26
0.33
0.51
0.82
1.24
1.77
2.40
3.12
3.92
4.77
5.65

20
0.21
0.21
0.22
0.27
0.41
0.64
0.94
1.29
1.68
0.26
0.26
0.27
0.32
0.46
0.71
1.04
1.44
1.89
2.39
0.33
0.32
0.33
0.38
0.52
0.78
1.13
1.57
2.09
2.66
3.27
0.47
0.47
0.48
0.53
0.65
0.91
1.31
1.82
2.44
3.14
3.93
4.77
5.65

40
0.42
0.41
0.40
0.41
0.49
0.68
0.96
1.29
1.68
0.53
0.52
0.51
0.52
0.59
0.78
1.08
1.46
1.90
2.39
0.65
0.64
0.63
0.65
0.72
0.89
1.21
1.62
2.11
2.67
3.27
0.94
0.93
0.92
0.93
1.00
1.15
1.47
1.94
2.51
3.19
3.95
4.78
5.65

80
0.83
0.81
0.76
0.72
0.69
0.78
1.00
1.30
1.68
1.05
1.03
0.98
0.94
0.91
0.95
1.17
1.50
1.91
2.39
1.30
1.28
1.23
1.18
1.16
1.18
1.37
1.71
2.15
2.68
3.27
1.87
1.85
1.80
1.75
1.73
1.76
1.85
2.18
2.67
3.28
3.99
4.79
5.65

0
0.00
0.01
0.08
0.25
0.52
0.90
1.38
1.92
2.51
0.00
0.01
0.08
0.26
0.55
0.96
1.49
2.13
2.83
3.58
0.00
0.01
0.09
0.26
0.57
1.01
1.59
2.30
3.10
3.98
4.91
0.00
0.01
0.09
0.27
0.60
1.09
1.75
2.57
3.54
4.65
5.86
7.15
8.48

Unfactored Design Lateral Soil Load (psf per foot of depth)
45
45
45
45
60
60
60
60
60
Unfactored Design Wind Pressure (psf)
10
20
40
80
0
10
20
40
80
0.10 0.21 0.42 0.83 0.00 0.10 0.21 0.42 0.83
0.11 0.21 0.41 0.81 0.02 0.11 0.21 0.41 0.81
0.15 0.23 0.42 0.78 0.11 0.17 0.25 0.43 0.80
0.29 0.34 0.47 0.77 0.33 0.37 0.42 0.54 0.83
0.55 0.58 0.65 0.82 0.69 0.72 0.76 0.82 0.98
0.92 0.94 0.98 1.07 1.20 1.22 1.24 1.28 1.37
1.39 1.40 1.42 1.46 1.84 1.85 1.86 1.88 1.92
1.93 1.93 1.93 1.95 2.57 2.57 2.57 2.58 2.59
2.51 2.51 2.51 2.51 3.35 3.35 3.35 3.35 3.35
0.13 0.26 0.53 1.05 0.00 0.13 0.26 0.53 1.05
0.13 0.26 0.52 1.03 0.02 0.14 0.27 0.52 1.04
0.17 0.29 0.53 1.00 0.11 0.19 0.31 0.54 1.02
0.31 0.39 0.58 0.99 0.34 0.40 0.46 0.65 1.05
0.59 0.64 0.75 1.05 0.73 0.77 0.82 0.93 1.18
1.00 1.03 1.10 1.25 1.28 1.32 1.35 1.42 1.57
1.52 1.54 1.58 1.67 1.99 2.01 2.03 2.08 2.16
2.14 2.15 2.17 2.21 2.84 2.85 2.86 2.88 2.92
2.83 2.84 2.84 2.85 3.77 3.78 3.78 3.79 3.80
3.58 3.58 3.58 3.58 4.77 4.77 4.77 4.77 4.77
0.16 0.33 0.65 1.30 0.00 0.16 0.33 0.65 1.30
0.17 0.32 0.64 1.28 0.02 0.17 0.33 0.65 1.28
0.20 0.35 0.65 1.25 0.11 0.22 0.37 0.67 1.26
0.34 0.45 0.71 1.24 0.35 0.42 0.52 0.77 1.30
0.63 0.70 0.87 1.29 0.76 0.82 0.89 1.03 1.43
1.06 1.11 1.22 1.46 1.35 1.40 1.45 1.55 1.78
1.63 1.66 1.74 1.89 2.13 2.16 2.20 2.27 2.41
2.32 2.34 2.38 2.47 3.06 3.08 3.11 3.15 3.24
3.11 3.12 3.14 3.18 4.14 4.15 4.16 4.18 4.22
3.99 3.99 3.99 4.01 5.31 5.31 5.32 5.32 5.33
4.91 4.91 4.91 4.91 6.54 6.54 6.54 6.54 6.54
0.23 0.47 0.94 1.87 0.00 0.23 0.47 0.94 1.87
0.24 0.47 0.93 1.85 0.02 0.24 0.47 0.93 1.85
0.27 0.49 0.94 1.82 0.12 0.29 0.51 0.95 1.84
0.40 0.59 0.99 1.81 0.37 0.48 0.65 1.05 1.87
0.70 0.82 1.15 1.86 0.81 0.90 1.01 1.30 2.00
1.18 1.27 1.48 2.02 1.46 1.54 1.63 1.83 2.31
1.82 1.89 2.05 2.38 2.34 2.41 2.48 2.63 2.94
2.63 2.68 2.79 3.02 3.43 3.48 3.54 3.65 3.87
3.58 3.62 3.69 3.85 4.72 4.76 4.80 4.87 5.02
5.87 5.88 5.90 5.94 7.81 7.82 7.83 7.85 7.89
8.48 8.48 8.48 8.48 11.31 11.31 11.31 11.31 11.31

30-20

100

100

100

100

100

0
0.00
0.03
0.18
0.55
1.15
2.00
3.06
4.28
5.58
0.00
0.03
0.19
0.57
1.21
2.14
3.32
4.73
6.29
7.95
0.00
0.03
0.19
0.58
1.26
2.25
3.54
5.11
6.90
8.85
10.91
0.00
0.03
0.19
0.61
1.34
2.43
3.89
5.72
7.87
10.33
13.02
15.88
18.84

10
0.10
0.12
0.23
0.59
1.18
2.02
3.07
4.28
5.58
0.13
0.14
0.25
0.62
1.26
2.17
3.34
4.74
6.29
7.95
0.16
0.17
0.28
0.65
1.33
2.30
3.58
5.13
6.91
8.86
10.91
0.23
0.25
0.35
0.71
1.44
2.52
3.96
5.77
7.91
10.35
13.03
15.88
18.84

20
0.21
0.22
0.30
0.63
1.22
2.04
3.08
4.28
5.58
0.26
0.27
0.36
0.68
1.31
2.21
3.36
4.75
6.30
7.95
0.33
0.33
0.42
0.73
1.39
2.35
3.61
5.15
6.92
8.86
10.91
0.47
0.48
0.56
0.85
1.54
2.60
4.03
5.82
7.95
10.37
13.04
15.89
18.84

40
0.42
0.42
0.48
0.73
1.28
2.08
3.10
4.29
5.58
0.53
0.53
0.59
0.83
1.40
2.27
3.41
4.77
6.30
7.95
0.65
0.65
0.71
0.94
1.52
2.45
3.68
5.19
6.94
8.86
10.91
0.94
0.94
1.00
1.22
1.77
2.78
4.18
5.93
8.02
10.42
13.06
15.89
18.84

80
0.83
0.82
0.84
0.99
1.42
2.17
3.14
4.30
5.58
1.05
1.04
1.06
1.21
1.62
2.41
3.49
4.81
6.31
7.95
1.30
1.29
1.31
1.45
1.84
2.66
3.83
5.28
6.98
8.87
10.91
1.87
1.86
1.88
2.02
2.39
3.18
4.48
6.15
8.17
10.50
13.10
15.90
18.84


Figure C30-1 Design Axial Load Strength, ϕP_n, kips/ft of wall using the Empirical Design Method

Wall Thickness, h, in.

- Wall Ht. = 8 ft.
 - $\phi = 0.65$
 - $f'c = 4500$ psi
 - $P_n = 3500$
 - $P_n = 2500$

- Wall Ht. = 10 ft.
 - $\phi = 0.65$
 - $f'c = 4500$ psi
 - $P_n = 3500$
 - $P_n = 2500$

- Wall Ht. = 12 ft.
 - $\phi = 0.65$
 - $f'c = 4500$ psi
 - $P_n = 3500$
 - $P_n = 2500$
Figure C30-2 Design Strength Interaction Diagrams for 8.0-in. Plain Concrete (Normalweight) Wall, 8 ft in Height

Figure C30-3 Design Strength Interaction Diagrams for 8.0-in. Plain Concrete (Normalweight) Wall, 12 ft in Height
Figure C30-4 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls

\(f'c = 2500 \text{ psi} \)

Figure C30-5 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls

\(f'c = 3500 \text{ psi} \)
Figure C30-6 Design Strength Interaction Diagrams for Lightly-Loaded Plain Concrete (Normalweight) Walls

Figure C30-7 Design Axial Load Strength, \(\phi P_n \), kips/ft of wall at Maximum Design Moment Strength, \(\phi M_n \) (\(f'_c = 2500 \) psi)
Figure C30-8 Design Axial Load Strength, ϕP_n, of Plain Concrete (Normalweight) Walls at Maximum Design Moment Strength, ϕM_n ($f' c = 3500$ psi)

Figure C30-9 Design Axial Load Strength, ϕP_n, of Plain Concrete (Normalweight) Walls at Maximum Design Moment Strength, ϕM_n ($f' c = 4500$ psi)
Figure C30-10 Thickness of Plain Concrete (Normalweight) Footing Required to Satisfy Flexural Strength for Various Projection Distances, in. ($f'_{c} = 2500$ psi*)

*For f'_{c} greater than 2500 psi, multiply thickness determined from above chart by $(2500/f'_{c})^{0.25}$
Example 30.1—Design of Plain Concrete Footing and Pedestal

Proportion a plain concrete square footing with pedestal for a residential occupancy building. Design in conformance with Chapter 22 using the load and strength reduction factors of Chapter 9. Perform a second design using the alternate load and strength reduction factors of Appendix C to determine which results in a more economical design.

Design data:

- Service dead load, $D = 40$ kips
- Service floor live load, $L = 40$ kips
- Service roof live load, $L_r = 7.5$ kips
- Service roof snow load, $S = 10$ kips
- Service surcharge = 0
- Pedestal dimensions = 12 in. x 12 in.
- Permissible soil bearing pressure = 2.5 ksf
- $f'_c = 2500$ psi, normalweight concrete

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7.1</td>
</tr>
<tr>
<td>22.7.1(a)</td>
</tr>
<tr>
<td>9.2</td>
</tr>
<tr>
<td>9.3.5</td>
</tr>
<tr>
<td>C.9.2</td>
</tr>
<tr>
<td>C.9.3.5</td>
</tr>
<tr>
<td>9.2.1(a)</td>
</tr>
</tbody>
</table>

1. **Determine the applicable factored load combinations that must be considered.**

 To proportion the footing for strength, factored loads must be used. Two sets of load factors are provided; one in 9.2 and the other in C.9.2. Because of the difference between strength reduction factor, ϕ, to be used with each set of load factors (0.60 in 9.3.5 versus 0.65 in C.9.3.5), a design in accordance with each set of factors should be evaluated to determine which alternate will provide the more economical solution.

 The required strength must at least equal the largest factored load determined from applicable load combinations. One of the following load combinations will govern:

 1. $U = 1.2D + 1.6L + 0.5S$
 2. $U = 1.2D + 0.5L + 1.6S$
 3. $U = 1.2D + 0.5L + 0.5S$

 Note that in Combination 1, T is being neglected. In Combinations 2 and 3 the factor on L is 0.5 in accordance with 9.2.1(a).

2. **Calculate the factored axial load, P_u, for each load combination.**

 By observation it can be seen that either Combination 1 or 2 will yield the largest factored axial load.

 1. $P_u = 1.2D + 1.6L + 0.5S = 1.2(40) + 1.6(40) + 0.5(10) = 117$ kips
 2. $P_u = 1.2D + 0.5L + 1.6S = 1.2(40) + 0.5(40) + 1.6(10) = 84.0$ kips

 Use $P_u = 117$ kips

 Upon reviewing the applicable load combination of C.9.2, it is obvious that Eq. (C.9-1) will control:
Example 30.1 (cont’d) Calculations and Discussion Code Reference

\[P_u = 1.4D + 1.7L = 1.4 \times 40 + 1.7 \times 50 = 141 \text{ kips} \]

Eq. (C.9-1)

To quickly determine which one of the two sets of load and strength reduction factors to use, compare the nominal axial load strength, \(P_n \), required by the factored loads of 9.2 to that required by C.9.2.

Chapter 9 \(P_n = \frac{P_u}{\phi} = \frac{117}{0.60} = 195 \text{ kips} \)

Appendix C \(P_n = \frac{P_u}{\phi} = \frac{141}{0.65} = 216.9 \text{ kips} \)

Since the nominal axial load strength required by the load and strength reduction factors of Chapter 9 is less than the corresponding strength required by Appendix C, design according to Chapter 9 will be more economical. Regardless of the load and strength reduction factors used, the design procedures will be the same.

3. Determine base area of footing:

The base area is determined by using unfactored service gravity loads and the permissible soil bearing pressure. A conservative approach to determine the load to be used to size the base area is to use the applicable factored load combination from 9.2 or C.9.2 and set all load factors equal to one. However, where there are two or more transient loads involved, as there are in this example (i.e., floor live, and roof live or snow) a more economical design may be realized by using the allowable stress design (ASD) load combinations from the governing building code. Where there is no code, the ASD load combinations in ASCE 7-05 can be used. For this example, both approaches will be used to determine which results in the lower load.

From step 2, the factored load combination that governs is Eq. 9-2. Setting the load factors in this load combination equal to one results in:

\[P_u = D + L + S = 40 + 40 + 10 = 90 \text{ kips} \]

Eq. (9-2)

Reviewing the ASD load combinations in Section 2.4.1 of ASCE 7, the load combination that is applicable where there are two or more transient loads acting is #4.

\[P_u = D + 0.75L + 0.75S = 40 + 0.75 \times 40 + 0.75 \times 10 = 40 + 30 + 7.5 = 77.5 \text{ kips} \]

Using the lower load, the base area of the footing, \(A_f \), is:

\[A_f = \frac{77.5}{2.5} = 31 \text{ ft}^2 \]

Use 5'-8" × 5'-8" square footing (\(A_f = 32.1 \text{ ft}^2 \) use 32 ft²)

4. Calculate the factored soil bearing pressure.

Since the footing must be proportioned for strength by using factored loads and induced reactions, the factored soil bearing pressure must be used.

22.7.1
Example 30.1 (cont’d) Calculations and Discussion Code Reference

\[q_s = \frac{P_u}{A_f} = \frac{117}{32} = 3.65 \text{ ksf} \]

5. Determine the footing thickness required to satisfy moment strength.

For plain concrete, flexural strength will usually control thickness. The critical section for calculating moment is at the face of the concrete pedestal (see figure above).

\[M_u = q_s (b) \left(\frac{b - c}{2} \right) \left(\frac{b - c}{4} \right) \]

\[= 3.65(5.67) \left(\frac{5.67 - 1}{2} \right) \left(\frac{5.67 - 1}{4} \right) = 56.4 \text{ ft-kips} \]

\[\phi M_n \geq M_u \]

\[\phi = 0.60 \text{ for all stress conditions} \]

\[M_n = 5\lambda \sqrt{f_c} S_m \]

\[\phi M_n = \frac{5(0.60)(1)(\sqrt{2500})(5.67)(12)h^2}{(1000)(6)} \geq 56.4 \text{ ft-kips} \]

Solving for h:

\[h \geq \left[\frac{56.4(12)(1000)(6)}{5(0.60)(1)(\sqrt{2500})(5.67)(12)} \right]^{0.5} = 397.9^{0.5} = 19.9 \text{ in. use 20 in.} \]

Alternate solution using Fig. 30-10:

Enter figure with factored soil bearing pressure (3.65 kips/sq. ft). Project upward to the distance that the footing projects beyond the face of the pedestal, which is 28 in. (34 - 6). Note that this will require interpolation between the lines for 24- and 30-in. projections. Then project horizontally and read approximately 20 in. as the required footing thickness.

For concrete cast on the soil, the bottom 2 in. of concrete cannot be considered for strength computations (the reduced overall thickness is to allow for unevenness of the excavation and for some contamination of the concrete adjacent to the soil).

Use overall footing thickness of 22 in.

6. Check for beam action shear. Use effective thickness of h = 20 in. = 1.67 ft.

The critical section for beam action shear is located a distance equal to the thickness, h, away from the face of the pedestal, or 0.67 ft (2.84 - 0.5 - 1.67) from the edge of the footing.
Example 30.1 (cont’d) Calculations and Discussion

\[V_u = q_s \left[\frac{b}{2} - \left(\frac{c}{2} \right) - h \right] = 3.65 (5.67) (0.67) = 13.87 \text{ kips} \]

\[\phi V_n \geq V_u \quad \text{Eq. (22-8)} \]

\[V_n = \left(\frac{4}{3} \right) \lambda \sqrt{f'_c} b_w h \quad \text{Eq. (22-9)} \]

\[\phi V_n = \frac{4(0.60)(1)(\sqrt{2500})(68)(20)}{(3)(1000)} = 54.40 \text{ kips} > 13.87 \text{ kips} \quad \text{O.K.} \]

7. Check for two-way action (punching) shear.

The critical section for two-way action shear is located a distance equal to one-half the footing thickness, \(h \), away from the face of the pedestal. \(22.7.6.1 \)

\[V_u = q_s \left(b^2 - (c + h)^2 \right) = 3.65 \left[5.67^2 - \left(1 + \frac{20}{12} \right)^2 \right] = 91.39 \text{ kips} \]

\[\phi V_n \geq V_u \quad \text{Eq. (22-8)} \]

\[V_n = \left[\frac{4}{3} + \frac{8}{3\beta} \right] \lambda \sqrt{f'_c} b_o h \leq 2.66(\phi \lambda \sqrt{f'_c} b_o h) \quad \text{Eq. (22-10)} \]

where \(\beta \) is the ratio of the long-to-short side of the supported load. In this case, \(\beta = 1 \).

Since \(\left[\frac{4}{3} + \frac{8}{3} \right] = 4.0 > 2.66 \)

\[V_n = 2.66 \lambda \sqrt{f'_c} b_o h \]

\[\phi V_n = \frac{2.66(0.60)(1)(\sqrt{2500})(32)(4)(20)}{(1000)} = 204.29 \text{ kips} > 91.39 \text{ kips} \quad \text{O.K.} \]

8. Check bearing strength of pedestal. \(22.8.3 \)

\[P_u = 117 \text{ kips (from Step 2)} \]

\[\phi B_n \geq P_u \quad \text{Eq. (22-11)} \]

\[B_n = 0.85 f'_c A_1 \quad \text{Eq. (22-12)} \]

\[\phi B_n = \frac{0.85(0.60)(2500)(12 \times 12)}{1000} = 183.6 \text{ kips} > 117 \text{ kips} \quad \text{O.K.} \]

Although the design bearing strength is more than adequate, note that \(22.5.5 \) permits the design strength to be increased if the area of the elements on which the pedestal is bearing (i.e., the footing) is larger than the pedestal. Since the area defined as \(A_2 \) is at least four times greater than the pedestal \((A_1) \), the design bearing strength can be doubled. \(22.5.5 \)
Example 30.2—Design of Plain Concrete Basement Wall

A plain concrete basement wall is to be used to support a 2-story residential occupancy building of wood frame construction with masonry veneer. The height of the wall is 10 ft (distance between the top of the concrete slab and the wood-framed floor, both of which provide lateral support of the wall). The backfill height is 7 ft and the wall is laterally restrained at the top. Design of the wall is required in accordance with Chapter 22 using the load and strength reduction factors of Chapter 9. Perform a second design using the alternate load and strength reduction factors of Appendix C to determine which results in a more economical design.

Design data:

Service dead load, \(D = 1.6 \) kips per linear foot
Service floor live load, \(L = 0.8 \) kips per linear foot
Service roof live load, \(L_r = 0.4 \) kips per linear foot
Service roof snow load, \(S = 0.3 \) kips per linear foot
Service lateral earth pressure, \(H = 60 \) psf/ft of depth
Service wind pressure, \(W = 20 \) psf inward, 25 psf outward
Assume factored roof dead load plus factored wind uplift load on roof (Eq. 9-6) = 0
Eccentricity of axial loads = 0

Calculations and Discussion

Design using load and strength reduction factors of Chapter 9.

1. The wall must be designed for vertical, lateral, and other loads to which it will be subjected. Therefore, determine the applicable load combinations that must be considered.

 1. \(U = 1.2D + 1.6L + 0.5L_r + 1.6H \)

 2. \(U = 1.2D + 0.5L + 1.6L_r \)

 3. \(U = 1.2D + 0.5L + 0.5L_r + 1.6W \)

 4. \(U = 0.9D + 1.6W + 1.6H \)

 5. \(U = 1.6H \)

Note that in Combination 1, \(T \) is being neglected. In Combinations 2 and 3 the factor on \(L \) is 0.5 in accordance with 9.2.1(a). In Combination 5, \(D \) has been omitted since this condition may occur during construction.

2. Calculate the axial load, \(P_u \), for each load combination.

 1. \(P_u = 1.2D + 1.6L + 0.5L_r = 1.2(1.6) + 1.6(0.8) + 0.5(0.4) = 3.40 \) kips/ft

 2. \(P_u = 1.2D + 0.5L + 1.6L_r = 1.2(1.6) + 0.5(0.8) + 1.6(0.4) = 2.96 \) kips/ft

 3. \(P_u = 1.2D + 0.5L + 0.5L_r = 1.2(1.6) + 0.5(0.8) + 0.5(0.4) = 2.52 \) kips/ft
Example 30.2 (cont’d) Calculations and Discussion Code Reference

4. \(P_u = 0.9D = 0.9(1.6) = 1.44 \text{ kips/ft} \) \(\text{Eq. (9-6)} \)

5. \(P_u = 0 \) \(\text{Eq. (9-6)} \)

3. Calculate the moment, \(M_u \), for each load combination.

1. \(M_u \) due to 1.6H \(\text{Eq. (9-2)} \)

2. No lateral load \(\text{Eq. (9-3)} \)

3. \(M_u \) due to 1.6W \(\text{Eq. (9-4)} \)

4. \(M_u \) due to 1.6W + 1.6H \(\text{Eq. (9-6)} \)

5. \(M_u \) due to 1.6H \(\text{Eq. (9-6)} \)

The maximum moment occurs at the location of zero shear. To determine this location with respect to the top of the wall, first calculate the reaction at the top of the wall. If wind is acting and in the same direction as the lateral soil load, and the resultant of the wind load, \(W \), is greater than the reaction at the top of the wall, the location of zero shear is some distance “\(X \)” below the top of the wall (above the top of the backfill). Otherwise, the zero shear location will be some distance “\(X \)” below the top of the backfill. Next, sum the horizontal forces above “\(X \)” (the location of zero shear). Finally, solve for “\(X \)” See figure below.

![Diagram](image.png)

For example, for load Combination 4, the reaction at the top of the wall is:

\[
R_{\text{top}} = \frac{1.6(20)(3)(8.5) + \left[1.6(60)7^3 \right]/6}{10} = 630.4 \text{ plf}
\]
Example 30.2 (cont’d) Calculations and Discussion Code Reference

\[W = 1.6(20)(3) = 96 \text{ plf} \]

\[W < R_{\text{top}} \]

Therefore, location of zero shear is below top of backfill.

Sum horizontal forces at “X”:

\[630.4 - 1.6 (20) (3) - \frac{[1.6 (60) (X^2)]}{2} = 0 \]

\[630.4 - 96 - 48X^2 = 0 \]

Solving for distance “X”:

\[X = \left(\frac{630.4 - 96}{48} \right)^{0.5} = 3.37 \text{ ft} \]

The point of zero shear is \(3.0 + 3.37 = 6.37 \) ft from the top of the wall.

Note: It is generally simpler to compute the location of zero shear with respect to the top of the wall since doing so with respect to the bottom will involve solving a quadratic equation.

Compute the maximum moment, \(M_u \), due to the wind and lateral soil loads:

\[M_u = \frac{630.4 (6.37)-1.6 (20) (3) (6.37-1.5)-[1.6 (60) (3.37)3]}{1000} = 2.94 \text{ ft-kips/ft} \]

Alternately, the maximum moment can be determined from Table 30-1 since the load factor on wind is 1.6.

From Table 30-1, for a 10-ft high wall with 7 ft of backfill, for unfactored wind and soil loads of 20 psf and 60 psf/ft, respectively, the moment, \(M_u \), is 2.94 ft-kips/ft, which is the same as calculated above.

Next determine the moment from Table 30-1 for load Combinations 1, 2 and 5 (with no wind acting). From Table 30-1 for a 10-ft high wall with 7 ft of backfill, for unfactored wind and soil loads of 0 psf and 60 psf/ft, respectively, the moment, \(M_u \), is 2.88 ft-kips/ft. Note that either Table 30-1 or 30-2 can be used since this load combination does not include wind. The moment is read from the zero column for “unfactored design wind pressure.”

4. Calculate the effective eccentricities for load Combinations 1, 3, and 4 to determine if the wall can be designed by the empirical method (i.e., \(e \leq h/6 \)). Assume a conservative wall thickness of 12 in.

Allowable \(e = 12/6 = 2 \) in = 0.167 ft

For load Combination 1:

\[e = \frac{M_u}{P_u} = \frac{2.88}{3.40} = 0.85 \text{ ft} > 0.167 \text{ ft} \]
For load Combination 3:
\[e = \frac{2.88}{2.52} = 1.14 \text{ ft} > 0.167 \text{ ft} \]

For load Combination 4:
\[e = \frac{2.94}{1.44} = 2.04 \text{ ft} > 0.167 \text{ ft} \]

Since the effective eccentricity exceeds h/6, the wall cannot be designed by the empirical method. The wall must be designed taking into consideration both flexure and axial compression.

5. Determine the required wall thickness to satisfy the axial load and induced moments by using the appropriate interaction equation. The factored axial loads and moments for the various load combinations are summarized in the following table.

<table>
<thead>
<tr>
<th>Load Combination</th>
<th>Axial Load, P_u, kips/ft</th>
<th>Moment, M_u, ft-kips/ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.40</td>
<td>2.88</td>
</tr>
<tr>
<td>2</td>
<td>2.96</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2.52</td>
<td>2.88</td>
</tr>
<tr>
<td>4</td>
<td>1.44</td>
<td>2.94</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2.88</td>
</tr>
</tbody>
</table>

By observation, the combination of very low axial load and relatively high moment will be governed by interaction Eq. (22-7).

\[\frac{M_u}{S_m} - \frac{P_u}{A_g} \leq 5\phi\lambda \sqrt{f_c'} \]

Eq. (22-7)

By rearranging the equation and substituting for S_m and A_g in terms of “h,” the required thickness can be determined by solving the following quadratic equation (2):

\[0.06\phi\lambda \sqrt{f_c'} h^2 + P_u h - 72M_u = 0 \]

Determine the required wall thickness, h, to satisfy load Combination 5 \((\phi = 0.60, P_u = 0 \text{ and } M_u = 2.88 \text{ ft-kips/ft})\), since this combination has the highest moment and lowest axial load. Since P_u = 0, equation (2) simplifies to equation (3). Use equation (3) to solve for required, “h,” assuming f_c’ = 3500 psi, and normalweight concrete.

\[h = \frac{(72M_u/0.06\phi\lambda \sqrt{f_c'})^{1/2}} {((72) (2.88)) / ((0.06) (0.60)(1) (\sqrt{3500}))}^{1/2} = 9.87 \text{ in.} \]

Eq. (22-7)

(3)

Assume a 10-inch wall with f_c’ = 3500 psi.

Check preliminary wall selection for all load combinations by using Fig. 30-5. The following table summarizes the required axial load, P_u, and moment, M_u, strengths for the various load combinations, and indicates the approximate design moment strength, \(\phi M_n\), determined from the figure based on a wall thickness of 10 in.

30-34
Example 30.2 (cont’d) Calculations and Discussion Code Reference

<table>
<thead>
<tr>
<th>Load Combination</th>
<th>Axial Load, (P_u) kips/ft</th>
<th>Moment, (M_u) ft-kips/ft</th>
<th>Approximate Design Moment Strength,(^1) (\phi M_n) ft-kips/ft</th>
<th>(\phi M_n/M_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.40</td>
<td>2.88</td>
<td>Note 2</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>2.96</td>
<td>0</td>
<td>NA</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>2.52</td>
<td>2.88</td>
<td>Note 2</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>1.44</td>
<td>2.94</td>
<td>3.15</td>
<td>1.07</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2.88</td>
<td>2.95</td>
<td>1.02</td>
</tr>
</tbody>
</table>

\(^1\)Values estimated from Fig. 30-5.

\(^2\)There is no need to evaluate this combination since another combination has the same moment and a lower axial load. Given equal moments, the combination with the lower axial load will govern.

Since the ratio of design moment strength, \(\phi M_n \), to required moment strength, \(M_u \), exceeds 1 in all cases, the 10-in. wall is adequate for axial loading and induced moments.

Tentatively, use 10-in. wall with concrete \(f'_c = 3500 \text{ psi} \) and check for shear.

6. Check for shear strength.

Shear strength will rarely govern the design of a wall; nevertheless, it should not be overlooked. The shear will be greatest at the bottom of the wall. The critical section for calculating shear is located at wall thickness, \(h \), above the top of the floor slab.

For shear, load Combination 4 will control. Calculate the reaction at the bottom of the wall.

\[
R_{\text{bottom}} = (1.6)(20)(3) + (1/2)(1.6)(60)(7)^2 - 630.4 = 1818 \text{ plf}
\]

\[
V_u = 1818 - 1.6(60) \{[7 - 10/12] \cdot (10/12)] + [(10/12)^2/2]\}
\]

\[
= 1291 \text{ plf} = 1.29 \text{ klf}
\]

\[
\phi V_n \geq V_u \quad \text{Eq. (22-8)}
\]

\[
V_n = \frac{4\lambda \sqrt{f'_c} b_w h}{3}
\]

\[
= \frac{4(0.60)(1)(\sqrt{3500})(12)(10)}{3(1000)} = 5.68 \text{ klf} > 1.29 \text{ klf} \quad \text{O.K.}
\]

7. Use 10-in. wall with specified compressive strength of concrete, \(f'_c = 3500 \text{ psi} \).
Example 30.2 (cont’d) Calculations and Discussion

Design using load and strength reduction factors of Appendix C.

C1. The wall must be designed for vertical, lateral, and other loads to which it will be subjected. Therefore, determine the applicable load combinations that must be considered.

1. \[U = 0.75(1.4D + 1.7L) + 1.6W \]
 \[\text{Eq. (C.9-2)} \]
2. \[U = 0.9D + 1.6W \]
 \[\text{Eq. (C.9-3)} \]
3. \[U = 1.4D + 1.7L + 1.7H \]
 \[\text{Eq. (C.9-4)} \]

C2. Calculate the factored axial load, \(P_u \), for each load combinations.

1. \[P_u = 0.75 (1.4D + 1.7L) = 0.75[(1.4)(1.6) + (1.7)(0.8 + 0.4)] = 3.21 \text{ kips/ft} \]
 \[\text{Eq. (C.9-2)} \]
2. \[P_u = 0.9D = 0.9(1.6) = 1.44 \text{ kips/ft} \]
 \[\text{Eq. (C.9-3)} \]
3. \[P_u = 1.4D + 1.7L = 1.4(1.6) + 1.7(0.8 + 0.4) = 4.28 \text{ kips/ft} \]
 \[\text{Eq. (C.9-4)} \]

C3. Calculate the factored moment, \(M_u \), for each load combination using Table C30-1 or from statics.

1. \[M_u = 1.6W = 0.104 \text{ ft-kips/ft} \]
 \[\text{Eq. (C.9-2)} \]
2. \[M_u = 1.6W = 0.104 \text{ ft-kips/ft} \]
 \[\text{Eq. (C.9-3)} \]
3. \[M_u = 1.7H = 3.06 \text{ ft-kips/ft} \]
 \[\text{Eq. (C.9-4)} \]

C4. For load Combination 3 the effective eccentricity exceeds one-sixth the wall thickness; therefore, the empirical design procedure cannot be used.

C5. Determine the required wall thickness by using the appropriate interaction equation. Since lightly-loaded walls are governed by Eq. (22-7), Figures C30-4 through C30-6 will be used to design the wall for axial loads and flexure. The following table shows for each load combination the factored axial load and moment, and corresponding approximate design moment strength, \(\phi M_{n} \), and ratio of over- or under-strength based on the assumed wall thickness and concrete strength. Assume a wall thickness of 10 in. and \(f'_c = 3000 \text{ psi} \).
Example 30.2 (cont’d)
Calculations and Discussion

<table>
<thead>
<tr>
<th>Load Combination</th>
<th>Axial Load, P_u kips/ft</th>
<th>Moment, M_u ft-kips/ft</th>
<th>Approximate Design Moment Strength, ϕM_n ft-kips/ft</th>
<th>$\phi M_n/M_u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.21</td>
<td>0.104</td>
<td>$(3.15 + 3.75)/2 = 3.45$</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>1.44</td>
<td>0.104</td>
<td>$(2.9 + 3.4)/2 = 3.15$</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>4.28</td>
<td>3.06</td>
<td>$(3.3 + 3.8)/2 = 3.55$</td>
<td>1.16</td>
</tr>
</tbody>
</table>

1Values interpolated from Figs. C30-4 and C30-5 based on 10-inch wall with 3000 psi concrete.
2There is no need to evaluate this combination since another combination has the same moment and a lower axial load.

Given equal moments, the combination with the lower axial load will govern.

The 10-in. wall of 3000 psi concrete exceeds the requirements for all combinations.

C6. Check for shear strength.

As indicated for the first part of this design example in which the load and strength reduction factors of Chapter 9 were used, shear strength will rarely govern the design of a wall. Since in that example the wall was greatly over-designed for shear, there is no need to check for shear in this example.

C7. Use 10-in. wall with concrete specified compressive strength, $f'_c = 3000$ psi.

This example showed that use of the load and strength reduction factors of Appendix C resulted in a more economical design. To quickly determine which one of the two sets of load and strength reduction factors should be used, compare the nominal moment strength required by the factored loads of 9.2 to that required by C.9.2. The set requiring the lower nominal strength may be more economical.

- **Chapter 9**
 \[M_n = M_u/\phi = 2.88/0.60 = 4.80 \text{ ft-kips/ft} \]

- **Appendix C**
 \[M_n = M_u/\phi = 3.06/0.65 = 4.71 \text{ kips} \]

Since the nominal moment strength required by the load and strength reduction factors of Appendix C is less than the corresponding strength required by Chapter 9, a design according to Appendix C will be more economical as the example shows. Regardless of the load and strength reduction factors used, the design procedures are the same.
Blank
Alternate (Working Stress) Design Method

INTRODUCTION

Although the Working Stress Design (WSD) was deleted from the code in the 2002 edition, the current Commentary Section R1.1 states, “The Alternate Design Method of the 1999 code may be used in place of applicable sections of this code.” Note that the Commentary is not mandatory language and, thus, does not bear legal status. Therefore, in jurisdictions that adopt the current code, designers that intend to design by the 1999 WSD are cautioned to first seek approval of the local building official of the jurisdiction where the structure will be built.

GENERAL CONSIDERATIONS

Prior to the 1956 edition of the code, the working stress design method, which was very similar to the alternate design method of Appendix A, was the only method available for design of reinforced concrete members. The (ultimate) strength design method was introduced as an appendix to the 1956 code. In the next edition of the code (1963), strength design was moved to the body of the code as an alternative to working stress design. Because of the widespread acceptance of the strength design method, the 1971 code covered the working stress method in less than one page. The working stress method was moved out of the body of the code into an appendix with the 1983 edition of the code. The method then became referred to as the “alternate design method.” It remained an appendix through the 1999 code and was removed from the 2002 code.

The alternate design method presented in Appendix A of the 1999 code is a method that seeks to provide adequate structural safety and serviceability by limiting stresses at service loads to certain prescribed limits. These “allowable stresses” are well within the range of elastic material behavior for concrete in compression and steel in tension (and compression). Concrete is assumed to be cracked and provide no resistance in tension. The stress in the concrete is represented by a linear elastic stress distribution. The steel is generally transformed into an equivalent area of concrete for design.

The alternate design method is identical to the “working stress design method” used prior to 1963 for members subject to flexure without axial loads. The procedures for the design of compression members with flexure, shear design, and bond stress and development of reinforcement follow the procedures of the strength design method of the body of the code with factors applied to reflect design at service loads. The design procedures of the alternate design method have not been updated as thoroughly as the remainder of the code.

The replacement of the working stress design method and alternate design method by the strength design method can be attributed to several factors including:

• the uniform treatment of all types of loads, i.e., all load factors are equal to unity. The different variability of different types of loads (dead and live load) is not acknowledged.
• the unknown factor of safety against failure (as discussed below)

• and the typically more conservative designs, which generally require more reinforcement or larger member sizes for the same design moments when compared to the strength design method.

It should be noted that in general, reinforced concrete members designed using working stresses, or the alternate design method, are less likely to have cracking and deflection problems than members designed using strength methods with Grade 60 reinforcement. This is due to the fact that with strength design using Grade 60 reinforcement, the stresses at service loads have increased significantly from what they were with working stress design.

Therefore, crack widths and deflection control are more critical in members designed using strength design methods because these factors are directly related to the stress in the reinforcement.

Today, the alternate design method is rarely used, except for a few special types of structures or by designers who are not familiar with strength design. Footings seem to be the members most often designed using the alternate design method. Note that ACI 350, Environmental Engineering Concrete Structures, governs the design of water retaining structures.

COMPARISON OF WORKING STRESS DESIGN WITH STRENGTH DESIGN

To illustrate the variability of the factor of safety against failure by the working stress design versus the strength design method, a rectangular and a T-section with dimensions shown in Figs. 31-1 and 31-2, respectively, were analyzed. In both cases, $f_c = 4000$ psi, $f_y = 60$ ksi, and the amount of reinforcement was varied between minimum flexural reinforcement per 10.5.1 and a maximum of $0.75\rho_b$ per Appendix B. Flexural strengths were computed using three procedures:

1. Nominal flexural strength, M_n, using the rectangular stress block of 10.2.7. Results are depicted by the solid lines.

2. Nominal flexural strength based on equilibrium and compatibility. This detailed analysis was performed using program Response 2000 assuming representative stress-strain relationships for concrete and reinforcing steel as shown in Fig. 31-1. Results are depicted by the symbol “+.”

3. Working stress analysis using linear elastic stress-strain relationships for concrete and reinforcement, and permissible service load stresses of Appendix A of the 1999 code, as noted below. The results are depicted by the dashed lines for M_{service}.

Observations:

(a) Flexural strength based on the rectangular stress block, M_n, is very similar to the prediction based on detailed analysis using strain compatibility and equilibrium.

(b) The factor of safety, represented by the ratio $\phi M_n / M_{\text{service}}$ is highly variable. For the rectangular sections, that ratio ranges between 2.3 and 2.6 while for the T-section it ranges between 2.3 and 2.4. In comparison, for flexural design using Chapter 9 load and strength reduction factors, the factor of safety $(L.F./\phi)$ ranges between $1.2/0.9 = 1.33$ where dead load dominates, and $1.6/0.9 = 1.78$ where live load dominates. For Appendix C load and strength reduction factors, those ratios are $1.4/0.9 = 1.56$ and $1.7/0.9 = 1.89$, respectively.
As $c = 4000$ psi
$f_y = 60$ ksi

Figure 31-1 Rectangular section.

M_n (Stress Block)
$M_{service}$
M_n (Strain Compatibility)

$M_{service}$

A_s

$f_c = 4000$ psi
$f_y = 60$ ksi

$ε_t = 0.005$
$ε_t = 0.004$

$0.75φ_b (ε_t = 0.00375)$

$\varphi M_n/M_{service}$

Area of Reinforcement, A_s (in.2)

Concrete

Stress (ksi)

Moment (ft-kips)

Strain

Area of Reinforcement, A_s (in.2)

Reinforcement

Stress (ksi)

Strain
The following sections highlight provisions of Appendix A of the 1999 code.

SCOPE (A.1 OF ’99 CODE)

The code specifies that any nonprestressed reinforced concrete member may be designed using the alternate design method of Appendix A. Prestressed concrete members are designed using a similar approach that is contained in code Chapter 18.
All other requirements of the code shall apply to members designed using the alternate design method, except the moment redistribution provisions of 8.4. This includes such items as distribution of flexural reinforcement and slenderness of compression members, as well as serviceability items such as control of deflections and crack control.

GENERAL (A.2 OF ’99 CODE)

Load factors for all types of loads are taken to be unity for this design method. When wind and earthquake loads are combined with other loads, the member shall be designed to resist 75% of the total combined effect. This is similar to the provisions of the original working stress design method which allowed an overstress of one-third for load combinations including wind and earthquake.

When dead loads act to reduce the effects of other loads, 85% of the dead load may be used in computing load effects.

PERMISSIBLE SERVICE LOAD STRESSES (A.3 OF ’99 CODE)

Concrete stresses at service loads must not exceed the following:

- **Flexure**
 - Extreme fiber stress in compression: $0.45f'_c$

- **Bearing**
 - On loaded area: $0.3f'_c$

Permissible concrete stresses for shear are also given in this section (A.3 of ‘99 Code) and in greater detail in A.7 of ‘99 Code.

Tensile stresses in reinforcement at service loads must not exceed the following:

- **Grade 40 and 50 reinforcement**: 20,000 psi
- **Grade 60 reinforcement or greater and welded wire reinforcement (plain or deformed)**: 24,000 psi

Permissible tensile stresses for a special case are also given in A.3.2(c).

FLEXURE (A.5 OF ’99 CODE)

Members are designed for flexure using the following assumptions:

- Strains vary linearly with the distance from the neutral axis. A non-linear distribution of strain must be used for deep members (see 10.7).
- Under service load conditions, the stress-strain relationship of concrete in compression is linear for stresses not exceeding the permissible stress.
- In reinforced concrete members, concrete resists no tension.
- The modular ratio, $n = E_s/E_c$, may be taken as the nearest whole number, but not less than 6. Additional provisions are given for lightweight concrete.
- In members with compression reinforcement, an effective modular ratio of $2E_s/E_c$ must be used to transform the compression reinforcement for stress computations. The stress in the compression reinforcement must not exceed the permissible tensile stress.

DESIGN PROCEDURE FOR FLEXURE

The following equations are used in the alternate design method for the flexural design of a member with a rectangular cross section, reinforced with only tension reinforcement. They are based on the assumptions stated...
above and the notation defined in Fig. 31-3. See Refs. 33.2 and 33.3 or other texts on reinforced concrete design for derivation of these equations. Equations can also be developed for other cross sections, such as members with flanges or compression reinforcement.

Figure 31-3 Assumptions for Alternate Design Method for Flexure

\[k = \sqrt{2\rho n + (\rho n)^2} - \rho n \]

where

\[\rho = \frac{A_s}{bd} \]
\[n = \frac{E_s}{E_c} \geq 6 \]
\[j = 1 - \left(\frac{k}{3} \right) \]
\[f_s = \frac{M_{\text{service}}}{A_s j d} \]
\[f_c = \frac{2M_{\text{service}}}{kj bd^2} \]

SHEAR AND TORSION (A.7 OF ‘99 CODE)

Shear and torsion design in Appendix A of ACI 318-99 is based on the strength design methods of code Chapter 11 (‘99 code) with modified coefficients that allow the use of the equations for unfactored loads at service load conditions.

A complete set of the modified equations is presented for shear design for the convenience of the user (A.7 of the ‘99 Code). Since the equations appear in the same form as in code Chapter 11, they will not be discussed here.
REFERENCES

Example 31.1—Design of Rectangular Beam with Tension Reinforcement Only

Given the rectangular beam of Example 7.1, modify the beam depth and/or required reinforcement to satisfy the permissible stresses of the alternate design method. The service load moments are: \(M_d = 56 \text{ ft-kips} \) and \(M_{\tilde{e}} = 35 \text{ ft-kips} \).

- \(f'_c = 4000 \text{ psi} \)
- \(f_y = 60,000 \text{ psi} \)
- \(A_s = 2.40 \text{ in.}^2 \)
- \(b = 10 \text{ in.} \)
- \(h = 16 \text{ in.} \)
- \(d = 13.5 \text{ in.} \)

Calculations and Discussion

1. To compare a design using the alternate design method to the load factor method of the code, check the service load stresses in concrete and steel in the design given in Example 7.1.

\[
M_{\text{service}} = M_d + M_{\tilde{e}} = (56 + 35) (12) = 1092 \text{ in.-kips}
\]

\[
E_c = 57,000 \sqrt{f'_c} = 57,000 \sqrt{4000} = 3,605,000 \text{ psi}
\]

\[
n = \frac{E_s}{E_c} = \frac{29,000,000}{3,605,000} = 8.04 \quad \text{Use } n = 8
\]

\[
\rho = \frac{A_s}{bd} = \frac{2.40}{10 \times 13.5} = 0.0178
\]

\[
\rho n = (0.0178)(8) = 0.142
\]

\[
k = \sqrt{2 \rho n + (\rho n)^2} - \rho n = \sqrt{2(0.142)+(0.142)^2} - 0.142 = 0.41
\]

\[
j = 1 - \frac{k}{3} \quad 1 - \frac{0.41}{3} = 0.863
\]

\[
f_s = \frac{M_{\text{service}}}{A_s jd} = \frac{1092}{[(2.40)(0.863)(13.5)]} = 39.05 \text{ ksi} > 24.0 \text{ ksi allowed N.G.}
\]

\[
f_c = \frac{2M_{\text{service}}}{kjbd^2} = \frac{2(1092)}{[(0.41)(0.883)(10)(13.5)^2]} = 3.39 \text{ ksi} > 0.45 \text{ (4.00)} = 1.80 \text{ ksi allowed N.G.}
\]

Note: The above calculations are based on the assumption of linear-elastic material behavior. Since both \(f_c \) and \(f_s \) exceed the permissible stresses, increase the beam depth.

2. Check stresses in concrete and reinforcement with an increased member depth, with the same area of reinforcement.

\[
h = 24 \text{ in.} \quad d = 21.5 \text{ in.}
\]

\[
\rho = \frac{A_s}{bd} = \frac{2.40}{10 \times 21.5} = 0.0112
\]
\(\rho_n = (0.0112) (8) = 0.0893 \)

\[k = \sqrt{2\rho_n + (\rho_n)^2} - \rho_n = \sqrt{2(0.0893) + (0.0893)^2} - 0.0893 = 0.343 \]

\[j = 1 - \frac{k}{3} = 1 - \frac{0.343}{3} = 0.886 \]

\[f_s = \frac{M_{\text{service}}}{A_s j d} = \frac{1092}{[(2.40)(0.886)(21.5)]} = 23.89 \text{ ksi} < 24.0 \text{ ksi allowed O.K.} \]

\[f_c = \frac{2M_{\text{service}}}{kjbd^2} = \frac{2(1092)}{[(0.343)(0.886)(10)(21.5)^2]} = 1.55 \text{ ksi} < 0.45(4.0) = 1.80 \text{ ksi allowed O.K} \]

Note: It was necessary to increase the effective depth by nearly 60% in order to satisfy allowable stresses using the same quantity of reinforcement.

3. Compute the design moment strength, \(\phi M_n \), of the modified member to determine the factor of safety (FS).

\[a = \frac{A_s f_y}{0.85 f' c} = \frac{(2.40)(60)}{(0.85)(10)(4.00)} = 4.24 \text{ in.} \]

\[M_n = A_s f_y \left(d - \frac{a}{2} \right) = (2.40)(60) \left[21.5 - \left(\frac{4.24}{2} \right) \right] = 2791 \text{ in.-kips} \]

\[\phi M_n = 0.9 (2791) = 2512 \text{ in.-kips} \]

\[FS = \frac{\phi M_n}{M_{\text{service}}} = \frac{2512}{1092} = 2.30 \]
Blank
Alternative Provisions for Reinforced and Prestressed Concrete Flexural and Compression Members

UPDATE TO THE ’08 CODE

Sections B.8.4 and 18.10.4 are modified to clarify the provisions for redistribution of moments in continuous nonprestressed and prestressed flexural members, respectively. Allowing inelastic behavior in positive moment regions is made explicit and a limit is put on the amount of inelastic positive moment redistribution, similar to the limit for negative moment in the 2005 Code.

B.1 SCOPE

Section 8.1.2 allows the use of Appendix B to design reinforced and prestressed concrete flexural and compression members. The Appendix contains the provisions that were displaced from the main body of the code when the Unified Design Provisions (formerly Appendix B to the 1999 Code) were incorporated in the Code in 2002. Since it may be judged that an appendix is not an official part of a legal document unless it is specifically adopted, reference is made to Appendix B in the main body of the code in order to make it a legal part of the code.

Appendix B contains provisions for moment redistribution, design of flexural and compression members, and prestressed concrete that were in the main body of the code for many years prior to 2002. The use of these provisions is equally acceptable to those in the corresponding sections of the main body of the code.

Section B.1 contains the sections in Appendix B that replace those in the main body of the code when Appendix B is used in design. It must be emphasized that when any section of Appendix B is used, all sections of this appendix must be substituted in the main body of the code. All other sections in the body of the code are applicable.

According to RB.1, load factors and strength reduction factors of either Chapter 9 or new Appendix C (see Part 33) may be used. It is the intent that strength reduction factors given in Chapter 9 or Appendix C for tension-controlled sections be utilized for members subjected to bending only. Similarly, strength reduction factors for compression-controlled sections should be used for members subjected to flexure and axial load with ϕ_P_n greater than or equal to $0.10\sigma'_c A_g$ or the balanced axial load ϕ_P_b, whichever is smaller (see 9.3.2.2 and C9.3.2.2). For other cases, ϕ can be increased linearly to 0.90 as ϕ_P_n decreases from $0.10\sigma'_c A_g$ or ϕ_P_b, whichever is smaller, to zero (9.3.2.2 and C9.3.2.2).
Section B.8.4 permits a redistribution of moments in continuous flexural members if reinforcement percentages do not exceed a specified amount.

A maximum 10 percent adjustment of negative moments was first permitted in the 1963 ACI Code (see Fig. RB.8.4). Experience with the use of that provision, though satisfactory, was still conservative. The 1971 code increased the maximum adjustment percentage to that shown in Fig. 32-1. The increase was justified by additional knowledge of ultimate and service load behavior obtained from tests and analytical studies. Appendix B retains the same adjustment percentage criteria.

A comparison between the permitted amount of redistribution according to 8.4 and B.8.4 as a function of the strain in the extreme tension steel ε_t is depicted in Figure 32-2.

![Figure 32-1 Permissible Moment Redistribution for Nonprestressed Members](image)

Application of B.8.4 will permit, in many cases, substantial reduction in total reinforcement required without reducing safety, and reduce reinforcement congestion in negative moment regions.

According to 8.11, continuous members must be designed to resist more than one configuration of live loads. An elastic analysis is performed for each loading configuration, and an envelope moment value is obtained for the design of each section. Thus, for any of the loading conditions considered, certain sections in a given span will reach the ultimate moment, while others will have reserve capacity. Tests have shown that a structure can continue to carry additional loads if the sections that reached their moment capacities continue to rotate as plastic hinges and redistribute the moments to other sections until a collapse mechanism forms.

Recognition of this additional load capacity beyond the intended original design suggests the possibility of redesign with resulting savings in material. Section B.8.4 allows a redesign by decreasing the elastic maximum negative or maximum positive moments for each loading condition (with the corresponding redistribution of moments at all other sections within the span to maintain static equilibrium). These moment changes may be such as to reduce both the maximum positive and negative moments in the final moment envelope. In order to ensure proper rotation capacity, the percentage of steel in the sections must conform to B.8.4.2, which is shown in Fig. 32-1.
In certain cases, the primary benefit to be derived from B.8.4 will be simply a reduction of negative moment at the supports, to avoid reinforcement congestion or reduce concrete dimensions. In this case, the steel percentage must still conform to Fig. 32-1.

![Figure 32-2 Comparison of Permissible Moment Redistribution for Nonprestressed Members](image)

Limits of applicability of B.8.4 may be summarized as follows:

1. Provisions apply to continuous nonprestressed flexural members. Moment redistribution for prestressed members is addressed in B.18.10.4.

2. Provisions do not apply to members designed by the approximate moments of 8.3.3, or to slab systems designed by the Direct Design Method (see 13.6.1.7 and RB.8.4).

3. Bending moments must be determined by analytical methods, such as moment distribution, slope deflection, etc. Redistribution is not allowed for moments determined through approximate methods.

4. The reinforcement ratios \(\rho \) or \((\rho - \rho')\) at a cross-section where moment is to be adjusted must not exceed one-half of the balanced steel ratio, \(\rho_b \), as defined by Eq. (B-1).

5. Maximum allowable percentage decrease of maximum positive or maximum negative moment is given by:

\[
20 \left(1 - \frac{\rho - \rho'}{\rho_b} \right)
\]

6. Adjustment of moments is made for each loading configuration considered. Members are then proportioned for the maximum adjusted moments resulting from all loading conditions.

7. Adjustment of maximum negative or maximum positive moment for any span requires adjustment of moments at all other sections within the same span (B.8.4.3). A decrease of a negative support moment requires a corresponding increase in the positive span moment for equilibrium. Similarly, a decrease of a positive span moment requires a corresponding increase in the negative support moment.
8. Static equilibrium must be maintained at all joints before and after moment redistribution.

9. In the case of unequal negative moments on the two sides of a fixed support (i.e., where adjacent spans are unequal), the difference between these two moments is taken into the support. Should either or both of these negative moments be adjusted, the resulting difference between the adjusted moments is taken into the support.

10. Moment redistribution may be carried out for as many cycles as deemed practical, provided that after each cycle of redistribution, a new allowable percentage increase or decrease in negative moment is calculated, based on the final steel ratios provided for the adjusted support moments from the previous cycle.

11. After the design is completed and the reinforcement is selected, the actual steel ratios provided must comply with Fig. 32-1 for the percent moment redistribution taken, to ensure that the requirements of B.8.4 are met. Examples that illustrate these requirements can be found in Part 9 of Notes on ACI 318-99.

B.10.3 GENERAL PRINCIPLES AND REQUIREMENTS – NONPRESTRESSED MEMBERS

The flexural strength of a member is ultimately reached when the strain in the extreme compression fiber reaches the ultimate (crushing) strain of the concrete, \(\varepsilon_u \). At that stage, the strain in the tension reinforcement could just reach the strain at first yield \(\varepsilon_s = \varepsilon_y = f_y / E_s \), be less than the yield strain, or exceed the yield strain. Which steel strain condition exists at ultimate concrete strain depends on the relative proportion of reinforcement to concrete. If the steel amount is low enough, the strain in the tension steel will greatly exceed the yield strain \(\varepsilon_s \gg \varepsilon_y \) when the concrete strain reaches \(\varepsilon_u \), with large deflection and ample warning of impending failure (ductile failure condition). With a larger quantity of steel, the strain in the tension steel may not reach the yield strain \(\varepsilon_s < \varepsilon_y \) when the concrete strain reaches \(\varepsilon_u \), which would mean small deflection and little warning of impending failure (brittle failure condition). For design it is desirable to restrict the ultimate strength condition so that a ductile failure mode would be expected.

The provisions of B.10.3.3 are intended to ensure a ductile mode of failure by limiting the amount of tension reinforcement to 75% of the balanced steel to ensure yielding of steel before crushing of concrete. The balanced steel will cause the strain in the tension steel to just reach yield strain when concrete reaches the crushing strain.

The maximum amount of reinforcement permitted in a rectangular section with tension reinforcement only is

\[
\rho_{\text{max}} = 0.75 \rho_b = 0.75 \left[0.85 \beta_1 \frac{f'_c}{f_y} \times \frac{87,000}{87,000 + f_y} \right]
\]

where \(\rho_b \) is the balanced reinforcement ratio for a rectangular section with tension reinforcement only.

The maximum amount of reinforcement permitted in a flanged section with tension reinforcement only is

\[
\rho_{\text{max}} = 0.75 \left(\frac{b_w}{b} \rho_b + \rho_f \right)
\]

where
\(b_w = \text{width of the web} \)
\(b = \text{width of the effective flange (see 8.10)} \)
\[\rho_f = \frac{A_{sf}}{b_w d} \]

\[h_f = \text{thickness of the flange} \]

\[A_{sf} = \text{area of reinforcement required to equilibrate compressive strength of overhanging flanges} \]

(see Part 6)

The maximum amount of reinforcement permitted in a rectangular section with compression reinforcement is (B10.3.3)

\[\rho_{\text{max}} = 0.75 \frac{\rho_b}{\rho_f} + \frac{f_{sb}}{f_y} \]

where

\[\rho' = \frac{A'_c}{b d} \]

\[A'_c = \text{area of compression reinforcement} \]

\[f_{sb} = \text{stress in compression reinforcement at balanced strain condition} \]

\[= 87,000 - \frac{d'}{d} \left(87,000 + f_y \right) \leq f_y \]

\[d' = \text{distance from extreme compression fiber to centroid of compression reinforcement} \]

Note that with compression reinforcement, the portion of \(\rho_b \) contributed by the compression reinforcement \((\rho' f_{sb} / f_y)\) need not be reduced by the 0.75 factor. For ductile behavior of beams with compression reinforcement, only that portion of the total tension steel balanced by compression in the concrete \((\rho_b)\) need be limited.

It should be realized that the limit on the amount of tension reinforcement for flexural members is a limitation for ductile behavior. Tests have shown that beams reinforced with the computed amount of balanced reinforcement actually behave in a ductile manner with gradually increasing deflections and cracking up to failure. Sudden compression failures do not occur unless the amount of reinforcement is considerably higher than the computed balanced amount.

One reason for the above is the limit on the ultimate concrete strain assumed at \(\varepsilon_u = 0.003 \) for design. The actual maximum strain based on physical testing may be much higher than this value. The 0.003 value serves as a lower bound on limiting strain. Unless unusual amounts of ductility are required, the 0.75\(\rho_b \) limitation will provide ample ductile behavior for most designs.

Comparison of the design using the unified design method and the provisions of B.10.3 for a rectangular beam with tension reinforcement only and for a rectangular beam with compression reinforcement can be found in Part 7 of Notes on ACI 318-99 (Examples 7.1 and 7.3).

B18.1 SCOPE—PRESTRESSED CONCRETE

This section contains a list of the provisions in the code that do not apply to prestressed concrete. Section RB.18.1.3 provides detailed commentary and specific reasons on why some sections are excluded.
B.18.8 LIMITS FOR REINFORCEMENT OF PRESTRESSED FLEXURAL MEMBERS

The requirements of B.18.8 for percentage of reinforcement are illustrated in Fig. 32-3. Note that reinforcement can be added to provide a reinforcement index higher than \(0.36\beta_1\); however, this added reinforcement cannot be assumed to contribute to the moment strength.

![Figure 32-3 Permissible Limits of Prestressed Reinforcement and Influence on Moment Strength](image)

Section B.18.8.3 requires the total amount of prestressed and nonprestressed reinforcement of flexural members to be adequate to develop a design moment strength at least equal to 1.2 times the cracking moment strength \((\phi M_n \geq 1.2M_{cr})\), where \(M_{cr}\) is computed by elastic theory using a modulus of rupture equal to \(7.5\sqrt{f'_c}\) (see 9.5.2.3). The provisions of B.18.8.3 are analogous to 10.5 for nonprestressed members and are intended as a precaution against abrupt flexural failure resulting from rupture of the prestressing tendons immediately after cracking. The provision ensures that cracking will occur before flexural strength is reached, and by a large enough margin so that significant deflection will occur to warn that the ultimate capacity is being approached. The typical prestressed member will have a fairly large margin between cracking strength and flexural strength, but the designer must be certain by checking it.

The cracking moment \(M_{cr}\) for a prestressed member is determined by summing all the moments that will cause a stress in the bottom fiber equal to the modulus of rupture \(f_c\). Refer to Part 24 for detailed equations to compute \(M_{cr}\) for prestressed members.

Note that an exception in B.18.8.3 waives the \(1.2M_{cr}\) requirement for (a) two-way unbonded post-tensioned slabs, and (b) flexural members with shear and flexural strength at least twice that required by 9.2. See Part 24 for more information.

B.18.10.4 REDISTRIBUTION OF MOMENTS IN CONTINUOUS PRESTRESSED FLEXURAL MEMBERS

Inelastic behavior at some sections of prestressed concrete beams and slabs can result in a redistribution of moments when member strength is approached. Recognition of this behavior can be advantageous in design under certain circumstances. Although a rigorous design method for moment redistribution is complex, a rational
method can be realized by permitting a reasonable adjustment of the sum of the elastically calculated factored gravity load moments and the unfactored secondary moments due to prestress. The amount of adjustment should be kept within predetermined safe limits.

According to B.18.10.4.1, the maximum allowable percentage decrease of negative or positive moment in a continuous prestressed flexural member is

\[
20 \left[1 - \frac{\omega_p + \frac{d}{d_p} (\omega - \omega')}{0.36\beta_1} \right]
\]

Note that redistribution of moments is allowed only when bonded reinforcement is provided at the supports in accordance with 18.9. The bonded reinforcement ensures that beams and slabs with unbonded tendons act as flexural members after cracking and not as a series of tied arches.

Similar to nonprestressed members, adjustment of maximum negative or maximum positive moments for any span requires adjustment of moments at all other sections within the same span (B.18.10.4.3). A decrease of a negative support moment requires a corresponding increase in the positive span moment for equilibrium. Similarly, a decrease of a positive span moment requires a corresponding increase in the negative support moment.

The amount of allowable redistribution depends on the ability of the critical sections to deform inelastically by a sufficient amount. Sections with larger amounts of reinforcement will not be able to undergo sufficient amounts of inelastic deformations. Thus, redistribution of moments is allowed only when the section is designed so that the appropriate reinforcement index is less than 0.24\(\beta_1\) (see B.18.10.4.2). This requirement is in agreement with the requirements of B.8.4 for nonprestressed members. Note that each of the expressions in B.18.10.4.2 is equal to 0.85\(a/d_p\) where \(a\) is the depth of the equivalent rectangular stress distribution for the section under consideration (see 10.2.7.1).

A comparison between the permitted amount of redistribution according to 18.10.4 and B.18.10.4 of the 2008 code as a function of the strain in the extreme tension steel \(\varepsilon_t\) is depicted in Figure 32-4.

![Figure 32-4 Comparison of Permissible Moment Redistribution for Prestressed Members](image-url)
Alternative Load and Strength Reduction Factors

UPDATE FOR THE ’08 CODE

Minor revisions are introduced in the 2008 Code. Section numbers are renumbered to correspond to those of Chapter 9. Section C9.3.4 is revised to clarify that strength reduction factor $\phi = 0.6$ applies to structures that rely on intermediate precast walls in SDC D, E or F, special moment frames and special structural walls.

C.9.1 GENERAL

Section 9.1.3 allows the use of load factor combinations and strength reduction factors of Appendix C to design structural members. Since it may be judged that an appendix is not an official part of a legal document unless it is specifically adopted, reference is made in 9.1.3 to Appendix C in the main body of the code in order to make it a legal part of the code. Appendix C contains revised versions of the load and strength reduction factors that were formerly in Chapter 9 of the 1999 Code and earlier editions.

The load and strength reduction factors in new Appendix C have evolved since the early 1960s when the strength design method was originally introduced in the code. Some of the factors have been changed from the values in the 1999 code for reasons stated below. In any case, these sets of factors are still considered to be reliable for the design of concrete structural members.

It is important to note that a consistent set of load and strength reduction factors must be utilized when designing members. It is not permissible to use the load factors of Chapter 9 in conjunction with the strength reduction factors of Appendix C. When Appendix C is used, load combinations and load factors in Sections 9.2.1 through 9.2.5 in the main body of the Code are replaced by load combinations and load factors in Sections C.9.2.1 through C.9.2.7 in the Appendix. Also, the strength reduction factors in Sections 9.3.1 through 9.3.5 are replaced by the factors in Sections C.9.3.1 through C.9.3.5.

C.9.2 REQUIRED STRENGTH

In general,

\[\text{Design Strength} \geq \text{Required Strength} \]

or

\[\text{Strength Reduction Factor} \times \text{Nominal Strength} \geq \text{Load Factor} \times \text{Service Load Effects} \]

Part 5 contains a comprehensive discussion on the philosophy of the strength design method, including the reasons why load factors and strength reduction factors are required.
Section C.9.2 prescribes load factors for specific combinations of loads. A list of these combinations is given in Table 33-1. The numerical value of the load factor assigned to each type of load is influenced by the degree of accuracy with which the load can usually be assessed, the variation which may be expected in the load during the lifetime of a structure, and the probability of simultaneous occurrence of different load types. Hence, dead loads, because they can usually be more accurately determined and are less variable, are assigned a lower load factor (1.4) as compared to live loads (1.7). Also, weight and pressure of liquids with well-defined densities and controllable maximum heights are assigned a reduced load factor of 1.4 due to the lesser probability of overloading (see C.9.2.4). A higher load factor of 1.7 is required for earth and groundwater pressures due to considerable uncertainty of their magnitude and recurrence (see C.9.2.3). Note that while most usual combinations of loads are included, it should not be assumed that all cases are covered.

Table 33-1 Required Strength for Different Load Combinations

<table>
<thead>
<tr>
<th>Code Section</th>
<th>Loads†</th>
<th>Required Strength</th>
<th>Code Eq. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.9.2.1</td>
<td>Dead (D) & Live (L) ††</td>
<td>U = 1.4D + 1.7L</td>
<td>C.9-1</td>
</tr>
<tr>
<td>C.9.2.2</td>
<td>Dead, Live & Wind (W) ††</td>
<td>(i) U = 1.4D + 1.7L</td>
<td>C.9-1</td>
</tr>
<tr>
<td>C.9.2.2</td>
<td></td>
<td>(ii) U = 0.75 (1.4D + 1.7L + 1.6W)</td>
<td>C.9-2</td>
</tr>
<tr>
<td>C.9.2.2</td>
<td></td>
<td>(iii) U = 0.9D + 1.6W</td>
<td>C.9-3</td>
</tr>
<tr>
<td>C.9.2.2</td>
<td>Dead, Live & Earthquake (E) ††</td>
<td>(i) U = 1.4D + 1.7L</td>
<td>C.9-1</td>
</tr>
<tr>
<td>C.9.2.2</td>
<td></td>
<td>(ii) U = 0.75 (1.4D + 1.7L + 1.0E)</td>
<td>C.9-2</td>
</tr>
<tr>
<td>C.9.2.2</td>
<td></td>
<td>(iii) U = 0.9D + 1.0E</td>
<td>C.9-3</td>
</tr>
<tr>
<td>C.9.2.3</td>
<td>Dead, Live & Earth and Groundwater Pressure (H) *</td>
<td>(i) U = 1.4D + 1.7L</td>
<td>C.9-1</td>
</tr>
<tr>
<td>C.9.2.3</td>
<td></td>
<td>(ii) U = 1.4D + 1.7L + 1.7H</td>
<td>C.9-2</td>
</tr>
<tr>
<td>C.9.2.3</td>
<td></td>
<td>(iii) U = 0.9D + 1.7H where D or L reduces F</td>
<td>C.9-3</td>
</tr>
<tr>
<td>C.9.2.4</td>
<td>Dead, Live & Fluid Pressure (F) **</td>
<td>(i) U = 1.4D + 1.7L</td>
<td>C.9-1</td>
</tr>
<tr>
<td>C.9.2.4</td>
<td></td>
<td>(ii) U = 1.4D + 1.7L + 1.4F</td>
<td>C.9-2</td>
</tr>
<tr>
<td>C.9.2.4</td>
<td></td>
<td>(iii) U = 0.9D + 1.4F where D or L reduces F</td>
<td>C.9-3</td>
</tr>
<tr>
<td>C.9.2.5</td>
<td>Impact (I) ***</td>
<td>In all of the above equations, substitute (L+I) for L when impact must be considered.</td>
<td></td>
</tr>
<tr>
<td>C.9.2.6</td>
<td>Dead, Live and Effects from Differential Settlement, Creep, Shrinkage, Expansion of Shrinkage-Compensating Concrete, or Temperature (T)</td>
<td>(i) U = 1.4D + 1.7L</td>
<td>C.9-1</td>
</tr>
<tr>
<td>C.9.2.6</td>
<td></td>
<td>(ii) U = 0.75 (1.4D + 1.4T + 1.7L)</td>
<td>C.9-5</td>
</tr>
<tr>
<td>C.9.2.6</td>
<td></td>
<td>(iii) U = 1.4 (D + T)</td>
<td>C.9-6</td>
</tr>
</tbody>
</table>

† D, L, W, E, H, F, and T represent the designated service loads or their corresponding effects such as moments, shears, axial forces, torsion, etc. Note: E is a service-level earthquake force.

†† Where wind load W has not been reduced by a directionality factor, it is permitted to use 1.3W in place of 1.6W in Eq. (C.9-2) and (C.9-3). Where earthquake load E is based on service-load seismic forces, 1.4E shall be used in place of 1.0E in Eq. (C.9-2) and (C.9-3).

* Weight and pressure of soil and water in soil. (Groundwater pressure is to be considered part of earth pressure with a 1.7 load factor.)

** Weight and pressure of fluids with well-defined densities and controllable maximum heights

*** Impact factor is required for design of parking structures, loading docks, warehouse floors, elevator shafts, etc.

The load factors for wind and earthquake forces have changed from those in Chapter 9 of the 1999 code. Since the wind load equation in ASCE/SEI7-05 and IBC 2006 includes a factor for wind directionality that is equal to 0.85 for buildings, the corresponding load factor for wind in the load combination equations was increased accordingly (1.3/0.85 = 1.53, rounded up to 1.6). The code allows use of the previous wind load factor of 1.3 when the design wind load is obtained from other sources that do not include the wind directionality factor.
The most recent legacy model building codes and the 2006 IBC specify strength-level earthquake forces; thus, the earthquake load factor was reduced to 1.0. The code requires use of the previous load factor for earthquake loads, which is 1.4, when service-level earthquake forces from earlier editions of the model codes or other resource documents are used.

C.9.3 DESIGN STRENGTH

As noted above, the design strength of a member is the nominal strength of the member, which is determined in accordance with code requirements, multiplied by the appropriate strength reduction factor, \(\phi \). The purposes of the strength reduction factors are given in Part 5 and RC.9.3.

The \(\phi \)-factors prescribed in C.9.3, which have changed from those given in Chapter 9 of the 1999 code, are contained in Table 33-2. Prior to the 2002 code, \(\phi \)-factors were given in terms of the type of loading for members subjected to axial load, flexure, or combined flexure and axial load. Now, for these cases, the \(\phi \)-factor is determined by the strain conditions at a cross-section at nominal strength. Figure RC.9.3.2 shows the variation of \(\phi \) with the net tensile strain \(\varepsilon_t \) for Grade 60 reinforcement and prestressing steel. The Unified Design Provisions are described in detail in Parts 5 and 6. As noted above, the \(\phi \)-factors given in C.9.3 are consistent with the load factors given in C.9.2.

<table>
<thead>
<tr>
<th>Tension-controlled sections</th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression-controlled sections</td>
<td></td>
</tr>
<tr>
<td>Members with spiral reinforcement conforming to 10.9.3</td>
<td>0.75</td>
</tr>
<tr>
<td>Other reinforced members</td>
<td>0.70</td>
</tr>
<tr>
<td>Shear and torsion</td>
<td>0.85</td>
</tr>
<tr>
<td>Bearing on concrete (except for post-tensioned anchorage zones and strut-and-tie models)</td>
<td>0.70</td>
</tr>
<tr>
<td>Post-tensioned anchorage zones</td>
<td>0.85</td>
</tr>
<tr>
<td>Strut-and-tie models (Appendix A)</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Anchoring to Concrete

UPDATE FOR ’08 CODE

Several substantive and some editorial changes are made in this third edition of Appendix D (2008 Code.) Substantive changes include:

- Ductility requirements for the seismic design of anchors are revised (D.3.3.3-.4.)
- Design of non-ductile anchors, controlled by concrete failure modes, is permitted. Such designs are penalized by applying an additional strength reduction factor (D.3.3.6.)
- A definition for Anchor Reinforcement is introduced, and is contrasted with that of Supplementary Reinforcement (D.1.)
- Strength of Anchor Reinforcement used to preclude concrete breakout in tension and in shear is codified (D.5.2.9, D.6.2.9.) Guidance for detailing the anchor reinforcement is given in RD.5.2.9 and RD.6.2.9.)
- A modification factor is introduced for concrete breakout shear capacity in thin members (2.2, D.6.2.1, new D.6.2.8)

Editorial changes include:

- The effective cross-sectional area of an anchor in shear and in tension is clarified (2.1, D.5.1.2, D.6.1.2.)
- The definition of Anchor Group in tension and in shear is clarified for connections with multiple anchors. Only anchors that contribute to the failure mode being investigated shall be considered (D.1, D.5.4.2).
- The resistance mechanism of Hooked Bolt is clarified (D.1, RD.5.3.4).
- Notations in several commentary figures are improved to reflect the intended application.
- A consistent notation for anchor diameter is provided (2.1, D.1, D.5.3.5, D.6.2.2, D.6.2.3, D.8.1-.4)
- Definition of deep embedment relative to edge distance is clearly expressed (D.5.4.1-.2).

BACKGROUND

Appendix D, Anchoring to Concrete, was introduced in ACI 318-02. It provides requirements for the design of anchorages to concrete using both cast-in-place and post-installed mechanical anchors. The following presents an overview regarding the development and publication of ACI 318 Appendix D. As of the late 1990’s, ACI 318 and the American Institute of Steel Construction LRFD and ASD Specifications were silent regarding the design of anchorage to concrete. ACI 349-85 Appendix B and the Fifth Edition of PCI Design Handbook provided the primary sources of design information for connections to concrete using cast-in-place anchors. The design of connections to concrete using post-installed anchors has typically been based on information provided by individual anchor manufacturers.

During the 1990’s, ACI Committee 318 took the lead in developing building code provisions for the design of anchorages to concrete using both cast-in-place and post-installed mechanical anchors. Committee 318 received support from ACI Committee 355 (ACI 355), Anchorage to Concrete, and ACI Committee 349, Concrete Nuclear Structures. Concurrent with the ACI 318 effort to develop design provisions, ACI 355 was involved with developing a test method for evaluating the performance of post-installed mechanical anchors in concrete. During
the code cycle leading to ACI 318-99, a proposed Appendix D to ACI 318 dealing with the design of anchorages to concrete using both cast-in-place and post-installed mechanical anchors was approved by ACI 318. Final adoption of the proposed appendix awaited ACI 355 approval of a test method for evaluating the performance of post-installed mechanical anchors in concrete under the ACI consensus process.

Since ACI 355 was not able to complete the test method for evaluating post-installed mechanical anchors on time to meet the publication deadlines for the ACI 318-99 code, an attempt was made to process an ACI 318 Appendix D reduced in scope to only cast-in-place anchors (i.e., without post-installed mechanical anchors). However, there was not sufficient time to meet the deadlines established by the International Code Council for submittal of the published ACI 318-99 standard to be referenced in the International Building Code (IBC 2000). As a result, the anchorage to concrete provisions originally intended for ACI 318-99 Appendix D (excluding provisions for post-installed mechanical anchors) were submitted and approved for incorporation into Section 1913 of IBC 2000.

At the end of 2001, ACI Committee 355 completed ACI 355.2-01 titled “Evaluating the Performance of Post-Installed Mechanical Anchors.” Availability of ACI 355.2 led the way to incorporating into ACI 318-02 a new Appendix D, Anchoring to Concrete, which provided design requirements for both cast-in-place and post-installed mechanical anchors. As a result, Section 1913 of IBC 2003 references ACI 318 Appendix D. Subsequently, IBC 2006 Section 1913 referenced ACI 318-05 Appendix D, which in turn adopted ACI 355.2-04 “Qualification of Post-Installed Mechanical Anchors in Concrete” by reference. It is anticipated that IBC 2009 will adopt ACI 318-08 Appendix D by reference. Note, the 2008 Code adopts an updated protocol for “Qualification of Post-Installed Mechanical Anchors in Concrete” (ACI 355.2-07.)

It should be noted that ACI 318-05 Appendix D does not address adhesive and grouted anchors. Like post-installed mechanical anchors, adhesive and grouted anchors are sensitive to installation. In addition to potential failure modes outlined in ACI 318 Appendix D, tests on adhesive and grouted anchors reveal other failure modes. As this document goes to press, ACI Committee 355 is developing a protocol for “Qualification of Post-Installed Adhesive Anchors in Concrete”, and new design equations to safeguard against failure modes not currently identified in Appendix D. A protocol for grouted anchors will follow.

EARLY DESIGN METHODS

The 45-degree cone method used in ACI 349-85 Appendix B and the PCI Design Handbook, Fifth Edition, was developed in the mid 1970’s. In the 1980’s, comprehensive tests of different types of anchors with various embedment lengths, edge distances, and group effects were performed at the University of Stuttgart on both uncracked and cracked concrete. The Stuttgart test results led to the development of the Kappa (K) method that was introduced in ACI 349 and ACI 355 in the late 1980’s. In the early 1990’s, the K method was improved, and made user-friendlier at the University of Texas at Austin. This effort resulted in the Concrete Capacity Design (CCD) method. During this same period, an international database was assembled. During the mid 1990’s, the majority of the work of ACI Committees 349 and 355 was to evaluate both the CCD method and the 45-degree cone method using the international database of test results. As a result of this evaluation, ACI Committees 318, 349, and 355 proceeded with implementation of the CCD method. The design provisions of ACI 318 Appendix D and ACI 349-06 Appendix D are based on the CCD method. Differences between the CCD method and the 45-degree cone method are discussed below.

GENERAL CONSIDERATIONS

The design of anchorages to concrete must address both strength of the anchor steel and that associated with the embedded portion of the anchors. The lesser of these two strengths will control the design.

The strength of the anchor steel depends on the steel properties and size of the anchor. The strength of the embedded portion of the anchorage depends on its embedment length, strength of the concrete, proximity to other
The primary difference between the ACI 318 Appendix D provisions and those of the 45-degree cone method lies in the calculation of the embedment capacity for concrete breakout (i.e., a concrete cone failure). In the 45-degree cone method, the calculation of breakout capacity is based on a 45-degree concrete cone failure model that results in an equation based on the embedment length squared (h_{ef}^2). The ACI 318 Appendix D provisions account for fracture mechanics and result in an equation for concrete breakout that is based on the embedment length to the 1.5 power ($h_{ef}^{1.5}$). Although the 45-degree concrete cone failure model gives conservative results for anchors with $h_{ef} \leq 6$ in., the ACI 318 Appendix D provisions have been shown to give a better prediction of embedment strength for both single anchors and for anchors influenced by edge and group effects.

In addition to better prediction of concrete breakout strength, the ACI 318 Appendix D provisions simplify the calculation of the effects of anchor groups and edges by using a rectangular area bounded by 1.5h_{ef} from each anchor and free edges rather than the overlapping circular cone areas typically used in the 45-degree cone method.

DISCUSSION OF DESIGN PROVISIONS

The following provides a section-by-section discussion of the design provisions of ACI 318-05 Appendix D. Section, equation, and figure numbers in the following discussion and examples refer to those used in ACI 318-08 Appendix D. Note that notation for Appendix D is presented in 2.1 of ACI 318.

D.1 DEFINITIONS

The definitions presented are generally self-explanatory and are further explained in the text and figures of Appendix D.

Noteworthy improvements introduced in the 2008 Code are the addition of new definitions for “Anchor reinforcement” and “Supplementary reinforcement”, and the clarification of the definition of “Anchor group.”

Anchor reinforcement can be used to preclude a concrete breakout failure in tension or in shear. It must be oriented in the direction of the load, or have a component in the direction of the load so as to transfer the full design load. Anchor reinforcement must be developed on both side of the breakout surface. See Figs. RD.5.2.9 and RD.6.2.9. A strength reduction factor equal to 0.75 must be used in the design of anchor reinforcement (D.5.2.9 and D.6.2.9.)

Supplementary reinforcement is similar to anchor reinforcement in that it acts to restrain the potential concrete breakout. However, supplementary reinforcement is not designed to transfer the full design load from the anchor into the structural member.

In 2008, the definition of **Anchor group** was revised to reflect the difference between anchors in tension and those in shear. Moreover, it flags that only anchors susceptible to the particular failure mode under consideration should be included in the group capacity.

The following tables are provided as an aid to the designer in determining values for many of the variables:

Table 34-1: This table provides information on the types of materials typically specified for cast-in-place anchor applications. The table provides values for specified tensile strength f_{utn} and specified yield strength f_{ya} as well as the elongation and reduction in area requirements necessary to determine if a material should be considered as a brittle or ductile steel element. As shown in Table 34-1, all typical anchor materials satisfy the ductile steel element requirements of D.1. When using cast-in-place anchor materials not given in Table 34-1, the designer
Table 34-1 Properties of Cast-in-Place Anchor Materials

<table>
<thead>
<tr>
<th>Material specification</th>
<th>Grade or type</th>
<th>Diameter (in.)</th>
<th>Tensile strength, for design f_{ul} (ksi)</th>
<th>Tensile strength, min. (ksi)</th>
<th>Yield strength, min. ksi</th>
<th>Elongation, min. %</th>
<th>Reduction of area, min. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS D1.1²</td>
<td>B</td>
<td>1/2 – 1</td>
<td>60</td>
<td>60</td>
<td>50</td>
<td>0.2%</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>≤ 4</td>
<td>60</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>≤ 4</td>
<td>58</td>
<td>58-80</td>
<td>36</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASTM A307³</td>
<td>BC</td>
<td>≤ 4</td>
<td>125</td>
<td>125</td>
<td>109</td>
<td>0.2%</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>BD</td>
<td>≤ 4</td>
<td>125</td>
<td>150</td>
<td>130</td>
<td>0.2%</td>
<td>14</td>
</tr>
<tr>
<td>ASTM A354⁴</td>
<td>1</td>
<td>≤ 1</td>
<td>120</td>
<td>120</td>
<td>92</td>
<td>0.2%</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 – 1-1/2</td>
<td>105</td>
<td>105</td>
<td>81</td>
<td>0.2%</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 1-1/2</td>
<td>90</td>
<td>90</td>
<td>58</td>
<td>0.2%</td>
<td>14</td>
</tr>
<tr>
<td>ASTM A449⁵</td>
<td>36</td>
<td>≤ 2</td>
<td>58</td>
<td>58-80</td>
<td>36</td>
<td>0.2%</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>≤ 2</td>
<td>75</td>
<td>75-95</td>
<td>55</td>
<td>0.2%</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>≤ 2</td>
<td>125</td>
<td>125-150</td>
<td>105</td>
<td>0.2%</td>
<td>15</td>
</tr>
<tr>
<td>ASTMF1554⁶</td>
<td>36</td>
<td>≤ 2</td>
<td>58</td>
<td>58-80</td>
<td>36</td>
<td>0.2%</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>≤ 2</td>
<td>75</td>
<td>75-95</td>
<td>55</td>
<td>0.2%</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>≤ 2</td>
<td>125</td>
<td>125-150</td>
<td>105</td>
<td>0.2%</td>
<td>15</td>
</tr>
</tbody>
</table>

Notes:
1. The materials listed are commonly used for concrete anchors. Although other materials may be used (e.g., ASTM A193 for high temperature applications, ASTM A320 for low temperature applications), those listed are preferred for normal use. Structural steel bolting materials such as ASTM A325 and ASTM A490 are not typically available in the lengths needed for concrete anchorage applications.
2. AWS D1.1-06 Structural Welding Code - Steel - This specification covers welded headed studs or welded hooked studs (unthreaded). None of the other listed specifications cover welded studs.
3. ASTM A307-07a Standard Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength - This material is commonly used for concrete anchorage applications. Grade A is headed bolts and studs. Grade C is nonheaded bolts (studs), either straight or bent, and is equivalent to ASTM A36 steel. Note that although a reduction in area requirement is not provided, A307 may be considered a ductile steel element. Under the definition of “Ductile steel element” in D.1, the code states: “A steel element meeting the requirements of ASTM A307 shall be considered ductile.”
4. ASTM A354-07a Standard Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners - The strength of Grade BD is equivalent to ASTM A490.
5. ASTM A449-07a Standard Specification for Quenched and Tempered Steel Bolts and Studs - This specification is referenced by ASTM A325 for “equivalent” anchor bolts.
6. ASTM F1554-07a Standard Specification for Anchor Bolts - This specification covers straight and bent, headed and headless, anchor bolts in three strength grades. Anchors are available in diameters ≤ 4 in. but reduction in area requirements vary for anchors > 2 in.

Table 34-2 Dimensional Properties of Threaded Cast-in-Place Anchors

<table>
<thead>
<tr>
<th>Anchor Diameter (d_a) (in.)</th>
<th>Gross Area of Anchor (A_{ga}) (in.2)</th>
<th>Effective Area of Anchor ($A_{se,N}, A_{se,V}$) (in.2)</th>
<th>Bearing Area of Heads and Nuts (A_{brg}) (in.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>0.049</td>
<td>0.032</td>
<td>0.142</td>
</tr>
<tr>
<td>0.375</td>
<td>0.110</td>
<td>0.078</td>
<td>0.280</td>
</tr>
<tr>
<td>0.500</td>
<td>0.196</td>
<td>0.142</td>
<td>0.464</td>
</tr>
<tr>
<td>0.625</td>
<td>0.307</td>
<td>0.226</td>
<td>0.693</td>
</tr>
<tr>
<td>0.750</td>
<td>0.442</td>
<td>0.334</td>
<td>0.824</td>
</tr>
<tr>
<td>0.875</td>
<td>0.601</td>
<td>0.462</td>
<td>1.121</td>
</tr>
<tr>
<td>1.000</td>
<td>0.785</td>
<td>0.606</td>
<td>1.465</td>
</tr>
<tr>
<td>1.125</td>
<td>0.994</td>
<td>0.763</td>
<td>1.854</td>
</tr>
<tr>
<td>1.250</td>
<td>1.227</td>
<td>0.969</td>
<td>2.228</td>
</tr>
<tr>
<td>1.375</td>
<td>1.485</td>
<td>1.160</td>
<td>2.769</td>
</tr>
<tr>
<td>1.500</td>
<td>1.767</td>
<td>1.410</td>
<td>3.295</td>
</tr>
<tr>
<td>1.750</td>
<td>2.405</td>
<td>1.900</td>
<td>—</td>
</tr>
<tr>
<td>2.000</td>
<td>3.142</td>
<td>2.500</td>
<td>—</td>
</tr>
</tbody>
</table>
should refer to the appropriate material specification to be sure the material falls within the ductile steel element definition. Some high strength materials may not meet these requirements and must be considered as brittle steel elements.

Table 34-3 Sample Table of Anchor Data for a Fictitious Post-Installed Torque-Controlled Mechanical Expansion Anchor as Presumed Developed from Qualification Testing in Accordance with ACI 355.2-07.

(Note: Fictitious data for example purposes only – data are not from a real anchor)

Anchor system is qualified for use in both cracked and uncracked concrete in accordance with test program of Table 4.2 of ACI 355.2-07. The material, ASTM F1554 grade 55, meets the ductile steel element requirements of ACI 318-08 Appendix D (tensile test elongation of at least 14 percent and reduction in area of at least 30 percent).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Units</th>
<th>Nominal anchor diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside diameter</td>
<td>(d_a)</td>
<td>in.</td>
<td>3/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(h_{ef})</td>
<td>in.</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(T_{inst})</td>
<td>ft-lb</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c_{a\min})</td>
<td>in.</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(s_{min})</td>
<td>in.</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(h_{min})</td>
<td>in.</td>
<td>1.5(h_{ef})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c_{se})</td>
<td>in.</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchor data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM F1554 Grade 55 (meets ductile steel element requirements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category number</td>
<td>1, 2, or 3</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f_{ya})</td>
<td>psi</td>
<td>55,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f_{uta})</td>
<td>psi</td>
<td>75,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_{se,N})</td>
<td>in.(^2)</td>
<td>0.0775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_{se,V})</td>
<td>in.(^2)</td>
<td>0.0775</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(k_{uncr})</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(k_c)</td>
<td>—</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{c,N})</td>
<td>—</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{c,N} = k_{uncr}/k_c)</td>
<td>—</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N_p)</td>
<td>lb</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(N_{eq})</td>
<td>lb</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(V_{eq})</td>
<td>lb</td>
<td>2906</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\beta)</td>
<td>lb/in.</td>
<td>55,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\nu)</td>
<td>%</td>
<td>12</td>
</tr>
</tbody>
</table>

*These are values used for \(k_c\) and \(\psi_{c,N}\) in ACI 318 for anchors qualified for use only in both cracked and uncracked concrete.

Table 34-2: This table provides information on the effective cross-sectional area \(A_{se}\) and bearing area \(A_{brg}\) for threaded cast-in-place anchors up to 2 in. in diameter.
Table 34-3: This table provides a fictitious sample information table for post-installed mechanical anchors that have been tested in accordance with ACI 355.2. This type of table will be available from manufactures that have tested their products in accordance with ACI 355.2. The table provides all of the values necessary for design of a particular post-installed mechanical anchor. The design of post-installed mechanical anchors must be based on this type of table unless values assumed in the design are specified in the project specifications (e.g., the pullout strength N_p).

As a further commentary on the five percent fractile in D.1 – Definitions, the five percent fractile is used to determine the nominal embedment strength of the anchor. It represents a value such that if 100 anchors are tested there is a 90% confidence that 95 of the anchors will exhibit strengths higher than the five percent fractile value. The five percent fractile is analogous to the use of f'_c for concrete strength and f_{ya} for steel strength in the nominal strength calculations in other parts of the ACI 318 code. For example, ACI 318 Section 5.3 requires that the required average compressive strength of the concrete be statistically greater than the specified value of f'_c used in design calculations. For steel, f_{ya} represents the specified yield strength of the material. Since ASTM specifications give the minimum specified yield strength, the value of f_{ya} used in design is in effect a zero percent fractile (i.e., the actual steel used will have a yield value higher than the minimum specified value). All embedment strength calculations in Appendix D are based on a nominal strength calculated using 5 percent fractile values (e.g., the k_c values used in calculating basic concrete breakout strength are based on the 5 percent fractile).

D.2 Scope

These provisions apply to cast-in-place and post-installed mechanical anchors (such as those illustrated in Fig. RD.1) that are used to transmit structural loads between structural elements and safety related attachments to structural elements. The type of anchors included are cast-in-place headed studs, headed bolts, hooked bolts (J and L bolts), and post-installed mechanical anchors that have met the anchor assessment requirements of ACI 355.2. Other types of cast-in-place anchors (e.g., specialty inserts) and post-installed anchors (e.g., adhesive, grouted, and pneumatically actuated nails or bolts) are currently excluded from the scope of Appendix D as well as post-installed mechanical anchors that have not met the anchor assessment requirements of ACI 355.2. As noted in D.2.4, these design provisions do not apply to anchorages loaded with high cycle fatigue and impact loads.

D.3 GENERAL REQUIREMENTS

The analysis methods prescribed in D.3 to determine loads on individual anchors in multiple anchor applications depend on the type of loading, rigidity of the attachment base plate, and the embedment of the anchors.

For multiple-anchor connections loaded concentrically in pure tension, the applied tensile load may be assumed to be evenly distributed among the anchors if the base plate has been designed so as not to yield. Prevention of yielding in the base plate will ensure that prying action does not develop in the connection.

For multiple-anchor connections loaded with an eccentric tension load or moment, distribution of loads to individual anchors should be determined by elastic analysis unless calculations indicate that sufficient ductility exists in the embedment of the anchors to permit a redistribution of load among individual anchors. If sufficient ductility is provided, a plastic design approach may be used. The plastic design approach requires ductile steel anchors sufficiently embedded so that embedment failure will not occur prior to a ductile steel failure. The plastic design approach assumes that the tension load (either from eccentric tension or moment) is equally distributed among the tension anchors. For connections subjected to moment, the plastic design approach is analogous to multiple layers of flexural reinforcement in a reinforced concrete beam. If the multiple layers of steel are adequately embedded and are a sufficient distance from the neutral axis of the member, they may be considered to have reached yield.
For both the elastic and plastic analysis methods of multiple-anchor connections subjected to moment, the exact location of the compressive resultant cannot be accurately determined by traditional concrete beam analysis methods. This is true for both the elastic linear stress-strain method (i.e., the transformed area method) and the ACI 318 stress block method since plane sections do not remain plane. For design purposes, the compression resultant from applied moment may be assumed to be located at the leading edge of the compression element of the attached member unless base plate stiffeners are provided. If base plate stiffeners are provided, the compressive resultant may be assumed to be located at the leading edge of the base plate.

Section D.3.3 was expanded in 2008 to clarify the ductility requirements when anchor design includes earthquake forces for structures assigned to Seismic Design Category C, D, E, or F. Further, for anchor designs controlled by concrete failure modes, D.3.3 provides the option to apply an additional strength reduction factor as discussed below. Section RD.3.3 provides a detailed discussion of these requirements.

Appendix D should not be used for the design of anchors in plastic hinge zones where high levels of cracking and spalling may be expected due to a seismic event (D.3.3.1). Per D.3.3.2, for SDC C, D, E, and F, Appendix D design provisions and anchor evaluation criteria of ACI 355.2 are based on cracks that might occur normally in concrete (the cracked concrete tests and simulated seismic tests in ACI 355.2 are based on anchor performance in cracks from 0.012 in. to 0.020 in.). The pullout strength, \(N_p \), and the nominal steel strength of the anchor in shear, \(V_{sa} \), must be based on the results of the Simulated Seismic Tests of ACI 355.2.

In regions of moderate or high seismic risk, or for structures assigned to SDC C, D, E, or F (see Table R1.1.9.1 for equivalent terminology used in building codes) all values for \(\phi N_n \) and \(\phi V_n \) associated with concrete failure modes must be reduced by multiplying those values by an additional factor of 0.75 (D.3.3.3). Further, the strength of the connection must be controlled by the strength of ductile steel elements and not the embedment strength or the strength of brittle steel elements (D.3.3.4). Alternatively, the structural attachment may be designed to yield at a load no greater than the design strength of the anchors governed by a concrete failure mode, reduced by the factor of 0.75 (D.3.3.5).

As an alternative to ductile behavior governing the design strength of anchor or attachment, D.3.3.6 permits taking the design strength of the non-ductile anchors as 0.4 times the strength governed by concrete failure, i.e. \((0.4)(0.75) = 0.36N_n \) and \(0.4\phi V_n\). The attachment of light frame stud walls typically involves multiple anchors, providing redundancy. Thus, for anchors of stud bearing walls, the 0.4 multiplier is increased to 0.5, i.e. \((0.5)(0.75) = 0.375\phi N_n \) and \(0.375\phi V_n\).

D.4 GENERAL REQUIREMENTS FOR STRENGTH OF ANCHORS

This section provides a general discussion of the failure modes that must be considered in the design of anchorages to concrete. The section also provides strength reduction factors, \(\phi \), for each type of failure mode. The failure modes that must be considered include those related to the steel strength and those related to the strength of the embedment.

Failure modes related to steel strength are simply tensile failure [Fig. RD.4.1(a)(i)] and shear failure [Fig. RD.4.1(b)(i)] of the anchor steel. Anchor steel strength is relatively easy to compute but typically does not control the design of the connection unless there is a specific requirement that the steel strength of a ductile steel element must control the design.

Embedment failure modes that must be considered are illustrated in Appendix D Fig. RD.4.1. They include:

- concrete breakout - a concrete cone failure emanating from the embedded end of tension anchors [Fig. RD.4.1(a)(iii)] or from the entry point of shear anchors located near an edge [Fig. RD.4.1(b)(iii)]
- pullout - a straight pullout of the anchor such as might occur for an anchor with a small head [Fig. RD.4.1(a)(ii)]
- side-face blowout - a spalling at the embedded head of anchors located near a free edge [Fig. RD.4.1(a)(iv)]
- concrete pryout - a shear failure mode that can occur with a short anchor popping out a wedge of concrete on the back side of the anchor [Fig. RD.4.1(b)(ii)]
- splitting - a tensile failure mode related to anchors placed in relatively thin concrete members [Fig. RD.4.1(a)(v)]

As noted in D.4.2, the use of any design model that results in predictions of strength that are in substantial agreement with test results is also permitted by the general requirements section. If the designer feels that the 45-degree cone method, or any other method satisfy this requirement he or she is permitted to use them. If not, the design provisions of the remaining sections of Appendix D should be used provided the anchor diameter does not exceed 2 in. and the embedment length does not exceed 25 in. These restrictions represent the upper limits of the database that the Appendix D design provisions for concrete breakout strength are based on.

In the selection of the appropriate ϕ related to embedment failure modes, the presence of supplementary reinforcement or anchor reinforcement designed to tie a potential failure prism to the structural member determines whether the ϕ for Condition A or Condition B applies. For the case of cast-in-place anchors loaded in shear directed toward a free edge, the supplementary reinforcement required for Condition A might be achieved by the use of hairpin reinforcement. It should be noted that for determining pullout strength for a single anchor, N_{pa}, and pryout strengths for a single anchor in shear, V_{cp}, or a group V_{cpg}, D.4.4(c) indicates that Condition B applies in all cases regardless of whether supplementary or anchor reinforcement is provided or not. In the case of post-installed anchors it is doubtful that hairpin reinforcement will have been installed prior to casting and Condition B will normally apply. Other patterns of existing reinforcement may help qualify post-installed anchors for Condition A. The selection of ϕ for post-installed anchors also depends on the anchor category determined from the ACI 355.2 product evaluation tests. As part of the ACI 355.2 product evaluation tests, product reliability tests (i.e., sensitivity to installation variables) are performed and the results used to establish the appropriate category for the anchor. Since each post-installed mechanical anchor may be assigned a different category, product data tables resulting from ACI 355.2 testing should be referred to. Example data are shown in Table 34-3.

Table 34-4 summarizes the strength reduction factors, ϕ, to be used with the various governing conditions depending upon whether the load combinations of 9.2 or Appendix C are used.

D.5 DESIGN REQUIREMENTS FOR TENSILE LOADING

Methods to determine the nominal tensile strength as controlled by steel strength and embedment strength are presented in the section on tensile loading. The nominal tensile strength of the steel is based on the specified tensile strength of the steel Eq. (D-3). The nominal tensile strength of the embedment is based on (1) concrete breakout strength, Eq. (D-4) for single anchors or Eq. (D-5) for groups of anchors, (2) pullout strength, Eq. (D-14), or (3) side-face blowout strength, Eq. (D-17) for single anchors or Eq. (D-18) for groups. When combined with the appropriate strength reduction factors from D.4.4 or D.4.5, the smallest of these nominal strengths values will control the design tensile strength of the anchorage.

D.5.1 Steel Strength of Anchor in Tension

The tensile strength of the steel, N_{stn}, is determined from Eq. (D-3) using the effective cross-sectional area of the anchor $A_{se,N}$ and the specified tensile strength of the anchor steel f_{uta}.

For cast-in-place anchors (i.e., threaded anchors, headed studs and hooked bars), the effective cross-sectional area of the anchor $A_{se,N}$ is the net tensile stress area for threaded anchors and the gross area for headed studs that are welded to a base plate. These areas are provided in Table 34-2. For anchors of unusual geometry, the nominal steel strength may be taken as the lower 5% fractile of test results. For post-installed mechanical anchors the effective cross-sectional area of the anchor $A_{se,N}$ must be determined from the results of the ACI 355.2 product evaluation tests. Example data are shown in Table 34-3.
Table 34-4 Strength Reduction Factors for Use with Appendix D

<table>
<thead>
<tr>
<th>Strength Governed by</th>
<th>Strength Reduction Factor, (\phi), for use with Load Combinations in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section 9.2</td>
</tr>
<tr>
<td>Ductile steel element</td>
<td></td>
</tr>
<tr>
<td>Tension, (N_{sa})</td>
<td>0.75</td>
</tr>
<tr>
<td>Shear, (V_{sa})</td>
<td>0.65</td>
</tr>
<tr>
<td>Brittle steel element</td>
<td></td>
</tr>
<tr>
<td>Tension, (N_{sa})</td>
<td>0.65</td>
</tr>
<tr>
<td>Shear, (V_{sa})</td>
<td>0.60</td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condition</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Shear</td>
<td></td>
</tr>
<tr>
<td>Breakout, (V_{cb}) and (V_{cbg})</td>
<td>0.75</td>
</tr>
<tr>
<td>Pryout, (V_{cp})</td>
<td>0.70</td>
</tr>
<tr>
<td>Tension</td>
<td></td>
</tr>
<tr>
<td>Cast-in headed studs, headed bolts, or hooked bolts</td>
<td></td>
</tr>
<tr>
<td>Breakout and side face blowout, (N_{cb}), (N_{cbg}), (N_{sb}) and (N_{sbg})</td>
<td>0.75</td>
</tr>
<tr>
<td>Pullout, (N_{pn})</td>
<td>0.70</td>
</tr>
<tr>
<td>Post-installed anchors with category determined per ACI 355.2</td>
<td></td>
</tr>
<tr>
<td>Category 1 (low sensitivity to installation and high reliability)</td>
<td></td>
</tr>
<tr>
<td>Breakout and side face blowout, (N_{cb}), (N_{cbg}), (N_{sb}) and (N_{sbg})</td>
<td>0.75</td>
</tr>
<tr>
<td>Pullout, (N_{pn})</td>
<td>0.65</td>
</tr>
<tr>
<td>Category 2 (med. sensitivity to installation and med. reliability)</td>
<td></td>
</tr>
<tr>
<td>Breakout and side face blowout, (N_{cb}), (N_{cbg}), (N_{sb}) and (N_{sbg})</td>
<td>0.65</td>
</tr>
<tr>
<td>Pullout, (N_{pn})</td>
<td>0.55</td>
</tr>
<tr>
<td>Category 3 (high sensitivity to installation and low reliability)</td>
<td></td>
</tr>
<tr>
<td>Breakout and side face blowout, (N_{cb}), (N_{cbg}), (N_{sb}) and (N_{sbg})</td>
<td>0.55</td>
</tr>
<tr>
<td>Pullout, (N_{pn})</td>
<td>0.45</td>
</tr>
</tbody>
</table>

The value of \(f_{uta} \) used in Eq. (D-3) is limited to 1.9\(f_{ya} \) or 125,000 psi. The limit of 1.9\(f_{ya} \) is intended to ensure that the anchor does not yield under service loads and typically applies only to stainless steel materials. The limit of 125,000 psi is based on the database used in developing the Appendix D provisions. Table 34-1 provides values for \(f_{ya} \) and \(f_{uta} \) for typical anchor materials. Note that neither of the limits applies to the typical anchor materials given in Table 34-1. For anchors manufactured according to specifications having a range for specified tensile strength, \(f_{uta} \) (e.g., ASTM F1554), the lower limit value should be used to calculate the design strength. Post-installed anchor manufacturers usually machine their own anchors. Thus, for post-installed mechanical anchors, both \(f_{ya} \) and \(f_{uta} \) must be determined from the results of the ACI 355.2 product evaluation tests. Example data are shown in Table 34-3.

D.5.2 Concrete Breakout Strength of Anchor in Tension

Figure RD.4.1(a)(iii) shows a typical concrete breakout failure (i.e., concrete cone failure) for a single headed cast-in-place anchor loaded in tension. Eq. (D-4) gives the concrete breakout strength for a single anchor, \(N_{cb} \), while Eq. (D-5) gives the concrete breakout strength for a group of anchors in tension, \(N_{cbg} \).

The individual terms in Eq. (D-4) and Eq. (D-5) are discussed below:

\(N_b \): The basic concrete breakout strength for a single anchor located away from edges and other anchors (\(N_b \)) is given by Eq. (D-7) or Eq. (D-8). As previously noted, the primary difference between these equations and those of the 45-degree concrete cone method is the use of \(h_{ef}^{1.5} \) in Eq. (D-7) [or alternatively \(h_{ef}^{5/3} \) for anchors with \(h_{ef} \geq 11 \) in. in Eq. (D-8)] rather than \(h_{ef}^2 \). The use of \(h_{ef}^{1.5} \) accounts for fracture mechanics principles and can be thought of as follows:
\[N_b = k_c \sqrt{\frac{f_{c}^2 h_{ef}^2}{h_{ef}^{0.5} f_{hef}^{2}}} \]

Resulting in:
\[N_b = k_c \sqrt{\frac{h_{ef}^{1.5}}{f_{hef}}} \]

Eq. (D-7)

The fracture mechanics approach accounts for the high tensile stresses that exist at the embedded head of the anchor while other approaches (such as the 45-degree concrete cone method) assume a uniform distribution of stresses over the assumed failure surface.

The numeric constant \(k_c \) of 24 in Eq. (D-7) (or \(k_c \) of 16 in Eq. (D-8) if \(h_{ef} \geq 11 \text{ in.} \)) is based on the 5% fractile of test results on headed cast-in-place anchors in cracked concrete. These \(k_c \) values must be used unless higher values of \(k_c \) are justified by ACI 355.2 product-specific tests. The value of \(k_c \) must not exceed 24. Note that the crack width used in tests to establish these \(k_c \) values was 0.012 in. If larger crack widths are anticipated, confining reinforcement to control crack width to about 0.012 in. should be provided or special testing in larger cracks should be performed.

\[\frac{A_{Nc}}{A_{Nco}} \]

This factor accounts for adjacent anchors and/or free edges. For a single anchor located away from free edges, the \(A_{Nco} \) term is the projected area of a 35-degree failure plane, measured relative to the surface of the concrete, and defined by a square with the sides \(1.5h_{ef} \) from the centerline of the anchor [Fig. RD.5.2.1(a)]. The \(A_{Nc} \) term is a rectilinear projected area of the 35-degree failure plane at the surface of the concrete with sides \(1.5h_{ef} \) from the centerline of the anchor(s) as limited by adjacent anchors and/or free edges. The definition of \(A_{Nc} \) is shown in Fig. RD.5.2.1(b). For a single anchor located at least \(1.5h_{ef} \) from the closest free edge and \(3h_{ef} \) from other anchors, \(A_{Nc} \) equals \(A_{Nco} \).

Where a plate or washer is used to increase the bearing area of the head of an anchor, \(1.5h_{ef} \) can be measured from the effective perimeter of the plate or washer where the effective perimeter is defined in D.5.2.8. Where a plate or washer is used, the projected area \(A_{Nc} \) can be based on \(1.5h_{ef} \) measured from the effective perimeter of the plate or washer where the effective perimeter is defined in D.5.2.8 and shown in Fig. 34-1.

\[\psi_{ec,N} \]

This factor is applicable when multiple rows of tension anchors are present and the elastic design approach is used. In this case, the individual rows of tension anchors are assumed to carry different levels of load with the centerline of action of the applied tension load at an eccentricity \((e'_N) \) from the centroid of anchors subject to tension due to loads from a given load combination. If the plastic design approach is used, all tension anchors are assumed to carry the same load and the eccentricity factor, \(\psi_{ec,N} \), is taken as 1.0.

\[\psi_{ed,N} \]

This factor accounts for the non-uniform distribution of stresses when an anchor is located near a free edge of the concrete that are not accounted for by the \(\frac{A_{Nc}}{A_{Nco}} \) term.

\[\psi_{e,N} \]

This factor is taken as 1.0 if cracks in the concrete are likely to occur at the location of the anchor(s). If calculations indicate that concrete cracking is not likely to occur under service loads (e.g., \(f_t < f_t \)), then \(\psi_{e,N} \) may be taken as 1.25 for cast-in-place anchors or 1.4 for post-installed anchors.

\[\psi_{cp,N} \]

This factor is taken as 1.0 except when the design assumes uncracked concrete, uses post-installed anchors, and without supplementary reinforcement to control splitting.
The 2008 Code introduced a definition for “Anchor reinforcement” in D.1. The purpose of this reinforcement is to safeguard against a concrete breakout failure. Anchor reinforcement can be designed to develop the full factored tension and/or shear force transmitted to a single anchor or group of anchors. Guidance for designing this reinforcement is given in RD.5.2.9, and for placing anchor reinforcement is illustrated in Fig. RD.5.2.9.

D.5.3 Pullout Strength of Anchor in Tension

A schematic of the pullout failure mode is shown in Fig. RD.4.1(a)(ii). The pullout strength of cast-in-place anchors is related to the bearing area at the embedded end of headed anchors, $A_{b_{rg}}$, and the properties of embedded hooks (e_h and d_o) for J-bolts and L-bolts. Obviously, if an anchor has no head or hook it will simply pull out of the concrete and not be able to achieve the concrete breakout strength associated with a full concrete cone failure (D.5.2). With an adequate head or hook size, pullout will not occur and the concrete breakout strength can be achieved. Equation (D-14) provides the general requirement for pullout while Eq. (D-15) and Eq. (D-16) provide the specific requirements for headed and hooked anchors, respectively. Equation (D-14) concerns pullout strength of a single anchor. For a group of anchors, pullout strength of each anchor should be considered separately.

For headed anchors, the bearing area of the embedded head ($A_{b_{rg}}$) is the gross area of the head less the gross area of the anchor shaft (i.e., not the area of the embedded head). Washers or plates with an area larger than the head of an anchor can be used to increase the bearing area, $A_{b_{rg}}$, thus increasing the pullout strength (see D.5.2.8). In regions of moderate or high seismic risk, or for structures assigned to intermediate or high seismic performance or design categories, where a headed bolt is being designed as a ductile steel element according to D.3.3.4, it may be necessary to use a bolt with a larger head or a washer in order to increase the design pullout strength, ϕN_{pp}, to assure that yielding of the steel takes place prior failure of the embedded portion of the anchor.

Table 34-2 provides values for $A_{b_{rg}}$ for standard bolt heads and nuts. Tables 34-5A, B and C can be used to quickly determine scenarios where the head of a bolt will not provide adequate pullout strength and will need to be increased in size.

For post-installed mechanical anchors, the value for the pullout strength, N_{pp}, must be determined from the results of the ACI 355.2 product evaluation tests. Example data are shown in Table 34-3.
D.5.4 Concrete Side-Face Blowout Strength of Headed Anchor in Tension

The side-face blowout strength is associated with the lateral pressure that develops around the embedded end of headed anchors under load. Where the minimum edge distance for a single headed anchor is less than 0.4 \(h_{cf} \), side-face blowout must be considered using Eq. (D-17). If an orthogonal free edge (i.e., an anchor in a corner) is located less than three times the distance from the anchor to the nearest edge then an additional reduction factor of \([(1+ c_{a2}/c_{a1})/4]\), where \(c_{a1} \) is the distance to the nearest edge and \(c_{a2} \) is the distance to the orthogonal edge, must be applied to Eq. (D-17).

For multiple anchor groups, the side-face blowout strength is given by Eq. (D-18) provided the spacing between individual anchors parallel to a free edge is greater than or equal to six times the distance to the free edge. If the spacing of the anchors in the group is less than six times the distance to the free edge, Eq. (D-18) must be used.

D.6 DESIGN REQUIREMENTS FOR SHEAR LOADING

Methods to determine the nominal shear strength as controlled by steel strength and embedment strength are specified in D.6. The nominal shear strength of the steel is based on the specified tensile strength of the steel using Eq. (D-19) for headed studs, Eq. (D-20) for headed and hooked bolts, and for post-installed anchors. The nominal shear strength of the embedment is based on concrete breakout strength Eq. (D-21) for single anchors or Eq. (D-22) for groups of anchors, or pryout strength Eq. (D-30) for single anchors or Eq. (D-31) for groups. When combined with the appropriate strength reduction factors from D.4.4, the smaller of these strengths will control the design shear strength of the anchorage.

D.6.1 Steel Strength of Anchor in Shear

For cast-in-place anchors, the shear strength of the steel is determined from Eq. (D-19) for headed studs and Eq. (D-20) for headed and hooked bolts using the effective cross-sectional area of the anchor, \(A_{se,V} \), and the specified tensile strength of the anchor steel, \(f_{uta} \). For post-installed mechanical anchors, the shear strength of the steel is determined from Eq. (D-20) using the effective cross-sectional area of the anchor, \(A_{se,V} \), and the specified tensile strength of the anchor steel, \(f_{uta} \), unless the ACI 355.2 anchor qualification report provides a value for \(V_{sa} \).

For cast-in-place anchors (i.e., headed anchors, headed studs and hooked bars), the effective cross-sectional area of the anchor \((A_{se,V}) \) is the net tensile stress area for threaded anchors and the gross area for headed studs that are welded to a base plate. These areas are provided in Table 34-2. If the threads of headed anchors, L-, or J-bolts are located well above the shear plane (at least two diameters) the gross area of the anchor may be used for shear. For anchors of unusual geometry, the nominal steel strength may be taken as the lower 5% fractile of test results. For post-installed mechanical anchors the effective cross-sectional area of the anchor, \(A_{se,V} \), or the nominal shear strength, \(V_{sa} \), must be determined from the results of the ACI 355.2 product evaluation tests. Example data are shown in Table 34-3.

The value of \(f_{uta} \) used in Eq. (D-19) and Eq. (D-20) is limited to 1.9\(f_{ya} \) or 125,000 psi. The limit of 1.9\(f_{ya} \) is intended to ensure that the anchor does not yield under service loads and typically is applicable only to stainless steel materials. The limit of 125,000 psi is based on the database used in developing the Appendix D provisions. Table 34-1 provides values for \(f_{ya} \) and \(f_{uta} \) for typical anchor materials. Note that neither of the limits applies to the typical anchor materials given in Table 34-1. For anchors manufactured according to specifications having a range for specified tensile strength, \(f_{uta} \) (e.g., ASTM F1554), the lower limit value should be used to calculate the design strength. Post-installed anchor manufacturers usually machine their own anchors. Thus, for post-installed mechanical anchors, \(f_{ya} \) and \(f_{uta} \) must be determined from the results of the ACI 355.2 product evaluation tests. Example data are shown in Table 34-3.

When built-up grout pads are present, the nominal shear strength values given by Eq. (D-19) and Eq. (D-20) must be reduced by 20% to account for the flexural stresses developed in the anchor if the grout pad fractures upon application of the shear load.
D.6.2 Concrete Breakout Strength of Anchor in Shear

Fig. RD.4.1(b)(iii) shows typical concrete breakout failures for anchors loaded in shear directed toward a free edge. Equation (D-21) gives the concrete breakout strength for a single anchor, V_{cb}, while Eq. (D-22) gives the concrete breakout strength for groups of anchors in shear, V_{cbg}. In cases where the shear is directed away from the free edge, the concrete breakout strength in shear need not be considered.

The individual terms in Eq. (D-21) and Eq. (D-22) are discussed below:

V_b: The basic concrete breakout strength for a single anchor in cracked concrete loaded in shear, directed toward a free edge (V_b) without any other adjacent free edges or limited concrete thickness is given by Eq. (D-24) for typical bolted connections and Eq. (D-25) for connections with welded studs or other anchors welded to the attached base plate. The primary difference between these equations and those using the 45-degree concrete cone method is the use of $c_{al}^{1.5}$ rather than c_{al}^{2}. The use of $c_{al}^{1.5}$ accounts for fracture mechanics principles in the same way that $h_{ef}^{1.5}$ does for tension anchors. The fracture mechanics approach accounts for the high tensile stresses that exist in the concrete at the point where the anchor first enters the concrete.

\bar{e}, d_a: The terms involving \bar{e} and d_a in Eq. (D-24) and Eq. (D-25) relate to the shear stiffness of the anchor. A stiff anchor is able to distribute the applied shear load further into the concrete than a flexible anchor.

A_{vco}: This factor accounts for adjacent anchors, concrete thickness, and free edges. For a single anchor in a thick concrete member with shear directed toward a free edge, the A_{vco} term is the projected area on the side of the free edge of a 35-degree failure plane radiating from the point where the anchor first enters the concrete and directed toward the free edge [see Fig. RD.6.2.1(a)]. The A_{vc} term is a rectilinear projected area of the 35-degree failure plane on the side of the free edge with sides 1.5 h_{ef} from the point where the anchor first enters the concrete as limited by adjacent anchors, concrete thickness and free edges. The definition of A_{vc} is shown in Fig. RD.6.2.1(b).

$\psi_{ec,V}$: This factor applies when the applied shear load does not act through the centroid of the anchors loaded in shear [see Fig. RD.6.2.5]

$\psi_{ed,V}$: This factor accounts for the non-uniform distribution of stresses when an anchor is located in a corner that is not accounted for by the A_{vc} term [see Fig. RD.6.2.1(d)].

$\psi_{c,V}$: This factor is taken as 1.0 if cracks in the concrete are likely to occur at the location of the anchor(s) and no supplemental reinforcement has been provided. If calculations indicate that concrete cracking is not likely to occur (e.g., $f_i < f_r$ at service loads), then $\psi_{c,V}$ may be taken as 1.4. Values of $\psi_{c,V} > 1.0$ may be used if cracking at service loads is likely, provided No. 4 bar or greater edge reinforcement is provided (see D.6.2.7).

$\psi_{h,V}$: This factor accounts for members where the thickness h_a is less than 1.5 c_{al}.

Properly designed and detailed anchor reinforcement can develop the factored shear force transmitted to an anchor, if the factored shear exceeds the concrete breakout strength. See Figs. RD.6.2.9(a) and (b).

D.6.3 Concrete Pryout Strength of Anchor in Shear

The concrete pryout strength of an anchor in shear may control when an anchor is both short and relatively stiff. Fig. RD.4.1(b)(ii) shows this failure mode. As a mental exercise, this failure mode may be envisioned by thinking of a No. 8 bar embedded 2 in. in concrete with 3 ft. of the bar sticking out. A small push at the top of the bar will cause the bar to “pryout” of the concrete.
D.7 INTERACTION OF TENSILE AND SHEAR FORCES

The interaction requirements for tension and shear are based on a trilinear approximation to the following interaction equation (see Fig. RD.7):

\[
\left[\frac{N_{ua}}{\phi N_n} \right]^5 + \left[\frac{V_{ua}}{\phi V_n} \right]^5 = 1
\]

In the trilinear simplification, D.7.1 permits the full value of \(\phi N_n \) if \(V_{ua} \leq 0.2 \phi V_n \) and D.7.2 permits the full value of \(\phi V_n \) if \(N_{ua} \leq 0.2 \phi N_n \). If both of these conditions are not satisfied, the linear interaction of Eq. (D-32) must be used.

The most important aspect of the interaction provisions is that both \(\phi N_n \) and \(\phi V_n \) are the smallest of the anchor strengths as controlled by the anchor steel or the embedment. Tests have shown that the interaction relationship is valid whether steel strength or embedment strength controls for \(\phi N_n \) or \(\phi V_n \).

D.8 REQUIRED EDGE DISTANCES, SPACINGS, AND THICKNESSES TO PRECLUDE SPLITTING FAILURE

Section D.8 provides minimum edge distance, spacing, and member thickness requirements to preclude a possible splitting failure of the structural member. For untorqued cast-in-place anchors (e.g., headed studs or headed bolts that are not highly preloaded after the attachment is installed), the minimum edge distance and member thickness is controlled by the cover requirements of 7.7 and the minimum anchor spacing is 4\(d_a \). For torqued cast-in-place anchors (e.g., headed bolts that are highly pre-loaded after the attachment is installed), the minimum edge distance and spacing is 6\(d_a \) and the member thickness is controlled by the cover requirements of 7.7.

Post-installed mechanical anchors can exert large lateral pressures at the embedded expansion device during installation that can lead to a splitting failure. Minimum spacing, edge distance, and member thickness requirements for post-installed anchors should be determined from the product-specific test results developed in the ACI 355.2 product evaluation testing. Example data are shown in Table 34-3. In the absence of the product-specific test results, the following should be used: a minimum anchor spacing of 6\(d_a \); a minimum edge distance of 6\(d_a \) for undercut anchors, 8\(d_a \) for torque-controlled anchors, and 10\(d_a \) for displacement controlled anchors; and a minimum member thickness of 1.5\(h_{ef} \) but need not exceed \(h_{ef} \) plus 4 in. Examples of each of these types of anchors are shown in ACI 355.2. In all cases, the minimum edge distance and member thickness should meet the minimum cover requirements of 7.7.

For untorqued anchors, D.8.4 provides a method to use a large diameter anchor nearer to an edge or with closer spacing than that required by D.8.1 to D.8.3. In this case, a fictitious anchor diameter \(d'_a \) is used in evaluating the strength of the anchor and in determining the minimum edge and spacing requirements.

For post-installed mechanical anchors, D.8.6 provides conservative default values for the critical edge distance \(c_{ac} \) used to determine \(\psi_{cp,N} \). ACI 355.2 anchor qualification reports will provide values of \(c_{ac} \) associated with individual products (see sample Table 34-3.)

D.9 INSTALLATION OF ANCHORS

Cast-in-place anchors should be installed in accordance with construction documents. For threaded anchors, a metal or plywood template mounted above the surface of the concrete with nuts on each side of the template should be used to hold the anchors in a fixed position while the concrete is placed, consolidated, and hardens. Project specifications should require that post-installed anchors be installed in accordance with the manufacturer’s
installation instructions. As noted in RD.9, ACI 355.2 product evaluation testing is based on the manufacturer’s installation instructions. As part of the ACI 355.2 product evaluation tests, product reliability tests (i.e., sensitivity to installation variables) are performed and the results are used to determine the category of the anchor to be used in the selection of the appropriate ϕ in D.4.4.

DESIGN TABLES FOR SINGLE CAST-IN ANCHORS

Tables have been provided to assist in the design of single anchors subject to tensile or shear loads. Tables 34-5A, B, and C provide design tensile strengths, ϕN_n, of single anchors in concrete with f_c of 2500, 4000, and 6000 psi, respectively. Tables 34-6A, B, and C provide design shear strengths, ϕV_n, of single anchors in concrete with f_c of 2500, 4000, and 6000 psi, respectively. A number of specified tensile strengths of steel, f_{uta}, are included to accommodate most anchor materials in use today. Notes accompany each group of tables that explain the assumptions used to develop the tables and how to adjust values for conditions that differ from those assumed.

According to D.8.2, minimum edge distances for cast-in headed anchors that will not be torqued must be based on minimum cover prescribed in 7.7. Thus, technically, concrete cover as low as 3/4 in. is permitted. If such a small cover is provided to the anchor shaft, the head of the anchor would end up having a cover smaller than 3/4 in. For corrosion protection, and in consideration of tolerances on placement (location and alignment) of anchors, it is recommended to provide a minimum concrete cover on cast-in anchors of 1-1/2 in. Tables 34-5 and 34-6 include design strengths for cast-in anchors with a minimum cover of 1-1/2 in.
NOTES FOR TENSION TABLES 34-5A, B, AND C

NP – Not practical. Resulting edge distance, c_{a1}, yields less than 1-1/2 in. cover.

All Notation are identical to those used in 2.1.

1. Design strengths in table are for single cast-in anchors near one edge only. The values do not apply where the distance between adjacent anchors is less than $3h_{ef}$, or where the perpendicular distance, c_{a2}, to the edge distance being considered, c_{a1}, is less than 1.5h_{ef}.

2. When anchor design includes earthquake forces for structures assigned to Seismic Design Category C, D, E or F, the concrete design strengths in the table must be reduced by 25%. In addition, the anchor must be designed so strength is governed by a ductile steel element, unless D.3.3.5 or D.3.3.6 is satisfied. Therefore, the design strengths based on the three concrete failure modes, ϕN_{cb}, ϕN_{pn}, and ϕN_{sb}, multiplied by 0.75 must exceed the design strength of the steel in tension, ϕN_{sa}. This requirement effectively precludes the use of hooked anchor bolts in the seismic zones noted above.

3. For design purposes the tensile strength of the anchor steel, f_{uta}, must not exceed 1.9f_{ya} or 125,000 psi.

4. Design strengths in table are based on strength reduction factor, ϕ, of Section D.4.4. Factored tensile load N_{ua} must be computed from the load combinations of 9.2. Design strengths for concrete breakout, ϕN_{cb}, pullout, ϕN_{pn}, and sideface blowout, ϕN_{sb}, are based on Condition B. Where supplementary reinforcement is provided to satisfy Condition A, design strengths for ϕN_{cb} may be increased 7.1% to account for the increase in strength reduction factor from 0.70 to 0.75. This increase does not apply to pullout strength, ϕN_{pn} or side-face blowout, ϕN_{sb}.

5. Design strengths for concrete breakout in tension, ϕN_{cb}, are based on N_{b} determined in accordance with Eq. (D-7) and apply to headed and hooked anchors. To determine the design strength of headed bolts with embedment depth, h_{ef}, greater than 11 in. in accordance with Eq. (D-8), multiply the table value by $[2(h_{ef}/3)]/[3(h_{ef}/1.5)]$.

6. Where analysis indicates that there will be no cracking at service load levels ($f_t < f_r$) in the region of the anchor, the design strengths for concrete breakout in tension, ϕN_{cb}, may be increased 25%.

7. The design strengths for pullout in tension, ϕN_{pn}, for headed bolts with diameter, d_a, less than 1-3/4 in. are based on bolts with regular hex heads. The design strengths for 1-3/4 and 2-in. bolts are based on heavy hex heads. For bolts with d_a less than 1-3/4 in. having heads with a larger bearing area, A_{brg}, than assumed, the design strengths may be increased by multiplying by the bearing area of the larger head and dividing by the bearing area of the regular hex head.

8. The design strengths for pullout in tension, ϕN_{pn}, for hooked bolts with hook-length, e_h, between 3 and 4.5 times diameter, d_a, may be determined by interpolation.

9. Where analysis indicates there will be no cracking at service load levels ($f_t < f_r$) in the region of the anchor, the design strengths for pullout in tension, ϕN_{pn}, may be increased 40%.

10. The design strengths for side-face blowout in tension, ϕN_{sb}, are applicable to headed bolts only and where edge distance, c_{a1}, is less than 0.4h_{ef}. The values for 0.4h_{ef} are shown for interpolation purposes only. The design strengths for bolts with diameter, d_a, less than 1-3/4 in. are based on bolts with regular hex heads. The design strengths for 1-3/4 and 2 in. bolts are based on bolts with heavy hex heads. For bolts with d_a less than 1-3/4 in. having heads with a larger bearing area, A_{brg}, than assumed, the design strengths may be increased by multiplying by the square root of the quotient resulting from dividing the bearing area of the larger head by the bearing area of the regular hex head $\left(\sqrt{A_{brg2} / A_{brg1}}\right)$.

11. Design strengths for concrete breakout, ϕN_{cb}, and side-face blowout, ϕN_{sb}, are for normalweight concrete. For anchors in lightweight concrete, ϕN_{cb} and ϕN_{sb} must be multiplied by modifier λ from 8.6.
NOTES FOR SHEAR TABLES 34-6A, B AND C

NP – Not practical. Resulting edge distance, c_{a1}, yields less than 1-1/2 in. cover.

All Notation are identical to those used in 2.1 starting with ACI 318-05.

1. Design strengths in table are for single cast-in anchors near one edge only. The values do not apply where the distance to an edge measured perpendicular to c_{a1} is less than 1.5c_{a1}. See Note 9.

The values do not apply where the distance between adjacent anchors is less than 3c_{a1}, where c_{a1} is the distance from the center of the anchor to the edge in the direction of shear application.

2. When anchor design includes earthquake forces for structures assigned to Seismic Design Category C, D, E or F, the concrete design strengths in the table must be reduced by 25%. In addition, the anchor must be designed so failure is initiated by a ductile steel element, unless D.3.3.5 or D.3.3.6 is satisfied. This means that all the design strengths based on the two concrete failure modes, \(\phi V_{cb} \) and \(\phi V_{cp} \), multiplied by 0.75 must equal or exceed the design strength of the steel in shear, \(\phi V_{sa} \).

3. Concrete pryout strength, \(\phi V_{cp} \), is to be taken equal to tension breakout strength, \(\phi N_{cb} \), where h_{ef} is less than 2.5 in., and to be taken as twice \(\phi N_{cb} \) where h_{ef} is equal to or greater than 2.5 in. Condition B (see D.4.4) must be assumed even where supplementary reinforcement qualifying for Condition A is present (i.e., strength reduction factor, \(\phi \), must be taken equal to 0.70).

4. For design purposes the tensile strength of the anchor steel, f_{uta}, must not exceed 1.9f_{ya} or 125,000 psi.

5. Design strengths in table are based on strength reduction factor, \(\phi \), of Section D.4.4. Factored shear load \(V_{ua} \) must be computed from the load combinations of 9.2. Design strengths for concrete breakout, \(\phi V_{cb} \), are based on Condition B. Where supplementary reinforcement is provided to satisfy Condition A, design strengths may be increased 7.1% to account for the increase in strength reduction factor from 0.70 to 0.75.

6. Where analysis indicates that there will be no cracking at service load levels (f_t < f_r) in the region of the anchor, the design strengths for concrete breakout in shear, \(\phi V_{cb} \), may be increased 40%.

7. In regions of members where analysis indicates cracking at service level loads, the strengths in the table for concrete breakout, \(\phi V_{cb} \), may be increased in accordance with the factors in D.6.2.7 if edge reinforcement or edge reinforcement enclosed within stirrups is provided in accordance with that section.

8. The design strengths for concrete breakout, \(\phi V_{cb} \), are based on the shear load being applied perpendicular to the edge. If the load is applied parallel to the edge, the strengths may be increased 100%.

9. Where the anchor is located near a corner with an edge distance perpendicular to direction of shear, c_{a2}, less than 1.5c_{a1}, design strengths for concrete breakout, \(\phi V_{cb} \), shall be reduced by multiplying by modification factor, \(\psi_{ed,V} \), determined from Eq. (D-28). The calculated values in the table do not apply where two edge distances perpendicular to direction of shear, c_{a2}, are less than 1.5c_{a1}. See D.6.2.4.

10. This value of thickness, h, is not practical since the head or hook would project below the bottom surface of the concrete. It was chosen to facilitate mental calculation of the actual edge distance, c_{a1}, since the variable used in the calculation c_{a1} is a function of embedment depth, h_{ef}.

11. Linear interpolation for intermediate values of edge distance, c_{a1}, is permissible. Linear interpolation for intermediate values of embedment depth, h_{ef}, is unconservative.

12. For 1-1/2 in. cover and for c_{a1} = 0.25h_{ef} and 0.50h_{ef}, see portion of table for h = h_{ef}.

13. For 1-1/2 in. cover and for c_{a1} = 0.25h_{ef} and 0.50h_{ef}, see portion of table for h = h_{ef}. For c_{a1} = h_{ef}, see portion of table for h = 1.5h_{ef}.
14. Tabulated design strengths for concrete breakout, ϕV_{cb}, are for anchors in normalweight concrete. For anchors in lightweight concrete, ϕV_{cb} must be multiplied by modifier λ from 8.6.

15. For anchors located in members with a thickness h_a less than 1.5 cm, concrete breakout, ϕV_{cb}, may be increased by the modifier $\psi_{h,V}$ computed from Eq. (D-29).
Table 34-5A. Design Strengths for Single Cast-In Anchors Subject to Tensile Loads ($f_c = 2500$ psi)$^{1, 2, 4}$

Notes pertaining to this table are given on Page 34-16

<table>
<thead>
<tr>
<th>d, in.</th>
<th>h, in.</th>
<th>(\phi) N(_{cb}^{*}) - Tension Strength of Anchor</th>
<th>(\phi N_{cb}^{*}) - Tension Breakout $^{4, 5, 6, 11}$</th>
<th>(\phi N_{pl}) - Pullout 9</th>
<th>(\phi N_{eb}^{*}) - Endface Blowout $^{5, 11}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(f_{ds}) - for design purposes 3 - psi</td>
<td>c(_{ae}^{*}) - edge distance in.</td>
<td>e = 3d(_{o})</td>
<td>e = 4.5d(_{o})</td>
</tr>
<tr>
<td>1/4</td>
<td>2</td>
<td>1,392 1,440 1,800 2,160 2,520 2,880 3,000</td>
<td>1,560 NP NP 1,782 2,376</td>
<td>1,638 295 443</td>
<td>3,113 NP NP</td>
</tr>
<tr>
<td>3/8</td>
<td>3</td>
<td>3,393 3,510 4,388 5,265 6,143 7,020 7,313</td>
<td>4,415 NP 5,009 7,044 9,391</td>
<td>4,074 1,181 1,772</td>
<td>5,287 NP NP</td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>6,177 6,390 7,988 9,585 11,183 12,760 13,313</td>
<td>8,009 8,316 10,137 14,255 19,017</td>
<td>4,074 1,181 1,772</td>
<td>5,287 NP NP</td>
</tr>
<tr>
<td>5/8</td>
<td>5</td>
<td>9,831 10,170 12,713 15,255 17,798 20,340 21,188</td>
<td>10,960 11,621 14,167 19,922 26,563</td>
<td>6,356 1,846 2,769</td>
<td>8,693 NP NP</td>
</tr>
<tr>
<td>8/8</td>
<td>8</td>
<td>25,968 25,968 31,185 36,383 41,580 43,313</td>
<td>29,505 45,938 56,000 78,750 105,000</td>
<td>12,474 3,618 5,426</td>
<td>10,242 NP NP</td>
</tr>
<tr>
<td>dₘ in.</td>
<td>hₘ in.</td>
<td>fₜ for design purposes, psi</td>
<td>cₑ - edge distance in.</td>
<td>head</td>
<td>(eₜ = 3dₘ)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>6</td>
<td>26.361</td>
<td>27.270 34.088 40.905 47.723 54.540 56.813</td>
<td>5.784</td>
<td>16282</td>
<td>4725 7088</td>
</tr>
<tr>
<td>9</td>
<td>26.361</td>
<td>27.270 34.088 40.905 47.723 54.540 56.813</td>
<td>9.693</td>
<td>16282</td>
<td>4725 7088</td>
</tr>
<tr>
<td>12</td>
<td>26.361</td>
<td>27.270 34.088 40.905 47.723 54.540 56.813</td>
<td>14.226</td>
<td>16282</td>
<td>4725 7088</td>
</tr>
<tr>
<td>15</td>
<td>26.361</td>
<td>27.270 34.088 40.905 47.723 54.540 56.813</td>
<td>19.307</td>
<td>16282</td>
<td>4725 7088</td>
</tr>
<tr>
<td>18</td>
<td>26.361</td>
<td>27.270 34.088 40.905 47.723 54.540 56.813</td>
<td>24.881</td>
<td>16282</td>
<td>4725 7088</td>
</tr>
<tr>
<td>21</td>
<td>26.361</td>
<td>27.270 34.088 40.905 47.723 54.540 56.813</td>
<td>30.904</td>
<td>16282</td>
<td>4725 7088</td>
</tr>
<tr>
<td>25</td>
<td>26.361</td>
<td>27.270 34.088 40.905 47.723 54.540 56.813</td>
<td>35.955</td>
<td>16282</td>
<td>4725 7088</td>
</tr>
<tr>
<td>11/8</td>
<td>33.191</td>
<td>34.335 42.919 51.265 60.868 68.670 71.531</td>
<td>5.833</td>
<td>20608</td>
<td>5980 8970</td>
</tr>
<tr>
<td>13/16</td>
<td>33.191</td>
<td>34.335 42.919 51.265 60.868 68.670 71.531</td>
<td>9.750</td>
<td>20608</td>
<td>5980 8970</td>
</tr>
<tr>
<td>17/32</td>
<td>33.191</td>
<td>34.335 42.919 51.265 60.868 68.670 71.531</td>
<td>14.291</td>
<td>20608</td>
<td>5980 8970</td>
</tr>
<tr>
<td>11/6</td>
<td>33.191</td>
<td>34.335 42.919 51.265 60.868 68.670 71.531</td>
<td>19.378</td>
<td>20608</td>
<td>5980 8970</td>
</tr>
<tr>
<td>13/8</td>
<td>33.191</td>
<td>34.335 42.919 51.265 60.868 68.670 71.531</td>
<td>24.959</td>
<td>20608</td>
<td>5980 8970</td>
</tr>
<tr>
<td>17/16</td>
<td>33.191</td>
<td>34.335 42.919 51.265 60.868 68.670 71.531</td>
<td>29.991</td>
<td>20608</td>
<td>5980 8970</td>
</tr>
<tr>
<td>13/4</td>
<td>33.191</td>
<td>34.335 42.919 51.265 60.868 68.670 71.531</td>
<td>39.685</td>
<td>20608</td>
<td>5980 8970</td>
</tr>
<tr>
<td>1</td>
<td>42.152</td>
<td>43.605 54.506 65.408 76.309 87.210 90.844</td>
<td>5.882</td>
<td>25438</td>
<td>7383 11074</td>
</tr>
<tr>
<td>1-1/4</td>
<td>42.152</td>
<td>43.605 54.506 65.408 76.309 87.210 90.844</td>
<td>9.807</td>
<td>25438</td>
<td>7383 11074</td>
</tr>
<tr>
<td>1-3/8</td>
<td>42.152</td>
<td>43.605 54.506 65.408 76.309 87.210 90.844</td>
<td>14.555</td>
<td>25438</td>
<td>7383 11074</td>
</tr>
<tr>
<td>2</td>
<td>42.152</td>
<td>43.605 54.506 65.408 76.309 87.210 90.844</td>
<td>19.450</td>
<td>25438</td>
<td>7383 11074</td>
</tr>
<tr>
<td>1-1/2</td>
<td>42.152</td>
<td>43.605 54.506 65.408 76.309 87.210 90.844</td>
<td>24.959</td>
<td>25438</td>
<td>7383 11074</td>
</tr>
<tr>
<td>1-3/4</td>
<td>42.152</td>
<td>43.605 54.506 65.408 76.309 87.210 90.844</td>
<td>35.878</td>
<td>25438</td>
<td>7383 11074</td>
</tr>
</tbody>
</table>

Table 34-5A. Design Strengths for Single Cast-In Anchors Subject to Tensile Loads (\(fₜ = 2500\) psi). Notes pertaining to this table are given on Page 34-16.
Table 34-5B. Design Strengths for Single Cast-In Anchors Subject to Tensile Loads ($f_r = 4000$ psi)$^{1, 2, 4}$

Notes pertaining to this table are given on Page 34-16

<table>
<thead>
<tr>
<th>d_a in.</th>
<th>h_a in.</th>
<th>N_{ts}, Tension Strength of Anchor</th>
<th>N_{bt}, Tension Breakout</th>
<th>N_{pl}, Pullout</th>
<th>N_{sb}, Sideface Blowout</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 1/4</td>
<td>f_{ct}, for design purposes, psi</td>
<td>c_{hef}, edge distance in.</td>
<td>e_{hef}, head</td>
<td>e_{hef}, $e_{4.5hef}$</td>
</tr>
<tr>
<td>3</td>
<td>3/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. c_{hef}: edge distance in.
2. e_{hef}: edge distance in.
3. $e_{4.5hef}$: edge distance in.
4. N_{ts}: Tension Strength of Anchor
5. N_{bt}: Tension Breakout
6. N_{pl}: Pullout
7. N_{sb}: Sideface Blowout
8. f_{ct}: for design purposes
9. c_{hef}: edge distance in.
10. e_{hef}: head
11. $e_{4.5hef}$: head
12. d_a in.: anchor diameter in.
13. h_a in.: anchor length in.
14. N_{ts}: Tension Strength of Anchor
15. N_{bt}: Tension Breakout
16. N_{pl}: Pullout
17. N_{sb}: Sideface Blowout
18. f_{ct}: for design purposes
19. c_{hef}: edge distance in.
20. e_{hef}: edge distance in.
21. $e_{4.5hef}$: edge distance in.
34-22

2

1-3/4

1-1/2

1-3/8

1-1/4

1-1/8

1

do
in.

6
9
12
15
18
21
25
6
9
12
15
18
21
25
6
9
12
15
18
21
25
6
9
12
15
18
21
25
12
15
18
21
25
12
15
18
21
25
12
15
18
21
25

h ef
in.

26,361
26,361
26,361
26,361
26,361
26,361
26,361
33,191
33,191
33,191
33,191
33,191
33,191
33,191
42,152
42,152
42,152
42,152
42,152
42,152
42,152
50,460
50,460
50,460
50,460
50,460
50,460
50,460
61,335
61,335
61,335
61,335
61,335
82,650
82,650
82,650
82,650
82,650
108,750
108,750
108,750
108,750
108,750

58,000

27,270
27,270
27,270
27,270
27,270
27,270
27,270
34,335
34,335
34,335
34,335
34,335
34,335
34,335
43,605
43,605
43,605
43,605
43,605
43,605
43,605
52,200
52,200
52,200
52,200
52,200
52,200
52,200
63,450
63,450
63,450
63,450
63,450
85,500
85,500
85,500
85,500
85,500
112,500
112,500
112,500
112,500
112,500

60,000

34,088
34,088
34,088
34,088
34,088
34,088
34,088
42,919
42,919
42,919
42,919
42,919
42,919
42,919
54,506
54,506
54,506
54,506
54,506
54,506
54,506
65,250
65,250
65,250
65,250
65,250
65,250
65,250
79,313
79,313
79,313
79,313
79,313
106,875
106,875
106,875
106,875
106,875
140,625
140,625
140,625
140,625
140,625

75,000

40,905
40,905
40,905
40,905
40,905
40,905
40,905
51,503
51,503
51,503
51,503
51,503
51,503
51,503
65,408
65,408
65,408
65,408
65,408
65,408
65,408
78,300
78,300
78,300
78,300
78,300
78,300
78,300
95,175
95,175
95,175
95,175
95,175
128,250
128,250
128,250
128,250
128,250
168,750
168,750
168,750
168,750
168,750

90,000

47,723
47,723
47,723
47,723
47,723
47,723
47,723
60,086
60,086
60,086
60,086
60,086
60,086
60,086
76,309
76,309
76,309
76,309
76,309
76,309
76,309
91,350
91,350
91,350
91,350
91,350
91,350
91,350
111,038
111,038
111,038
111,038
111,038
149,625
149,625
149,625
149,625
149,625
196,875
196,875
196,875
196,875
196,875

105,000

f ut - for design purposes - psi

3

φ N s - Tension Strength of Anchor

54,540
54,540
54,540
54,540
54,540
54,540
54,540
68,670
68,670
68,670
68,670
68,670
68,670
68,670
87,210
87,210
87,210
87,210
87,210
87,210
87,210
104,400
104,400
104,400
104,400
104,400
104,400
104,400
126,900
126,900
126,900
126,900
126,900
171,000
171,000
171,000
171,000
171,000
225,000
225,000
225,000
225,000
225,000

120,000

56,813
56,813
56,813
56,813
56,813
56,813
56,813
71,531
71,531
71,531
71,531
71,531
71,531
71,531
90,844
90,844
90,844
90,844
90,844
90,844
90,844
108,750
108,750
108,750
108,750
108,750
108,750
108,750
132,188
132,188
132,188
132,188
132,188
178,125
178,125
178,125
178,125
178,125
234,375
234,375
234,375
234,375
234,375

125,000

7,316
12,260
17,995
24,421
31,472
39,096
50,084
7,378
12,333
18,076
24,511
31,570
39,201
50,198
7,440
12,405
18,158
24,602
31,668
39,307
50,313
7,502
12,478
18,241
24,693
31,767
39,412
50,427
18,323
24,783
31,865
39,518
50,542
18,488
24,965
32,063
39,730
50,771
18,654
25,148
32,261
39,942
51,001

1-1/2-in.
cover

NP
12,551
19,324
27,006
35,500
44,735
58,107
19,324
27,006
35,500
44,735
58,107
19,324
27,006
35,500
44,735
58,107
19,324
27,006
35,500
44,735
58,107

0.25 h ef

8,328
15,300
23,556
32,921
43,276
54,534
70,835
8,328
15,300
23,556
32,921
43,276
54,534
70,835
8,328
15,300
23,556
32,921
43,276
54,534
70,835
8,328
15,300
23,556
32,921
43,276
54,534
70,835
23,556
32,921
43,276
54,534
70,835
23,556
32,921
43,276
54,534
70,835
23,556
32,921
43,276
54,534
70,835

0.5h ef

h ef

11,712
21,516
33,126
46,295
60,857
76,688
99,612
11,712
21,516
33,126
46,295
60,857
76,688
99,612
11,712
21,516
33,126
46,295
60,857
76,688
99,612
11,712
21,516
33,126
46,295
60,857
76,688
99,612
33,126
46,295
60,857
76,688
99,612
33,126
46,295
60,857
76,688
99,612
33,126
46,295
60,857
76,688
99,612

cca1
- edge distance in.
a1- edge distance in.

φN cb - Tension Breakout 4, 5, 6, 11

15,616
28,688
44,168
61,727
81,142
102,251
132,816
15,616
28,688
44,168
61,727
81,142
102,251
132,816
15,616
28,688
44,168
61,727
81,142
102,251
132,816
15,616
28,688
44,168
61,727
81,142
102,251
132,816
44,168
61,727
81,142
102,251
132,816
44,168
61,727
81,142
102,251
132,816
44,168
61,727
81,142
102,251
132,816

>1.5h ef

26,051
26,051
26,051
26,051
26,051
26,051
26,051
32,973
32,973
32,973
32,973
32,973
32,973
32,973
40,701
40,701
40,701
40,701
40,701
40,701
40,701
49,258
49,258
49,258
49,258
49,258
49,258
49,258
58,621
58,621
58,621
58,621
58,621
92,826
92,826
92,826
92,826
92,826
119,078
119,078
119,078
119,078
119,078

head 7

7,560
7,560
7,560
7,560
7,560
7,560
7,560
9,568
9,568
9,568
9,568
9,568
9,568
9,568
11,813
11,813
11,813
11,813
11,813
11,813
11,813
14,293
14,293
14,293
14,293
14,293
14,293
14,293
17,010
17,010
17,010
17,010
17,010
23,153
23,153
23,153
23,153
23,153
30,240
30,240
30,240
30,240
30,240

eh =
3do

8

11,340
11,340
11,340
11,340
11,340
11,340
11,340
14,352
14,352
14,352
14,352
14,352
14,352
14,352
17,719
17,719
17,719
17,719
17,719
17,719
17,719
21,440
21,440
21,440
21,440
21,440
21,440
21,440
25,515
25,515
25,515
25,515
25,515
34,729
34,729
34,729
34,729
34,729
45,360
45,360
45,360
45,360
45,360

eh =
4.5d o

“J” or “L” hook

φ N pn - Pullout 9

Table 34-5B. Design Strengths for Single Cast-In Anchors Subject to Tensile Loads (˘ = 4000 psi)1, 2, 4 (cont’d.)
Notes pertaining to this table are given on Page 34-16

15,278
15,278
15,278
15,278
15,278
15,278
15,278
17,725
17,725
17,725
17,725
17,725
17,725
17,725
20,290
20,290
20,290
20,290
20,290
20,290
20,290
22,978
22,978
22,978
22,978
22,978
22,978
22,978
25,783
25,783
25,783
25,783
25,783
34,247
34,247
34,247
34,247
34,247
40,830
40,830
40,830
40,830
40,830

1-1/2-in.
cover

NP
17,188
22,917
28,646
34,376
40,105
47,744
NP
19,337
25,782
32,228
38,674
45,119
53,713
NP
21,484
28,645
35,806
42,967
50,129
59,677
NP
23,634
31,512
39,391
47,269
55,147
65,651
34,377
42,972
51,566
60,160
71,619
43,259
54,074
64,889
75,704
90,123
48,996
61,245
73,494
85,743
102,075

0.25 h ef

18,334
27,500
36,667
45,834
55,001
64,168
76,390
20,626
30,939
41,252
51,565
61,878
72,191
85,941
22,916
34,374
45,832
57,290
68,748
80,206
95,483
25,210
37,815
50,420
63,025
75,630
88,235
105,041
55,004
68,755
82,505
96,256
114,591
69,215
86,519
103,822
121,126
144,198
78,394
97,992
117,591
137,189
163,320

0.4 h ef

ca1
distancein.in.
ca1- edge
edge distance

φN sb - Sideface Blowout 4, 10, 11


Table 34-5C. Design Strengths for Single Cast-In Anchors Subject to Tensile Loads ($f_y = 6000$ psi)$^1, 2$

Notes pertaining to this table are given on Page 34-16

<table>
<thead>
<tr>
<th>d_a in.</th>
<th>h_a in.</th>
<th>ϕ_{N_p} - Tension Strength of Anchor</th>
<th>ϕ_{N_s} - Tension Breakout $^6, 7, 8$</th>
<th>$\phi_{N_{sfp}}$ - Pullout 9</th>
<th>$\phi_{N_{sfab}}$ - Sideface Blowout $^10, 11$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>2</td>
<td>1,392 1,440 1,800 2,160 2,520 2,880 3,000</td>
<td>2,447 NP 2,761 3,681</td>
<td>3,931 709 1,063 4,822 NP NP</td>
<td>4,822 NP NP</td>
</tr>
<tr>
<td>3/8</td>
<td>2</td>
<td>3,393 3,510 4,388 5,265 6,143 7,020 7,313</td>
<td>2,498 NP 2,761 3,681</td>
<td>5,510 1,595 2,392 5,929 NP NP</td>
<td>5,929 NP NP</td>
</tr>
<tr>
<td>1/2</td>
<td>2</td>
<td>6,177 6,390 7,986 9,585 11,183 12,780 13,313</td>
<td>2,550 NP 2,761 3,681</td>
<td>9,778 2,835 4,253 8,190 NP NP</td>
<td>8,190 NP NP</td>
</tr>
<tr>
<td>5/8</td>
<td>3</td>
<td>9,831 10,170 12,713 15,255 17,798 20,340 21,188</td>
<td>3,893 NP 5,071 6,762</td>
<td>15,254 4,430 6,465 10,595 NP NP</td>
<td>10,595 NP NP</td>
</tr>
<tr>
<td>7/8</td>
<td>4</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>5,423 NP 5,552 7,808</td>
<td>21,974 6,379 9,568 13,155 NP NP</td>
<td>13,155 NP NP</td>
</tr>
<tr>
<td>9/8</td>
<td>5</td>
<td>19,228 20,120 22,545 26,303 29,678 31,944 33,075</td>
<td>7,047 NP 7,760 10,192</td>
<td>29,938 8,682 13,023 15,866 NP NP</td>
<td>15,866 NP NP</td>
</tr>
<tr>
<td>3/4</td>
<td>3</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>8,811 NP 10,200 14,344</td>
<td>21,974 6,379 9,568 13,155 NP NP</td>
<td>13,155 NP NP</td>
</tr>
<tr>
<td>7/8</td>
<td>4</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>10,702 NP 12,862 18,076</td>
<td>21,974 6,379 9,568 13,155 NP NP</td>
<td>13,155 NP NP</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>12,714 12,882 15,704 21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>14,839 15,372 18,739 21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>17,071 18,004 21,947 21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>20,097 20,790 25,988 29,678 31,944 33,075 34,313</td>
<td>21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>23,667 26,851 30,060 31,313</td>
<td>21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>23,667 26,851 30,060 31,313</td>
<td>21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>23,667 26,851 30,060 31,313</td>
<td>21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>12</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>23,667 26,851 30,060 31,313</td>
<td>21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>13</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>23,667 26,851 30,060 31,313</td>
<td>21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>14</td>
<td>14,529 15,030 18,788 22,545 26,303 30,060 31,313</td>
<td>23,667 26,851 30,060 31,313</td>
<td>21,974 6,379 9,568 13,155 NP 15,866 NP</td>
<td></td>
</tr>
</tbody>
</table>

Note: f_y is the yield strength of the anchor material. N_p is the pullout load, and N_s is the sideface blowout load. d_a and h_a are the anchor diameter and embedment depth, respectively. The table provides values for design purposes. $\phi_{N_{sfp}}$ and $\phi_{N_{sfab}}$ are the sideface pullout and sideface blowout capacities, respectively. The table includes values for different cover depths and anchor diameters.
Table 34-5C. Design Strengths for Single Cast-In Anchors Subject to Tensile Loads ($f_c = 6000$ psi)1,2,4 (cont’d.)

Notes pertaining to this table are given on Page 34-16

<table>
<thead>
<tr>
<th>d_a in.</th>
<th>h_{ef} in.</th>
<th>f_a, for design purposes 9,11 psi</th>
<th>N_{si}, Tension Strength of Anchor</th>
<th>N_{cb}, Tension Breakout 4,5,11</th>
<th>N_{ps}, Pullout 4,5,11</th>
<th>N_{sb}, Sideface Breakout 4,5,11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>26,361</td>
<td>34,088</td>
<td>40,905</td>
<td>47,723</td>
<td>54,540</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>26,361</td>
<td>34,088</td>
<td>40,905</td>
<td>47,723</td>
<td>54,540</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>26,361</td>
<td>34,088</td>
<td>40,905</td>
<td>47,723</td>
<td>54,540</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>26,361</td>
<td>34,088</td>
<td>40,905</td>
<td>47,723</td>
<td>54,540</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>26,361</td>
<td>34,088</td>
<td>40,905</td>
<td>47,723</td>
<td>54,540</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>26,361</td>
<td>34,088</td>
<td>40,905</td>
<td>47,723</td>
<td>54,540</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>26,361</td>
<td>34,088</td>
<td>40,905</td>
<td>47,723</td>
<td>54,540</td>
</tr>
<tr>
<td>1-1/8</td>
<td>6</td>
<td>33,191</td>
<td>34,335</td>
<td>42,919</td>
<td>51,503</td>
<td>60,066</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>33,191</td>
<td>34,335</td>
<td>42,919</td>
<td>51,503</td>
<td>60,066</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>33,191</td>
<td>34,335</td>
<td>42,919</td>
<td>51,503</td>
<td>60,066</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>33,191</td>
<td>34,335</td>
<td>42,919</td>
<td>51,503</td>
<td>60,066</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>33,191</td>
<td>34,335</td>
<td>42,919</td>
<td>51,503</td>
<td>60,066</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>33,191</td>
<td>34,335</td>
<td>42,919</td>
<td>51,503</td>
<td>60,066</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>33,191</td>
<td>34,335</td>
<td>42,919</td>
<td>51,503</td>
<td>60,066</td>
</tr>
<tr>
<td>1-1/4</td>
<td>6</td>
<td>42,152</td>
<td>43,605</td>
<td>54,506</td>
<td>65,408</td>
<td>76,309</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>42,152</td>
<td>43,605</td>
<td>54,506</td>
<td>65,408</td>
<td>76,309</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>42,152</td>
<td>43,605</td>
<td>54,506</td>
<td>65,408</td>
<td>76,309</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>42,152</td>
<td>43,605</td>
<td>54,506</td>
<td>65,408</td>
<td>76,309</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>42,152</td>
<td>43,605</td>
<td>54,506</td>
<td>65,408</td>
<td>76,309</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>42,152</td>
<td>43,605</td>
<td>54,506</td>
<td>65,408</td>
<td>76,309</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>42,152</td>
<td>43,605</td>
<td>54,506</td>
<td>65,408</td>
<td>76,309</td>
</tr>
<tr>
<td>1-1/2</td>
<td>6</td>
<td>50,460</td>
<td>52,200</td>
<td>65,250</td>
<td>78,300</td>
<td>91,350</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>50,460</td>
<td>52,200</td>
<td>65,250</td>
<td>78,300</td>
<td>91,350</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>50,460</td>
<td>52,200</td>
<td>65,250</td>
<td>78,300</td>
<td>91,350</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>50,460</td>
<td>52,200</td>
<td>65,250</td>
<td>78,300</td>
<td>91,350</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>50,460</td>
<td>52,200</td>
<td>65,250</td>
<td>78,300</td>
<td>91,350</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>50,460</td>
<td>52,200</td>
<td>65,250</td>
<td>78,300</td>
<td>91,350</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>50,460</td>
<td>52,200</td>
<td>65,250</td>
<td>78,300</td>
<td>91,350</td>
</tr>
<tr>
<td>1-3/4</td>
<td>6</td>
<td>61,335</td>
<td>63,450</td>
<td>79,313</td>
<td>95,175</td>
<td>111,038</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>61,335</td>
<td>63,450</td>
<td>79,313</td>
<td>95,175</td>
<td>111,038</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>61,335</td>
<td>63,450</td>
<td>79,313</td>
<td>95,175</td>
<td>111,038</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>61,335</td>
<td>63,450</td>
<td>79,313</td>
<td>95,175</td>
<td>111,038</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>61,335</td>
<td>63,450</td>
<td>79,313</td>
<td>95,175</td>
<td>111,038</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>61,335</td>
<td>63,450</td>
<td>79,313</td>
<td>95,175</td>
<td>111,038</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>61,335</td>
<td>63,450</td>
<td>79,313</td>
<td>95,175</td>
<td>111,038</td>
</tr>
<tr>
<td>1-3/8</td>
<td>6</td>
<td>82,650</td>
<td>85,500</td>
<td>106,875</td>
<td>128,250</td>
<td>149,625</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>82,650</td>
<td>85,500</td>
<td>106,875</td>
<td>128,250</td>
<td>149,625</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>82,650</td>
<td>85,500</td>
<td>106,875</td>
<td>128,250</td>
<td>149,625</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>82,650</td>
<td>85,500</td>
<td>106,875</td>
<td>128,250</td>
<td>149,625</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>82,650</td>
<td>85,500</td>
<td>106,875</td>
<td>128,250</td>
<td>149,625</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>82,650</td>
<td>85,500</td>
<td>106,875</td>
<td>128,250</td>
<td>149,625</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>82,650</td>
<td>85,500</td>
<td>106,875</td>
<td>128,250</td>
<td>149,625</td>
</tr>
</tbody>
</table>
Table 34-6A. Design Strengths for Single Cast-In Anchors Subject to Shear Loads ($f = 2500$ psi)1, 2, 3, 5

Notes pertaining to this table are given on Page 34-17

5, 6, 7, 8, 9, 14, 15

<table>
<thead>
<tr>
<th>d_{in}</th>
<th>h_{in}</th>
<th>0.5h_{in}</th>
<th>$1.5h_{in}$</th>
<th>$2h_{in}$</th>
<th>$3h_{in}$</th>
<th>h_{cb}</th>
<th>$0.5h_{cb}$</th>
<th>$1.5h_{cb}$</th>
<th>$2h_{cb}$</th>
<th>$3h_{cb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>1.522</td>
<td>0.263</td>
<td>0.526</td>
<td>0.789</td>
<td>0.952</td>
<td>1.531</td>
<td>0.510</td>
<td>1.020</td>
<td>1.531</td>
<td></td>
</tr>
<tr>
<td>5/32</td>
<td>1.577</td>
<td>0.315</td>
<td>0.630</td>
<td>0.945</td>
<td>1.135</td>
<td>1.815</td>
<td>0.562</td>
<td>1.124</td>
<td>1.815</td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1.632</td>
<td>0.363</td>
<td>0.726</td>
<td>1.090</td>
<td>1.315</td>
<td>2.322</td>
<td>0.665</td>
<td>1.330</td>
<td>2.322</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1.687</td>
<td>0.410</td>
<td>0.840</td>
<td>1.254</td>
<td>1.540</td>
<td>4.084</td>
<td>1.025</td>
<td>2.050</td>
<td>4.084</td>
<td></td>
</tr>
<tr>
<td>5/32</td>
<td>1.809</td>
<td>0.471</td>
<td>0.942</td>
<td>1.413</td>
<td>1.788</td>
<td>5.192</td>
<td>1.178</td>
<td>2.356</td>
<td>5.192</td>
<td></td>
</tr>
<tr>
<td>3/32</td>
<td>1.865</td>
<td>0.521</td>
<td>1.044</td>
<td>1.572</td>
<td>1.980</td>
<td>6.300</td>
<td>1.320</td>
<td>2.600</td>
<td>6.300</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1.921</td>
<td>0.571</td>
<td>1.146</td>
<td>1.731</td>
<td>2.172</td>
<td>7.408</td>
<td>1.460</td>
<td>2.912</td>
<td>7.408</td>
<td></td>
</tr>
</tbody>
</table>

1-1/2-in. c_{ef} = $2.25h$ and c_{ef} = $0.5h$

1-1/2-in. c_{ef} = $2.25h$ and c_{ef} = $0.5h$

58,000 60,000 75,000 90,000 105,000 120,000 125,000 130,000 135,000 140,000 150,000 160,000 170,000 180,000 190,000 200,000 210,000 220,000 230,000 240,000 250,000 260,000 270,000 280,000 290,000 300,000 310,000 320,000 330,000 340,000 350,000 360,000 370,000 380,000 390,000 400,000 410,000 420,000 430,000 440,000 450,000 460,000 470,000 480,000 490,000 500,000 510,000 520,000 530,000 540,000 550,000 560,000 570,000 580,000 590,000 600,000 610,000 620,000 630,000 640,000 650,000 660,000 670,000 680,000 690,000 700,000 710,000 720,000 730,000 740,000 750,000 760,000 770,000 780,000 790,000 800,000 810,000 820,000 830,000 840,000 850,000 860,000 870,000 880,000 890,000 900,000 910,000 920,000 930,000 940,000 950,000 960,000 970,000 980,000 990,000 1000,000.

34-25
Table 34-6A. Design Strengths for Single Cast-In Anchors Subject to Shear Loads ($f'_c = 2500$ psi) (cont'd.)

<table>
<thead>
<tr>
<th>d_o, c for design purposes, psi</th>
<th>h_e</th>
<th>0.5h_e</th>
<th>h_e</th>
<th>1.5h_e</th>
<th>$2h_e$</th>
<th>h_e</th>
<th>0.5h_e</th>
<th>h_e</th>
<th>1.5h_e</th>
<th>$2h_e$</th>
<th>h_e</th>
<th>0.5h_e</th>
<th>h_e</th>
<th>1.5h_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1/4</td>
<td>9</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>1,372</td>
<td>3,881</td>
<td>7,317</td>
<td>8,683</td>
<td>12,674</td>
</tr>
<tr>
<td>9</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>1,372</td>
<td>3,881</td>
<td>7,317</td>
<td>8,683</td>
<td>12,674</td>
<td></td>
</tr>
<tr>
<td>1-3/8</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>2,363</td>
<td>6,684</td>
<td>12,604</td>
<td>15,437</td>
<td>21,831</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,303</td>
<td>9,342</td>
<td>17,615</td>
<td>21,574</td>
<td>30,136</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>4,467</td>
<td>12,635</td>
<td>23,824</td>
<td>29,179</td>
<td>41,265</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>6,487</td>
<td>18,349</td>
<td>34,599</td>
<td>42,928</td>
<td>59,926</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>21,919</td>
<td>22,675</td>
<td>28,343</td>
<td>34,012</td>
<td>39,681</td>
<td>45,349</td>
<td>47,239</td>
<td>1,259</td>
<td>3,963</td>
<td>11,210</td>
<td>25,599</td>
<td>34,599</td>
<td>52,984</td>
<td></td>
</tr>
</tbody>
</table>

Notes pertaining to this table are given on Page 34-17.
\(\phi \)	\(h_1 \)	\(h_2 \)	\(h_3 \)	\(h_4 \)	\(h_5 \)	\(h_6 \)	\(h_7 \)	\(h_8 \)	\(h_9 \)	\(h_{10} \)	\(h_{11} \)	\(h_{12} \)	\(h_{13} \)	\(h_{14} \)	\(h_{15} \)	\(h_{16} \)	\(h_{17} \)	\(h_{18} \)	\(h_{19} \)	\(h_{20} \)
\(1/2 \)	302	305	351	396	442	488	524	569	569	569	569	569	569	569	569	569	569	569	569	569
\(3/4 \)	367	370	416	461	507	553	589	634	634	634	634	634	634	634	634	634	634	634	634	634
\(1 \)	432	435	482	527	573	618	654	700	700	700	700	700	700	700	700	700	700	700	700	700
\(1/2 \)	598	601	648	694	740	786	832	878	878	878	878	878	878	878	878	878	878	878	878	878
\(3/4 \)	663	666	713	759	805	851	897	944	944	944	944	944	944	944	944	944	944	944	944	944
\(1 \)	729	732	779	825	871	917	964	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	
\(1/2 \)	895	898	945	991	1037	1083	1129	1176	1176	1176	1176	1176	1176	1176	1176	1176	1176	1176	1176	
\(3/4 \)	960	963	1010	1056	1102	1148	1194	1241	1241	1241	1241	1241	1241	1241	1241	1241	1241	1241	1241	
\(1 \)	1026	1029	1076	1122	1168	1214	1260	1307	1307	1307	1307	1307	1307	1307	1307	1307	1307	1307	1307	
\(1/2 \)	1192	1195	1242	1288	1334	1380	1426	1473	1473	1473	1473	1473	1473	1473	1473	1473	1473	1473	1473	
\(3/4 \)	1258	1261	1308	1354	1400	1446	1492	1539	1539	1539	1539	1539	1539	1539	1539	1539	1539	1539	1539	
\(1 \)	1324	1327	1374	1420	1466	1512	1558	1605	1605	1605	1605	1605	1605	1605	1605	1605	1605	1605	1605	
\(1/2 \)	1490	1493	1540	1586	1632	1678	1724	1771	1771	1771	1771	1771	1771	1771	1771	1771	1771	1771	1771	
\(3/4 \)	1556	1559	1606	1652	1702	1748	1794	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	
\(1 \)	1622	1625	1672	1718	1765	1812	1858	1905	1905	1905	1905	1905	1905	1905	1905	1905	1905	1905	1905	
Table 34-6B. Design Strengths for Single Cast-In Anchors Subject to Shear Loads (f' = 4000 psi)

<table>
<thead>
<tr>
<th>Vs</th>
<th>φ</th>
<th>Vcb</th>
<th>Notes pertaining to this table are given on Page 34-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Notes
- Shear Strength of Anchor
- φ = 4000 psi
- Notes pertaining to this table are given on Page 34-17
Table 34-6C. Design Strengths for Single Cast-In Anchors Subject to Shear Loads ($f_c' = 6000$ psi)

<table>
<thead>
<tr>
<th>d, in.</th>
<th>h_a, in.</th>
<th>f_{tu} for design purposes a, psi</th>
<th>h, in.</th>
<th>h_{tu} and c_w, in. b</th>
<th>h_{tu} and c_w, in. b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>7/8</td>
<td>1/2</td>
<td>5/8</td>
<td>3/4</td>
<td>1/4</td>
</tr>
<tr>
<td>2</td>
<td>724</td>
<td>58,000 112 1.25 1.40 1.50</td>
<td>489</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>3</td>
<td>724</td>
<td>60,000 112 1.25 1.40 1.50</td>
<td>596</td>
<td>NP</td>
<td>NP</td>
</tr>
<tr>
<td>4</td>
<td>724</td>
<td>75,000 112 1.25 1.40 1.50</td>
<td>596</td>
<td>814 1334 1879 2657</td>
<td>2301 2818 3986 4228</td>
</tr>
<tr>
<td>5</td>
<td>724</td>
<td>90,000 112 1.25 1.40 1.50</td>
<td>596</td>
<td>1117 2114 2622 3714</td>
<td>3216 3393 5570 5908</td>
</tr>
<tr>
<td>6</td>
<td>724</td>
<td>120,000 112 1.25 1.40 1.50</td>
<td>596</td>
<td>1495 2818 3652 4882</td>
<td>4228 5173 7322 7766</td>
</tr>
<tr>
<td>7</td>
<td>1,764</td>
<td>125,000 112 1.25 1.40 1.50</td>
<td>563</td>
<td>NP</td>
<td>613 719 1061 1199</td>
</tr>
<tr>
<td>8</td>
<td>1,764</td>
<td>125,000 112 1.25 1.40 1.50</td>
<td>772</td>
<td>1220 1495 2114 1813</td>
<td>1361 2242 3171 3363</td>
</tr>
<tr>
<td>9</td>
<td>1,764</td>
<td>125,000 112 1.25 1.40 1.50</td>
<td>772</td>
<td>996 1879 2301 2818</td>
<td>3216 3393 5570 5908</td>
</tr>
<tr>
<td>10</td>
<td>1,764</td>
<td>125,000 112 1.25 1.40 1.50</td>
<td>772</td>
<td>814 996 1409 1495</td>
<td>1726 2114 2766 3171</td>
</tr>
<tr>
<td>11</td>
<td>1,764</td>
<td>125,000 112 1.25 1.40 1.50</td>
<td>772</td>
<td>996 1879 2301 2818</td>
<td>3216 3393 5570 5908</td>
</tr>
<tr>
<td>12</td>
<td>1,764</td>
<td>125,000 112 1.25 1.40 1.50</td>
<td>772</td>
<td>814 996 1409 1495</td>
<td>1726 2114 2766 3171</td>
</tr>
</tbody>
</table>

Notes pertaining to this table are given on Page 34-17.
Table 34-6C. Design Strengths for Single Cast-In Anchors Subject to Shear Loads ($f' = 6000$ psi)\(^{1, 2, 3, 5}\) (cont’d.)

<table>
<thead>
<tr>
<th>φ Vs</th>
<th>Shear Strength of Anchor</th>
<th>φ Vcb</th>
<th>Shear Breakout (^{5, 6, 7, 8, 9, 14, 15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes pertaining to this table are given on Page 34-17
Example 34.1—Single Headed Bolt in Tension Away from Edges

Design a single headed bolt installed in the bottom of a 6 in. slab to support a 5000 lb service dead load.

$f'_c = 4000$ psi (normalweight concrete)

![Diagram of bolt in slab]

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Eq. (9-1)</td>
</tr>
<tr>
<td>D.5.1</td>
<td></td>
</tr>
</tbody>
</table>

1. **Determine factored design load (only dead load is present)**

 $N_u = 1.4 \times (5000) = 7000$ lb

2. **Determine anchor diameter and material**

 The strength of most anchors is likely to be controlled by the embedment strength rather than the steel strength. As a result, it is usually economical to design the anchor using a mild steel rather than a high strength steel. ASTM F1554 “Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength,” covers straight and bent, headed and headless, anchors in three strength grades.

 Assume an ASTM F1554 Grade 36 headed anchor for this example.

 The basic requirement for the anchor steel is:

 $$\phi N_{sa} \geq N_{ua} \quad \text{Eq. (D-1)}$$

 where:

 $$\phi = 0.75 \quad \text{D.4.1.2}$$

 Per the Ductile Steel Element definition in D.1, ASTM F1554 Grade 36 steel qualifies as a ductile steel element (23% minimum elongation in 2 in. which is greater than the 14% required and a minimum reduction in area of 40% that is greater than the 30% required, see Table 34.1). This results in $\phi = 0.75$ rather than $\phi = 0.65$ if the steel had not met the ductile steel element requirements.

 $$N_{sa} = nA_{se,N_{f_{uta}}} \quad \text{Eq. (D-3)}$$

 For design purposes, Eq. (D-1) with Eq. (D-3) may be rearranged as:

 $$A_{se,N} = \frac{N_{ua}}{\phi n f_{uta}}.$$
where:

\[N_{ua} = 7000 \text{ lbs} \]
\[\phi = 0.75 \]
\[n = 1 \]
\[f_{uta} = 58,000 \text{ psi} \]

Per ASTM F1554, Grade 36 has a specified minimum yield strength of 36 ksi and a specified tensile strength of 58-80 ksi (see Table 34-1). For design purposes, the minimum tensile strength of 58 ksi should be used.

Note: Per D.5.1.2, \(f_{uta} \) shall not be taken greater than 1.9\(f_{ya} \) or 125,000 psi. For ASTM F1554 Grade 36, 1.9\(f_{ya} = 1.9(36,000) = 68,400 \text{ psi} \), therefore use the specified minimum \(f_{uta} \) of 58,000 psi.

Substituting:

\[A_{se,N} = \frac{7000}{0.75(1)(58,000)} = 0.161 \text{ in.}^2 \]

Per Table 34-2, a 5/8 in. diameter threaded anchor will satisfy this requirement \((A_{se,N} = 0.226 \text{ in.}^2) \).

3. Determine the required embedment length \((h_{ef}) \) based on concrete breakout

The basic requirement for the single anchor embedment is:

\[\phi N_{cb} \geq N_{ua} \]

where:

\[\phi = 0.70 \]

Condition B applies, no supplementary reinforcement has been provided to tie the failure prism associated with the concrete breakout failure mode of the anchor to the supporting structural member. This is likely to be the case for anchors loaded in tension attached to a slab. Condition A (with \(\phi = 0.75 \)) may apply when the anchoring is attached to a deeper member (such as a pedestal or beam) where there is space available to install supplementary reinforcement across the failure prism.

\[N_{cb} = \frac{A_{Nc}}{A_{Nco}} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \]

where:

\[\frac{A_{Nc}}{A_{Nco}} \text{ and } \psi_{ed,N} \text{ terms are 1.0 for single anchors away from edges} \]

For cast-in anchors \(\psi_{cp,N} = 1.0 \)

\[N_b = 24\lambda \sqrt{f_c' h_{ef}}^{1.5} \]

For normalweight concrete, \(\lambda = 1.0 \)
For design of a single cast-in-place anchor away from edges, Eq. (D-1) with Eq. (D-4) and Eq. (D-7) for normalweight concrete may be rearranged as:

$$h_{ef} = \left(\frac{N_{ua}}{\phi \psi_{c,N} 24 \sqrt{f'_c}} \right)^2.$$

where:

$$\psi_{c,N} = 1.0 \text{ for locations where concrete cracking is likely to occur (i.e., the bottom of the slab)}$$

Substituting:

$$h_{ef} = \left(\frac{7000}{0.70(1.0) 24 \sqrt{4000}} \right)^2 = 3.51 \text{ in.}.$$

Select 4 in. embedment for this anchor.

Note: The case of a single anchor away from an edge is essentially the only case where h_{ef} can be solved for directly from a closed form solution. Whenever edges or adjacent anchors are present, the solution for h_{ef} is iterative.

4. Determine the required head size for the anchor

The basic requirement for pullout strength (i.e., the strength of the anchor related to the embedded anchor having insufficient bearing area so that the anchor pulls out without a concrete breakout failure) is:

$$\phi N_{pn} \geq N_{ua}$$

where:

$$\phi = 0.70$$

Condition B applies for pullout strength in all cases

$$N_{pn} = \psi_{c,P} N_p$$

where:

$$N_p = A_{brg} 8 f'_c$$

$$\psi_{c,P} = 1.0 \text{ for locations where concrete cracking is likely to occur (i.e., the bottom of the slab)}$$

For design purposes Eq. (D-1) with Eq. (D-14) and Eq. (D-15) may be rearranged as:

$$A_{brg} = \frac{N_{ua}}{\phi \psi_{c,P} 8 f'_c}.$$
Substituting:

\[
A_{brg} = \frac{7000}{0.70 \times (1.0) \times (8) \times (4000)} = 0.313 \text{ in.}^2
\]

As shown in Table 34-2, any type of standard head (square, heavy square, hex, or heavy hex) is acceptable for this 5/8 in. diameter anchor. ASTM F1554 specifies a hex head for Grade 36 bolts less than 1-1/2 in. in diameter.

5. Evaluate side-face blowout

Since this anchor is located far from a free edge of concrete \((h_{ef} > 2.5 c_{a1})\) this type of failure mode is not applicable.

6. Required edge distances, spacings, and thicknesses to preclude splitting failure

Since this is a cast-in-place anchor and is located far from a free edge of concrete, the only requirement is that the minimum cover requirements of Section 7.7 should be met. Assuming this is an interior slab, the requirements of Section 7.7 will be met with the 4 in. embedment length plus the head thickness. The head thickness for square, hex, and heavy hex heads and nuts are at most equal to the anchor diameter (refer to ANSI B.18.2.1 and ANSI B.18.2.2 for exact dimensions). This results in \(\sim 1-3/8\) in. cover from the top of the anchor head to the top of the slab.

7. Summary:

Use an ASTM F1554 Grade 36, 5/8 in. diameter headed anchor with a 4 in. embedment.

Alternate design using Table 34-5B

Note: Step numbers correspond to those in the main example above, but prefaced with “A”.

Table 34-5B has been selected because it contains design tension strength values based on concrete with \(f_c = 4000\) psi. Table Note 4 indicates that the values in the table are based on Condition B (no supplementary reinforcement), and Notes 6 and 10 indicate that cracked concrete was assumed.

A2. Determine anchor diameter and material.

Tentatively try a bolt complying with ASTM F1554 Grade 36 with a \(f_{utb}\) of 58,000 psi. Using the factored tensile load from Step 1 above (7000 lb), and 58,000 psi as the value of \(f_{utb}\) go down the column for 58,000 until an anchor size has a design tensile strength, \(\phi N_{sa}\), equal to or greater than 7000 lb. Table 34-6B shows that a 5/8 in. diameter bolt has a design tensile strength equal to

\[
\phi N_{sa} = 9831 \text{ lb} > N_u = 7000 \text{ lb} \quad \text{O.K.}
\]

Since this is greater than the required strength, tentatively use a 5/8 in. headed bolt.
Example 34.1 (cont’d) Calculations and Discussion Code Reference

A3. Determine the required embedment length \(h_{ef} \) based on concrete breakout strength \(\phi N_{cb} \)

Since the anchor will be far from an edge, use the column labeled “>1.5h_{ef}.” In this case “far from an edge” means that the edge distance, \(c_{a1} \), must equal or exceed 1.5\(h_{ef} \). A 5/8 in. bolt with 3 in. embedment has a design tension breakout strength,

\[
\phi N_{cb} = 5521 \text{ lb} < N_{ua} = 7000 \text{ lb}
\]

A 5/8-in. bolt with 4 in. embedment has

\[
\phi N_{cb} = 8500 \text{ lb} > N_{ua} = 7000 \text{ lb} \quad \text{O.K.}
\]

Tentatively use 5/8 in. bolt with embedment depth of 4 in.

A4. Determine if the bearing area of the head of the 5/8-in. bolt, \(A_{brg} \), is large enough to prevent anchor pullout \(\phi N_{pn} \).

Values for design tension pullout strength, \(\phi N_{pn} \), in Table 34-5B for headed bolts with a diameter of less than 1-3/4 in. are based on a regular hex head (Table Note 7). Under the column labeled “head w/o washer,” a 5/8 in. bolt has a design pullout strength,

\[
\phi N_{pn} = 10,170 \text{ lb} > N_{ua} = 7000 \text{ lb} \quad \text{O.K.}
\]

A5. Determine if the anchor has enough edge distance, \(c_{a1} \), to prevent side-face blow-out \(\phi N_{sb} \).

Since the anchor is farther from an edge than 0.4\(h_{ef} \) (0.4 x 4 in. = 1.6 in.), side-face blowout does not need to be considered.

A6. Required edge distances, spacings, and thicknesses to preclude splitting failure.

See Step 6 above.

A7. Summary:

Use an ASTM F1554 Grade 36, 5/8 in. diameter headed bolt with a 4 in. embedment.
Example 34.2—Group of Headed Studs in Tension Near an Edge

Design a group of four welded, headed studs spaced 6 in. on center each way and concentrically loaded with a 10,000 lb service dead load. The anchor group is to be installed in the bottom of an 8 in. thick slab with the centerline of the connection 6 in. from a free edge of the slab.

\[f'_c = 4000 \text{ psi} \]

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine factored design load</td>
<td>9.2</td>
</tr>
<tr>
<td>[N_{ua} = 1.4 \times 10,000 = 14,000 \text{ lb}]</td>
<td>Eq. (9-1)</td>
</tr>
<tr>
<td>2. Determine anchor diameter</td>
<td>D.5.1</td>
</tr>
</tbody>
</table>

Assume AWS D1.1 Type B welded, headed studs.

The basic requirement for the anchor steel is:

\[\phi N_{sa} \geq N_{ua} \] \hspace{1cm} Eq. (D-1)

where:

\[\phi = 0.75 \] \hspace{1cm} D.4.1.2

Per the **Ductile Steel Element definition in D.1**, AWS D1.1 Type B studs qualify as a ductile steel element (20% minimum elongation in 2 in. which is greater than the 14% required and a minimum reduction in area of 50% that is greater than the 30% required, see Table 34-1).

\[N_{sa} = n A_{se,N} f_{uta} \] \hspace{1cm} Eq. (D-3)

For design purposes, Eq. (D-1) with Eq. (D-3) may be rearranged as:

\[A_{se,N} = \frac{N_{ua}}{\phi f_{uta}} \]
where:

\[N_{ua} = 14,000 \text{ lbs} \]

\[\phi = 0.75 \]

\[n = 4 \]

\[f_{uta} = 60,000 \text{ psi} \]

Note: Per D5.1.2, \(f_{uta} \) shall not be taken greater than 1.9\(f_{ya} \) or 125,000 psi.

For AWS D1.1 headed studs, 1.9\(f_{ya} \) = 1.9(50,000) = 95,000 psi, therefore use the specified minimum \(f_{uta} \) of 60,000 psi.

Substituting:

\[A_{se,N} = \frac{14,000}{0.75(4)(60,000)} = 0.078 \text{ in.}^2 \]

Per Table 34-2, 1/2 in. diameter welded, headed studs will satisfy this requirement \((A_{se,N} = 0.196 \text{ in.}^2) \).

Note: Per AWS D1.1 Table 7.1, Type B welded studs are 1/2 in., 5/8 in., 3/4 in., 7/8 in., and 1 in. diameters. Although individual manufacturers may list smaller diameters they are not explicitly covered by AWS D1.1

3. Determine the required embedment length \((h_{ef}) \) based on concrete breakout

Two different equations are given for calculating concrete breakout strength; for single anchors Eq. (D-4) applies, and for anchor groups Eq. (D-5) applies. An “anchor group” is defined as:

"A number of anchors of approximately equal effective embedment depth with each anchor spaced at less than three times its embedment depth from one or more adjacent anchors.”

Since the spacing between anchors is 6 in., they must be treated as a group if the embedment depth exceeds 2 in. Although the embedment depth is unknown, at this point it will be assumed that the provisions for an anchor group will apply.

The basic requirement for embedment of a group of anchors is:

\[\phi N_{cbg} \geq N_{ua} \]

where:

\[\phi = 0.70 \]

Condition B applies since no supplementary reinforcement has been provided (e.g., hairpin type reinforcement surrounding the anchors and anchored into the concrete).
Since this connection is likely to be affected by both group effects and edge effects, the embedment length _h_\text{ef} cannot be determined from a closed form solution. Therefore, an embedment length must be assumed. The strength of the connection is then determined and compared with the required strength.

Note: Welded studs are generally available in fixed lengths. Available lengths may be determined from manufacturers’ catalogs. For example, the Nelson Stud http://www.nelsonstudwelding.com/ has an effective embedment of 4 in. for a standard 1/2 in. concrete anchor stud.

Assume an effective embedment length of _h_\text{ef} = 4.5 in.

Note: The effective embedment length _h_\text{ef} for the welded stud anchor is the effective embedment length of the stud plus the thickness of the embedded plate.

Evaluate the terms in Eq. (D-5) with _h_\text{ef} = 4.5 in.

Determine _A_\text{Nc} and _A_\text{Nco} for the anchorage:

D.5.2.1

A\text{Nc} is the projected area of the failure surface as approximated by a rectangle with edges bounded by 1.5 _h_\text{ef} (1.5 × 4.5 = 6.75 in. in this case) and free edges of the concrete from the centerlines of the anchors.

\[
A_{Nc} = (3 + 6 + 6.75)(6.75 + 6 + 6.75) = 307 \text{ in.}^2
\]

\[
A_{Nco} = 9 h_{ef}^2 = 9 (4.5)^2 = 182 \text{ in.}^2
\]

Check: \(A_{Nc} \leq nA_{Nco} \quad 307 < 4(182) \quad \text{O.K.} \)

Determine \(\psi_{ec,N} \):

\(\psi_{ec,N} = 1.0 \) (no eccentricity in the connection)
Example 34.2 (cont’d)

<table>
<thead>
<tr>
<th>Determinations</th>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine $\psi_{ed,N}$ since $c_{a1} < 1.5\ h_{ef}$</td>
<td>$\psi_{ed,N} = 0.7 + 0.3\frac{c_{a,min}}{1.5h_{ef}}$</td>
<td>$D.5.2.5$</td>
</tr>
<tr>
<td></td>
<td>$\psi_{ed,N} = 0.7 + 0.3\frac{3.0}{1.5(4.5)} = 0.83$</td>
<td>$Eq. (D-11)$</td>
</tr>
<tr>
<td>Determine $\psi_{c,N}$:</td>
<td>$\psi_{c,N} = 1.0$ for locations where concrete cracking is likely to occur (i.e., the bottom of the slab)</td>
<td>$D.5.2.6$</td>
</tr>
<tr>
<td>For cast-in anchors $\psi_{cp,N} = 1.0$</td>
<td>$\psi_{cp,N} = 1.0$</td>
<td>$D.5.2.6$</td>
</tr>
<tr>
<td>Determine N_b:</td>
<td>$N_b = 24\lambda\sqrt[5]{c_1\ h_{ef}} = 24(1.0)\sqrt[5]{4000(4.5)} = 14,490$</td>
<td>$D.5.2.2$</td>
</tr>
<tr>
<td>For normalweight concrete $\lambda = 1.0$</td>
<td>$N_{cbg} = \left\frac{307}{182}\right(0.83)(1.0)(14,490) = 20,287$</td>
<td>8.6</td>
</tr>
<tr>
<td>The final check on the assumption of $h_{ef} = 4.5$ in. is satisfied by meeting the requirements of $Eq. (D-1)$:</td>
<td>$(0.70) (20,287) \geq 14,000$</td>
<td>$D.5.3$</td>
</tr>
<tr>
<td>$14,201 > 14,000$ O.K.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify a 4 in. length for the welded, headed studs with the 1/2 in.-thick base plate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Determine if welded stud head size is adequate for pullout</td>
<td>$N_{pn} \geq N_{ua}$</td>
<td>$Eq. (D-1)$</td>
</tr>
<tr>
<td></td>
<td>$N_{pn} = \psi_{c,p}N_p$</td>
<td>$D.4.1.2$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.70$</td>
<td>$D.4.4(c)ii$</td>
</tr>
<tr>
<td></td>
<td>Condition B applies for pullout strength in all cases.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$N_{pn} = \psi_{c,p}N_p$</td>
<td>$Eq. (D-14)$</td>
</tr>
<tr>
<td></td>
<td>$N_p = A_{brg} 8\ f'_{c}$</td>
<td>$Eq. (D-15)$</td>
</tr>
</tbody>
</table>
Example 34.2 (cont’d) Calculations and Discussion Code Reference

<table>
<thead>
<tr>
<th>Code Reference</th>
<th>(\psi_{c,p} = 1.0) for locations where concrete cracking is likely to occur (i.e., the bottom of the slab)</th>
<th>D.5.3.6</th>
</tr>
</thead>
</table>
| \[\begin{align*}
\text{For design purposes Eq. (D-1) with Eq. (D-14) and Eq. (D-15) may be rearranged as:} \\
A_{\text{brg}} &= \frac{N_{u_a}}{\phi \psi_{c,p} 8 f'_c}.
\end{align*} \] | | |
| \[\begin{align*}
\text{For the group of four studs the individual factored tension load } N_{u_a} \text{ on each stud is:} \\
N_{u_a} &= \frac{14,000}{4} = 3500 \text{ lb}
\end{align*} \] | | |
| \[\begin{align*}
\text{Substituting:} \\
A_{\text{brg}} &= \frac{3500}{0.70(1.0)(8)(4000)} = 0.156 \text{ in.}^2
\end{align*} \] | | |
| The bearing area of welded, headed studs should be determined from manufacturers’ catalogs. As shown on the Nelson Stud web page the diameter of the head for a 1/2 in. diameter stud is 1 in. |
| \[\begin{align*}
A_{\text{brg, provided}} &= \frac{\pi}{4}(1,0^2 - 0.5^2) = 0.589 \text{ in.}^2 > 0.156 \text{ in.}^2 \quad \text{O.K.}
\end{align*} \] | | |
| 5. Evaluate side-face blowout | D.5.4 | |
| Side-face blowout needs to be considered when the edge distance from the centerline of the anchor to the nearest free edge is less than 0.4\(h_{ef}\) (\(h_{ef} > 2.5\ c_{a1}\)). For this example: | | |
| 0.4\(h_{ef}\) = 0.4 (4.5) = 1.8 in. < 3 in. actual edge distance \quad \text{O.K.} | | |
| The side-face blowout failure mode is not applicable. | | |
| 6. Required edge distances, spacings, and thickness to preclude splitting failure | D.8 |
| Since a welded, headed anchor is not torqued the minimum cover requirements of 7.7 apply. | | |
| Per 7.7 the minimum clear cover for a 1/2 in. bar not exposed to earth or weather is 3/4 in. which is less than the 2-3/4 in. provided (3 - 1/4 = 2-3/4 in.) \quad \text{O.K.} | | |
| 7. Summary: | | |
| Use ASW D1.1 Type B 1/2 in. diameter welded studs with an effective embedment of 4.5 in. (4 in. from the stud plus 1/2 in. from the embedded plate). | | |
Example 34.3—Group of Headed Studs in Tension Near an Edge with Eccentricity

Determine the factored tension load capacity \((N_{ua}) \) for a group of four 1/2 in. × 4 in. AWS D1.1 Type B headed studs spaced 6 in. on center each way and welded to a 1/2-in.-thick base plate. The centerline of the structural attachment to the base plate is located 2 in. off of the centerline of the base plate resulting in an eccentricity of the tension load of 2 in. The fastener group is installed in the bottom of an 8 in.-thick slab with the centerline of the connection 6 in. from a free edge of the slab.

Note: This is the configuration chosen as a solution for Example 34.2 to support a 14,000 lb factored tension load centered on the connection. The only difference is the eccentricity of the tension load. From Example 34.2, the spacing between anchors dictates that they be designed as an anchor group.

\[f'_c = 4000 \text{ psi (normalweight concrete)} \]

![Diagram showing the configuration and dimensions](image)

Calculations and Discussion

1. **Determine distribution of loads to the anchors**

 Assuming an elastic distribution of loads to the anchors, the eccentricity of the tension load will result in a higher force on the interior row of fasteners. Although the studs are welded to the base plate, their flexural stiffness at the joint with the base plate is minimal compared to that of the base plate. Therefore, assume a simple support condition for the base plate:

 \[\frac{1}{6} N_{ua} \uparrow \quad 5/6 N_{ua} \uparrow \]

 The two interior studs will control the strength related to the steel \(\phi N_{sa} \) and the pullout strength \(\phi N_{pn} \) (i.e., 5/6 \(N_{ua} \) must be less than or equal to \(\phi N_{sa}, 2 \) studs and \(\phi N_{pn}, 2 \) studs). Rearranged:

 \[N_{ua} \leq \frac{6}{5} \phi N_{sa}, 2 \text{ studs and } N_{ua} \leq \frac{6}{5} \phi N_{pn}, 2 \text{ studs} \]
Example 34.3 (cont’d) Calculations and Discussion Code Reference
2. Determine the design steel strength as controlled by the two anchors with
the highest tensile load (\(\phi N_{sa}\))

\[\phi N_{sa} = \phi n A_{se,N} f_{uta} \]

where:

\[\phi = 0.75 \]

Per the Ductile Steel Element definition in D.1, AWS D1.1 Type B studs qualify as a
ductile steel element [20% minimum elongation in 2 in. which is greater than the 14% required
and a minimum reduction in area of 50% that is greater than the 30% required, see
Table 34-1].

\(n = 2 \) (for the two inner studs with the highest tension load)

\(A_{se,N} = 0.196 \text{ in.}^2 \) (see Table 34-2)

\(f_{uta} = 65,000 \) (see Table 34-1)

Substituting:

\[\phi N_{sa, 2\text{studs}} = 0.75 (2) (0.196) (65,000) = 19,110 \text{ lb} \]

Therefore, the maximum \(N_{ua} \) as controlled by the anchor steel is:

\[\phi N_{sa} = 6/5 \phi N_{sa, 2\text{studs}} = 6/5 (19,110) = 22,932 \text{ lb} \]

3. Determine design breakout strength (\(\phi N_{cbg}\))

The only difference between concrete breakout strength in this example and Example
34.2 is the introduction of the eccentricity factor \(\psi_{ec,N}\).

From Example 34.2 with \(\psi_{ec,N} = 1.0\):

\[N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \psi_{ec,N} \psi_{cd,N} \psi_{c,N} \psi_{cp,N} N_b = 14,201 \text{ lb} \]

Eq. (D-5)

Determine \(\psi_{ec,N}\) for this example (\(e_N = e_N' = 2 \text{ in} < s/2 = 3 \text{ in.}\)):

\[\psi_{ec,N} = \frac{1}{\left(1 + \frac{2e_N'}{3h_{ef}}\right)} \]

Eq. (D-9)

where:

\(e_N' = 2 \text{ in.} \) (distance between centroid of anchor group and tension force)

\(h_{ef} = 4.5 \text{ in.} \) (1/2 in. plate plus 4 in. embedment of headed stud)
Substituting:
\[\psi_{ec,N} = \frac{1}{1 + \frac{2(2)}{3(4.5)}} = 0.77 \]

Therefore:
\[\phi_{N_{cbg}} = (0.77)(14,201) = 10,935 \text{ lb} \]

4. Determine the design pullout strength as controlled by the two anchors with the highest tensile load (\(\phi_{N_{pn}} \))

\[\phi_{N_{pn,1 \ stud}} = \phi \psi_{c,P} N_p = \phi \psi_{c,P} A_{brg} 8 f'_c \]

where:

\[\phi = 0.70 \] – Condition B applies for pullout.
\[\psi_{c,P} = 1.0 \] for locations where concrete cracking is likely to occur (i.e., the bottom of the slab)

\[A_{brg} = 0.589 \text{ in.}^2 \] (see Step 4 of Example 34.2)

Substituting:
\[\phi_{N_{pn,1 \ stud}} = (0.70)(1.0)(0.589)(8.0)(4000) = 13,194 \text{ lb} \]

For the two equally loaded inner studs:
\[\phi_{N_{pn,2 \ studs}} = 2(13,194) = 26,387 \text{ lb} \]

Therefore, the maximum \(N_{ua} \) as controlled by pullout is:
\[\phi_{N_{pn}} = \frac{6}{5} \phi_{N_{pn,2 \ studs}} = \frac{6}{5}(26,387) = 31,664 \text{ lb} \]

5. Evaluate side-face blowout

Side-face blowout needs to be considered when the edge distance from the centerline of the anchor to the nearest free edge is less than 0.4 \(h_{ef} \) (\(h_{ef} > 2.5 c_{a1} \)). For this example:

\[0.4 h_{ef} = 0.4(4.5) = 1.8 \text{ in.} < 3 \text{ in. actual edge distance} \quad \text{O.K.} \]

The side-face blowout failure mode is not applicable.
6. Required edge distances, spacings, and thickness to preclude splitting failure

Since a welded, headed anchor is not torqued the minimum cover requirements of 7.7 apply.

Per 7.7 the minimum clear cover for a 1/2 in. bar not exposed to earth or weather is 3/4 in. which is less than the 2-3/4 in. provided (3 in. - 1/4 in. = 2-3/4 in.) O.K.

7. Summary:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel strength, (N_{sa})</td>
<td>22,932 lb</td>
</tr>
<tr>
<td>Embedment strength – concrete breakout, (N_{cbg})</td>
<td>10,935 lb ← controls</td>
</tr>
<tr>
<td>Embedment strength – pullout, (N_{pn})</td>
<td>31,664 lb</td>
</tr>
<tr>
<td>Embedment strength – side-face blowout, (N_{sb})</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The maximum factored tension load N_{ua} for this anchorage is 10,935 lb

Note: Example 34.2 with the same connection but without an eccentricity was also controlled by concrete breakout strength but had a factored load capacity of 14,201 lb (see Step 3 of Example 34.2).
Example 34.4—Single Headed Bolt in Shear Near an Edge

Determine the shear capacity for a single 1/2 in. diameter headed anchor with a 7 in. embedment installed with its centerline 1-3/4 in. from the edge of a concrete foundation for two cases:

Case I: reversible wind shear load \((V_W) \)
Case II: reversible seismic shear load for a structure in Seismic Design Category C, D, E, or F \((V_E) \)

Note: This is the minimum anchorage requirement at the foundation required by IBC 2006 Section 2308.6 for conventional light-frame wood construction. The 1-3/4 in. edge distance represents a typical connection at the base of wood framed walls using 2×4 members.

\(f'_c = 4000 \text{ psi} \) (normalweight concrete)

ASTM F1554 Grade 36

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
</table>

Case I — Reversible Wind Shear Load

1. This problem provides the anchor diameter, embedment length, and material properties, and requires computing the maximum unfactored shear load capacity to resist wind load. In this case, it is best to first determine the controlling factored shear load, \(V_{u,a} \), based on the smaller of the steel strength and embedment strength then as a last step determine the maximum unfactored load. **Step 6** of this example provides the conversion of the controlling factored shear load \(V_{u,a} \) to an unfactored load due to wind.

2. Determine \(V_{u,a} \) as controlled by the anchor steel

\[\phi V_{sa} \geq V_{u,a} \]

where:

\(\phi = 0.65 \)

Per the Ductile Steel Element definition in D.1, ASTM F1554 Grade 36 steel qualifies as a ductile steel element.

\[V_{sa} = n 0.6 A_{se,V} f_{uta} \]

To determine \(V_{u,a} \) for the steel strength **Eq. (D-2)** can be combined with **Eq. (D-20)** to give:

\[V_{u,a} = \phi V_{sa} = \phi n 0.6 A_{se,V} f_{uta} \]
where:

φ = 0.65
n = 1
A_{se,V} = 0.142 \text{ in.}^2 \text{ for the 1/2 in. threaded bolt (Table 34-2)}
f_{uta} = 58,000 \text{ psi}

Per ASTM F1554 Grade 36 has a specified minimum yield strength of 36 ksi and a specified tensile strength of 58-80 ksi (see Table 34-1). For design purposes, the minimum tensile strength of 58 ksi should be used.

Note: Per D6.1.2, f_{uta} shall not be taken greater than 1.9f_{ya} or 125,000 psi. For ASTM F1554 Grade 36, 1.9f_{ya} = 1.9(36,000) = 68,400 psi. Therefore, use the specified minimum f_{uta} of 58,000 psi.

Substituting, V_{ua} as controlled by steel strength is:

V_{ua} = φV_{sa} = 0.65 (1)(0.6)(0.142)(58,000) = 3212 \text{ lb}

3. Determine V_{ua} for embedment strength governed by concrete breakout strength with shear directed toward a free edge

φV_{cb} ≥ V_{ua} \quad \text{Eq. (D-2)}

where:

φ = 0.70 \quad \text{D.4.1.2}

No supplementary reinforcement has been provided

V_{cb} = \frac{A_{Vc}}{A_{Vco}} \psi_{ed,V} \psi_{c,V} \psi_{h,V} V_{b} \quad \text{Eq. (D-21)}

where:

\frac{A_{Vc}}{A_{Vco}} \quad \text{and} \quad \psi_{ed,V} \quad \text{terms are 1.0 for single shear anchors not influenced by more than one free edge (i.e., the member thickness is greater than 1.5c_{a1} and the distance to an orthogonal edge c_{a2} is greater than 1.5c_{a1})}

\psi_{c,V} = 1.0 \text{ for locations where concrete cracking is likely to occur (i.e., the edge of the foundation is susceptible to cracks)} \quad \text{D.6.2.7}

\psi_{h,V} = 1.0 \text{ as } h_{a} > 1.5 \text{ c}_{1} \text{ [18 > 1.5(1.75)]}
Example 34.4 (cont’d) Calculations and Discussion Code Reference

\[V_b = \left(\frac{\ell_e}{d_a} \right)^{0.2} \frac{V_{cb}}{A_{V_{co}}} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5} \] \hspace{1cm} Eq. (D-24)

where:

\[\ell_e = \text{load bearing length of the anchor for shear, not to exceed } 8d_o \]

For this problem \(8d_a \) will control since the embedment depth \(h_{ef} \) is 7 in.

\[\ell_e = 8d_a = 8(0.5) = 4.0 \text{ in.} \]

To determine \(V_{ua} \) for the embedment strength governed by concrete breakout strength Eq. (D-2) can be combined with Eq. (D-21) and Eq. (D-24) to give:

\[V_{ua} = \phi V_{cb} = \frac{A_{V_{c}}}{A_{V_{co}}} \Psi_{ed,V} \Psi_{c,V} \left(\frac{\ell_e}{d_a} \right)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5} \] \hspace{1cm} Eq. (D-21) Eq. (D-24)

For normalweight concrete, \(\lambda = 1.0 \) \hspace{1cm} 8.6

Substituting, \(V_u \) for the embedment strength as controlled by concrete breakout strength is:

\[V_{ua} = \phi V_{cb} = 0.70(1.0)(1.0) \left(\frac{8(0.5)}{(0.5)} \right)^{0.2} (1) \sqrt{0.5} \sqrt{4000} (1.75)^{1.5} = 769 \text{ lb} \]

4. Determine \(V_{ua} \) for embedment strength governed by concrete pryout strength \hspace{1cm} D.6.3

Note: The pryout failure mode is normally only a concern for shallow, stiff anchors. Since this example problem addresses both shear directed toward the free edge and shear directed inward from the free edge, the pryout strength will be evaluated.

\[\phi V_{cp} \geq V_{ua} \] \hspace{1cm} Eq. (D-2) Eq. (D-4)

where:

\[\phi = 0.70 \text{ – Condition B applies for pryout strength in all cases} \] \hspace{1cm} D.4.4(c)i

\[V_{cp} = k_{cp} N_{cb} \] \hspace{1cm} Eq. (D-30)

where:

\[k_{cp} = 2.0 \text{ for } h_{ef} \geq 2.5 \text{ in.} \]

\[N_{cb} = \frac{A_{N_c}}{A_{N_{co}}} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b \] \hspace{1cm} Eq. (D-4)
Evaluate the terms of Eq. (D-4) for this problem:

\(A_{Nc} \) is the projected area of the tensile failure surface as approximated by a rectangle with edges bounded by 1.5 \(h_{ef} \) \((1.5 \times 7 = 10.5 \text{ in.}) \) and free edges of the concrete from the centerline of the anchor.

\[
A_{Nc} = (1.75 + 10.5) (10.5 + 10.5) = 257 \text{ in.}^2
\]

\(A_{Nco} = 9 \ h_{ef}^2 = 9 \ (7.0)^2 = 441 \text{ in.}^2 \) \(\text{Eq. (D-6)} \)

Determine \(\psi_{ed,N} \):

\[
\psi_{ed,N} = 0.7 + 0.3 \frac{c_{a,\text{min}}}{1.5h_{ef}}
\]

\[
\psi_{ed,N} = 0.7 + 0.3 \frac{1.75}{1.5 \times 7.0} = 0.75
\] \(\text{Eq. (D-11)} \)

Determine \(\psi_{c,N} \):

\(\psi_{c,N} = 1.0 \) for locations where concrete cracking is likely to occur (i.e., the edge of the foundation is susceptible to cracks)

Determine \(N_b \) for the fastening:

\[
N_b = 24\lambda\sqrt{f_{c}^{1.5}}h_{ef} = 24(1.0)\sqrt{4000}(7.0)^{1.5} = 28,112 \text{ lb} \)
\]

where \(\lambda = 1.0 \) for normalweight concrete \(\text{Eq. (D-7)} \)

Substituting into Eq. (D-4):

\[
N_{cb} = \left[\frac{257}{441} \right] (0.75)(1.0)(28,112) = 12,287 \text{ lb}
\]
To determine V_{ua} for the embedment strength governed by pryout strength
Eq. (D-2) can be combined with Eq. (D-30) to give:

$$V_{ua} = \phi V_{cp} = \phi k_{cp} N_{cb}$$

Substituting, V_{ua} for the embedment strength governed by pryout is:

$$V_{ua} = \phi V_{cp} = 0.70 (2.0)(12,287) = 17,202 \text{ lb}$$

5. **Required edge distances, spacings, and thickness to preclude splitting failure**

Since a headed anchor used to attach wood frame construction is not likely to be
torqued significantly, the minimum cover requirements of 7.7 apply.

Per 7.7 the minimum clear cover for a 1/2 in. bar is 1-1/2 in. when
exposed to earth or weather. The clear cover provided for the bolt is exactly
1-1/2 in. (1-3/4 in. to bolt centerline less one half bolt diameter). Note that the
bolt head will have slightly less cover (1-3/16 in. for a hex head) say O.K.
(note that this is within the minus 3/8 in. tolerance allowed for cover)

6. **Summary:**

The factored shear load ($V_{ua} = \phi V_n$) based on steel strength and embedment
strength (concrete breakout and pryout) can be summarized as:

- Steel strength, (ϕV_{sa}): 3212 lb
- Embedment strength – concrete breakout, (ϕV_{cb}): $769 \text{ lb} \leftarrow \text{controls}$
- Embedment strength – pryout, (ϕV_{cp}): $17,202 \text{ lb}$

In accordance with 9.2 the load factor for wind load is 1.6:

$$V_W = \frac{V_{ua}}{1.6} = \frac{769}{1.6} = 481 \text{ lb/bolt}$$

The reversible unfactored load shear strength from wind load of the IBC 2006
Section 2308.6 minimum foundation connection for conventional wood-frame con-
struction (1/2 in. diameter bolt embedded 7 in.) is 481 lb per bolt. The strength of the
attached member (i.e., the 2×4 sill plate) also needs to be evaluated.

Note that this embedment strength is only related to the anchor being installed in con-
crete with a specified compressive strength of 4000 psi. In many cases, concrete used
in foundations such as this is specified at 2500 psi, the minimum strength permitted
by the code. Since the concrete breakout strength controlled the strength of the con-
nection, a revised strength based on using 2500 psi concrete rather than the 4000 psi
concrete used in the example can be determined as follows:

$$V_{W@2500} = 481 \frac{\sqrt{2500}}{\sqrt{4000}} = 380 \text{ lb}$$
Alternate design using Table 34-6B.

Note: Step numbers correspond to those in the main example above, but prefaced with “A”.

Table 34-6B has been selected because it contains design shear strength values based on concrete with $f'_c = 4000$ psi. Table Note 5 indicates that the values in the table are based on Condition B (no supplementary reinforcement), and Note 6 indicates that cracked concrete was assumed.

A2. Determine V_{ua} as controlled by the anchor steel

From Step 2, use ASTM F1554, Grade 36 headed bolt with $f_{uta} = 58,000$ psi. From Table 34-6B, for specified compressive strength of concrete, $f'_c = 4000$ psi, determine the design shear strength, ϕV_{sa}, for a 1/2-in. bolt.

$\phi V_{sa} = 3212$ lb

A3. Determine V_{ua} for embedment strength governed by concrete breakout strength with shear directed toward a free edge

Determine the design concrete breakout strength in shear, ϕV_{cb}, based on 7-in. embedment, and an edge distance, c_{a1}, of 1-3/4 in. In the table c_{a1} is a function of embedment depth, h_{ef}. Therefore, the edge distance is:

$c_{a1} = c_{a1}/h_{ef} = 1.75/7 = 0.25 h_{ef}$

From table, the design concrete breakout strength in shear is,

$\phi V_{cb} = 769$ lb

A4. Determine V_{ua} for embedment strength governed by concrete pryout strength

Determine the design concrete pryout strength in shear, ϕV_{cp}, based on 7-in. embedment, and an edge distance of 1-3/4 in. This cannot be determined from Table 34-6B; however, since

$\phi V_{cp} = \phi k_{cp} N_{cb}$

where $k_{cp} = 2$, since $h_{ef} > 2.5$ in., and N_{cb} can be determined from Table 34-5B.

Note that the values in Tables 34-5 and 34-6 are design strengths, thus they include the nominal strengths for the different failure modes multiplied by the appropriate strength reduction factor, ϕ. Since Table 34-5B is based on Condition B (with no supplementary reinforcement), the ϕ-value used for the concrete tensile strength calculations was 0.70, which is the same as to be used to determine the concrete pryout strength in shear. Therefore, the design concrete breakout strength, ϕN_{cb}, value from Table 34-5B can be used above without adjustment. From Table 34-5B, for an edge distance, c, equal to 0.25h_{ef}
Example 34.4 (cont’d)

Calculations and Discussion

<table>
<thead>
<tr>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi N_{cb} = 8609\text{ lb}$</td>
</tr>
<tr>
<td>Substituting in Equation (D-30)</td>
</tr>
<tr>
<td>$\phi V_{cp} = k_{cp}\phi N_{cb} = (2)(8609) = 17,218\text{ lb}$</td>
</tr>
<tr>
<td>Note that the above value differs slightly from that obtained in Step #4 above. The table values are more precise due to rounding that occurred in the long-hand calculations.</td>
</tr>
</tbody>
</table>

A5. Required edge distances, spacings, and thickness to preclude splitting failure

See Step 5 above.

A6. Determine service wind shear load:

The factored shear load ($V_{ua} = \phi V_n$) based on steel strength and embedment strength (concrete breakout and pryout) can be summarized as:

- Steel strength, (ϕV_{sa}): 3212 lb
- Embedment strength - concrete breakout, (ϕV_{cb}): 769 lb—controls
- Embedment strength - pryout, (ϕV_{cp}): 17,218 lb

From this point, the unfactored wind load shear capacity of the 1/2 in. anchor is determined as in Step 6 above.

Case II — Reversible Seismic Shear Load

For shear to the left, towards the free edge, the following is a summary of the shear strengths based on steel strength and embedment strengths (concrete breakout and pryout) from above Steps 1 through 5:

- Steel strength, (ϕV_{sa}): 3212 lb
- Embedment strength - concrete breakout, (ϕV_{cb}): 769 lb
- Embedment strength - pryout, (ϕV_{cp}): 17,202 lb

For structures assigned to Seismic Design Category C, D, E, and F, anchor design strength associated with concrete failure modes must be taken as 0.75ϕV_n. For anchors where ductile steel element governs the design, the design strengths for the three failure modes in shear are as follows:

- Steel strength, (ϕV_{sa}): 3212 lb
- Embedment strength - concrete breakout, ($0.75\phi V_{cb}$): 577 lb
- Embedment strength - pryout, ($0.75\phi V_{cp}$): 12,901 lb

Concrete breakout strength governs the design. Concrete breakout is a non-ductile failure. Per D.3.3.4, anchors shall be designed to be governed by the steel strength of a ductile steel element, unless either D.3.3.5 or D.3.3.6 is satisfied. Use a hairpin to preclude the concrete breakout strength and ensure ductile behavior. Note: in Step 3,
the value of \(\phi \) was taken as 0.70 for Condition B (no supplementary reinforcement.)

With the use of a hairpin, \(\phi \) can be increased to 0.75 (Condition A) thus increasing the concrete breakout to \(769 \times 0.75/0.70 = 824 \text{ lb} \).

A strength reduction factor of 0.75 shall be used in the design of the anchor reinforcement.

\[
0.75 \times A_s \text{ (hairpin)} \times 60,000 \geq 3212 \text{ lb}
\]

\[
A_s \text{ required} = (3212/60,000)/0.75 = 0.0714 \text{ in.}^2
\]

Use a No. 3 hairpin. Area provided = 2 \times 0.11 = 0.22 in.\(^2\). From Table 4-2 of this document, the development length of a straight bar in tension, excluding top bar effect is 38\(d_b\). The top bar effect multiplier, \(\psi_t \) is 1.3.

Required development length = 38 \((3/8) \times (1.3) = 18.5 \text{ in.} \). Use a No. 3 hairpin with a 20 in. extension.

Per 7.7.1(b), the minimum cover for the No. 3 hairpin is 1-1/2 in. for concrete exposed to earth or weather. Thus, the anchors need to be placed with their centerlines no less than 2-1/8 in. \((1-1/2 + 3/8 + 0.5/2)\) from the edge. For this example problem, 2-1/2 in. will be specified. As a result, concrete breakout and pryout strengths are not recalculated since they will only increase (e.g., concrete breakout changes from 769 lb to 1313 lb) and the hairpin will still be needed.

Summary: Per 9.2, the load factor for seismic load is 1.0. Therefore, the reversible seismic shear force is 3212 lb per bolt. In order to meet cover requirements, the anchor centerline should be located 2-1/2 in. from the edge.
Example 34.5—Single Headed Bolt in Tension and Shear Near an Edge

Determine if a single 1/2 in. diameter hex headed anchor with a 7 in. embedment installed with its centerline 1-3/4 in. from the edge of a concrete foundation is adequate for a service tension load from wind of 1000 lb and reversible service shear load from wind of 400 lb.

Note: This is an extension of Example 34.4 that includes a tension load on the fastener as well as a shear load.

$$f'_{c} = 4000 \text{ psi (normalweight concrete)}$$

ASTM F1554 Grade 36 hex head anchor

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Determine the factored design loads</td>
<td>9.2</td>
</tr>
<tr>
<td>$N_{ua} = 1.6 \times 1000 = 1600 \text{ lb}$</td>
<td></td>
</tr>
<tr>
<td>$V_{ua} = 1.6 \times 400 = 640 \text{ lb}$</td>
<td></td>
</tr>
<tr>
<td>2. This is a tension/shear interaction problem where values for both the design tensile strength (ϕN_{n}) and design shear strength (ϕV_{n}) will need to be determined.</td>
<td>D.7 D.4.1.2</td>
</tr>
<tr>
<td>ϕN_{n} is the smallest of the design tensile strengths as controlled by steel (ϕN_{sa}), concrete breakout (ϕN_{cb}), pullout (ϕN_{pn}), and side-face blowout (ϕN_{sb}). ϕV_{n} is the smallest of the design shear strengths as controlled by steel (ϕV_{sa}), concrete breakout (ϕV_{cb}), and pryout (ϕV_{cp}).</td>
<td></td>
</tr>
<tr>
<td>3. Determine the design tensile strength (ϕN_{n})</td>
<td>D.5</td>
</tr>
<tr>
<td>a. Steel strength, (ϕN_{sa}):</td>
<td>D.5.1</td>
</tr>
<tr>
<td>$\phi N_{sa} = \phi \times n A_{se,N} \times f_{uta}$</td>
<td>Eq. (D-3)</td>
</tr>
<tr>
<td>where:</td>
<td></td>
</tr>
<tr>
<td>$\phi = 0.75$</td>
<td>D.4.4(a)i</td>
</tr>
<tr>
<td>Per the Ductile Steel Element definition in D.1, ASTM F1554 Grade 36 steel qualifies as a ductile steel element.</td>
<td></td>
</tr>
</tbody>
</table>
A_\text{se,N} = 0.142 \text{ in.}^2 \text{ (see Table 34-2)}

f_{uta} = 58,000 \text{ psi (see Table 34-1)}

Substituting:

\[\phi N_{sa} = 0.75 (1) (0.142) (58,000) = 6177 \text{ lb} \]

b. Concrete breakout strength (\(\phi N_{cb}\)):

Since no supplementary reinforcement has been provided, \(\phi = 0.70\)

In the process of calculating the pryout strength for this fastener in Example 34.4 Step 4, \(N_{cb}\) for this fastener was found to be 12,287 lb

\[\phi N_{cb} = 0.70 (12,287) = 8601 \text{ lb} \]

c. Pullout strength (\(\phi N_{pn}\))

\[\phi N_{pn} = \phi \psi_{c,p} N_p \]

where:

\[\phi = 0.70 \text{ – Condition B applies for pullout strength in all cases} \]

\[\psi_{c,p} = 1.0, \text{ cracking may occur at the edges of the foundation} \]

\[N_p = A_{brg} 8 f'_c \]

\[A_{brg} = 0.291 \text{ in.}^2, \text{ for 1/2 in. hex head bolt (see Table 34-2)} \]

Pullout Strength (\(\phi N_{pn}\))

\[\phi N_{pn} = 0.70 (1.0) (0.291) (8) (4000) = 6518 \text{ lb} \]

d. Concrete side-face blowout strength (\(\phi N_{sb}\))

The side-face blowout failure mode must be investigated when the edge distance (c) is less than 0.4 \(h_{ef}\) (\(h_{ef} > 2.5 \text{ c}_{a1}\))

\[0.4 h_{ef} = 0.4 (7) = 2.80 \text{ in.} > 1.75 \text{ in.} \]

Therefore, the side-face blowout strength must be determined

\[\phi N_{sb} = \phi \left[160c_{a1} \sqrt{A_{brg} \lambda \sqrt{f'_c}} \right] \]

Eq. (D-17)
Example 34.5 (cont’d) Calculations and Discussion

where:

φ = 0.70, no supplementary reinforcement has been provided

D.4.4(c)ii

For normalweight concrete, λ = 1

8.6

ca1 = 1.75 in.

Abrg = 0.291 in.², for 1/2 in. hex head bolt (see Table 34-2)

Substituting:

φNsb = 0.70(160(1.75)\sqrt{0.291(1.0)\sqrt{4000}}) = 6687 lb

Summary of steel strength, concrete breakout strength, pullout strength, and side-face blowout strength for tension:

Steel strength, (φNsa): 6177 lb ← controls

D.5.1

Embedment strength – concrete breakout, (φNcb): 8601 lb

D.5.2

Embedment strength – pullout, (φNpn): 6518 lb

D.5.3

Embedment strength – side-face blowout, (φNsb): 6687 lb

D.5.4

Check φNn ≥ Nua

6177 lb > 1600 lb O.K.

Eq. (D-1)

Therefore:

φNn = 6177 lb

4. Determine the design shear strength (φVn)

Summary of steel strength, concrete breakout strength, and pryout strength for shear from Example 34.4, Step 6:

Steel strength, (φVsa): 3212 lb

D.6.1

Embedment strength – concrete breakout, (φVcb): 769 lb ← controls

D.6.2

Embedment strength – pryout, (φVcp): 17,202 lb

D.6.3

Check φVn ≥ Vua

769 lb > 640 lb O.K.

Eq. (D-2)

Therefore:

φVn = 769 lb

5. Check tension and shear interaction

If Vua ≤ 0.2φVn then the full tension design strength is permitted

D.7.1

Vua = 640 lb

0.2φVn = 0.2 (769) = 154 lb < 640 lb
Example 34.5 (cont’d)

<table>
<thead>
<tr>
<th>Calculations and Discussion</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ua} exceeds $0.2\phi V_n$, the full tension design strength is not permitted</td>
<td></td>
</tr>
</tbody>
</table>
| If $N_{ua} \leq 0.2 \phi N_n$ then the full shear design strength is permitted | $D.7.2$
| $N_{ua} = 1600 \text{ lb}$ |
| $0.2\phi N_n = 0.2 \times (6177) = 1235 \text{ lb} < 1600 \text{ lb}$ |
| N_{ua} exceeds $0.2\phi N_n$, the full shear design strength is not permitted |
| The interaction equation must be used | $D.7.3$
| $\frac{N_{ua}}{\phi N_n} + \frac{V_{ua}}{\phi V_n} \leq 1.2$ | $Eq. (D-32)$
| $\frac{1600}{6177} + \frac{640}{769} = 0.26 + 0.83 = 1.09 < 1.2 \text{ O.K.}$ |
| 6. Required edge distances, spacings, and thickness to preclude splitting failure | $D.8$
| Since a headed anchor used to attach wood frame construction is not likely to be torqued significantly, the minimum cover requirements of 7.7 apply. |
| Per 7.7 the minimum clear cover for a 1/2 in. bar is 1-1/2 in. when exposed to earth or weather. | 7.7
| The clear cover provided for the bolt is exactly 1-1/2 in. (1-3/4 in. to bolt centerline the minus (1-3/4 in. to bolt centerline less one half bolt diameter). Note that the bolt head will 3/8 in. have slightly less cover (1-3/16 in. for a hex head) say O.K. (note that this is within tolerance allowed for cover) | $7.5.2.1$
| 7. Summary | $D.5$
| Use a 1/2 in. diameter ASTM F1554 Grade 36 hex headed anchor embedded 7 in. |
| **Alternate design using Tables 34-5B and 34-6B** |
| Note: Step numbers correspond to those in the main example above, but prefaced with “A”. |
| Tables 34-5 and 34-6 have been selected because they contain design tension and shear values, respectively, based on concrete with $f_c = 4000 \text{ psi}$. Table Notes 4 and 5, respectively, indicate that the values in the tables are based on Condition B (no supplementary reinforcement). Cracked concrete is assumed in both tables (Table 34-5 Notes 6 and 10, and Table 34-6 Note 6). |
| A3. Determine the design tensile strength (ϕN_n): | $D.5.1$
| $\phi N_n = 58,000 \text{ psi}$ | $Eq. (D-3)$
| A3a. Determine the design tensile strength of steel (ϕN_{sa}): |
| Based on Step 3a, assume an ASTM F1554, Grade 36 bolt, with $f_{uta} = 58,000 \text{ psi}$. |
Using Table 34-5B, under the column for 58,000 a 1/2-in. diameter bolt has a design tensile strength,

\[\phi N_{sa} = 6177 \text{ lb.} \]

A3b. Determine design concrete breakout strength (\(\phi N_{cb}\)):

Since breakout strength varies with edge distance for anchors close to an edge (\(c_{a1} < 1.5h_{ef}\)), determine the edge distance as a function of embedment depth. Since \(c = 1\text{-}3/4\) in.

\[c_{a1} = c_{a1}/h_{ef} = 1.75/7 = 0.25h_{ef} \]

Under column labeled “0.25h_{ef}” for a 1/2 in. bolt with 7 in. embedment depth,

\[\phi N_{cb} = 8609 \text{ lb} \]

Note that the above value differs slightly from that obtained in Step 3b above. The table values are more precise due to rounding that occurred in the long-hand calculations.

A3c. Determine design concrete pullout strength (\(\phi N_{pn}\))

From the table under the column labeled “head” for a 1/2 in. bolt

\[\phi N_{pn} = 6518 \text{ lb} \]

A3d. Determine design concrete side-face blowout strength (\(\phi N_{sb}\))

Side face blowout is not applicable where the edge distance is equal to or greater than 0.4h_{ef} (\(h_{ef} > 2.5c_{a1}\)). In this case edge distance, \(c_{a1}\), as calculated above is 0.25h_{ef}; therefore, it must be evaluated. From the table under the column labeled “0.25h_{ef}” for a 1/2 in. bolt with 7 in. embedment,

\[\phi N_{sb} = 6687 \text{ lb} \]

Summary of steel strength, concrete breakout strength, pullout strength, and side-face blowout strength for tension:

<table>
<thead>
<tr>
<th>Steel strength, (\phi N_{sa}):</th>
<th>6177 lb ← controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedment strength – concrete breakout, (\phi N_{cb}):</td>
<td>8609 lb</td>
</tr>
<tr>
<td>Embedment strength – pullout, (\phi N_{pn}):</td>
<td>6518 lb</td>
</tr>
<tr>
<td>Embedment strength – side-face blowout, (\phi N_{sb}):</td>
<td>6687 lb</td>
</tr>
</tbody>
</table>

Therefore:

\[\phi N_n = 6177 \text{ lb} \]
A4. Determine the design shear strength (ϕV_n)

Summary of steel strength, concrete breakout strength, and pryout strength for shear from Step A6 of Example 34.4, alternate solution using Table 34-6B

Steel strength, (ϕV_{sa}): 3212 lb
Embedment strength - concrete breakout, (ϕV_{cb}): 769 lb ← controls
Embedment strength - pryout, (ϕV_{cp}): 17,218 lb

Therefore:

$\phi V_n = 769$ lb

A5. Check tension and shear interaction.

See Step 5 above.

A6. Required edge distances, spacings, and thickness to preclude splitting failure

See Step 6 above.

A7. Summary

Use a 1/2 in. diameter ASTM F1554 Grade 36 hex headed bolt embedded 7 in.
Example 34.6—Group of L-Bolts in Tension and Shear Near Two Edges

Design a group of four L-bolts spaced as shown to support a 10,000 lb factored tension load and 5000 lb reversible factored shear load resulting from wind load. The connection is located at the base of a column in a corner of the building foundation.

\[f'_c = 4000 \text{ psi (normalweight concrete)} \]

\[N_u = 10,000 \text{ lb} \]
\[V_u = \pm 5000 \text{ lb} \]

Note: OSHA Standard 29 CFR Part 1926.755 requires that the column anchorage use a least four anchors and be able to sustain a minimum eccentric gravity load of 300 lb located 18 in. from the face of the extreme outer face of the column in each direction. The load is to be applied at the top of the column. The intent is that the column be able to sustain an iron worker hanging off the side of the top of the column.

Calculations and Discussion

1. The solution to this example is found by assuming the size of the anchors, then checking compliance with the design provisions. Try four 5/8 in. ASTM F1554 Grade 36 L-bolts with \(h_{ef} = 8 \text{ in.} \) and a 3 in. extension, \(e_h \), as shown in the figure.

2. This is a tension/shear interaction problem where values for both the design tensile strength \(\phi N_n \) and design shear strength \(\phi V_n \) will need to be determined. \(\phi N_n \) is the smallest of the design tensile strengths as controlled by steel \(\phi N_{sa} \), concrete breakout \(\phi N_{cb} \), pullout \(\phi N_{pn} \), and side-face blowout \(\phi N_{sb} \). \(\phi V_n \) is the smallest of the design shear strengths as controlled by steel \(\phi V_{sa} \), concrete breakout \(\phi V_{cb} \), and pryout \(\phi V_{cp} \).

3. Determine the design tensile strength \(\phi N_n \)
 a. Steel strength, \(\phi N_{sa} \):

 Code Reference

 D.7
 D.4.1.2
 D.5
 D.5.1
Example 34.6 (cont’d) | Calculations and Discussion | Code Reference
--- | --- | ---
\[\phi_{N_{sa}} = \phi \ n \ A_{se,N} \ f_{uta} \] & Eq. (D-3) &

where:

\[\phi = 0.75 \] & D.4.4(a)i &

Per Table 34-1, the ASTM F1554 Grade 36 L-bolt meets the Ductile Steel Element definition of D.1.

\[A_{se,N} = 0.226 \text{ in.}^2 \] (see Table 34-2) &

\[f_{uta} = 58,000 \text{ psi} \] (see Table 34-1) &

Substituting:

\[\phi_{N_{sa}} = 0.75 \ (4) \ (0.226) \ (58,000) = 39,324 \text{ lb} \] &

b. Concrete breakout strength (\(\phi_{N_{cbg}} \)):

Since the spacing of the anchors is less than 3 times the effective embedment depth \(h_{ef} \) (3 \times 8 = 24), the anchors must be treated as an anchor group.

\[\phi_{N_{sa}} = \phi \frac{A_{Nc}}{A_{Nco}} \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \] & Eq. (D-5) &

Since no supplementary reinforcement has been provided, \(\phi = 0.70 \) & D.4.4(c)ii &

Determine \(A_{Nc} \) and \(A_{Nco} \):

\(A_{Nc} \) is the projected area of the failure surface as approximated by a rectangle with edges bounded by 1.5 \(h_{ef} \) (1.5 \times 8.0 = 12.0 in. in this case) and free edges of the concrete from the centerlines of the anchors.
Example 34.6 (cont’d) Calculations and Discussion

\[A_{\text{Nc}} = (6 + 12 + 12)(6 + 6 + 12) = 720 \text{ in.}^2 \]

\[A_{\text{Nco}} = 9 \times h_{\text{ef}}^2 = 9 \times (8)^2 = 576 \text{ in.}^2 \]

Check: \(A_{\text{Nc}} \leq n A_{\text{Nco}} \)
\[720 < 4(576) \quad \text{O.K.} \]

Determine \(\psi_{\text{ec,N}} \):

\[\psi_{\text{ec,N}} = 1.0 \text{ (no eccentricity in the connection)} \]

Determine \(\psi_{\text{ed,N}} \) \([c_{\text{a,min}} < 1.5 h_{\text{ef}}, 6 < 1.5 (8)]\):

\[\psi_{\text{ed,N}} = 0.7 + 0.3 \frac{c_{\text{a,min}}}{1.5 h_{\text{ef}}} \]

\[\psi_{\text{ed,N}} = 0.7 + 0.3 \frac{6.0}{1.5 (8.0)} = 0.85 \]

Determine \(\psi_{\text{c,N}} \):

\[\psi_{\text{c,N}} = 1.0 \text{ for locations where concrete cracking is likely to occur (i.e., the edge of the foundation)} \]

Determine \(\psi_{\text{cp,N}} \):

For cast-in-place anchors, \(\psi_{\text{cp,N}} = 1.0 \).

Determine \(N_b \):

\[N_b = 24 \lambda \sqrt{f'_{\text{c}} h_{\text{ef}}^{1.5}} = 24 (1.0) \sqrt{4000 (8.0)^{1.5}} = 34,346 \text{ lb} \]

Substituting into Eq. (D-5):

\[\phi N_{\text{c,b}} = 0.70 \left[\frac{720}{576} \right] (1.0)(0.85)(1.0)(1.0)(34,346) = 25,545 \text{ lb} \]

\text{c. Pullout strength (} \phi N_{\text{pn}} \text{)}

\[\phi N_{\text{pn}} = \phi \psi_{\text{c,P}} N_p \]

where:

\[\phi = 0.70, \text{ Condition B always applies for pullout strength} \]

\[\psi_{\text{c,P}} = 1.0, \text{ cracking may occur at the edges of the foundation} \]

\(N_p \) for the L-bolts:

\[N_p = 0.9 f'_{\text{c} e_h d_a} \]

\[Eq. \ (D-14) \]
Example 34.6 (cont’d) Calculations and Discussion Code Reference

\[e_h = \text{maximum effective value of } 4.5d_a = 4.5 (0.625) = 2.81 \text{ in.} \]

\[e_h, \text{provided} = 3 \text{ in.} > 2.81 \text{ in.}, \text{ therefore use } e_h = 4.5d_a = 2.81 \text{ in.} \] \(D.5.3.5 \)

Substituting into Eq. (D-14) and Eq. (D-16) with 4 L-bolts (\(\phi N_{pn} \))

\[\phi N_{pn} = 4 (0.70) (1.0) [(0.9) (4000) (2.81) (0.625)] = 17,703 \text{ lb} \]

Note: If 5/8 in. hex head bolts where used \(\phi N_{pn} \) would be significantly increased as shown below:

\[N_p \text{ for the hex head bolts:} \]

\[N_p = A_{brg} 8 f_c' \] \(Eq. (D-15) \)

\[A_{brg} = 0.454 \text{ in.}^2, \text{ for } 5/8 \text{ in. hex head bolt (see Table 34-2)} \]

Substituting into Eq. (D-12) and Eq. (D-13) with 4 bolts (\(\phi N_{pn} \))

\[\phi N_{pn} = 4 (0.70) (1.0) (0.454) (8) (4000) = 40,678 \text{ lb} \]

The use of hex head bolts would increase the pullout capacity by a factor of 2.3 over that of the L-bolts.

d. Concrete side-face blowout strength (\(\phi N_{sb} \)) \(D.5.4 \)

The side-face blowout failure mode must be investigated for headed anchors where the edge distance (\(c_{a1} \)) is less than 0.4 \(h_{ef} \) (\(h_{ef} > 2.5 c_{a1} \)). Since L-bolts are used here the side face blowout failure is not applicable. The calculation below is simply to show that if headed anchors were used the anchors are far enough from the edge that the side-face blowout strength is not applicable.

\[0.4 h_{ef} = 0.4 (8) = 3.2 \text{ in.} < 6.0 \text{ in.} \]

Therefore, the side-face blowout strength is not applicable (N/A).

Summary of design strengths based on steel strength, concrete breakout strength, pullout strength, and side-face blowout strength for tension:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Code Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel strength, ((\phi N_{sa}))</td>
<td>39,324 lb</td>
<td>D.5.1</td>
</tr>
<tr>
<td>Embedment strength - concrete breakout, ((\phi N_{cbg}))</td>
<td>25,545 lb</td>
<td>D.5.2</td>
</tr>
<tr>
<td>Embedment strength - pullout, ((\phi N_{pn}))</td>
<td>17,703 lb</td>
<td>D.5.3</td>
</tr>
<tr>
<td>Embedment strength - side-face blowout, ((\phi N_{sb}))</td>
<td>N/A</td>
<td>D.5.4</td>
</tr>
</tbody>
</table>

Therefore:

\[\phi N_n = 17,703 \text{ lb} \]
4. Determine the design shear strength (ϕV_n)

a. Steel strength, (ϕV_{sa}):

$$\phi V_{sa} = \phi n 0.6 A_{se,V} f_{uta}$$

where:

$$\phi = 0.65$$

Per Table 34-1, the ASTM F1554 Grade 36 meets the Ductile Steel Element definition of Section D.1.

$$A_{se,V} = 0.226 \text{ in.}^2$$ (see Table 34-2)

$$f_{uta} = 58,000 \text{ psi}$$ (see Table 34-1)

Substituting:

$$\phi V_{sa} = 0.65 (4) (0.6) (0.226) (58,000) = 20,448 \text{ lb}$$

b. Concrete breakout strength (ϕV_{cbg}):

Two potential concrete breakout failures need to be considered. The first is for the two anchors located near the free edge toward which the shear is directed (when the shear acts from right to left). For this potential breakout failure, these two anchors are assumed to carry one-half of the shear (see Fig. RD.6.2.1(b) upper right). For this condition, the total breakout strength for shear will be taken as twice the value calculated for these two anchors. The reason for this is that although the four-anchor group may be able to develop a higher breakout strength, the group will not have the opportunity to develop this strength if the two anchors nearest the edge fail first. The second potential concrete breakout failure is for the entire group transferring the total shear load. This condition also needs to be considered and may control when anchors are closely spaced or where the concrete member thickness is limited. For the case of welded studs, only the breakout strength of entire group for the total shear force needs to be considered (see Fig. RD.6.2.1(b) lower right), however this is not permitted for cast-in-place anchors that are installed through holes in the attached base plate.

$$V_{cbg} = \frac{A_{Vc}}{A_{Vco}} \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} V_b$$

Determine the values of ϕ, $\psi_{ed,V}$, $\psi_{c,V}$, and $\psi_{h,V}$ (these are the same for both potential concrete breakout failures):

No supplementary reinforcement has been provided, $\phi = 0.70$
Example 34.6 (cont’d) Calculations and Discussion Code Reference

There is no eccentricity in the connection, \(\psi_{ec,V} = 1.0 \) \(\textit{D.6.2.5} \)

For locations where concrete cracking is likely to occur (i.e., the edge of the foundation), \(\psi_{c,V} = 1.0 \) \(\textit{D.6.2.6} \)

As \(h_a > 1.5c_{a1}, \psi_{h,V} = 1.0 \) \(\textit{D.6.2.8} \)

For concrete breakout failure of the two anchors located nearest the edge:

Determine \(A_{Vc} \) and \(A_{Vco} \):

\(A_{Vc} \) is the projected area of the shear failure surface on the free edge toward which shear is directed. The projected area is determined by a rectangle with edges bounded by \(1.5 \, c_{a1} \) (\(1.5 \times 6.0 = 9.0 \, \text{in.} \) in this case) and free edges of the concrete from the centerlines of the anchors and the surface of the concrete. Although the \(1.5 \, c_{a1} \) distance is not specified in \(\textit{D.6.2.1} \), it is shown in Fig. RD.6.2.1(b).

\[
A_{Vc} = (6+6+9)(9) = 189 \, \text{in.}^2
\]

\[
A_{Vco} = 4.5 \, c_{a1}^2 = 4.5 \, (6)^2 = 162 \, \text{in.}^2
\]

Check: \(A_{Vc} \leq nA_{Vco} \) \(189 < 2(162) \) O.K. \(\textit{D.6.2.1} \)

Determine \(\psi_{ed,V} \) \([c_{a2} < 1.5 \, c_{a1} \text{, } 6 < (1.5 \times 6)] \):

\[
\psi_{ed,V} = 0.7 + 0.3 \frac{c_{a2}}{1.5c_{a1}}
\]

\[
\psi_{ed,V} = 0.7 + 0.3 \frac{6.0}{1.5(6.0)} = 0.90
\]

The single anchor shear strength, \(V_b \):

\[
V_b = \left(\frac{f_c}{d_a} \right)^{0.2} \sqrt{\lambda \sqrt{f_c} \, c_{a1}^{1.5}}
\]

\(\textit{Eq. (D-24)} \)
where:

\[\ell_c = \text{load bearing length of the anchor for shear, not to exceed } 8d_a\]

For this problem \(8d_a\) will control:

Substituting into Eq. (D-24):

\[V_b = 7 \left(\frac{5.0}{0.625} \right)^{0.2} \sqrt{0.625 \sqrt{4000} 60^{1.5}} = 7797 \text{ lb}\]

Substituting into Eq. (D-22) the design breakout strength of the two anchors nearest the edge toward which the shear is directed is:

\[\phi V_{cbg} = 0.70 \left(\frac{189}{162} \right) (1.0)(0.90)(1.0)(1.0)(7797) = 5731 \text{ lb}\]

The total breakout shear strength of the four anchor group related to an initial concrete breakout failure of the two anchors located nearest the free edge is:

\[\phi V_{cbg} = 2(5731) = 11,462 \text{ lb}\]

For concrete breakout failure of the entire four anchor group:

Determine \(A_{Vc}\) and \(A_{VCO}\):

\(A_{Vc}\) is the projected area of the shear failure surface on the free edge toward which shear is directed. The projected area is determined by a rectangle with edges bounded by \(1.5 c_{a1} (1.5 \times 18.0 = 27.0 \text{ in. in this case})\) and free edges (side and bottom) of the concrete from the centerlines of the anchors and the surface of the concrete. Although the \(1.5 c_{a1}\) distance is not specified in Section D.6.2.1, it is shown in Commentary Figure RD.6.2.1(b).
AVc = (6+6+27) (18) = 702 in.²

AVco = 4.5 ca₁² = 4.5 (18)² = 1458 in.²

Check: AVc ≤ nAVco 702 < 2 (1458) O.K.

Determine ψed,V [ca₂ < 1.5 ca₁ , 6 < (1.5 \times 18)]:

ψed,V = 0.7 + 0.3 \frac{ca₂}{1.5ca₁}

ψed,V = 0.7 + 0.3 \frac{6.0}{1.5(18.0)} = 0.77

The single anchor shear strength, Vb:

Vb = 7 \left(\frac{\ell_e}{d_a} \right)^{0.2} \sqrt{\frac{d_a}{\lambda}} \sqrt{f_c} \ c_{a1}^{1.5}

where:

\ell_e = 5.0 \text{ in. (no change)}

Substituting into Eq. (D-24):

Vb = 7 \left(\frac{5.0}{0.625} \right)^{0.2} \sqrt{0.625} \sqrt{4000} \ 18.0^{1.5} = 40,513 \text{ lb}

Substituting into Eq. (D-22) the design breakout strength of the four anchor group is:

φVcbg = 0.70 \left(\frac{702}{1458} \right)(1.0)(0.77)(1.0)(40,513) = 10,514 \text{ lb}

The concrete breakout shear strength of the four anchor group is controlled by the breakout of the full group.

φVcbg = 10,514 \text{ lb}
c. Pryout strength (ϕV_{cp})

Note: The pryout failure mode is normally only a concern for shallow, stiff anchors. Since this example problem addresses both shear directed toward the free edge and shear directed away from the free edge, the pryout strength will be evaluated.

$$\phi V_{cp} = \phi k_{cp} N_{cbg}$$

where:

$\phi = 0.70$, Condition B always applies for pryout strength

$k_{cp} = 2.0$ for $h_{ef} \geq 2.5$ in.

From Step 3(b) above

$$N_{cbg} = \left[\frac{720}{576} \right] (1.0)(0.85)(1.0)(1.0)(34,346) = 36,493 \text{ lb}$$

Substituting into Eq. (D-31):

$$\phi V_{cp} = 0.70 (2.0) (36,493) = 51,090 \text{ lb}$$

Summary of design strengths based on steel strength, concrete breakout strength, and pryout strength for shear:

<table>
<thead>
<tr>
<th>Component</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel strength, (ϕV_{sa})</td>
<td>20,448 lb</td>
</tr>
<tr>
<td>Embedment strength - concrete breakout, (ϕV_{cbg})</td>
<td>10,514 lb (controls)</td>
</tr>
<tr>
<td>Embedment strength - pryout, (ϕV_{cp})</td>
<td>51,090 lb</td>
</tr>
</tbody>
</table>

Therefore:

$$\phi V_n = 10,514 \text{ lb}$$

5. Check tension and shear interaction

If $V_{ua} \leq 0.2\phi V_n$ then the full tension design strength is permitted

$$V_{ua} = 5000 \text{ lb}$$

$$0.2\phi V_n = 0.2 (10,514) = 2103 \text{ lb} < 5000 \text{ lb}$$

V_{ua} exceeds $0.2\phi V_n$, the full tension design strength is not permitted

If $N_{ua} \leq 0.2\phi N_n$ then the full shear design strength is permitted

$$N_{ua} = 10,000 \text{ lb}$$
Example 34.6 (cont’d) Calculations and Discussion Code

Reference

\[0.2\phi N_n = 0.2 \times (17,703) = 3541 \text{ lb} < 10,000 \text{ lb} \]

\(N_{ua} \) exceeds \(0.2\phi N_n \), the full shear design strength is not permitted

The interaction equation must be used.

\[\frac{N_{ua}}{\phi N_n} + \frac{V_{ua}}{\phi V_n} \leq 1.2 \]

\[\frac{10,000}{17,703} + \frac{5000}{10,514} = 0.56 + 0.48 = 1.04 < 1.2 \quad \text{O.K.} \]

6. Required edge distances, spacings, an thicknesses to preclude splitting failure

Since cast-in-place L-bolts are not likely to be highly torqued, the minimum cover requirements of 7.7 apply.

Per 7.7 the minimum clear cover for a 5/8 in. bar is 1-1/2 in. when exposed to earth or weather. The clear cover provided for the bolt exceeds this requirement with the 6 in. edge distance to the bolt centerline – O.K.

7. Summary

Use 5/8 in. diameter ASTM F1554 Grade 36 L-bolts with an embedment of 8 in. (measured to the upper surface of the L) and a 3 in. extension, \(e_h \), as shown in the figure.

Note: The use of hex head bolts rather than L-bolts would significantly increase the tensile strength of the connection. If hex head bolts were used, the design tensile strength would increase from 17,719 lb as controlled by the pullout strength of the L-bolts to 25,545 lb as controlled by concrete breakout for hex head bolts.
Example 34.7—Group of Headed Bolts in Moment and Shear Near an Edge in Structures Assigned to Seismic Design Category C, D, E, or F

Design a group of four headed anchors spaced as shown for a reversible 18.0 k·ft factored moment and a 5.0 kip factored shear resulting from lateral seismic load in structures assigned to Seismic Design Category C, D, E, or F. The connection is located at the base of an 8 in. steel column. $f'_c = 4000$ psi (normalweight concrete)

Calculations and Discussion

1. The solution to this example is found by assuming the size of the anchors, then checking for compliance with the design provisions for structures assigned to Seismic Design Category C, D, E, or F. For this example, assume four 3/4 in. ASTM F1554 Grade 36 hex head anchors with $h_{ef} = 12$ in.

2. Since this connection is subjected to seismic load in structures assigned to Seismic Design Category C, D, E, or F, the design tensile strength is $0.75\phi N_n$ for concrete failure modes and design shear strength is $0.75\phi V_n$ for concrete failure modes. Unless the attachment has been designed to yield at a load lower than the design strength of the anchors (including the 0.75 factor), the strength of the anchors must be controlled by the tensile and shear strengths of ductile steel elements (D.3.3.3). To ensure ductile behavior, ϕN_{sa} must be smaller than the concrete breakout ($0.75\phi N_{cb}$), pullout ($0.75\phi N_{pn}$), and side-face blowout ($0.75\phi N_{sb}$). Further, ϕV_{sa} must be smaller than concrete breakout ($0.75\phi V_{cb}$), and pryout ($0.75\phi V_{cp}$).
3. This problem involves the design of the connection of the steel column to the foundation for lateral loads coming from either the left or the right of the structure as shown below:

Lateral load acting from the left:

\[\begin{align*}
&\text{Resisting forces} \\
&M_u \quad V_u \\
&\text{Forces on embedment}
\end{align*} \]

Lateral load acting from the right:

\[\begin{align*}
&\text{Resisting forces} \\
&M_u \quad V_u \\
&\text{Forces on embedment}
\end{align*} \]

As shown in the figures above, due to the free edge on the left, the critical case for tension on the anchors occurs when the lateral load is acting from the left while the critical case for shear occurs when the lateral load is acting from the right.

4. Distribution of the applied moment and shear loads to the anchors

Tension in the anchors resulting from the applied moment - The exact location of the compressive resultant from the applied moment cannot be accurately determined by traditional concrete beam methods. This is true for both the elastic linear stress-strain
method (i.e., the transformed area method) and the ACI 318 stress block method since plane sections do not remain plane and different cross-sections and materials are utilized on each side of the connection. These methods require additional work that is simply not justified and in many cases can yield unconservative results for the location of the compressive resultant. The actual location of the compressive resultant is dependent on the stiffness of the base plate.

If the base plate rotates as a rigid body the compressive resultant will be at the leading edge of the base plate. For example, take a book, lay it on your desk and lift one end. The end opposite of the one being lifted is where the compressive resultant is located; this is rigid base plate behavior where the compressive resultant is located at the leading edge of the base plate. The assumption of rigid base plate behavior is conservative for determining base plate thickness but is unconservative for determining the tension force in the anchors since it provides a maximum distance (lever arm) between the tensile and compressive resultants from the applied moment.

If the base plate is flexible, the compressive resultant will be very near the edge of the attached structural member that is in compression from the applied moment. For example; take a piece of paper, lay it on your desk and lift one end. A portion of the paper opposite of the one being lifted will remain flat on the desktop. Since this portion of the paper remains flat, it has no curvature and therefore carries no moment. For this case, the compressive resultant must be located at the point where the piece of paper with one end lifted first contacts the desktop. References D.4 and D.5 of the ACI 318 Commentary show that the minimum distance between the edge of the attached structural member that is in compression from the applied moment and the compressive resultant from the applied moment is equal to the yield moment of the base plate divided by the compressive resultant from the applied moment. Since the determination of this distance adds unwarranted difficulty to the calculations, it is conservative to assume that the compressive resultant is located at the edge of the attached structural member that is in compression from the applied moment when determining the tensile resultant in the anchors from the applied moment.

For this example, the internal moment arm jd will be conservatively determined by assuming flexible base plate behavior with the compressive resultant located at the edge of the compression element of the attached member.

$$jd = 2 + 8 = 10 \text{ in.}$$

By summing moments about the location of the compressive resultant (see figures in Step 3):

$$M_u = T (jd)$$
Example 34.7 (cont’d) Calculations and Discussion

where:

\[M_u = 18.0 \text{ k-ft} = 216,000 \text{ in.-lb} \]
\[T = N_{ua} \text{ (i.e., the factored tensile load acting on the anchors in tension)} \]
\[jd = 2+8 = 10 \text{ in.} \]

Rearranging and substituting:

\[N_{ua} = \frac{M_u}{jd} = \frac{216,000}{10} = 21,600 \text{ lb} \]

Shear – Although the compressive resultant from the applied moment will allow for the development of a frictional shear resistance between the base plate and the concrete, the frictional resistance will be neglected for this example and the anchors on the compression side will be designed to transfer the entire shear. The assumption of the anchors on the compression side transferring the entire shear is supported by test results reported in Ref. D.4, D.5, and D.6. This assumption is permitted by D.3.1 which allows for plastic analysis where the nominal strength is controlled by ductile steel elements (as required by D.3.3.4).

References D.4, D.5, D.6 and ACI 349-01 *Code Requirements for Nuclear Safety Related Concrete Structures* B.6.1.4 provide information regarding the contribution of friction to the shear strength. As noted in these references, the coefficient of friction between the steel base plate and concrete may be assumed to be 0.40. For this example, the frictional shear resistance is likely to have the potential to transfer 8640 lbs \((0.40 \times 21,600)\). Although the potential frictional resistance between the base plate and the concrete will be neglected in this example, it does exist and will be located at the compressive reaction (i.e., near the anchors in the compression zone).

To summarize, the assumption of the entire shear being transferred by the anchors in the compression zone is permitted by D.3.1, represents a conservative condition for shear design, is supported by test results, and best represents where the shear will actually be transferred to the concrete if the friction force were considered.

\[V_u = 5000 \text{ lb on the two anchors on the compression side} \]

5. Determine the design tensile strength for seismic load \((0.75\phi N_n)\)

a. Steel strength, \((\phi N_{sa})\):

\[\phi N_{sa} = \phi n A_{se,N} f_{ulta} \]

where:

\[\phi = 0.75 \]
Per Table 34-1, the ASTM F1554 Grade 36 bolt meets the Ductile Steel Element definition of Section D.1.

\[A_{se,V} = 0.334 \text{ in.}^2 \] (see Table 34-2)

\[f_{uta} = 58,000 \text{ psi} \] (see Table 34-1)

Substituting:

\[\phi N_{sa} = 0.75 \times 2 \times (0.334) \times (58,000) = 29,058 \text{ lb} \]

b. Concrete breakout strength (\(\phi N_{cbg} \)):

Since the spacing of the anchors is less than 3 times the effective embedment depth \(h_{ef} \) (3 \times 12 in. = 36 in.), the anchors must be treated as an anchor group. \(D.1 \)

\[\phi N_{cbg} = \phi \frac{A_{Nc}}{A_{Nco}} \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \] \(Eq. (D-5) \)

Since no supplementary reinforcement has been provided, \(\phi = 0.70 \) \(D.4.4(c)ii \)

Determine \(A_{Nc} \) and \(A_{Nco} \):

\(D.5.2.1 \)

\(A_{Nc} \) is the projected area of the failure surface as approximated by a rectangle with edges bounded by 1.5 \(h_{ef} \) (1.5 \times 12.0 = 18.0 in.) and free edges of the concrete from the centerlines of the anchors.
Example 34.7 (cont’d) Calculations and Discussion Code Reference

\[A_{Nc} = (14 + 18) (18 + 6 + 18) = 1344 \text{ in.}^2 \]

\[A_{Nco} = 9 \text{hef}^2 = 9 (12)^2 = 1296 \text{ in.}^2 \] \hspace{1cm} \text{Eq. (D-6)}

Check: \[A_{Nc} \leq nA_{Nco} \quad 1344 < 2(1296) \quad \text{O.K.} \]

Determine \(\psi_{ec,N} \):

\[\psi_{ec,N} = 1.0 \text{ (no eccentricity in the connection)} \] \hspace{1cm} \text{D.5.2.4}

Determine \(\psi_{ed,N} \):

\[\psi_{ed,N} = 0.7 + 0.3 \frac{e_{a,\text{min}}}{1.5 \text{hef}} \] \hspace{1cm} \text{Eq. (D-11)}

\[\psi_{ed,N} = 0.7 + 0.3 \frac{14.0}{1.5(12.0)} = 0.933 \]

Determine \(\psi_{c,N} \):

\[\psi_{c,N} = 1.0 \text{ for locations where concrete cracking is likely to occur (i.e., the edge of the foundation)} \] \hspace{1cm} \text{D.5.2.6}

Determine \(\psi_{cp,N} \)

For cast-in-place anchors, \(\psi_{cp,N} = 1.0 \)

Determine \(N_b \):

\[N_b = 24\lambda \sqrt{\frac{f_c}{c}} \text{hef}^{1.5} = 24(1.0)\sqrt{4000(12.0)^{1.5}} = 63,098 \text{ lb} \] \hspace{1cm} \text{Eq. (D-7)}

Substituting into Eq. (D-5):

\[\phi N_{cbg} = 0.70 \left(\frac{1344}{1296} \right) (1.0)(0.933)(1.0)(1.0)(63,098) = 42,736 \text{ lb} \]

\text{c. Pullout strength (} \phi\text{N}_{pn})

\[\phi\text{N}_{pn} = \phi \psi_{c,p} N_p \] \hspace{1cm} \text{Eq. (D-14)}

where:

\[\phi = 0.70, \text{ Condition B always applies for pullout strength} \] \hspace{1cm} \text{D.4.4(c)ii}
Example 34.7 (cont’d) Calculations and Discussion Code Reference

$\psi_c, p = 1.0$, cracking may occur at the edges of the foundation

N_p for the hex head bolts:

$N_p = A_{brg} 8 f'_c$

$A_{brg} = 0.654 \text{ in.}^2$, for 3/4 in. hex head bolt (see Table 34-2)

Substituting into Eq. (D-14) and Eq. (D-15) with 2 bolts (ϕN_{pn})

$\phi N_{pn} = 2 (0.70) (1.0) (0.654) (8) (4000) = 29,299 \text{ lb}$

d. Concrete side-face blowout strength (ϕN_{sb})

The side-face blowout failure mode must be investigated when the edge distance (c_{a1}) is less than 0.4 h_{ef} ($h_{ef} > 2.5 c_{a1}$)

$0.4 h_{ef} = 0.4 (12) = 4.8 \text{ in.} < 12.0 \text{ in.}$

Therefore, the side-face blowout strength is not applicable (N/A)

Summary of design strengths based on steel strength, concrete breakout strength, pullout strength, and side-face blowout strength for tension:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel strength, (ϕN_{sa}):</td>
<td>29,058 lb</td>
<td>D.5.1</td>
</tr>
<tr>
<td>Embedment strength – concrete breakout, (ϕN_{cbg}):</td>
<td>42,736 lb</td>
<td>D.5.2</td>
</tr>
<tr>
<td>Embedment strength – pullout, (ϕN_{pn}):</td>
<td>29,299 lb</td>
<td>D.5.3</td>
</tr>
<tr>
<td>Embedment strength – side-face blowout, (ϕN_{sb}):</td>
<td>N/A</td>
<td>D.5.4</td>
</tr>
</tbody>
</table>

For structures assigned to Seismic Design Category C, D, E, and F, anchor design strength associated with concrete failure modes must be taken as $0.75 \phi N_n$. For anchors where ductile steel element governs the design, the design strengths for the four failure modes in tension are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel strength, (ϕN_{sa}):</td>
<td>29,058 lb</td>
<td>D.3.3.3</td>
</tr>
<tr>
<td>Embedment strength – concrete breakout, ($0.75\phi N_{cbg}$):</td>
<td>(0.75) 42,736 = 32,052 lb</td>
<td>D.3.3.3</td>
</tr>
<tr>
<td>Embedment strength – pullout, ($0.75\phi N_{pn}$):</td>
<td>(0.75) 29,299 = 21,974 lb</td>
<td>D.3.3.4</td>
</tr>
<tr>
<td>Embedment strength – side-face blowout, ($0.75\phi N_{sb}$):</td>
<td>N/A</td>
<td>D.3.3.6</td>
</tr>
</tbody>
</table>

Pullout strength governs the design. Pullout is a non-ductile failure. According to D.3.3.4, anchors shall be designed to be governed by the steel strength of a ductile steel element, unless either D.3.3.5 or D.3.3.6 is satisfied. The pullout strength can be enhanced by using...
an anchor with a larger net bearing area for the anchor head. From Table 34-2, for a 3/4 in. diameter anchor bolt, the net bearing area for a hex head, $A_{brg} = 0.654$ in.2, while for a heavy hex head, $A_{brg} = 0.911$ in.2

Pullout strength for a 3/4 in. diameter bolt with a heavy hex head:

$$0.75N_{pn} = 21,974 \times (0.911/0.654) = 30,609 \text{ lb}$$

Summary: the steel design strength, $N_{sa} = 29,058$ lb governs the design and is larger than the factored load of 21,600 lb. Use of a heavy hex head increased the pullout strength above the steel strength.

6. Determine the design shear strength (ϕV_n)

a. Steel strength, (ϕV_{sa}):

$$\phi V_{sa} = \phi n 0.6 A_{se,V} f_{uta}$$

where:

$$\phi = 0.65$$

Per Table 34-1, the ASTM F1554 Grade 36 meets the Ductile Steel Element definition of Section D.1.

$$A_{se,V} = 0.334 \text{ in.}^2 \text{ (see Table 34-2)}$$

$$f_{uta} = 58,000 \text{ psi (see Table 34-1)}$$

Substituting:

$$\phi V_{sa} = 0.65 (2) (0.6) (0.334) (58,000) = 15,110 \text{ lb}$$

b. Concrete breakout strength (ϕV_{cbg}):

$$V_{cbg} = \phi \frac{A_{Vc}}{A_{Vco}} \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} V_b$$

Since no supplementary reinforcement has been provided, $\phi = 0.70$

Determine A_{Vc} and A_{Vco}:

A_{Vc} is the projected area of the shear failure surface on the free edge toward which shear is directed. The projected area is determined by a rectangle with edges bounded by 1.5 c_{a1} ($1.5 \times 14.0 = 21.0$ in.) and free edges of the concrete from the centerlines of the anchors and surface of the concrete.
Example 34.7 (cont’d) Calculations and Discussion Code Reference

\[A_{Vc} = (21 + 6 + 21)(21) = 1008 \text{ in.}^2 \]

\[A_{Vco} = 4.5 \, c_{a1}^2 = 4.5 \, (14)^2 = 882 \text{ in.}^2 \quad \text{Eq. (D-23)} \]

Check: \(A_{Vc} \leq n A_{Vco} \) \(1008 < 2(882) \) O.K.

Determine \(\psi_{ec,V} \):

\(\psi_{ec,V} = 1.0 \) (no eccentricity in the connection)

Determine \(\psi_{ed,V} \):

\(\psi_{ed,V} = 1.0 \) (no orthogonal free edge) \(\text{Eq. (D-27)} \)

Determine \(\psi_{c,V} \):

\(\psi_{c,V} = 1.0 \) for locations where concrete cracking is likely to occur (i.e., the edge of the foundation)

\(\psi_{h,V} = 1.0 \) for \(h_a > 1.5 c_{a1} \) \(\text{D.6.2.8} \)

Determine \(V_b \) for an anchor:

\[V_b = \left(\frac{\ell_c}{d_a} \right)^{0.2} \sqrt{d_a} \lambda \sqrt{f_c} c_{a1}^{1.5} \quad \text{Eq. (D-24)} \]

where:

\(\ell_c = \text{load bearing length of the anchor for shear, not to exceed } 8d_a \) \(\text{2.1} \)

For this problem \(8d_a \) will control:

\(\ell_c = 8d_a = 8 (0.75) = 6.0 \text{ in. < 12 in.} \) therefore, use \(8d_a \)
Example 34.7 (cont’d) Calculations and Discussion Code Reference

\[\lambda = 1.0 \text{ for normalweight concrete} \]

Substituting into Eq. (D-24):

\[V_b = 7 \left(\frac{8(0.75)}{0.75} \right)^{0.2} \sqrt{0.75(1.0)\sqrt{4000(14.0)^{1.5}}} = 30,442 \text{ lb} \]

Substituting into Eq. (D-22):

\[\phi V_{cbg} = 0.70 \left(\frac{1008}{882} \right)(1.0)(1.0)(1.0)(1.0)(30,442) = 24,354 \text{ lb} \]

c. Pryout strength (\(\phi V_{cp} \))

Note: The pryout failure mode is normally only a concern for shallow, stiff anchors. Since this example problem addresses both shear directed toward the free edge and shear directed inward from the free edge, the pryout strength will be evaluated.

\[\phi V_{cp} = \phi k_{cp} N_{cbg} \]

where:

\[\phi = 0.70, \text{ Condition B always applies for pryout strength} \]

\[k_{cp} = 2.0 \text{ for } h_{ef} > 2.5 \text{ in.} \]

From Step 5(b) above

\[N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \psi_{ec,N} \psi_{ed,N} \psi_{cp,N} N_b \]

\[N_{cbg} = \left(\frac{1344}{1296} \right)(1.0)(0.933)(1.0)(1.0)(63,098) = 61,051 \text{ lb} \]

Substituting into Eq. (D-31):

\[\phi V_{cp} = 0.70 (2.0) (61,051) = 85,471 \text{ lb} \]

Summary of design strengths based on steel strength, concrete breakout strength, and pryout strength for shear:

Steel strength, (\(\phi V_{sa} \)): 15,110 lb D.6.1
Embedment strength - concrete breakout, (\(\phi V_{cbg} \)): 24,354 lb D.6.2
Embedment strength - pryout, (\(\phi V_{cp} \)): 85,471 lb D.6.3
Example 34.7 (cont’d) Calculations and Discussion Code Reference

For structures assigned to Seismic Design Category C, D, E, or F, anchor design strength associated with concrete failure modes must be taken as 0.75\(\phi V_n\). For anchors where a ductile steel element governs the design, the design strengths for the three failure modes in shear are as follows:

\[
\begin{align*}
\text{Steel strength, } (\phi V_{sa}) : & \quad 15,110 \text{ lb} \\
\text{Embedment strength – concrete breakout, } (0.75 \phi V_{cbg}) : & \quad (0.75) 24,354 = 18,265 \text{ lb} \\
\text{Embedment strength – pryout, } (0.75 \phi N_{pn}) : & \quad (0.75) 85,471 = 64,103 \text{ lb}
\end{align*}
\]

Summary: the steel design strength, \(\phi V_{sa} = 15,110 \text{ lb}\) governs the design and is larger than the factored shear of 5000 lb.

D.3.3.3

7. Required edge distances, spacings, and thicknesses to preclude splitting failure

Since cast-in-place anchors are not likely to be highly torqued, the minimum cover requirements of 7.7 apply.

Per 7.7 the minimum clear cover for a 3/4 in. bar is 1-1/2 in. when exposed to earth or weather. The clear cover provided for the bolt exceeds this requirement with the 12 in. edge distance to the bolt centerline O.K.

D.8

8. Summary

Use 3/4 in. diameter ASTM F1554 Grade 36 heavy hex head anchors with \(h_{ef} = 12\) in.

Note: OSHA Standard 29 CFR Part 1926.755 requires that column anchorages use at least four anchors and be able to sustain a minimum eccentric gravity load of 300 pounds located 18 in. from the face of the extreme outer face of the column in each direction. The load is to be applied at the top of the column. The intent is that the column be able to sustain an iron worker hanging off the side of the top of the column. This connection will satisfy the OSHA requirement but calculations are not included in the example.
Design a group of four headed anchors spaced as shown to carry a factored tension (uplift) of 50 kips resulting from a load combination including effects of earthquake loads in a structure assigned to Seismic Design Category D. The connection is located at the base of an 8 in. steel column centered over a 24 × 24 in. concrete pedestal as shown below. The pedestal vertical reinforcement consist of 8 No. 8 bars, Grade 60.

\[f'_c = 4000 \text{ psi (normalweight concrete)} \]

1. Select size of headed anchor

Design strength in tension must be larger than the required strength (factored load):

\[\phi N_{sa} \geq N_u \]

Eq. (D-1)
Example 34.8 (cont’d) Calculations and Discussion Code Reference

The design strength of the steel in tension is given by Eq. (D-3)

\[N_{sa} = nA_{se,N} f_{uta} \]

Combining Eq. (D-1) and (D-3), and rearranging:

\[A_{se,N} \geq \frac{N_u}{(\phi n f_{uta})} \]

Assume ASTM F1554 Grade 36 hex head anchors, \(f_{uta} = 58,000 \text{ psi} \)

\(\phi = 0.75 \) for tension of ductile anchors

Required \(A_{se,N} = 50,000/(0.75 \times 4 \times 58,000) = 0.287 \text{ in.}^2 \)

Select four 3/4 in. hex head anchors, \(A_{se,N} \text{ provided per anchor} = 0.334 \text{ in.}^2 \)

The design strength in tension provided by four 3/4 in. anchors is

\[\phi N_{sa} = \phi nA_{se,N} f_{uta} = 0.75 \times 4 \times 0.334 \times 58,000 = 58,116 \text{ lb} \]

2. Concrete breakout strength (\(\phi N_{cbg} \))

Since the anchor group is close to four edges, the value of \(h_{ef} \) to be used in Eq. (D-4) through D-11 shall be the greater of \(c_{a,max}/1.5 \) and \(1/3 \) the maximum spacing between anchors within the group

\[c_{a,max}/1.5 = 9/1.5 = 6 \text{ in.} \]

\[s_{max}/3 = 12/3 = 4 \text{ in.} \]

To compute the concrete breakout, use \(h_{ef} = 6 \text{ in.} \)

\[N_{cb} = \frac{A_{Nc}}{A_{Nco}} \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \]

\[A_{Nc} = 24 \times 24 = 576 \text{ in.}^2 \]

\[A_{Nco} = 9(h_{ef})^2 = 9 (6)^1.5 = 324 \text{ in.}^2 \]

\(\psi_{ec,N} = 1.0 \) since there is no eccentricity

For \(c_{a,min} < 1.5 \text{ h}_{ef} \)

\[\psi_{ed,N} = 0.7 + 0.3 \frac{c_{a,min}}{1.5h_{ef}} \]

Eq. (D-5) Eq. (D-6) Eq. (D-11)
3. Concrete pullout

\[N_{p_n} = \Psi_{c,P} N_p \]

Assume concrete cracking may occur, \(\Psi_{c,P} = 1.0 \)

\[N_p = 8A_{brg} f'_c \]

For 3/4 in. diameter anchor with a hex head, \(A_{brg} = 0.654 \text{ in.}^2 \)

\[N_p = 8 (0.654) (4000) = 20,928 \text{ lb} \]

For pullout, Condition B applies

\(\phi = 0.70 \)

The design pullout strength of four anchors

\[\phi N_{p_n} = (0.70) (4 \text{ anchors}) (1.0) (20,928) = 58,598 \text{ lb} \]

4. Concrete side-face blowout strength

The side-face blowout failure mode must be investigated when the anchor edge distance \(c_{a1} \) is less than 0.4 \(h_{ef} \) (\(h_{ef} > 2.5 \ c_{a1} \))

\[0.4 \ h_{ef} = 0.4 (6) = 2.4 \text{ in.} \]

Therefore, the side-face blowout strength is not applicable (N/A)
Summary of design strengths based on steel strength, concrete breakout strength, pullout strength, and side-face blowout strength for tension:

- Steel strength, \(\phi N_{sa} \): 58,116 lb
- Embedment strength - concrete breakout, \(\phi N_{cbg} \): 26,770 lb
- Embedment strength - pullout, \(\phi N_{pn} \): 58,598 lb
- Embedment strength - side-face blowout, \(\phi N_{sb} \): N/A

For structures assigned to Seismic Design Category C, D, E, and F, anchor design strength associated with concrete failure modes must be taken as 0.75 \(\phi V_n \).

For anchors where ductile steel element governs the design, the design strengths for the three failure modes in tension are as follows:

- Steel strength, \(\phi N_{sa} \): 58,116 lb
- Embedment strength - concrete breakout, (0.75 \(\phi N_{cbg} \)): 20,077 lb
- Embedment strength - pullout, (0.75 \(\phi N_{pn} \)): 43,948 lb

Concrete breakout strength and pullout strength are smaller than the anchor steel strength. Concrete breakout and pullout are non-ductile failures. Per D.3.3.4, anchors shall be designed to be governed by the steel strength of a ductile steel element, unless either D.3.3.5 or D.3.3.6 is satisfied.

The pullout strength can be enhanced by using an anchor with a larger net bearing area for the anchor head. From Table 34-2, for a 3/4 in. diameter anchor bolt, the net bearing area for a hex head, \(A_{brg} = 0.654 \text{ in.}^2 \), while for a heavy hex head, \(A_{brg} = 0.911 \text{ in.}^2 \)

Pullout strength for four 3/4 in. diameter bolts with a heavy hex head:

\[
0.75\phi N_{pn} = 43,948 \times (0.911/0.654) = 61,218 \text{ lb} > 58,116 \text{ lb} \quad \text{OK}
\]

To preclude a concrete breakout failure, anchor reinforcement will be used. A strength reduction factor of 0.75 shall be used in the design of the anchor reinforcement. The anchor reinforcement strength must be equal or larger than the anchor steel strength. Therefore,

\[
0.75 \times A_s \text{ (anchor reinforcement)} \times 60,000 \geq 58,116 \text{ lb}
\]

Required \(A_s \text{ (anchor reinforcement)} = 58,116/ (0.75 \times 60,000) = 1.29 \text{ in.}^2 \)

Summary: the steel design strength, \(\phi N_{sa} = 58,116 \text{ lb} \) governs the design and is larger than the factored uplift tension of 50,000 lb.

The anchor reinforcement must be developed on both sides of the breakout surface. The pedestal is reinforced with 8 No. 8 bars. Per Table 4-2, the development of #8 bars in 4000 psi concrete is 47 db, i.e. 47 in. Note, this development length cannot be reduced by the ratio of required reinforcement to provided reinforcement for structures assigned to Seismic Design Category D, E, or F.
Compute h_{ef} allowing for a 2 in. cover, minimum development length, and a failure surface at a slope of 1 vertical to 1.5 horizontal.

$$h_{ef} = 2 + 47 + \frac{9}{1.5} = 55 \text{ in.}$$

Summary: Use four 3/4 in. ASTM F1554 Grade 36 heavy hex head anchors with an effective embedment $h_{ef} = 55$ in. The pedestal vertical reinforcement acts as anchor reinforcement to preclude a concrete breakout failure under a tension force. Provide 3 No. 3 hoops within the top 5 in. of the pedestal as required in 7.10.5.6.
Example 34.9—Single Post-Installed Anchor in Tension and Shear Away from Edges

Design a single post-installed mechanical anchor installed in the bottom of an 8 in. slab to support a factored 4500 lb tension load and a factored 2000 lb shear load (seismic loads for structures assigned to Seismic Design Category C, D, E, or F are not included).

\[f'_c = 4000 \text{ psi (normalweight concrete)} \]

\[N_u = 4500 \text{ lb} \]
\[V_u = 2000 \text{ lb} \]

\[h_{ef} = 8" \]

Note: This example for a single post-installed mechanical anchor is provided at the end of the design examples of Part 34 since additional calculations to account for group effects, edge conditions, eccentricity, and tension/shear interaction covered in the previous examples for cast-in-place anchors are essentially the same as for post-installed mechanical anchors.

Similarities between post-installed mechanical anchors and cast-in-place anchors:

- For group and edge conditions, \(A_{Nc}, A_{Nco}, A_{Vc}, \) and \(A_{Vco} \) are determined in the same manner.
- For eccentric loads, \(\psi_{ec,N} \) and \(\psi_{ec,V} \) are determined in the same manner.
- For edge effects, \(\psi_{ed,N} \) and \(\psi_{ed,V} \) are determined in the same manner.
- For anchors used in areas where concrete cracking may occur, \(\psi_{c,N} \) and \(\psi_{c,V} = 1.0 \).
- For anchors where \(h_a < 1.5c_{a1} \), modifier \(\psi_{h,V} \) is computed from Eq. (D-29).

The unique properties of post-installed mechanical anchors are provided by the ACI 355.2 product evaluation report (refer to the sample in Table 34-3 for anchor data for a fictitious post-installed torque-controlled mechanical expansion anchor). The unique properties associated with each post-installed mechanical anchor product are:

- effective embedment length \(h_{ef} \)
- effective cross sectional area \(A_{se,N} \) and \(A_{se,V} \), in tension and shear, respectively
- specified yield strength \(f_{ya} \) and specified ultimate strength \(f_{uta} \)
- minimum edge distance \(c_{a,\text{min}} \) for the anchor
- minimum member thickness \(h_{\text{min}} \) for the anchor
- minimum spacing \(s \) for the anchor
- critical edge distance \(c_{ac} \) for \(\psi_{cp,N} \) with uncracked concrete design (D.5.2.7)
- category of the anchor for determination of the appropriate \(\phi \) factor for embedment strength
- coefficient for basic concrete breakout strength \(k_c \) for use in Eq. (D-7)
- factor \(\psi_{c,N} \) for uncracked concrete design
- pullout strength \(N_p \) of the anchor

Calculations and Discussion

1. The solution to this example is found by assuming the size of the anchor, then checking compliance with the design provisions. Try the fictitious 5/8 in. post-installed torque-controlled mechanical expansion anchor with a 4.5 in. effective embedment depth, shown in Table 34-3.
2. This is a tension/shear interaction problem where values for both the design tensile strength \((\phi N_n) \) and design shear strength \((\phi V_n) \) will need to be determined. \(\phi N_n \) is the smallest of the design tensile strengths as controlled by steel \((\phi N_{sa}) \), concrete breakout \((\phi N_{cb}) \), pullout \((\phi N_{pn}) \), and side-face blowout \((\phi N_{sb}) \). \(\phi V_n \) is the smallest of the design shear strengths as controlled by steel \((\phi V_{sa}) \), concrete breakout \((\phi V_{cb}) \), and pryout \((\phi V_{cp}) \).

3. Determine the design tensile strength \((\phi N_n) \)

 a. Steel strength, \((\phi N_{sa}) \):

 \[
 \phi N_{sa} = \phi n A_{se,N} f_{uta}
 \]

 where:

 \[
 \phi = 0.75
 \]

 As shown in Table 34-3, this anchor meets ductile steel requirements.

 \[
 A_{se,N} = 0.226 \text{ in.}^2 \text{ (see Table 34-3)}
 \]

 \[
 f_{uta} = 75,000 \text{ psi} \text{ (see Table 34-3)}
 \]

 Note: Per D.5.1.2, \(f_{uta} \) shall not be taken greater than 1.9\(f_{ya} \) or 125,000psi. From Table 34-3, \(f_{ya} = 55,000 \text{ psi} \) and 1.9\(f_{ya} = 1.9(55,000) = 104,500 \text{ psi} \), therefore use the specified minimum \(f_{uta} \) of 75,000 psi.

 Substituting:

 \[
 \phi N_{sa} = 0.75 (1) (0.226) (75,000) = 12,712 \text{ lb}
 \]

 b. Concrete breakout strength \((\phi N_{cb}) \):

 \[
 \phi N_{cb} = \phi \frac{A_{Ne}}{A_{Nco}} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b
 \]

 where:

 \[
 \phi = 0.65
 \]

 From Table 34-3, this post-installed anchor is Category 1 and no supplementary reinforcement has been provided.
\(\frac{A_{\text{Ne}}}{A_{\text{Nco}}} \) and \(\psi_{\text{ed,}N} \) terms are 1.0 for single anchors away from edges

\(\psi_{c,N} = 1.0 \) and \(\psi_{\text{cp,N}} = 1.0 \) for locations where concrete cracking is likely to occur (i.e., the bottom of the slab)

\[N_b = k_c \lambda \sqrt{h_{\text{ef}}^1} \]

where:

\(k_c = 17 \)

Note: \(k_c = 17 \) for post-installed anchors unless the ACI 355.2 product evaluation report indicates a higher value may be used. For the case of this torque-controlled mechanical expansion anchor, \(k_c = 17 \) per Table 34-3.

For normalweight concrete, \(\lambda = 1.0 \)

\(h_{\text{ef}} = 4.5 \) in. (Table 34-3)

Therefore,

\[N_b = 17 (1.0) \sqrt{4.5^1} = 10,264 \text{ lb} \]

Substituting:

\[\phi N_{\text{cb}} = 0.65 (1.0) (1.0) (1.0) (10,264) = 6672 \text{ lb} \]

c. Pullout strength (\(\phi N_{\text{pn}} \))

\[\phi N_{\text{pn}} = \phi \psi_{c,P} N_p \]

where:

\(\phi = 0.65 \), Category 1 and no supplementary reinforcement has been provided \(D.4.4 \)

\(\psi_{c,P} = 1.0 \), cracking may occur at the edges of the foundation \(D.5.3.6 \)

\(N_p = 8211 \text{ lb} \) (see Table 34-3)

Substituting:

\[\phi N_{\text{pn}} = 0.65 (1.0) (8211) = 5337 \text{ lb} \]

d. Concrete side-face blowout strength (\(\phi N_{\text{sb}} \))

This anchor is not located near any free edges therefore the side-face blowout strength is not applicable. \(D.5.4.1 \)
Summary of steel strength, concrete breakout strength, pullout strength, and side-face blowout strength for tension:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel strength, ((\phi N_{sa}))</td>
<td>12,712 lb</td>
<td>D.5.1</td>
</tr>
<tr>
<td>Embedment strength - concrete breakout, ((\phi N_{cb}))</td>
<td>6672 lb</td>
<td>D.5.2</td>
</tr>
<tr>
<td>Embedment strength - pullout, ((\phi N_{pn}))</td>
<td>5337 lb (\leftarrow) controls</td>
<td>D.5.3</td>
</tr>
<tr>
<td>Embedment strength - side-face blowout, ((\phi N_{sb}))</td>
<td>N/A</td>
<td>D.5.4</td>
</tr>
</tbody>
</table>

Therefore:

\[\phi N_n = 5337 \text{ lb} \]

4. Determine the design shear strength \((\phi V_n)\)

a. Steel strength, \((\phi V_{sa})\):

\[\phi V_{sa} = \phi n (0.6 A_{se,V} f_{uta}) \quad \text{Eq. (D-20)} \]

where:

\[\phi = 0.65 \]

As shown in Table 34-3, this anchor meets ductile steel requirements.

\[A_{se,V} = 0.226 \text{ in.}^2 \quad \text{(see Table 34-3)} \]

\[f_{uta} = 75,000 \text{ psi} \quad \text{(see Table 34-3)} \]

Note: Per D.5.1.2, \(f_{uta}\) shall not be taken greater than \(1.9f_{ya}\) or 125,000 psi. From Table 34-3, \(f_{ya} = 55,000 \text{ psi}\) and \(1.9f_{ya} = 1.9(55,000) = 104,500 \text{ psi}\). Therefore, use the specified minimum \(f_{uta}\) of 75,000 psi.

Substituting:

\[\phi V_{sa} = 0.65 (1) (0.6) (0.226) (75,000) = 6610 \text{ lb} \]

b. Concrete breakout strength \((\phi V_{cb})\):

This anchor is not located near any free edges therefore the concrete breakout for shear is not applicable.

c. Pryout strength \((\phi V_{cp})\):

\[\phi V_{cp} = \phi k_{cp} N_{cb} \quad \text{Eq. (D-30)} \]

where:

\[\phi = 0.65, \text{ Category 1 and no supplementary reinforcement has been provided} \quad \text{D.4.4} \]
Example 34.9 (cont’d) Calculations and Discussion

\[k_{cp} = 2.0 \text{ for } h_{ef} > 2.5 \text{ in.} \]

\[N_{cb} = \frac{A_{Nc}}{A_{Nco}} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_b \]

Eq. (D-4)

From Step 3 above:

\[N_{cb} = (1.0) (1.0) (1.0) (10,264) = 10,264 \text{ lb} \]

Substituting into Eq. (D-30):

\[\phi V_{cp} = 0.65 (2.0) (10,264) = 13,343 \text{ lb} \]

Summary of steel strength, concrete breakout strength, and pryout strength for shear:

- Steel strength, \((\phi V_{sa})\): 6610 lb ← controls \(D.6.1\)
- Embedment strength - concrete breakout, \((\phi V_{cb})\): N/A \(D.6.2\)
- Embedment strength - pryout, \((\phi V_{cp})\): 13,343 lb \(D.6.3\)

Therefore:

\[\phi V_n = 6610 \text{ lb} \]

5. Check tension and shear interaction \(D.7\)

If \(V_{ua} \leq 0.2 \phi V_n\) then the full tension design strength is permitted \(D.7.1\)

\[V_{ua} = 2000 \text{ lb} \]

\[0.2 \phi V_n = 0.2 (6610) = 1322 \text{ lb} \]

\(V_{ua}\) exceeds \(0.2 \phi V_n\), the full tension design strength is not permitted

If \(N_{ua} \leq 0.2 \phi N_n\) then the full shear design strength is permitted \(D.7.2\)

\[N_{ua} = 4500 \text{ lb} \]

\[0.2 \phi N_n = 0.2 (5337) = 1067 \text{ lb} \]

\(N_{ua}\) exceeds \(0.2 \phi N_n\), the full shear design strength is not permitted

The interaction equation must be used \(D.7.3\)

\[\frac{N_{ua}}{\phi N_n} + \frac{V_{ua}}{\phi V_n} \leq 1.2 \]

Eq. (D-32)
4500 + 2000
5337 + 6610 = 0.84 + 0.30 = 1.14 < 1.2 O.K.

6. Required edge distances, spacings, and thickness to preclude splitting failure

Since this anchor is located away from edges, only the limits on embedment length \(h_{ef} \) related to member thickness are applicable. Per D.8.5, \(h_{ef} \) shall not exceed 2/3 of the member thickness or the member thickness less 4 in. D.8 does permit the use of larger values of \(h_{ef} \) provided product-specific tests have been performed in accordance with ACI 355.2.

As shown in Table 34-3, the ACI 355.2 product evaluation report for this anchor provides the minimum thickness as 1.5 \(h_{ef} = 1.5(4.5) = 6.75 \) in. which is less than the 8 in. provided O.K.

7. Summary

The fictitious 5/8 in. diameter post-installed torque-controlled mechanical expansion anchor with 4.5 in. effective embedment depth shown in Table 34-3 is O.K. for the factored tension and shear loads.
Also from PCA

The following publications may be of interest to readers of this report:

2003 Analysis of Revisions to the IBC — Structural Provisions (LT289)
2006 International Building Code (LT190)
ACI 318-08 Building Code Requirements for Structural Concrete and Commentary (LT311)
Circular Concrete Tanks without Prestressing (IS072)
Column Shortening in Tall Buildings—Prediction and Compensation (EB108)
Concrete Floor Systems—Guide to Estimating and Economizing (SP041)
Concrete Structural Floor Systems and More (CD013)
Connections for Tilt-Up Wall Construction (EB110)
Design and Control of Concrete Mixtures (EB001)
Design of Concrete Buildings for Earthquake and Wind Forces (EB113)
Design of Concrete Buildings for Earthquake & Wind Forces According to the 1997 Uniform Building Code (EB117)
Design of Liquid-Containing Concrete Structures for Earthquake Forces (EB219)
Design of Low-Rise Concrete Buildings for Earthquake Forces (EB004)
Design of Multistory Reinforced Concrete Buildings for Earthquake Motions (EB032)
Design Provisions for Shearwalls (RD028)
Effects of Column Exposure in Tall Structures (EB018)
Long-Span Concrete Floor Systems (SP339)
Placing Reinforcing Bars—8th Edition (LT193)
Rectangular Concrete Tanks (IS003)
Reinforced Concrete Design—Distance Learning Modules (DVD005)
Reinforcement Details for Earthquake-Resistant Structural Walls (RD073)
Seismic and Wind Design of Concrete Buildings, IBC 2003 (LT191)
Seismic Detailings of Concrete Buildings (SP382)
Shearwall-Frame Interaction, a Design Aid (EB066)
Simplified Design: Reinforced Concrete Buildings of Moderate Size and Height (EB104)
Strength Design of Anchorage to Concrete (EB080)
Strength Design Load Combinations for Concrete Elements (IS521)
The Tilt-Up Construction and Engineering Manual (LT192)

To order, call, fax, or write to Customer Service, Portland Cement Association, 5420 Old Orchard Road, Skokie, Illinois 60077-1083, Phone 800.868.6733, Fax 800.966.9666, or visit our Website at: http://www.cement.org/Bookstore/ Free catalogs of PCA literature and audiovisual material are also available upon request. Discounts are available.
An organization of cement companies to improve and extend the uses of portland cement and concrete through market development, engineering, research, education and public affairs work.